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Abstract

Based on the central dogma that protein structure determines its functionality, an1

important approach for protein sequence design is to identify promising sequences2

that fold into pre-designed structures based on domain knowledge. Numerous stud-3

ies have introduced deep generative model-based inverse-folding, which utilizes4

various generative models to translate fixed backbones to corresponding sequences.5

In this work, we reveal that denoising training enables models to deeply capture6

the protein energy landscape, which previous models do not fully leverage. Based7

on this, we propose a novel Denoising-enhanced protein fixed backbone design8

(DNDesign), which combines conventional inverse-folding networks with a novel9

plug-in module, which learns the physical understanding via denoising training10

and transfers the knowledge to the entire network. Through extensive experiments,11

we demonstrate that DNDesign can easily be integrated into state-of-the-art models12

and improve performance in multiple modes, including auto-regressive, non-auto-13

regressive, and scaled-up scenarios. Furthermore, we introduce a fixed backbone14

conservation analysis based on potential energy changes, which confirms that15

DNDesign ensures more energetically favorable inverse-folding.16

1 Introduction17

Proteins play a crucial role in various biological processes, serving as the primary components of18

cellular machinery and exhibiting specific functionalities based on their three-dimensional structures.19

Therefore, designing unique protein sequences that fold into the pre-designed structures to have20

targeted functionality is of great importance in various biological applications, including pharmaceu-21

ticals, biofuels, biosensors, and agriculture [1, 2, 3, 4, 5]. Mutagenesis aided with high-throughput22

experiments and physics-based computational methods have been proposed to address this problem23

in the past [6, 7].24

Recently, a new paradigm employing a deep generative model conditioning on three-dimensional25

structures has gained attention, and its results have been encouraging. These models typically26

represent a given fixed protein backbone as a 3D graph and leverage advanced generation techniques27

such as auto-regressive, non-auto-regressive, or adapter-based methods to translate fixed protein28

backbones into corresponding sequences that can achieve specific biological purposes [8]. For29

example, Daurass et al. [9] experimentally proved that the deep inverse folding neural networks(IFNN)30

generates protein sequences with targeted functionality at a higher success rate than Rosetta, a well-31

established software widely used in the protein community.32

As the folding structure is a consequence of the physics that causes folding, acquiring meaningful33

physical knowledge of folding structures, called folding energy landscape, directly from data would34

benefit generative models. The currently proposed DIFM has utilized geometric-related features35

and geometric neural networks to maximize the likelihood of the given training data, aiming to36
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comprehend the protein world and perform inverse-folding based on the physical understanding.37

However, the experimentally validated structural data is limited to about 200K [10], and the number38

of structurally distinct and unique proteins practically used for inverse-folding training is only around39

30K [11], which is insufficient to train a model to grasp the nature of complex protein folding systems40

fully. In addition, considering de novo proteins with significantly different characteristics from those41

discovered thus far, the data scarcity problem worsens more.42

In this study, we present DNDesign, a DeNoising-enhanced protein DESIGN framework, which43

maximizes the model’s physical understanding directly from training data. First, we prove that44

denoising training directly on a three-dimensional backbone structure is equivalent to the direction45

of energy minimization, finally enabling the models to learn the folding energy landscape. Then,46

we suggest a novel folding physics learning plug-in module (FPLM), which can be integrated into47

existing inverse-folding neural networks. First, IFNN takes the original structure, while FPLM inputs48

the perturbed structures obtained by adding noises to the original structure. Then, FPLM learns49

the folding energy landscape by moving the perturbed structure to the energetically stable state. To50

effectively transfer the folding knowledge to IFNN, FPLM employs five novel operations: (1) force51

feature initialization, (2) force-node attention, (3) force-edge attention, (4) global force attention,52

and (5) force biasing to transfer the physical inductive bias to the entire network. Notably, the force53

biasing operation allows the sequence decoder to conduct sampling while considering folding physics.54

