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Abstract

Although model-based and model-free approaches to learning the control of sys-
tems have achieved impressive results on standard benchmarks, most have been
shown to be lacking in their generalization capabilities. These methods usually
require sampling an exhaustive amount of data from different environment configu-
rations.
We introduce a neuro-algorithmic policy architecture with the ability to plan consist-
ing of a model working in unison with a shortest path solver to predict trajectories
with low way-costs. These policies can be trained end-to-end by blackbox dif-
ferentiation. We show that this type of architecture generalizes well to unseen
environment configurations.
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Figure 1: Architecture of the neuro-algorithmic policy. Two subsequent frames are processed by two
simplified ResNet18s: the cost-predictor outputs a tensor (width × height × time) of vertex costs cvt
and the goal-predictor outputs heatmaps for start and goal. The time-dependent shortest path solver
finds the shortest path to the goal. Hamming distance between the proposed and expert trajectory is
used as loss for training.

1 Introduction

One of the central topics in machine learning research is learning control policies for autonomous
agents. Many different problem settings exist within this area. On one end of the spectrum are
imitation learning approaches, where prior expert data is available and the problem becomes a
supervised learning problem, i.e. imitating an expert. On the other end of the spectrum lie approaches
that require interaction with the environment in order to obtain data for policy extraction, also known
as the problem of exploration. Most Reinforcement Learning (RL) algorithms fall into this category
of approaches. In this work, we concern ourselves primarily with the setting where limited data is
available, and a policy needs to be extracted from it.

This is particularly true for learning in problems with high-dimensional input space, such as image-
based inputs. In order to alleviate this problem, learning specialized or partial models has shown to
be a viable alternative, e.g. in MuZero Schrittwieser et al. (2019).
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We propose to use recent advances in making combinatorial algorithms differentiable in a blackbox
fashion as proposed by Vlastelica et al. (2020) to train neuro-algorithmic policies with embedded
planners end-to-end. More specifically, we use a time-dependent shortest path planner acting on a
temporally evolving graph generated by a deep network from the inputs. This enables us to learn
the time-evolving costs of the graph and connects us in a narrow sense to model-based approaches.
We demonstrate the effectiveness of this approach in an imitation learning setting, where a few
expert trajectories are provided. Due to the combinatorial generalization capabilities of planners,
our learned policy is able to generalize to new variations in the environment out of the box and
orders of magnitude faster than naive learners. Using neuro-algorithmic architectures facilitates
generalization by shifting the combinatorial aspect of the problem to efficient algorithms, while using
neural networks to extract a good representation for the problem at hand. They have potential to
endow artificial agents with the main component of intelligence, the ability to reason.

Our contributions can be summarized as follows:

• A general differentiable policy architecture embedding shortest path algorithms.
• Demonstration of learning generalizing policies in dynamic game environments from images.
• Showing that the policies enhanced with shortest path algorithms exhibit superior general-

ization performance in comparison to standard methods.

2 Markov Decision Processes and Shortest Paths

We follow the MDP framework Puterman (2014) in a goal-conditioned setting Schaul et al. (2015).
This is used in sequential decision making problems where a specific terminal state has to be reached.

Definition 1 A goal-conditioned Markov Decision Process (gcMDP),M is defined by the tuple (S,
A, p, g, r), where S is the state space, A the action space, p(s′ | a, s) the probability of making the
transition s → s′ when taking the action a, g is the goal, r(s, a, s′, g) the reward obtained when
transitioning from state s to s′ while taking action a and aiming for goal g.

Concretely, we concern ourselves with fully observable discrete MDPs, in which the Markov assump-
tion for the state holds and where the state and action-space are discrete.

In this work, we imitate expert trajectories by training a policy with an embedded time-dependent
shortest path solver end-to-end. Although the actual gcMDP solved by the expert may be stochastic,
we learn a deterministic latent approximate gcMDP, M̂. Assuming that we have access to the
topology of the gcMDP, by applying blackbox-differentiation theory Vlastelica et al. (2020) we are
able to learn the underlying costs (instead of rewards) of M̂ such that the optimal policy on M̂ is
also optimal inM.

