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(a) Visualization of DS-VTON Results

Figure 1: (a) DS-VTON results across diverse scenarios. (b) Existing methods (Kim et al., 2024; Xu
et al., 2025; Choi et al., 2024; Zhou et al., 2025) adopt a single-scale pipeline with masked inputs,
limiting their ability to capture full-body semantics and garment structure. (c) In contrast, DS-VTON
adopts an enhanced dual-scale coarse-to-fine framework combined with a mask-free strategy.

ABSTRACT

Despite recent progress, most existing virtual try-on methods still struggle to simul-
taneously address two core challenges: accurately aligning the garment image with
the target human body, and preserving fine-grained garment textures and patterns.
These two requirements map directly onto a coarse-to-fine generation paradigm,
where the coarse stage handles structural alignment and the fine stage recovers
rich garment details. Motivated by this observation, we propose DS-VTON, an
enhanced dual-scale coarse-to-fine framework that tackles the try-on problem more
effectively. DS-VTON consists of two stages: the first stage generates a low-
resolution try-on result to capture the semantic correspondence between garment
and body, where reduced detail facilitates robust structural alignment. In the second
stage, a blend-refine diffusion process reconstructs high-resolution outputs by refin-
ing the residual between scales through noise–image blending, emphasizing texture
fidelity and effectively correcting fine-detail errors from the low-resolution stage.
In addition, our method adopts a fully mask-free generation strategy, eliminating
reliance on human parsing maps or segmentation masks. Extensive experiments
show that DS-VTON not only achieves state-of-the-art performance but consis-
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tently and significantly surpasses prior methods in both structural alignment and
texture fidelity across multiple standard virtual try-on benchmarks.

1 INTRODUCTION

Given a garment image and a person image, the goal of virtual try-on is to synthesize a photorealistic
image of the person wearing the specified garment (Han et al., 2018). As a key enabling technology for
online fashion and e-commerce, virtual try-on has attracted increasing attention in recent years (Choi
et al., 2021; Ge et al., 2021b; Gou et al., 2023; Lee et al., 2022; Zhang et al., 2024; Morelli et al.,
2022; 2023; Choi et al., 2024; Chong et al., 2025; Zhou et al., 2025).

This task involves two fundamental challenges: (1) accurately fitting the garment onto the human body,
and (2) preserving fine-grained garment textures. Existing methods fall into two main categories:
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) and Diffusion Models (Ho et al.,
2020; Rombach et al., 2022). Early GAN-based approaches (Choi et al., 2021; Ge et al., 2021a; Lee
et al., 2022; Xie et al., 2023) typically follow a two-stage pipeline: a warping module first aligns the
garment with the target pose, followed by a generation module to synthesize the final image. While
warping helps preserve garment appearance, the subsequent generation stage often leads to detail
loss due to imperfect feature fusion. Recent diffusion-based methods (Kim et al., 2024; Zhu et al.,
2023; Xu et al., 2025; Choi et al., 2024; Zhou et al., 2025) have become popular. The denoising
process naturally progresses from coarse to fine: early steps capture global structure, while later steps
refine texture details (Balaji et al., 2022; Choi et al., 2022). This progressive generation order aligns
well with the requirements of virtual try-on, where both alignment and texture fidelity are essential.
However, relying on a single-stage diffusion process remains inherently limited. In practice,
existing approaches still struggle to ensure accurate garment-body alignment and high-fidelity detail
reconstruction. Without explicitly disentangling structure from detail, the unified framework often
produces compromised visual quality.

To overcome the limitations of conventional single-stage denoising, we introduce a dual-scale coarse-
to-fine framework that explicitly separates global structure alignment from fine-grained texture
restoration. Low-resolution stage: In the first stage, the model generates a coarse try-on result by
suppressing high-frequency content, emphasizing structural alignment through the low-resolution
representation. High-resolution stage: In the second stage, a blend-refine diffusion process
explicitly transforms the low-resolution output into high resolution, restoring fine textures and
correcting fine-detail errors from the first stage.

Beside, traditional virtual try-on methods rely on human parsing masks for spatial guidance, our
approach adopts a fully mask-free strategy that eliminates this dependency by leveraging the strong
semantic priors embedded in pretrained diffusion models. Our main contributions are as follows:

• We propose a novel dual-scale, mask-free framework that enhances the coarse-to-fine process and
is particularly well-suited for the try-on task.

• We introduce a blend-refine diffusion process that explicitly bridges two complex distributions,
enabling controllable transition from coarse alignment to fine-detail restoration.

• Extensive experiments on VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022)
demonstrate state-of-the-art performance, validating the effectiveness of our method both qualita-
tively and quantitatively.

2 RELATED WORKS

GAN-based virtual try-on. Earlier methods (Choi et al., 2021; Ge et al., 2021a; Lee et al., 2022;
Xie et al., 2023), which are based on Generative Adversarial Networks (GANs) (Goodfellow et al.,
2020), typically decompose the virtual try-on task into two stages: (1) warping the garment to
align with the human body shape, and (2) integrating the warped garment with the human image
to generate the final result. For instance, ACGPN (Yang et al., 2020) employs a warping module
based on Thin-Plate Spline (TPS) (Duchon, 1977) to deform the garment. PFAFN (Ge et al., 2021b)
proposes a parser-free method that guides the garment warping process using learned appearance
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flows. VITON-HD (Choi et al., 2021) introduces a specialized normalization layer and generator
design to better handle garment-body misalignment during synthesis.

