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Abstract

Test log-likelihood is commonly used to compare different models of the same data
and different approximate inference algorithms for fitting the same probabilistic
model. We present simple examples demonstrating how comparisons based on test
log-likelihood can contradict comparisons according to other objectives. Specif-
ically, our examples show that (i) conclusions about forecast accuracy based on
test log-likelihood comparisons may not agree with conclusions based on other
distributional quantities like means; and (ii) that approximate Bayesian inference
algorithms that attain higher test log-likelihoods need not also yield more accurate
posterior approximations.

1 Introduction

Test log-likelihood2 is often used to compare different models of the same data or to compare different
algorithms used to fit the same probabilistic model. Although there are compelling reasons for this
practice (Section 2.1), we provide counter-examples to the following, usually implicit, claims:

• Claim: The higher the test log-likelihood, the more accurately an approximate inference
algorithm recovers the Bayesian posterior distribution of latent model parameters (Section 3).

• Claim: The higher the test log-likelihood, the more accurately the model can predict the
mean, variance, or quantiles of the true data generating process (Section 4).

Our counter-examples demonstrate that test log-likelihood is not always a good proxy for posterior
approximation error. They further demonstrate that forecast evaluations based on test log-likelihood
may not agree with forecast evaluations based on other important distributional quantities.

We are not the first to highlight discrepancies between test log-likelihood and other analysis objectives.
For instance, Quinonero-Candela et al. (2005) and Kohonen and Suomela (2005) showed that when
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2Also known as predictive log-likelihood or test log-predictive. It is computed as the log-predictive density

averaged over a set of held-out data
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predicting discrete data with continuous distributions, test log-likelihood can be made arbitrarily
large by concentrating probability into vanishingly small intervals. Chang et al. (2009) observed
that topic models with larger test log-predictive densities can be less interpretable. Yao et al. (2019)
highlighted the disconnect between test log-likelihood and posterior approximation error in the
context of Bayesian neural networks. Our examples, however, reveal more fundamental issues
with test log-likelihood. In particular, we show how comparisons based on test log-likelihood can
contradict comparisons based on other objectives even in simple models like linear regression.

After introducing our notation, we precisely define test log-likelihood and review arguments for its
use in Section 2. In Sections 3 and 4, we present counter-examples highlighting some limitations
of using test log-likelihood as a default predictive loss function or model selection criterion. We
conclude in Section 5 with a reflection on when we should use test log-likelihood in practice.

2 Background

Practitioners often model training data D = {xn}Nn=1, which are assumed to be distributed according
to an unknown probability distribution P with density p(x), by introducing a parameter θ and
specifying a conditional distribution Π(X|θ) with density π(x|θ). In a non-Bayesian analysis, one
usually computes a point estimate θ̂ of the unknown parameter (e.g. by maximum likelihood). A
Bayesian analysis elaborates the conditional model by specifying a prior distribution Π(θ) and
formally computes the density π(θ|D) of the posterior distribution Π(θ|D) from the assumed joint
distribution Π(X, θ).

Upon computing θ̂ or the posterior density π(θ|D), one can ask how well the fitted model predicts
new data generated from P. Given a point estimate θ̂, the predictive density evaluated at x? is just
π(x?|θ̂). The Bayesian posterior predictive density is given by

π(x?|D) =

∫
π(x?|θ)π(θ|D)dθ.

Observe that π(x?|θ̂) is numerically equal to π(x?|D) when the prior Π(θ) is a point-mass at θ̂.

Practitioners commonly assess how well their fitted model predicts out-of-sample using a held-out set
of testing dataD? = {x?n}N

?

n=1, which was not used to train the model. To compute test log-likelihood,
they average evaluations of the log-predictive density function over the testing set.

lpd(D?; Π) :=
1

N?

N?∑
n=1

log π(x?n|D), (1)

where our notation makes explicit the dependence of lpd on testing data D? and the chosen model Π.
The abbreviation lpd is a reminder that test log-likelihood involves log-predictive density evaluations.

2.1 The case for test log-likelihood

Researchers commonly use lpd to select between two models of the data, say Π and Π̃; that is, they
select model Π over Π̃ whenever lpd(D?; Π) > lpd(D?; Π̃). To understand this criterion, consider
the expected log-predictive density,

elpd(Π) :=

∫
log π(x?|D)p(x?)dx?.