3 Shortest Path Algorithm and its Differentiation

We will employ an efficient implementation of Dijkstra’s algorithm for computing the shortest
path. For differentiation, we rely on the framework for blackbox differentiation of combinatorial
solvers Vlastelica et al. (2020). This framework has already been successfully used for rank-
ing Rolínek et al. (2020) and keypoint matching Rolínek et al. (2020) problems.

The purely combinatorial setup can be formalized as follows. Let G = (V,E) be a graph. For
every vi ∈ V , let c1i , . . . , c

T
i be non-negative real numbers; the costs of reaching the vertex vi at

time-points 1, 2, . . . , T , where T is the planning horizon. The TIME-DEPENDENT-SHORTEST-PATH
problem (TDSP) has as input the graph G, a pair of vertices s, e ∈ V (start and end) and the matrix
C ∈ R|V |×T of the costs cti. This version of the shortest path problem can be solved by executing the
Dijkstra shortest path algorithm2 Dijkstra (1959) on an augmented graph. In particular, we set

V ∗ = {(v, t) : v ∈ V, t ∈ [1, T ]}
E∗ = {((v1, t), (v2, t+ 1)) : (v1, v2) ∈ E↪→, t ∈ [1, T − 1]},

2Even though the classical formulation of Dijkstra’s algorithm is edge-based, all of its properties hold true
also in this vertex based formulation.
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where the cost of vertex (vi, t) ∈ V ∗ is simply cti and E↪→ is the original edge set E appended with
all self-loops. This allows to “wait” at a fixed vertex v from timestep t to timestep t+1. In this graph,
the task is to reach vertex (e, T ) from (s, 1) with the minimum traversal cost.

We can take advantage of this formulation of the time-dependent shortest path problem in a model-
predictive control fashion in that we predict the time dependent costs. We learn this by applying
blackbox differentiation from Vlastelica et al. (2020).

4 Neuro-algorithmic Policy Architecture

We propose the Neuro-algorithmic Policy (NAP) framework, that is an end-to-end trainable deep
policy architecture embedding an algorithmic component using the afore-mentioned techniques. In
this paper we consider the concrete architecture consisting of two main components: a backbone
ResNet18 (without the final fully connected layers, similarly as in Vlastelica et al. (2020)) architecture
and the shortest path solver, see Fig. 1. At each time step the policy receives two images concatenated
channel-wise from which it predicts the cost matrix C for the planning horizon T with the cost-
predictor and the start vertex s and end vertex e with the goal predictor, explained in the appendix.

The cost matrix C is given to the solver along with the start vertex s and end vertex e to compute the
time-dependent shortest path Y . The cost-predictor is trained using the Hamming distance between
the predicted plan Y and the expert plan Y ∗ that we use for supervision. Such a cost-prediction ca
be seen in Fig. 2. It is necessary to know the start and goal vertex when applying the shortest-path
solver for which we learn respective predictors, which we describe in appendix Sec. C.

The policy is used in a model-predictive control fashion, i.e. at execution time we predict the plan Y
for horizon T at each time step and execute the first action from the plan.
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Figure 2: The CRASH JEWEL HUNT environment. The goal for the fox, see (a), is to obtain the jewel
in the right most column, while avoiding the moving wooden boxes (arrows in (b)). When the agent
collides with a wooden box it instantly fails to solve the task. A prediction of the costs is shown in
(c).

5 Experiments

To validate our hypothesis that embedding planners into neural network architectures leads to
better generalization, we consider several procedurally generated environments (from the ProcGen
suite Cobbe et al. (2019) and CRASH JEWEL HUNT) with considerable variation between the
realizations, called levels. A more detailed description of the environments can be found in section F
of the appendix.

We compare to two baselines: a standard imitation learning baseline using a ResNet18 architecture
trained with a cross-entropy classification loss on the same dataset as our method; and a reinforcement
learning baseline using the PPO algorithm. We note that a comparison to PPO is to some extent
unfair, since the algorithm also needs to handle the problem of exploration. Nevertheless, the PPO
agent observes much more diverse data than our method, yet fails to generalize in comparison.