Finally, DNDesign enables IFNN to learn four pieces of information, including original structure,55

intermediate structure, folding physics, and the direction of energy minimization using given data,56

enhancing previous methods which only know the original structure.57

To demonstrate the novelty of DNDesign, we conduct a series of protein sequence design tasks. Par-58

ticularly, to showcase the "easy-to-use" nature and generalization of DNDesign, we apply DNDesign59

to three representative IFNN settings, including auto-regressive (AR), non-auto-regressive (NAR),60

and scaled-up settings. Remarkably, DNDesign consistently improves the previous method in all61

experiments, proving that more physical understanding from denoising training benefits models to62

conduct successful inverse-folding. In addition to considering sequence consistency estimated using63

the sequence recovery metric, we evaluate the structure conservation by measuring the potential64

energy change caused by generated sequences after structure relaxation. Based on this metric, we65

have demonstrated that DNDesign enables models to generate more energetically favorable sequences.66

To our knowledge, this is the first work comparing structure conservation using potential energy67

change for evaluating deep inveres-folding models. In addition, extensive ablation and analysis are68

provided to help the understanding of DNDesign. Our contributions are as follows:69

• We propose DNDesign, which enables the inverse-folding model to capture the deep under-70

standing of folding physics that previous models do not fully exploit.71

• We prove how DNDesign learns folding physics directly from data and show that DNDesign72

improves the state-of-the-art model on various protein sequence design benchmarks in73

auto-regressive, non-auto-regressive, and scaled-up scenarios.74

• We introduce a fixed backbone conservation task based on potential energy change from75

newly generated sequences. The analysis proves that DNDesign generates energetically76

favorable sequences, leading to more fine-grained protein design.77

2 Preliminaries and Related works78

2.1 Protein representation79

A protein is a sequence P = {A1, ..., AN} where Ai is a residue of 20 types of amino acids. Each80

amino acid is composed of backbone atoms including C,N,Cα, O and side chain Ri consisting81

of atoms, which determine the property of the amino acid, and each atom has coordinate x ∈ R3.82

Following ingraham et al [12], each residue has geometry derived from backbone atoms, called local83

coordinate system gi = [bi, ni, bi × ni], where,84

ui =
xCαi − xNi

∥xCαi
− xNi

∥
, vi =

xCi − xCαi

∥xCi
− xCαi

∥
, bi =

ui − vi
∥ui − vi∥

. (1)

Because each side-chain corresponds to each amino acid residue s, a protein can be represented as a85

sequence of residue and geometry pairs, P = {(si, g1), ..., (sN , gN )} as depicted in Figure 1.86
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Figure 1: Overview of protein representation and types of structure-based protein design.

2.2 Structure-based Protein Design87

Because we can reconstruct side-chain R using both backbone G and residues S, structure-based88

protein design only focuses on the generation of backbone G and residues S. Neural structure-based89

protein design can be categorized into three tasks, (1) backbone generation, (2) structure-sequence90

co-design, and (3) inverse-folding depending on design scenarios as illustrated in Figure 1.91

Backbone generation Backbone generation can be formulated as an end-to-end structure-to-92

structure generation as fθ : G→ G. We train parameterized encoder-decoder neural networks fθ to93

sample diverse and plausible backbone structures. We note that this approach requires a model which94

can assign amino acids are required to obtain complete proteins [13].95

Structure-sequence co-design The structure-sequence co-design approach generates sequences96

and backbone structures simultaneously as fθ : (G,S) → (G,S). By generating sequences autore-97

gressively and refining predicted structures iteratively, this co-design approach enables the adaptive98

generation of optimized sequences compatible with the flexible backbone. This approach is suitable99

for scenarios such as antibody design, where global structure tends to be changed depending on the100

designed antibody [14].101

Inverse-folding Inverse-folding is an approach that aims to “caption” or “translate” a provided102

backbone structure into potential protein sequences as fθ : G → S. Inverse-folding becomes103

particularly valuable for protein functional design problems, such as ligand binding site, enzyme,104

and binder design, which require fine-grained control over side-chain combinations. Since there105

exist numerous sequences that can fold into a specific backbone conformation [15], inverse-folding106

approach enables protein engineers to identify diverse and promising protein sequences with optimized107

functional properties [1, 2, 3, 4, 5].108

2.3 Importance of physical understanding for structure-based protein design109

The folding structure of proteins is governed by the physics that determines the folding process.110