Our use of the abbreviation elpd follows the example of Gelman et al. (2014, Equation 1). Under mild
assumptions about P and Π, lpd(D?; Π) → elpd(Π) as the number of testing points N? diverges.
Expected log-predictive density is closely related to the Kullback–Leibler divergence:

KL (P(x?) ‖Π(x?|D)) =

∫
p(x?) log p(x?)dx? − elpd(Π).

Thus, assuming that test set D? is sufficiently large, if lpd(D?; Π) > lpd(D?; Π̃) we can reasonably
conclude that elpd(Π) > elpd(Π̃), which in turn implies that Π(x?|D) is closer to P(x?) than
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Π̃(x?|D) in a KL sense. In other words, we would expect predictions made using the fitted model
with larger lpd to be closer (in a KL sense) to realizations from the true data generating process.

In addition to being essentially the only strictly proper local scoring rule (Bernardo and Smith,
2000, Proposition 3.13), in the absence of application-specified predictive loss, lpd may be seen
as a “non-informative” choice (Robert, 1996; Gelman et al., 2014). When Π(x?|D) is assumed to
be Gaussian, elpd is intimately related to another proper scoring rule: the Dawid–Sebastiani score
(Dawid and Sebastiani, 1999). Namely, elpd is equal to the Dawid–Sebastiani score plus a constant
that does not depend on the model or the data-generating process. Further, for Gaussian predictive
distributions, the highest possible elpd is obtained whenever the means and variances of Π(x?|D)
and P(x?) are identical. By contrast, minimizing mean square error is equivalent to only matching
the means of Π(x?|D) and P(x?).

Model comparison with lpd makes two implicit assumptions: (i) that lpd(D?; ·) is a close approxima-
tion to elpd(·) and (ii) that closeness between Π(x?|D) and P in a KL sense is desirable. As we will
see shortly, however, KL closeness to P does not necessarily imply closeness of other distributional
quantities or of posterior approximation quality.

3 Claim: lpd accurately assesses posterior approximation quality

In most Bayesian analyses, the posterior density π(θ|D) is analytically intractable and practitioners
must instead rely on approximate posterior computations. There are myriad approximate inference
algorithms (e.g. Laplace approximation, Hamiltonian Monte Carlo, coordinate ascent mean-field
variational inference, to name just a few). All of these algorithms aim to approximate the same poste-
rior Π(θ|D). Log predictive-density is often used to compare the quality of different approximations,
with higher lpd values assumed to reflect more accurate approximations, in the context of variational
inference (see, e.g., Hoffman et al., 2013; Ranganath et al., 2014; Hernández-Lobato et al., 2016;
Liu and Wang, 2016; Shi et al., 2018) and Bayesian deep learning (see, e.g., Hernández-Lobato and
Adams, 2015; Gan et al., 2016; Li et al., 2016; Louizos and Welling, 2016; Sun et al., 2017; Ghosh
et al., 2018; Mishkin et al., 2018; Wu et al., 2019; Izmailov et al., 2020, 2021; Ober and Aitchison,
2021).

Formally, suppose that our exact posterior is Π(θ|D) and that we have two approximate inference
algorithms that produce two approximate posteriors Π̂1(θ|D) and Π̂2(θ|D). The exact posterior and
its approximations respectively induce predictive distributions Π(x?|D), Π̂1(x?|D), and Π̂2(x?|D).

For instance, Π̂1(θ|D) could be the empirical distribution of samples drawn using HMC and Π̂2(θ|D)
could be a mean-field variational approximation. Our first example demonstrates that it is possible
that (i) lpd(D?; Π̂1) > lpd(D?; Π) but (ii) using Π̂1 could lead to different inference about model
parameters than using the exact posterior Π. Our second example demonstrates that it is possible
that (i) lpd(D?; Π̂1) > lpd(D?; Π̂2) but (ii) Π̂1(θ|D) is a worse approximation to the true posterior
Π(θ|D) than Π̂2(θ|D).

lpd and downstream posterior inference. Relying on lpd for model selection can lead to different
inferences than we would find by using the exact posterior. To illustrate, suppose we observe
D100 = {(xn, yn)}100

n=1 drawn from the following heteroscedastic model,

xn ∼ N (0, 1), yn | xn ∼ N (xn, 1 + log(1 + exp(xn))). (2)

Further suppose we modeled these data with a mis-specified homoscedastic model,

θ ∼ N ([0, 0]T , [1, 0; 0, 1]), yn | θ, φn ∼ N (θTφn, 1), (3)

where φn = [xn, 1]T , and θ = [θ1, θ2].