However, a key limitation of GAN-based approaches is their constrained capacity in capturing both
precise spatial alignment and fine-grained garment details. As a result, these methods often rely
heavily on the warping stage to encode garment appearance early in the pipeline. Yet, the subsequent
integration stage frequently introduces artifacts or detail loss, degrading the overall realism of the
try-on result.

Diffusion-based virtual try-on. With the rapid advancement of diffusion models (Ho et al., 2020;
Rombach et al., 2022), powerful virtual try-on methods have emerged (Kim et al., 2024; Zhu et al.,
2023; Choi et al., 2024; Zhou et al., 2025; Sun et al., 2024). Early methods like DCI-VTON (Gou
et al., 2023) use a two-stage pipeline: warping the garment to match the body, then blending it
with the person image using a diffusion model. DT-VTON (Zhang et al., 2024) splits the task into
structural alignment and texture replacement. More recent methods (Morelli et al., 2023; Kim et al.,
2024; Zhu et al., 2023; Choi et al., 2024) employ a single diffusion process for direct try-on synthesis,
with improved conditioning strategies. For instance, LaDI-VTON (Morelli et al., 2023) uses textual
inversion to encode garment identity, while IDM-VTON (Choi et al., 2024) introduces GarmentNet
for structural and appearance guidance. Leffa (Zhou et al., 2025) proposes a Leffa loss to guide
attention weights during the final 500 denoising steps for better texture recovery. Complementary
to these, FitDiT (Jiang et al., 2024) adopts a DiT-based architecture (Peebles & Xie, 2023) with an
aggressive rectangular mask to address alignment issues in mask-based pipelines.

Despite progress, diffusion-based methods still face challenges, such as garment fragmentation due
to imprecise segmentation and poor rendering of fine patterns like flowers or text, which remain key
areas for improvement.

3 METHODS

Notations. Given a person image xp ∈ RH×W×3 and a garment image xg ∈ RH×W×3, the virtual
try-on task generates a realistic output xr ∈ RH×W×3, where the person wears the given garment. In
the low-resolution stage, the inputs xp and xg are downsampled to x̃p, x̃g ∈ Rh×w×3, with h = H/σ,
w = W/σ, and σ denoting the downsampling ratio. These are used to generate a low-resolution
result x̃r ∈ Rh×w×3. For simplicity, we assume that x̃r is upsampled to the original resolution in the
high-resolution stage, and do not introduce a separate symbol.

Mask-free strategy. Previous virtual try-on methods (Kim et al., 2024; Xu et al., 2025; Choi
et al., 2024; Zhou et al., 2025; Jiang et al., 2024) typically use external human parsers to generate
body segmentation masks for garment localization. However, in diffusion-based models like Stable
Diffusion (Rombach et al., 2022), which already encode strong human-structure priors, this is
unnecessary. We therefore adopt a fully mask-free design: the model directly consumes the garment
and person images during training and inference, without parser-based pseudo-masks or segmentation
guidance.

3.1 OVERVIEW

Our method is built upon Stable Diffusion (Rombach et al., 2022). The backbone architecture follows
the dual U-Net framework (Zhang, 2023; Hu, 2024; Xu et al., 2024), which has also demonstrated
strong performance in virtual try-on tasks (Choi et al., 2024; Xu et al., 2025). Further architectural
details are provided in Subsection 3.2. As shown in Figure 2, both the low-resolution and high-
resolution stages share this network architecture.

In the low-resolution stage, images inherently emphasize structural information because fine-grained
textures are suppressed. This stage therefore serves two main purposes. First, it enables the model to
capture the human body shape and garment category, ensuring accurate structural alignment between
the person and the clothing. Second, it provides coarse but semantically reliable garment structure,
such as the placement of stripes or patterns, offering guidance for fine-detail reconstruction in the
high-resolution stage.

3
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Figure 2: Upper panel: Two-scale generation pipeline. A low-resolution stage produces a coarse
try-on result, then refined by a high-resolution stage; both stages share the same network architecture
(see Section 3). Lower panel: Results with different settings; ours uses σ = 2 and α = β = 1

2 (see
Subsections 3.3 and 3.4). With proper two-stage settings, the second stage leverages the reliable
coarse structure from the first stage to correct fine-detail errors and generate high-quality try-on
results.

In the high-resolution stage, the key challenge is how to effectively utilize the low-resolution result
x̃r. Here, we introduce our blend-refine diffusion process, which defines the noisy latent input as

xT = α · ϵ+ β · x̃r, (1)

where ϵ ∼ N (0, I), and α, β are balancing coefficients. The model is trained to gradually denoise
this latent, transitioning xT to xr by converting the noise component α · ϵ into the residual term
xr − β · x̃r, such that the final result satisfies x0 = xr. We detail the full formulation, as well as the
design choices for α and β, in Subsection 3.4.