Therefore, a higher level of understanding of physics enables a model to perform well in structure-111

related tasks. For instance, AlphaFold2 [16] achieved nearly experimental-level accuracy in structure112

prediction and has revolutionized protein fields since its publication. Recently, [17] proved that113

the success of AlphaFold2 [18] is attributed to the data-driven understanding of the folding energy114

landscape. Additionally, RFDiffusion [13] demonstrated that physically plausible and synthesizable115

structures were created when generative models were trained upon pre-trained protein structures116

model, especially, RoseTTAFold [18] that comprehend the mechanism of folding. On the other hand,117

RefineDiff [19] showed that physics learning enhances protein representation learning for various118

downstream tasks.119
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3 Related works120

3.1 Deep generative protein design121

Deep generative models for protein design can be classified into four categories: sequence-to-122

sequence, structure-to-structure, structure-to-sequence, and structure-sequence co-design. In the123

sequence-to-sequence category, several notable works, such as RITA [20], DARK [21], Prot-124

GPT2 [22], and ProGen2 [23] have applied language modeling techniques to analyze large protein125

sequence databases and successfully generated novel protein sequences. Moving on to the structure-to-126

structure category, deep generative models, such as variational autoencoders [24], generative adversar-127

ial networks [25], or diffusion models [26, 27], have been applied to this problem and shown promis-128

ing results for generating diverse and structurally plausible protein backbones [28, 29, 13, 30, 31, 32].129

Third, in the structure-to-sequence category, deep generative inverse-folding models, such as Graph-130

Trans, GVP, ProteinMPNN, PiFold [12, 33, 34, 35, 36, 9] have been proposed. These models predict131

or generate protein sequences corresponding to a given protein backbone structure, allowing for132

the design of functional proteins with specific structural constraints. Last, DiffAb [37] and Re-133

fineGNN [38] generate structure and sequence simultaneously through iterative refinement. Our134

proposed DNDesign falls within the category of deep generative inverse-folding models. DNDesign135

differentiates itself from previous approaches by utilizing denoising to strengthen the understanding136

of models.137

3.2 Denoising training for chemical and biology system modeling138

In order to effectively model chemical and biological systems, acquiring meaningful physical knowl-139

edge directly from data plays a crucial role in successful representation learning and downstream140

tasks. Over the past decade, numerous studies have proposed novel deep learning architectures141

and training methods that demonstrate remarkable performance in approximating interactions and142

quantum properties [39, 40, 41, 36, 42]. Recently, several works have theoretically established the143

equivalence between denoising training on biological molecule data and learning the underlying phys-144

ical force field [43, 44, 19]. Building upon this finding, Godwin et al. [45] successfully addressed145

the over-smoothing challenge in graph neural networks (GNNs) by employing denoising training on146

three-dimensional coordinates as an auxiliary loss. Their approach achieved state-of-the-art results147

on various quantum chemistry downstream tasks. Similarly, [43] utilized denoising as a pre-training148

objective on the 3M molecular dataset and demonstrated that denoising-based learning produces149

high-quality representations based on a data-driven force field, effectively solving different molecular150

benchmarks. In this work, we adopt a similar denoising-based approach to that of [45, 19]. Our work151

is similar to [19], which utilized denoising to learn folding physics, but they focused on representation152

learning. Otherwise, our work first extend denoising to protein sequence generation. Despite this153

difference, the inductive bias gained from DNDesign is identical to that of the two aforementioned154

papers.155

4 Methods156

4.1 Overview157

DEDesign integrates conventional inverse-folding networks (IFNN) with denoising networks (FPLM).158

In this section, we begin by elucidating the process of protein featurization. Subsequently, Section159

4.3 outlines the model architecture and describes the feature update operation in IFNN. Next, section160

4.4 highlights the correlation between the denoising process and the acquisition of folding physics161

knowledge. Finally, Section 4.5 describes the five operations utilized to transfer data-driven folding162

physics across the entire network.163

4.2 Featurization164

In this work, we regard a protein as a k-NN 3D graph G(V,E,X), where V , E, X are node features,165

edge features, and xyz coordinates, respectively. As suggested in [12], node and edge features are166

constructed considering pairwise distances, angle, torsion, and directions using the four backbone167

atoms of each node. Each node and edge feature is input to a single fully-connected layer and168

converted into an embedding vector, h0, e0, respectively. More details are illustrated in Appendix A.169
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Figure 2: Overview of the proposed DNDesign.