Figure 1 shows the posterior mean and the 95% predictive interval of the mis-specified regression
line θ>φ from (A) the Bayesian posterior; (B) the mean field variational approximation restricted
to isotropic Gaussians; and (C)–(F) variational approximations with re-scaled marginal variances.
In each plot, we overlaid the observed data D100, with the true data generating function in dashed
black. We also report the 2-Wasserstein distance between the true posterior and each approximation
and the lpd averaged over N∗ = 104 test data points drawn from Equation (2); note that the 2-
Wasserstein distance can be used to bound differences in means and variances (Huggins et al., 2020).
The variational approximation (panel (B) of Figure 1) is quite accurate: the 2-Wasserstein distance
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between the approximation and the exact posterior is ∼ 10−4. As we scale up the variance of
this approximation, we move away from the exact posterior over the parameters but the posterior
predictive distribution covers more of the data, yielding higher lpd. Figure 4 in Appendix B shows
the contours of these approximate posterior distributions.

Now suppose we are interested in understanding whether there is a relationship between the covariates
and the responses, i.e., whether θ1 = 0. The actual 95% posterior credible interval is [0.63, 1.07].
Since the interval does not contain zero, we could correctly infer that θ1 6= 0. On the other hand, the
approximation with highest lpd (panel (F) in Figure 1) yields an approximate 95% credible interval
of [-0.29,1.99], which does cover zero. Had we used the approximate interval, we might have failed
to conclude θ1 6= 0.

Figure 1: (Left). Predictive distributions under the Bayesian posterior and mean field variational approximations.
The two numbers in the title of each plot are the 2-Wasserstein distance to the true posterior and test log-
likelihood computed on 104 test set observations. (Right). The relationship between distance to posterior and
test log-predictive density.

Another mis-specified case. As another example illustration that a posterior approximation with
higher lpd is not necessarily in more agreement with the exact posterior, suppose we observe
D500 = {(xn, yn)}500

n=1 drawn from the non-linear model

θ∗ = [−2,−1]T , xn ∼ N (0, 1), yn | θ∗, φn ∼ N (θT∗ φn + x2
n, 0.5), (4)

where φn = [xn, 1]T . Further suppose we modeled these data with a mis-specified linear model

θ ∼ N ([0, 0]T , [1, 0; 0, 1]), yn | θ, φn ∼ N (θTφn, 0.5). (5)

Figure 2 shows the posterior mean and the 95% predictive interval of the mis-specified regression
line θ>φ from (A) the Bayesian posterior; (B) the mean field variational approximation restricted
to isotropic Gaussians; and (C)–(F) several re-scaled variational approximations. In each plot, we
overlaid the observed data D500, the true data generating function in dashed black, and also report the
2-Wasserstein distance between the true posterior and each approximation and the lpd averaged over
N∗ = 104 test data points drawn from Equation (4). Like in our previous example, the mean field
approximation (panel (B) of Figure 2) is very close to the exact posterior. Further, as we scale up the
marginal variance of the approximate posteriors, the posterior predictive distributions cover more
data, yielding higher lpd, while simultaneously moving away from the exact posterior over the model
parameters in a 2-Wasserstein sense. Interestingly, when the approximation is diffuse enough, lpd
decreases, again highlighting its non-monotonic relationship with posterior approximation quality.
Figure 6 in Appendix B shows a similar phenomenon with posterior standard deviations.

In this example of a mis-specified model, the non-monotonic relationship between lpd and 2-
Wasserstein distance means that lpd is, at best, a poor proxy of posterior approximation quality.
In fact, we can observe a similar non-monotonic relationship even when the likelihood model is
correctly specified (see Appendix A). One could argue that these examples are not cause for worry
in situations where prediction is of primary interest and inference about latent parameters is of
secondary concern. In fact, we will see that conclusions based on lpd do not always align with
conclusions based on predictive RMSE below. Moreover, Proposition 3.6 of Huggins et al. (2020)

4



Figure 2: (Left). Predictive distributions under the Bayesian posterior and mean field variational approximations.
The two numbers in the title of each plot are the 2-Wasserstein distance to the true posterior and test log-
likelihoods computed on 104 test set observations. (Right). The relationship between distance to posterior and
test log-predictive density. Observe the log scale of the x-axis and the non-monotonic relationship between test
log-predictive density and 2-Wasserstein distance to the Bayesian posterior.

shows that approximation error for predictive distributions closely tracks approximation errors of
posterior distributions of latent parameters. That is, even when one only cares about prediction, an
approximate inference algorithm with large lpd may still produce large predictive errors because it
has not approximated the posterior Π(θ|D) well.