3.2 NETWORK ARCHITECTURE

We adopt a dual U-Net architecture, where the reference U-Net encodes garment features and
integrates them into the main denoising U-Net via self-attention layers, a structure proven effective
for garment fidelity and visual quality (Choi et al., 2024). Following the approach of (Chong
et al., 2025), we remove all cross-attention layers, relying solely on self-attention, which improves
performance and efficiency, as shown by our ablation studies (see Appendix A.2.1). To enhance
computational efficiency, we execute the reference U-Net once per sample, using it solely as a
conditioning module, as in (Li et al., 2024).

We initialize our U-Net weights using those from Stable Diffusion 1.5 (Rombach et al., 2022). While
SDXL (Podell et al., 2025) offers greater generative power, our goal is a lightweight yet effective
framework, so we retain SD1.5 as the backbone. Preliminary experiments with transformer-based
architectures like SD3 and SD3.5 are discussed in Appendix A.3. In conclusion, SD1.5 strikes the
optimal balance between model simplicity and try-on performance, forming the foundation of our
pipeline.
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3.3 LOW-RESOLUTION STAGE

In this stage, we first downsample the garment image xg and the person image xp by the downsam-
pling ratio σ. The downsampled garment image x̃g is encoded by a VAE (Kingma, 2013) and then fed
into the reference U-Net. The downsampled person image x̃p is also VAE-encoded and concatenated
along the feature channels with a Gaussian noise tensor of the same shape. This combined latent is
passed to the denoising U-Net to generate a low-resolution result x̃r ∈ Rh×w×3. Both training and
inference follow the standard diffusion process used in Stable Diffusion (Rombach et al., 2022; Ho
et al., 2020; Song et al., 2020).

The only hyperparameter in this stage is the downsampling ratio σ, with σ ∈ {1, 2, 4}. As illustrated
in Figure 2, when σ = 1, the low-resolution stage operates at the same resolution as the high-
resolution stage, violating the purpose of leveraging lower resolution for improved structural
modeling and introducing artifacts due to difficulty. σ = 2 corresponds to downsampling from
768 × 1024 to 384 × 512, and so on. Our observations show that both σ = 2 and σ = 4 enhance
human-body structural understanding, but, as also evident in Figure 2, σ = 4 sacrifices structural
detail, making σ = 2 the most reliable choice for accurate garment reconstruction. Quantitative
and qualitative comparisons across different σ values are provided in Subsection 4.3, and σ = 2 is
adopted for all experiments in this work.

3.4 HIGH-RESOLUTION STAGE

In this stage, xg and xp are used in the same way as in the low-resolution stage: xg is passed to the
reference U-Net, while xp is encoded and concatenated with the latent, which is then input to the
denoising U-Net. The main difference from the low-resolution stage lies in the initialization of the
latent and the denoising process.

3.4.1 REFORMULATING THE DENOISING PROCESS WITH BLEND-REFINE

DDPM. Denoising Diffusion Probabilistic Mode (DDPM) (Ho et al., 2020) aims to approximate
the true data distribution by leveraging the diffusion probabilistic model framework (Sohl-Dickstein
et al., 2015), which defines a Markov chain of length T that gradually transforms pure Gaussian
noise into a sample from the data distribution. Compared with earlier diffusion models, DDPM
incorporates ideas from score matching (Song & Ermon, 2019), simplifying the objective by training
the model to predict only the noise component ϵ, which approximates the score function (i.e., the
gradient of the log-density). The forward and reverse diffusion processes are defined as:

xt =
√
αt xt−1 +

√
1− αt ϵ

=
√
ᾱt x0 +

√
1− ᾱt ϵ, (2)

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz. (3)

Equation 2 and Equation 3 define the forward and reverse diffusion processes, respectively. In these
equations, ϵ, z ∼ N (0, I), and ϵθ(xt, t) denotes the noise predicted by the model. The parameters αt

and ᾱt are predefined noise scheduling terms. In this framework, x0 ∼ pdata(x0) denotes a sample
from the true data distribution, while xT ∼ N (0, I). All formulations above hold for t = 1, 2, . . . , T .

Blend-refine diffusion reformulation. Inspired by (Yue et al., 2023), we reformulate the forward
and reverse processes to explicitly incorporate the low-resolution result x̃r as a structural prior for
high-resolution generation. Rather than constructing a Markov chain only between Gaussian
noise and pdata(x0), we aim to build a transition path from x̃r to the high-resolution result xr.
In the original formulation of (Yue et al., 2023), xT = ϵ+ x̃r with x0 = xr, which offers limited
flexibility to control the relative influence of x̃r and ϵ. To overcome this limitation, we introduce a
simple extension with two coefficients for more flexible initialization, as defined in Equation 1, while
keeping x0 = xr. This straightforward modification yields significant improvements, as shown
in Subsection 4.3. Under this formulation, the blend-refine forward and reverse diffusion processes
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become:

xt =
√
αt xt−1 +

√
1− αt (α · ϵ+ β · x̃r)

=
√
ᾱt x0 +

√
1− ᾱt (α · ϵ+ β · x̃r) , (4)

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̃θ(xt, t)

)
+ σtz. (5)

Equation 4 and Equation 5 define the forward and reverse processes, respectively. The model is
trained to predict ϵ̃θ(xt, t) ≈ α · ϵ + β · x̃r, such that the noise component in xt is replaced by a
composition of ϵ and the low-resolution result x̃r. Except for this reformulated initialization and noise
target, the rest of the denoising process remains consistent with the original DDPM. All formulations
above hold for t = 1, 2, . . . , T .