4.3 Conventional inverse-folding model modeling170

In this subsection, we will briefly describe the IFNN used in this work. As shown in Figure 2, we171

adopt a state-of-the-art inverse-folding encoder, called PiGNN proposed by [46]. We first update172

node and edge features in order based on k-NN neighbors. And, the node features hli and edge173

features eli are obtained using a featurizer and updated using a simplified graph transformer [47].174

After computing the node value using the edge features and neighbor node features, we multiply175

the softmax values of the attention weights obtained from hli and eli to the node value and add the176

weights to the node features. Finally, we update the hli to obtain the next layer node features hli177

using a learnable weight function with normalization and residual connection. Edge features elji are178

calculated by passing concatenation of node feature hi, neighbor node feature hj , and edge feature179

ei,j to the MLP ψe.180

We use two types of inverse folding decoders to predict logits: (1) auto-regressive (AR) and (2)181

non-auto-regressive (NAR). For AR, we employ the sequence decoder used in GraphTrans [12] and182

utilize random decoding introduced by ProteinMPNN [9]. For NAR, we use a linear layer as [33].183

The decoder inputs node feature hj and outputs logits. The whole IFNN is trained by minimizing the184

negative log-likelihood LAR of the data.185

4.4 Folding physics learning via denoising186

𝐺!

"𝐺",$

"𝐺",%"𝐺",&

Previous methods only know DNDesign knows all

Folding energy landscape

Stable

Unstable

Energy (E) Intermediate state (noised data)

Equilibrium state (training data)

Folding dynamics

Denoising (direction to lower E)

Figure 3: Illustration of Energy landscape of protein folding. DNDesign enable inverse-folding model
to capture all information of folding physics.

Folding energy landscape The protein structure G = {g1, ..., gN} that a protein P with sequence187

S = {s1, ..., sN} can have is diverse, and each structure corresponds to a specific potential energy E188
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based on the folding physics, represented as the folding energy landscape. Considering the dynamics189

that structure prefers energetically stable states, each protein structure G used in training data can be190

regarded as the most stable, i.e., energetically lowest structure GL among the various folding states191

that each sequence can possess.192

Figure 3 illustrates four crucial pieces of information contained within the energy landscape: (1)193

stable or low energy state GL, (2) unstable or high energy state G̃H , (3) folding physics, i.g, energy194

potential, and (4) the direction or gradient ∇G that transforms the unstable state G̃H to the stable195

state GL.196

Perturbation on backbone structure Firstly, since we only haveGL in the training data, we obtain197

G̃H by adding Gaussian noise to GL. G is a sequence of local frames g, where each g consists of a198

Cα coordinate vector, x, and an SO3 vector, r. To account for this nature, we follow the forward199

noising procedure used in [48, 37]. For x, we use random three-dimensional Gaussian noise, which200

can be described as follows:201

q
(
xT
j |xT−1

j

)
= N

(
xT
j |

√
1− βT

pos · xT−1
j , βT

posI
)
. (2)

q
(
xT
j |x0

j

)
= N

(
xT
j |

√
ᾱ0
pos · x0

j , (1− ᾱ0
pos)I

)
. (3)

where N denotes a Gaussian distribution.202

For perturbing r, we use an isotropic Gaussian distribution with a mean rotation scalar variance203

parameter in the SO3 space [48, 49, 50] as follow:204

q
(
rTj | r0j

)
= IGSO(3)

(
rTj |λ(

√
ᾱT
ori, r

0
j ), 1− ᾱT

ori)

)
(4)