For the experimental validation, we aim to answer the following questions:

• Can NAP be trained to perform well as policies in procedurally generated environments?
• Can NAP generalize in a low data regime, i.e. after seeing only few different levels?
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Figure 3: Generalization performance depending on the number of seen levels during training. Dashed
lines indicate performance on training-levels and solid lines show the generalization to unseen levels.
NAP shows good generalization already after 100 levels in most cases.

5.1 Results

We train our method (NAP) and the imitation learning baseline until saturation on the training set,
resulting in virtually 100% success rate when evaluating on train configurations in the environment.
For the PPO baseline we use the code from Cobbe et al. (2019) and provide also two subsequent
frames and 200M time steps for training. For our method we also provide a version with access to the
true start and end-point prediction (NAP+ oracle)

In Fig. 3 we show the performance of the methods when exposed to different number of levels at
training time. As reported in Cobbe et al. (2019), the baselines have a large generalization gap, and
also poor performance when < 10 000 levels are seen. We find that NAP shows strong generalization
performance, already for < 500 levels. In some environments, such as the MAZE we obtain near
80% success rate already with just 100 levels which is reached by PPO after seeing 200 000 levels.
For the CRASH JEWEL HUNT 5× 5 already with 30 trajectories a third of the 1000 test-levels can be
solved, the baseline manages less than 50 out of the 1000. In the CHASER env, see Sec. G, subgoals
need to be predicted, which is illustrated in Fig. 6. We show strong generalization with very few
training levels – reward of ∼ 6 on unseen test-levels when using 100 training levels.

6 Discussion

We have shown that hybrid neuro-algorithmic policies consisting of a deep feature extraction and a
shortest path solver – made differentiable via blackbox differentiation – enables learning policies
that generalize to unseen environment settings in the low-data regime. These policies can be trained
end-to-end by employing blackbox differentiation theory Vlastelica et al. (2020).

Although there is a clear benefit in using NAP, the methods comes with certain caveats. We assume
that the topological structure of the latent planning graph is known a priori, relaxing this assumption
we leave for future work. Furthermore, we assume that the structure of the latent graph is fixed and
not dynamically changing over time, i.e. that each available action at a vertex corresponds to the same
edge.
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A Related Work

Planning in reinforcement learning Differentiable planning has been proposed in previous works,
e.g. in the continuous case with CEM Amos & Yarats (2020); Bharadhwaj et al. (2020). Learning
a representation for planning was considered, among others, in Hafner et al. (2019) but without
differentiating though the planner. Silver et al. (2017) differentiate through a few steps of value
prediction in a learned MDP to match the externally observed rewards. In Srinivas et al. (2018) a
differentiable planner was obtained via relaxation and used for learning a representation. Alternatively
to learning the representation, a planning graph can be constructed from the agents’ experience using
a learned value function for the edge costs, as done by Eysenbach et al. (2019). An orthogonal
research direction is to optimize the planners with prior experience, e.g. Chen et al. (2020), that can
be combined with our approach.

Discrete algorithms in end-to-end trainable networks Incorporating expert discrete solvers into
end-to-end trainable architectures is a topic with both rich history and exciting recent developments.
The simpler setup, in which the output of the non-differential discrete algorithm is directly compared
to ground truth values has been first addressed by max-margin techniques (Tsochantaridis et al., 2005).
Since then, various adaptations have been proposed such as the “predict-and-optimize” framework
and its variants (Elmachtoub & Grigas, 2017; Demirovic et al., 2019; Mandi et al., 2019). Also,
specializations for cases of concrete types of discrete optimization problems such as sparse structured
inference (Niculae et al., 2018), logical satisfiability (Wang et al., 2019), submodular optimization
(Djolonga & Krause, 2017) or mixed integer programming (Ferber et al., 2020).