3.4.2 CONTROLLING NOISE-STRUCTURE BALANCE

In the high-resolution stage, generation starts from the latent xT = α · ϵ + β · x̃r, a combination
of stochastic noise and a structural prior. Here, α controls randomness and β controls structural
guidance. Intuitively, β should reflect the similarity between the two-scale distributions, while
α should correspond to the size of the probability space associated with the residual term
xr−β · x̃r. As illustrated in Figure 2, an excessively large β forces overreliance on the low-resolution
input, suppressing fine-detail recovery, whereas a large α introduces noise that can disrupt structure.
Empirically, setting α = β = 0.5 provides a balanced trade-off between fidelity and flexibility.
Further discussion is provided in Subsection 4.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this paper, we conduct experiments on the VITON-HD (Choi et al., 2021) and
DressCode (Morelli et al., 2022) datasets. All ablation studies are carried out on VITON-HD. While
VITON-HD contains only upper-body garments, DressCode includes three garment categories: upper-
body, lower-body, and dresses. Both datasets consist of paired images, each containing a person
image and a corresponding garment image. However, as our method is mask-free, the original paired
data alone is insufficient for training. To address this, we use IDM-VTON (Choi et al., 2024) to
synthesize additional training data. Further details are provided in Appendix A.1.1.

Implementation details. For network initialization, both the reference U-Net and the denoising
U-Net are initialized with pretrained weights from Stable Diffusion 1.5 (Rombach et al., 2022). As
detailed in Subsections 3.3 and 3.4, we set the downsampling ratio σ = 2 and use α = β = 0.5
to initialize xT in the high-resolution stage. Consequently, the low-resolution stage operates at a
resolution of 384 × 512, while the high-resolution stage produces outputs at 768 × 1024. During
inference, the two stages are executed sequentially with 20 sampling steps each, using the DDIM
sampler (Song et al., 2020). Additional training details are provided in Appendix A.1.2.

Baselines. We compare our method with several recent state-of-the-art approaches, including
CatVTON (Chong et al., 2025), IDM-VTON (Choi et al., 2024), Leffa (Zhou et al., 2025), OOT-
Diffusion (Xu et al., 2025), and FitDiT (Jiang et al., 2024), using their official model weights and
inference code. For fairness, we standardize the number of inference steps to 30 across all methods.
All methods, except FitDiT, are trained separately on each dataset and evaluated accordingly. FitDiT
provides only a single set of pretrained weights, jointly trained on VITON-HD, DressCode, and
CVDD (Jiang et al., 2024), and is included in our evaluation for completeness.

Evaluation metrics. Previous virtual try-on methods typically evaluate performance under both
paired and unpaired settings. The paired setting involves reconstructing the original person image
with the same garment, while the unpaired setting replaces it with a different one (Choi et al., 2021).
As most prior approaches rely on masking the garment region, they support both settings. In contrast,
our method is mask-free and is therefore evaluated only under the unpaired setting, which better
reflects real-world scenarios. We adopt Fréchet Inception Distance (FID) (Parmar et al., 2022) and
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Garment Person CatVTON IDM-VTON FitDiT Leffa DS-VTON(HR)DS-VTON(LR)OOTDiffusion

Figure 3: Qualitative comparison on the VITON-HD dataset. DS-VTON(LR) denotes the low-
resolution result, and DS-VTON(HR) represents the final high-resolution result.

Kernel Inception Distance (KID) (Bińkowski et al., 2018) as quantitative metrics. We also conduct a
user study to assess perceptual quality: for VITON-HD, we randomly sample 100 results per method;
for DressCode, we sample 33, 33, and 34 results from the dresses, lower-body, and upper-body
categories, respectively. Participants are asked to select the result they think performs better in the
try-on task. All evaluations are conducted at a resolution of 768× 1024.

4.2 QUANTITATIVE AND QUALITATIVE RESULTS

Qualitative comparison. Figure 3 presents a qualitative comparison between DS-VTON and recent
baseline methods on the VITON-HD (Choi et al., 2021) dataset. Row numbers referenced below
correspond to Figure 3. We evaluate each method in terms of two key aspects: structural alignment
and detail preservation. In terms of structural alignment, most mask-based methods fail to accurately
capture body pose and garment shape, as illustrated in Row 1. FitDiT (Jiang et al., 2024), which uses
a larger rectangular mask, performs relatively better but introduces noticeable artifacts: it fails to
reconstruct the hands and exhibits visible artifacts at the junction of the upper and lower garments in
Row 1. OOTDiffusion (Xu et al., 2025) alters the original skin tone in Row 2. CatVTON (Chong
et al., 2025), IDM-VTON (Choi et al., 2024), and Leffa (Zhou et al., 2025) also show varying degrees
of misalignment. In contrast, DS-VTON consistently achieves accurate alignment across a wide range
of poses and garment types. Regarding detail preservation, CatVTON and IDM-VTON fail to retain
fine-grained textures on complex garments (Row 3), with IDM-VTON generating oversimplified or
missing patterns. While Leffa, OOTDiffusion, and FitDiT better preserve textures, they each show
limitations: FitDiT achieves texture preservation at the cost of distorting the person’s actual body
shape and dressing structure (Rows 2 and 4), OOTDiffusion introduces artifact patterns (Row 5),
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Table 1: Quantitative comparisons on the VITON-HD (Choi et al., 2021) and DressCode (Morelli
et al., 2022) datasets. FitDiT (Jiang et al., 2024), trained jointly on VITON-HD, DressCode, and
CVDD (Jiang et al., 2024), is included for completeness. In contrast, all other methods are trained
individually on each dataset.