, where λ is a modification of the rotation matrix by scaling its rotation angle with the rotation axis205

fixed [51].206

Denoising training Based on the remarkable reparameterization technique proposed by Ho et207

al. [26] and definition of training objective [37], we can optimize denoising objectives for the208

transition vector t and SO3 vector r as follows:209

Lt
pos = E

 1

M

∑
j

∥ϵj − ψ(G̃H , t)∥2
 , Lt

ori = E

 1

M

∑
j

∥(r0j )Tψ(G̃H , t)− I∥2F

 (5)

, where ψ is a neural networks that predicts the perturbation on t and r. Lt
pos is mean squared error210

between added Gaussian noise ϵj and predicted noises ψ(G̃H , t) and Lt
rot minimizes the discrepancy211

calculated by the inner product between the real and predicted orientation ψ(G̃H , t).212

Learning folding physics through denoising learning From a statistical perspective, denoising213

training can be seen as learning the Boltzmann distribution pphysical(G), which represents the214

probability distribution pphysical(G) ∝ exp(−E(G)) of the structure’s energy E using a given215

protein structure G as a random quantity. Based on the definition, the derivative ∇x log pphysical of216

the folding energy potential E(G) corresponds to the force −∇xE(x) acting on the backbone atoms,217

directing them towards energetically stable directions as follows:218

∇x log pphysical = −∇xE(x) (6)

Since pphysical is unavailable in practice, we approximate it using data. Following [52], we can219

compute the log-likelihood of p0 using220

log p0(X(0)) = log pT (x(T )) +

∫ T

0

∇ · f̃σ(x(t), t)dt. (7)

So, we can approximate p by approximating f̃ . To do that, we use Gaussian noise qσ(G̃T
H |221

GL) = N (G̃T
H ;GL, σ

2I3N ) as used in other works [27, 26], then, we finally can match the score222

∇x log pphysical by learning neural networks θ(G̃T
H , T ) that predict ∇x̃ log qσ(G̃

T
H | GL).223

Eqσ(G̃T
H |GL)

[
∥θ(G̃T

H , T )−∇x̃ log qσ(G̃
T
H | GL)∥2

]
(8)
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This score-matching is the same as what we use in the DNDesign framework. So, we can conclude224

that denoising G̃H , which has become a higher energy state due to noise, towards GL is equivalent to225

learning the folding dynamics.226

In summary, in DNDesign, we employ denoising training to learn the energy potential that determines227

the folding state, i.e., the folding energy landscape. Finally, unlike all previous methods that only228

train for (1), DNDesign allows for the training of (1), (2), (3), and (4) simultaneously, maximizing229

the model’s physical understanding within the given data.230

4.5 Physics understanding transfer231

This section describes FPLM and the five operations to transfer the folding physics inductive bias of232

DENN to IFNN.233

Feature embedding We first extract geometric features of perturbed structure and update the234

features using orientation-aware roto-translation invariant network networks used in [37]. We call235

the features force features and use the features in the following five operations.236

Node initialization with force We add force features to the initial node features so that all node237

and edge features update in IFNN can be conducted using folding physics understanding.238

h0i = h0i + f l+1
i (9)

Node update with force For node updates using force features, we use an attention module239

that combines two operations: self-attention and cross-attention. The two attentions are based on240

multi-headed full self-attention [53]. First, self-attention on node features is conducted. Then,241

cross-attention is performed between the self-attended node features and the force features. At this242

time, the query and key are force features, and through this, each node strongly interacts with the243

force state of all other nodes.244

Edge update with force Edge updates with force features are performed similarly to edge updates245

with node features in IFNN. After concatenating the force feature fi, the force feature of the neighbor246

j node fj , and the edge features eij corresponding to the ij pair, edge feature elji is obtained by247

projecting the concatenated features into the learnable MLP ψf .248

elji = ψf (f l+1
j ∥elji,1∥f l+1

i ) (10)