4 Claim: the higher the lpd, the more accurate the predictive mean

We next show that although lpd roughly measures closeness in a KL sense, a comparison of lpd can
disagree with a comparison based on root mean squared error (RMSE). To this end, we construct two
models Π and Π̃ such that lpd(D?; Π) < lpd(D?; Π̃) but Π̃ yields larger predictive RMSE.

Specifically, suppose that we observe D = {(xn, yn)}100,000
n=1 generated according to

xn ∼ U(0, 25), yn|xn ∼ Laplace(xn, 1/
√

2), (6)

which we model using one of the following mis-specified conditional linear models:

Π : yn|xn ∼ N (wxn, σ
2) or Π̃ : yn|xn ∼ Laplace(0.45 + wxn, λ). (7)

Both Π and Π̃ depend on two unknown parameters. Π depends on a slope w and a residual variance
σ2 and Π̃ depends on a slope w and a residual scale λ. The kind of mis-specification is different
across models: while Π has the correct mean specification but incorrect noise specification, Π̃ has
incorrect mean specification but correct noise specification.

We computed the maximum likelihood estimates (MLEs) (ŵΠ, σ̂Π) and (ŵΠ̃, λ̂Π̃) for both models.
The two fitted models induce the following predictive distributions of y?|x?:

Π(y?|x?,D) : y?|x? ∼ N (ŵΠx
?, σ̂2

Π) and Π̃(y?|x?,D) : y?|x? ∼ Laplace(0.45+ŵΠ̃x
?, λ̂Π̃).

The means of these predictive distributions are natural point estimates of the output y? at input x?.

Using a test set of size N? = 395,000, we observed lpd(D?; Π) = −1.42 < −1.39 = lpd(D?; Π̃).

These values suggest that on average over inputs x?, Π̃(y?|x?,D) is closer to P(y?|x?) than
Π(y?|x?,D) in a KL sense. However, using the same test set, we found that Π yielded more
accurate point forecasts, as measured by root mean square error (RMSE):(

1

N?

N?∑
n=1

(y?n − ŵΠx
?
n)2

)1/2

= 1.00 < 1.03 =

(
1

N?

N?∑
n=1

(y?n − 0.45− ŵΠ̃x
?
n)2

)1/2

.

The comparison of RMSEs suggest that on average over inputs x?, the predictive mean of Π(y?|x?,D)

is closer to the mean of P(y?|x?) than the predictive mean of Π̃(y?|x?,D). In other words, the
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model with larger lpd – whose predictive distribution is ostensibly closer to P – makes worse point
predictions than the model with smaller lpd.

At first glance, our deliberate use of mis-specified models may appear contrived. We note, however,
that when a model is correctly specified and fitted using maximum likelihood, we would intuitively
expect the correct model to achieve both largest lpd and smallest RMSE. To explain our intuition,
had we not fixed the intercept of model Π̃, the MLE would converge to the true parameter values.
Accordingly the predictive distribution at each x? would converge to the true data generating process
P(y?|x?). The strict propriety of the log-score implies that P(y?|x?) achieves the smallest possible
elpd among all possible models of y?|x?. Further, one can show that P(y?|x?) also achieves the
smallest possible RMSE among all possible models. Thus, so long as D and D? are large enough, we
might reasonably expect a correctly specified model to achieve both largest lpd and smallest RMSE.

Of course, virtually all models are mis-specified in practice. As our example illustrates, we might
expect to see “rank reversals” where one model might achieve a higher lpd but larger RMSE than
another in the mis-specified regime. We conjecture that there are similar examples of mis-specified
regression models Π and Π̃ for which lpd(D?; Π̃) > lpd(D?; Π) but other moments or quantiles of
Π(y?|x?,D) are closer to the true moments and quantiles of P(y?|x?) than Π̃(y?|x?,D).