Dataset VITON-HD DressCode

Method FID ↓ KID ↓ User Study ↑ FID ↓ KID ↓ User Study ↑

OOTDiffusion (Xu et al., 2025) 9.02 0.63 4.1 7.10 2.28 7.2
IDM-VTON (Choi et al., 2024) 9.10 1.06 11.6 5.51 1.42 9.1
CatVTON (Chong et al., 2025) 9.40 1.27 3.4 5.24 1.21 5.2

Leffa (Zhou et al., 2025) 9.38 0.92 4.7 6.17 1.90 7.5
FitDiT (Jiang et al., 2024) 9.33 0.89 19.7 4.47 0.41 34.3

DS-VTON (ours) 8.24 0.31 56.5 4.21 0.34 36.7

Table 2: Ablation study on dual-scale design and
downsampling ratio σ.

Version FID ↓ KID ↓

σ = 1 8.97 1.01
σ = 1, α = β = 1

2
8.77 0.61

σ = 4, α = β = 1
2

8.41 0.57
σ = 2, α = β = 1

2
8.24 0.31

Table 3: Ablation study on coefficients α, β un-
der fixed σ = 2.

Version FID ↓ KID ↓

σ = 2, α = β = 1
2

8.24 0.31
σ = 2, α = 2

3
, β = 1

3
8.46 0.55

σ = 2, α = 1
3
, β = 2

3
8.26 0.35

σ = 2, α = β = 1 8.75 0.94

and Leffa exhibits reduced pattern clarity in complex regions (Row 3). Furthermore, both FitDiT
and Leffa suffer from tonal inconsistencies—FitDiT produces noticeably brighter garments (Row 6),
while Leffa tends to generate darker outputs. In contrast, DS-VTON preserves fine textures while
maintaining tonal fidelity throughout.

Quantitative comparison. We conduct experiments on both the VITON-HD (Choi et al., 2021)
and DressCode (Morelli et al., 2022) datasets. As shown in Table 1, DS-VTON achieves substan-
tial improvements across both benchmarks. CatVTON (Chong et al., 2025) generates images at
384 × 512, which we upsample to 768 × 1024 for comparison. To confirm that this does not bias
results, we also evaluate it at native resolution, obtaining FID and KID scores of 9.36 and 1.19,
respectively—indicating minimal degradation due to upsampling. Unlike prior methods (Chong
et al., 2025; Zhou et al., 2025; Choi et al., 2024) that rely on explicit mask generation and inpainting,
DS-VTON is entirely mask-free. This enables accurate, high-quality outputs that are robust and
reproducible without dependence on mask quality.

4.3 ABLATION STUDY

Here we present several ablation studies to validate the rationale of our design. In addition, we
evaluate an alternative refinement method used in SDXL; see Subsection A.3 for details.

Ablation on dual-scale design. To validate the effectiveness of our dual-scale design, we train four
variants on the VITON-HD dataset. As shown in Table 2, Row 1 (σ = 1) corresponds to training
the model directly at high resolution (768 × 1024) without a refinement stage, aligning with the
σ = 1 (LR) column in Figure 4. Applying the mask-free strategy at this resolution leads to poor
structural results, highlighting the need for coarse-level guidance. Row 2 (σ = 1, α = β = 1

2 ),
shown in the σ = 1 (HR) column, adds a refinement stage. While some structural errors are alleviated,
relying solely on the second stage to recover both structure and detail still results in failures, due to
the lack of reliable low-resolution guidance. This also violates our design principle of decoupling
structure modeling (stage one) from detail refinement (stage two). Rows 3 and 4 evaluate the full
dual-scale pipeline with σ = 4 and σ = 2, respectively. When garments are structurally simple, both
settings perform reasonably well. However, as shown in Row 1 of Figure 4, σ = 4 introduces visible
information loss in complex cases. These qualitative results align with the quantitative trends:
among the four variants, the single stage (σ = 1) and the dual stage with σ = 1, σ = 2, or σ = 4, the
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Garment Person 𝝈=4 (LR) 𝝈=4 (HR) 𝝈=2 (LR) 𝝈=2 (HR) 𝝈=1 (LR) 𝝈=1 (HR)

Figure 4: Visualized results under varying downsampling ratios σ.