Global force context attention The global force state summing all local forces is an essential249

context for protein sequences. In the above two modules, node and edge updates are conducted250

using local forces. As the last module, we update node and edge features using the global force state251

features. The total global force state is simply calculated by taking the average of all force state252

features. To reduce computational costs, we apply an element-wise product using gated attention253

combined with a sigmoid function to each node and edge. By doing so, the global force information254

is transferred to all nodes and edges that comprise a protein.255

fi =Mean(
{
f l+1
k

}
k∈Bi

) (11)
256

hl+1
i = hli ⊙ σ(ϕn(fi)) (12)

257

el+1
ji = elji ⊙ σ(ϕe(fi)) (13)

Sequence sampling with end-to-end physics constraint We obtained logits using force features258

through linear layer and add the logits to the logits of IFNN as follow:259

l = αls + (1− α)lf (14)

The ratio of force to decoder logits is empirically determined. In this work, we use 0.2 of α. By260

different ratios, we can generate diverse sequences by conditioning on physics features. This adds an261

additional sampling parameter to inverse-folding sampling, which only resort to probability-based262

sequence sampling previously.263
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Table 1: Protein sequence design comparison on CATH 4.2 in both AR and NAR settings. † indicates
scores copied from [33], and ‡ indicates the newly calculated scores in our setting.

Model Type Perplexity ↓ Recovery % ↑
Short Single-chain All Short Single-chain All

StructGNN†

AR

8.29 8.74 6.40 29.44 28.26 35.91
GraphTrans† 8.39 8.83 6.63 28.14 28.46 35.82
GVP† 7.23 7.84 5.36 30.60 28.95 39.47
ProteinMPNN† 6.21 6.68 4.61 36.35 34.43 45.96
PiFold‡ 6.31±0.03 6.73±0.08 4.63±0.01 38.50±0.56 36.31±0.54 48.91±0.28
DNDesign-PiFold‡ 5.70±0.09 6.03±0.08 4.49±0.02 39.09±0.46 36.83±0.49 49.88±0.29

PiFold‡
NAR 6.75±0.03 7.21±0.10 5.05±0.04 39.93±0.10 37.88±0.52 49.49±0.16

DNDesign-PiFold‡ 6.72±0.17 7.07±0.25 4.96±0.04 40.18±0.74 38.65±1.46 49.93±0.42

Table 2: Protein sequence design comparison on CATH 4.3 in the scaled-up setting. † indicates scores
copied from [8], and ‡ indicates the newly calculated scores in our setting.

Model Type Perplexity Recovery % ↑
All All

GVP-GNN† AR 6.06 38.20
GVP-Large† AR 4.08 50.80
GVP-transformer-Large† AR 4.01 51.60
PiFold‡ AR 3.97±0.01 52.06±0.08
DNDesign-PiFold‡ AR 3.80±0.01 53.75±0.25

5 Experiments264

In this section, we compare FFDesign with the state-of-the-art deep generative inverse-folding models265

in three scenarios, including single-chain, multi-chain, and real-world datasets.266

5.1 Experiment Setting267

Implementation details We choose PiFold as IFNN and train PiFold and DNDesign-PiFold in268

AR, NAR, and scaled-up settings. Models are trained up to 100 in AR and NAR settings, and we set269

150 epochs for the scaled-up scenario. All models are trained on 1 NVIDIA A100s with the Adam270

optimizer [54]. The batch size contains 6000 tokens, and the learning rate is set to 0.001 and decayed271

with OneCycle scheduler. More details are provided in the appendix. For reliable experiments, all272

results are obtained using three seeds.273

Baselines We employ various graph-based inverse-folding models as baselines, including Struct-274

GNN, StructTrans [12], GCA [55], GVP [34], GVP-large [8], GVP-transformer [8], AlphaDe-275

sign [47], ESM-IF [8], ProteinMPNN [9], and PiFold [33].276

5.2 Main Results277

Single-chain sequence design CATH [11] is a widely used protein dataset to evaluate inverse-278

folding models on single-chain sequence design tasks. For a fair comparison, we adopt the version of279