5 Discussion

So when should one use test log-likelihood? We argue that comparing probabilistic forecasts using
test log-likelihood is reasonable when either (a) the predictive distribution is Gaussian (so maximizing
lpd ensures correct mean and variance forecasts) or when (b) being close to the true data generating
distribution in a Kullback-Leibler sense is substantively important. It is important to note, however,
that just because two distributions are close in KL, their means and variances need not be close; in fact,
Propositions 3.1 & 3.2 of Huggins et al. (2020) show that the means and variances of distributions
that are close in KL can be arbitrarily far apart.

We further argue that it is inappropriate to compare different Bayesian posterior approximations
solely on the basis of the implied test log-predictive densities. Bluntly, just because an approximate
inference algorithm produces a larger lpd, it does not necessarily follow that the algorithm has
produced a more accurate posterior approximation. Even in cases where one only cares about the
implied predictive distribution rather than the underlying posterior distribution simply examining lpd
can obfuscate the interplay between modeling choices and posterior approximation algorithms.
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A Posterior approximation quality, lpd, and well-specified models

Our second example in Section 3 demonstrates that lpd may not be a good proxy of posterior
approximation quality. Just like most applied situation, the Bayesian model in that example was
mis-specified. We now demonstrate that an approximate posterior distribution with higher lpd may
not be more accurate even when the model is correctly specified. To this end, consider the following
Bayesian linear model

θ ∼ N ([0, 0]>, [1, 0.9; 0.9, 1]), yn | θ, φn ∼ N (θ>φn, 0.252), (8)

where φn = [xn, 1]>. Now, suppose we observe ten data points D10 = {(xn, yn)}10
n=1 sampled as

θ∗ = [−2,−1]T , xn ∼ N (0, 1), yn | θ∗, φn ∼ N (θT∗ φn, 0.252). (9)

The left panel of Figure 3 plots the contours of (A) the true posterior distribution Π(φ|D10); (B) a mean
field variational approximation constrained to the isotropic Gaussian family; and (C)–(F) variational
approximations with re-scaled marginal variances. In each panel, we report the 2-Wasserstein distance
between the approximate and true posterior and the test log-predictive averaged over N? = 104 test
data points drawn from (9).

Interestingly, although we have correctly specified the conditional model of y|(θ, φ), the true posterior
has a smaller lpd than some of the approximate posteriors. The left panel of Figure 3 suggests that the
more probability mass an approximate posterior places around the true data-generating parameter, the
higher the lpd. Further, as the approximation becomes more diffuse, lpd begins to decrease (Figure 3
(right)). The non-monotonicity demonstrates that an approximate posterior with larger implied lpd
can in fact be further away from the true posterior in a 2-Wasserstein sense than an approximate
posterior with smaller implied lpd. Figure 5 in Appendix B shows that an approximate posterior with
larger lpd can provide worse estimated standard deviation than an approximation with smaller lpd.

Figure 3: (Left). Contours of the (A) true posterior, (B) the mean field variational approximation, and (C)–(F)
re-scaled mean field approximations. The two numbers in the title of each plot are the 2-Wasserstein distance to
the true posterior and test log-likelihoods computed on 104 test set observations. (Right). The non-monotonic
relationship between distance to posterior and test log-predictive density. Observe that the true posterior does
not achieve highest test log-predictive density.

B Additional Plots

Misleading inference. Figure 4 shows the contours of each posterior approximation from our first
example in Section 3. Notice that the actual posterior distribution (panel (A)) is concentrated on
positive θ1 values. Although the lpd increases as the approximations become more diffuse (panels
(B)–(F)), the approximations begin to place non-negligible probability mass on negative θ1 values.

Well-specified case.

Figure 5 displays a similar kind of non-monotonicity as the right panel of Figure 3. The experimental
setup is identical to that of Figure 3: we have only changed what is plotted on the x-axis.

Mis-specified case.
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Figure 4: Contours of the (A) true posterior, (B) the mean field variational approximation, and (C)–(F)
re-scaled mean field approximations.

Figure 5: The non-monotonic relationship between difference in marginal standard deviations and test log-
predictive density in a well-specified case. (Left) The x-axis reports the difference in the standard deviation
of the weight w between an approximation and the posterior. (Right) The x-axis reports the difference in the
standard deviation of the bias b between an approximation and the posterior.

Figure 6 displays a similar kind of non-monotonicity as the right panel of Figure 2. The experimental
setup is identical to Figure 2: we have only changed what is plotted on the x-axis.
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Figure 6: The non-monotonic relationship between difference in marginal standard deviations and test log-
predictive density in a mis-specified case. The meaning of x-axis is similar to that of Figure 5.
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