Garment Person 𝜶 =
𝟐

𝟑
𝜷 =

𝟏

𝟑
(HR) 𝜶 =

𝟏

𝟐
𝜷 =

𝟏

𝟐
(HR) 𝜶 = 𝟏 𝜷 = 𝟏 (HR)𝜶 =

𝟏

𝟑
𝜷 =

𝟐

𝟑
(HR)𝝈 = 𝟐 (LR)

Figure 5: Visualized results under different xT initialization settings (xT = α · ϵ+ β · x̃r).

single stage model performs worst, σ = 4 shows moderate improvement, and σ = 2 achieves the
best overall performance.

Ablation on different initializations of xT . When fixing the downsampling ratio to σ = 2, the
coefficients α and β determine how strongly the low-resolution output influences the high-resolution
stage. As shown in Figure 5, setting α too high, e.g., α = 1, β = 1 or α = 2

3 , β = 1
3 , causes

structural distortions in the final result even though the low-resolution output already provides
accurate guidance. In both cases the red stripe on the garment is distorted, and in the α = 2

3 , β = 1
3

configuration the “GANT” text also becomes warped. We attribute this to excessive randomness
in the high-resolution stage, which then attempts to re-establish structure that should have
been fully resolved in the low-resolution stage. Among the remaining settings, α = 1

3 , β = 2
3 and

α = 1
2 , β = 1

2 produce generally good results. However, the α = 1
3 , β = 2

3 setting still exhibits minor
distortion in the red stripe, indicating insufficient restoration of fine details. Here, the low-resolution
result exerts too strong an influence: while structurally accurate, it lacks fine details, and the
high β prevents the high-resolution stage from effectively correcting those errors. Based on
these observations, we adopt α = β = 1

2 as our default setting. The quantitative results in Table 3
support this choice.

5 CONCLUSIONS

We propose DS-VTON, a dual-scale framework that employs blend-refine denoising to bridge low-
and high-resolution generation. This design enables a more effective coarse-to-fine process and,
combined with a mask-free strategy, achieves significant improvements in both visual quality and
robustness over existing methods. Furthermore, the paradigm is inherently scalable and generalizable,
with clear potential for extension to higher resolutions and to broader generation tasks beyond virtual
try-on, such as personalized image synthesis.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 ADDITIONAL TRAINING DATA GENERATION AND ASSOCIATED CHALLENGES

Our method adopts a mask-free paradigm, in contrast to prior approaches (Choi et al., 2024; Xu
et al., 2025; Li et al., 2024), which rely on paired person-garment images by masking out the garment
region in the person image and reconstructing it using the standalone garment image. In our case, the
person image remains unaltered throughout the training process. To train the low-resolution stage,
each training sample requires three images: (1) a garment image, (2) a person image wearing that
garment, and (3) another person image of the same identity but wearing a different garment. The third
image is constructed by randomly sampling another garment of the same category from the dataset
and synthesizing a new person image using IDM-VTON (Choi et al., 2024). For the high-resolution
stage, we additionally require the low-resolution output corresponding to the original person-garment
pair. To obtain this, we use our trained low-resolution model to generate a coarse try-on result by
inputting the target garment and the synthesized person image (i.e., with a different garment). This
output is then used as the low-resolution input for the high-resolution stage.

In summary, each high-resolution training sample consists of: (1) the target garment image, (2) a
person image wearing a different garment, (3) the corresponding low-resolution try-on result for
the target garment, and (4) the ground-truth high-resolution image of the person wearing the target
garment.

While the above construction enables mask-free supervision, it inevitably introduces certain artifacts.
Specifically, in the low-resolution stage, the reference U-Net encodes the garment image, while the
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denoising U-Net operates on the concatenation of the noisy latent and the person image—here, a
synthesized image of the same identity wearing a different garment.

Since the synthesized person image is generated by a model such as IDM-VTON, it may exhibit
variations beyond the garment itself, including changes in hairstyle, background, or the presence of
accessories. As a result, the model may inadvertently learn to alter these unrelated regions during
training. Ideally, such issues would not occur if fully disentangled and clean ground-truth data were
available. Fortunately, we find this side effect to be limited in practice, as most synthesized person
images remain visually consistent with the original identity.

A.1.2 MORE IMPLEMENTATION DETAILS

All experiments are conducted on 8 NVIDIA A6000 GPUs. For both VITON-HD (Choi et al., 2021)
and DressCode (Morelli et al., 2022), the low-resolution stage is trained with a batch size of 8,
and the high-resolution stage with a batch size of 2. Both stages are optimized using the AdamW
optimizer (Loshchilov et al., 2017) with a learning rate of 1e−6. For VITON-HD, the low-resolution
and high-resolution stages are trained for 15,000 and 30,000 steps, respectively (approximately 5 and
24 hours). For DressCode, we jointly train all three garment categories, with the two stages trained
for 20,000 and 30,000 steps (approximately 7 and 24 hours). During inference, both stages use 20
DDIM sampling steps. On a single A6000 GPU, the low-resolution stage takes about 1 second per
sample, while the high-resolution stage takes about 4 seconds. Although our method includes two
stages, the low-resolution stage is much faster than the high-resolution stage, so the total runtime
remains acceptable. Compared with the methods in our earlier comparison, our approach is
only slower than CatVTON, comparable to FitDiT, and faster than the others.