CATH4.2 as used in GraphTrans and GVP, PiFold. In CATH 4.2, 18024, 608, and 1120 proteins are280

used for training, validation, and testing, respectively. In the standard setting for this task, models are281

trained using training data and evaluated on three sets from the test set; short-chain, single-chain, and282

all-set, with perplexity and median recovery scores. Sequence recovery is a widely used metric for283

inverse-folding and measures how many residues of sampled sequences match that of the ground truth284

sequence at each position. The results on CATH 4.2 are shown in Table 1. Under similar conditions,285

the proposed DNDesign consistently improves the previous SOTA method on both perplexity and286

recovery in both auto-regressive and non-auto-regressive settings.287

Scaling-up [8] proved that additional structure data predicted using AlphaFold2 gives remark-288

able improvement for sequence design. Likewise, we prepare ∼12M predicted structure data of289

Uniref50 [56] from AlphaFold2 database and train both PiFold and DNDesign-PiFold models using290

CATH 4.3 + Uniref50. Interestingly, the improvement from denoising becomes more evident in291

a scaled setting, as shown in Table 2. These results indicate that even with scaling up by adding292

8



millions of structures, a model still accesses only the given stable structures. However, models trained293

using DNDesign can fully leverage all four pieces of information in folding physics, resulting in294

improved performance.295

Other benchmarks We also conduct sequence design on multi-chain and real-world datasets,296

TS50, TS500 [57], and Ollikainen [58] datasets. As shown in Appendix A, performance gains297

from denoising still appear, proving the importance of folding physics understanding for protein298

inverse-folding design. Detailed results are provided in the appendix.299

5.3 Analysis300

In this section, we provide analyses to understand DNDesign more deeply. This section includes fixed301

backbone conservation using potential energy and an ablation study about five proposed operations.302

Additional analyses, such as core-surface analysis and other ablation studies, are provided appendix.303
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Figure 4: Distribution of potential en-
ergy change of structures caused by gen-
erated sequences.

Fixed backbone conservation study Sequence recov-304

ery is suitable for measuring sequence consistency, but305

it cannot fully describe the potential energy behavior. In306

fixed backbone design, the ultimate goal is to generate se-307

quences with the given structure. Therefore, it is necessary308

to evaluate whether the generated sequences conserve the309

fixed backbone structure. Conservation of the given struc-310

ture implies that the generated sequences pose a structure311

that do not deviate far from the minimum energy state of312

the structure. Thus, we can evaluate whether the model313

generates energetically stable sequences by performing314

structure relaxation on the sampled proteins, which have315

corresponding new sequences and given backbone, and316

measuring the potential energy change. We utilize the317

Rosetta [59], a well-published computational tool, for318

structure relaxation. We use 282 structures after filter-319

ing structures having residues without coordinates. We320

generated nine sequences for each structure and performed321

relaxation for each (structure, sequence) pair. Then, we322

computed the change of potential energies. Interestingly, as shown in Figure 4, we observe that PiFold,323

with an enhanced understanding of folding physics from DNDesign, generates more sequences with324

potential energy change near zero, meaning complete structure conservation. This clearly demon-325

strates that our approach, which emphasizes the importance of physics in fixed backbone design and326

addresses it through denoising, works. To the best of our knowledge, this is the first work comparing327

fixed backbone conservation using potential energy in fixed backbone design.328

Ablation study To understand the effectiveness of each additional force field supervision, we329

conduct an ablation study, as shown in Appendix B. All components show improvement over baseline,330

meaning that the folding physics inductive bias is effectively transferred to the entire networks.331

6 Conclusion332

In this study, we have demonstrated that denoising can learn folding physics, and based on this333

insight, we proposed the DNDesign framework. The proposed framework can easily be integrated334

into existing SOTA models and has shown performance improvements in various sequence design335

tasks across multiple settings. Particularly, we evaluated the impact of the acquired energy potential336

knowledge from the proposed framework by directly assessing its influence on potential energy337

through the fixed backbone conservation task. This evaluation provides evidence that the model338

trained with denoising generate energetically favorable sequences. This work sheds light on the339

significance of learning physics in structure-based protein sequence design, both theoretically and340

experimentally, and provides energy-based evidence. We hope that our work inspires future research341

in the structure-based design protein field.342
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