A.1.3 ADDITIONAL COMPARISONS WITH OTHER METHODS

We detail here the data requirements of the methods introduced in Subsection 4.1 to clarify the
comparisons. For completeness, we also present paired-setting results on VITON-HD. All competing
methods except ours require an agnostic mask; Leffa additionally uses a DensePose map; FitDiT
requires human body keypoints; and IDM-VTON depends on both detailed garment descriptions and
a DensePose map. Our method, by contrast, is trained only on paired images of the same person
wearing different garments.

Because our approach does not mask the original garment region, the input and expected output under
the paired setting are identical. Nevertheless, we include two evaluation variants:

• DS-VTON (direct): directly uses the garment and person images to generate the result.

• DS-VTON (train-way): first employs IDM-VTON to create an image of the person wearing
another garment, then applies our method to re-dress the original garment. This procedure involves
two rounds of unpaired try-on and inevitably introduces additional artifacts, so it does not fully
reflect our method’s capability.

The quantitative results appear in Table 4.

A.2 MORE ABLATION STUDIES

A.2.1 ABLATION ON REMOVING CROSS-ATTENTION LAYERS IN U-NET

Several previous try-on methods (Choi et al., 2024; Xu et al., 2025; Li et al., 2024) based on
dual U-Net architectures incorporate additional conditional encoders, such as CLIP (Radford et al.,
2021) or IP-Adapter (Ye et al., 2023), to inject garment information via cross-attention. However,
these approaches introduce extra complexity, and it remains unclear whether they actually improve
performance. To investigate this, we conduct an ablation study on the VITON-HD (Choi et al., 2021)
dataset by comparing two versions of our low-resolution stage (384× 512): (1) our baseline model,
which does not include any cross-attention layers, and (2) a variant built on the baseline by adding
cross-attention layers to both the reference U-Net and the denoising U-Net. In the latter, garment
features are encoded using CLIP and injected via cross-attention. As shown in Figure 6 and Table 5,
adding cross-attention does not help preserve garment details; on the contrary, it introduces noticeable
distortions. This is also reflected in the performance metrics.
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Table 4: Quantitative comparisons on the VITON-HD dataset under the paired setting.
Method FID ↓ KID ↓ SSIM ↑ LPIPS ↓
OOTDiffusion 6.47 1.24 0.88 0.08
IDM-VTON 5.84 0.77 0.87 0.06
CatVTON 5.70 0.50 0.88 0.09
Leffa 5.76 0.55 0.89 0.06
FitDiT 7.27 0.73 0.84 0.09
DS-VTON (direct) 4.75 0.43 0.90 0.05
DS-VTON (train-way) 5.23 0.31 0.89 0.06

Garment Person With cross-attention DS-VTON (low-resolution stage)

Figure 6: Comparison between our baseline architecture and the variant with cross-attention. In
the variant, garment features encoded by CLIP are injected into both the reference U-Net and the
denoising U-Net via cross-attention layers.

A.3 DISCUSSIONS

How about utilizing the DiT architecture for mask-free try-on? We also explored using the
DiT (Peebles & Xie, 2023) architecture for mask-free try-on. Specifically, we implemented two
variants based on SD3 and SD3.5 (Esser et al., 2024), constructing a dual-DiT structure analogous to
the dual U-Net design. The reference DiT encodes the garment image, while the person image is
concatenated with the latent tensor along the sequence dimension and passed to the denoising DiT. To
integrate the two branches, we follow a structure-aligned fusion strategy: since the reference DiT and
denoising DiT share the same architecture, we concatenate the latent features from the corresponding
transformer block of the reference DiT into the denoising DiT block, specifically on the key and value
(K, V) inputs of the attention layer, before computing self-attention. We also remove the text encoder
input entirely, so the joint attention layers in DiT degenerate into pure self-attention. However, both
versions failed to converge during training. We speculate that directly applying DiT to the mask-free
try-on task may be suboptimal, and therefore did not pursue further investigation.

How about adopting a refinement mechanism similar to that of SDXL? We refer to the
refinement method in SDXL (Podell et al., 2025) as the SDXL strategy. During training, a separate
model is trained to denoise only the final 200 steps of the high-resolution diffusion process. At
inference, a low-resolution result is generated, upsampled, and injected with Gaussian noise at
timestep 200, after which the refinement model denoises to produce the final output. Although this
method can yield visually plausible results for simple patterns, its overall performance is inferior,
as shown in Figure 7. The reason, we believe, lies in the difference between data distributions
involved. Although our blend-refine diffusion process also begins with adding noise, it differs
fundamentally in how it relates the two stages. In SDXL, the refinement model learns to denoise
samples drawn solely from the high-resolution distribution, and it lacks an explicit mechanism to
relate this with the low-resolution result. In contrast, our blend-refine diffusion bridges the gap
between the low-resolution and high-resolution distributions. This connection is key: it allows the
model to better capture the transformation between the two distributions involved. Importantly,
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Table 5: Ablation study on the effect of cross-attention layers in U-Net.
Version FID ↓ KID ↓

With cross-attention 9.07 0.94
DS-VTON (low-resolution stage) 8.88 0.72

Garment Person Low-Resolution SDXL DS-VTON

Figure 7: Comparison of qualitative results between our baseline and the SDXL variant. Quantita-
tively, the SDXL variant achieves an FID/KID of 8.98/0.65, while our DS-VTON achieves 8.24/0.31.

while the original diffusion process constructs a mapping from a simple, tractable distribution (such
as Gaussian noise) to a complex data distribution, the blend-refine diffusion builds a direct bridge
between two complex distributions.

Difference between Our Blend-Refine Process and the DCI-VTON Refinement Branch. DCI-
VTON also adds noise to the first-stage result and attempts to recover the final output in its second-
stage refinement branch. However, it does not explicitly transition the data distribution from the first
stage to the second. Its second stage contains two branches: a refinement branch and a reconstruction
branch. In the refinement branch, when the added noise is weak, the noisy input is nearly identical
to the first-stage result, so the denoised output remains overly similar to the input and struggles to
reach the desired final distribution. This is why DCI-VTON requires two branches and adopts
a perceptual (VGG) loss rather than a pixel-wise loss in the refinement branch. The refinement
branch provides only implicit guidance, while the reconstruction branch handles explicit Gaussian
noise prediction. By contrast, DS-VTON needs only a single branch. Our blend-refine denoising
explicitly transfers the distribution from coarse to fine by altering the noise formulation itself, rather
than relying on pure Gaussian noise. This change enables a principled transition between the low-
and high-resolution distributions and provides stronger controllability—an essential design choice
of our dual-scale framework. To illustrate, suppose we follow DCI-VTON’s approach. Let x̃r

denote the low-resolution output, ϵ the noise, and xr the high-resolution ground truth. From a data
distribution perspective, if we adopt pure Gaussian noise as the only perturbation mechanism, there
is a fundamental mismatch between the training and inference processes. During training, at any
timestep t, the noisy latent is constructed by adding noise to x̃r, i.e., it is solely a function of x̃r

and ϵ. However, this setup does not align with inference. In inference, regardless of how the latent
is initialized (whether from pure Gaussian noise or some other distribution), the moment a single
denoising step is performed, the latent becomes correlated with the target distribution xr. This
stands in stark contrast to training, where the noisy latent at each timestep is always constructed
based on x̃r. The key difference is that we modify the noise formulation: rather than using
pure Gaussian noise, our blend-refine denoising bridges the low- and high-resolution data
distributions, providing strong controllability and serving as a fundamental design choice in
our dual-scale framework.

Broader impacts. The ability of DS-VTON to generate realistic virtual try-on results at multiple
resolutions makes it well-suited for practical deployment in e-commerce scenarios, where different
resolutions are often required across platforms and devices. At the same time, as with other generative
technologies, DS-VTON may raise concerns related to intellectual property and personal privacy. We
encourage its responsible and ethical use.
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Limitation and Future Work. As discussed in Subsection A.1.1, one key limitation of our method
lies in the data generation process. Due to the reliance on synthesized person images, the model may
inadvertently learn to alter regions unrelated to the garment (e.g., hair, accessories, or background).
While this issue is not severe in most cases, we acknowledge it as a limitation and consider improving
data disentanglement and identity preservation an important direction for future work. Another
limitation stems from the use of fixed coefficients α and β to initialize the high-resolution refinement
stage. Although this static strategy proves effective, it may be overly rigid. In future work, we plan to
investigate adaptive or learnable coefficient scheduling mechanisms, which could offer more flexible
and content-aware refinement during generation.

A.4 THE USE OF LARGE LANGUAGE MODELS

The Large Language Model was used solely for refining the text and improving the clarity and
readability of the paper. It did not contribute to the research ideation or experimental design.

A.5 MORE EXPERIMENT RESULTS

In this section, we present additional qualitative comparisons on the DressCode (Morelli et al.,
2022) dataset, more results on the VITON-HD (Choi et al., 2021) dataset, and additional in-the-wild
examples.

Figure 8: More results on in-the-wild scenarios.
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Garment Person CatVTON IDM-VTON FitDiT Leffa DS-VTON(HR)DS-VTON(LR)OOTDiffusion

Figure 9: More qualitative comparison on the VITON-HD dataset. DS-VTON (LR) denotes the
low-resolution output, and DS-VTON (HR) represents the final high-resolution result.
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Garment Person CatVTON IDM-VTON FitDiT Leffa DS-VTON(HR)DS-VTON(LR)OOTDiffusion

Figure 10: Qualitative comparison on the DressCode dataset (Dresses category). DS-VTON (LR)
denotes the low-resolution output, and DS-VTON (HR) represents the final high-resolution result.
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Garment Person CatVTON IDM-VTON FitDiT Leffa DS-VTON(HR)DS-VTON(LR)OOTDiffusion

Figure 11: Qualitative comparison on the DressCode dataset (Lower category). DS-VTON (LR)
denotes the low-resolution output, and DS-VTON (HR) represents the final high-resolution result.
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Garment Person CatVTON IDM-VTON FitDiT Leffa DS-VTON(HR)DS-VTON(LR)OOTDiffusion

Figure 12: Qualitative comparison on the DressCode dataset (Upper category). DS-VTON (LR)
denotes the low-resolution output, and DS-VTON (HR) represents the final high-resolution result.
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