The harder task of purely providing a gradient and therefore allowing entirely hybrid architectures
containing a discrete algorithm as an intermediate layer has only been addressed recently. First, by
(Vlastelica et al., 2020) who introduce an efficient implicit piece-wise linear interpolation scheme
of the true underlying piece-wise constant function. On the other hand, Berthet et al. (2020) offer a
Monte Carlo technique for estimating the Jacobian of a Gaussian smoothing of the piecewise constant
function at hand.

B Blackbox Differentiation

The framework presented in Vlastelica et al. (2020) turns blackbox combinatorial solvers into neural
network building blocks. The provided gradient is based on a piecewise linear interpolation of the
true piecewise constant (possibly linearized) loss function, see Fig. 4. The exact gradient of this
linear interpolation is computed efficiently via evaluating the solver on only one more instance (see
Algorithm 1) in appendix.

In order to apply this differentiation scheme, the solver at hand needs to have a formulation in which
it minimizes an inner-product objective (under arbitrary constraints). To that end, for a given graph
G = (V,E) with time-dependent costs C ∈ R|V |×T we define Y ∈ {0, 1}|V |×T an indicator matrix
of visited vertices. In particular, Y ti = 1 if and only if vertex vi is visited at time point t. The set
of such indicator matrices that correspond to valid paths in the graph (V ∗, E∗) will be denoted as
Adm(G). The time-dependent shortest path optimization problem can be then rewritten as

TDSP(C, s, e) = argmin
Y ∈Adm(G)

∑
(i,t)

Y ti C
t
i . (1)

This is an inner-product objective and thus the theory from Vlastelica et al. (2020) applies. In effect,
the deep network producing the cost tensor C can be trained via supervision signal from ground truth
shortest paths.

C Goal Prediction, Static and Dynamic

In order to apply the solver to the learned latent graph representation, we need to map the current
state of the environment to appropriate start and end vertices (s, e). To this end, we employ a second
ResNet18 – the goal-predictor – similar to the cost-predictor that learns to extract the agent start
position and a suitable target position. The training of this predictor is using a Cross-Entropy loss
and is independent of learning the costs of the latent graph representation.

7



Algorithm 1 Forward and backward Pass for the shortest-path algorithm
function FORWARDPASS(C, s, e)
Y := TDSP(C, s, e) // Run Dijkstra’s algorithm
save Y , C, s, e // Needed for backward pass
return Y

function BACKWARDPASS(∇L(Y ), λ)
load Y , C, s, e
Cλ := C + λ∇L(Y ) // Calculate modified costs
Yλ := TDSP(Cλ, s, e) // Run Dijkstra’s algo.
return 1

λ

(
Yλ − Y

)

Figure 4: Differentiation of a piecewise constant loss resulting from incorporating a combinatorial
solver. A two-dimensional section of the loss landscape is shown (left) along with two differentiable
interpolations of increasing strengths (middle and right).

At training time, given the expert trajectories Y ∗ we have access to the current position of the agent
and its position in the future. Thus, for predicting s we have a simple supervision signal, namely the
current position. For the goal prediction e we extract a set of suitable goal locations from the expert.
Here, we distinguish between global and local planning.

In the global setting, the last position of the expert is the goal e, corresponding to, for instance, the
jewel in CRASH JEWEL HUNT, see Fig. 2.

In the local setting, we expect the end vertex to be an intermediate goal (“collect an orb”), which
effectively allows for high-level planning strategies while the low-level planning is delegated to the
discrete solver. In this case, the positively labeled supervision at time t are all locations of the (expert)
agent between step t+ T and t+ 2T .

The local setting allows to limit the complexity of our method, which grows with the planning
horizon. It also is a trade-off between the combinatorial complexity solved by the TDSP and the goal
predictor. Ideally, the planning horizon T used for the cost-prediction is long enough to capture the
combinatorial intricacies of the problem at hand, such as creating detours towards the goal in the case
of future dangerous states, or avoiding dead-ends in a maze.

This formulation makes our architecture a hierarchical method similar to Blaes et al. (2019); Nachum
et al. (2018), and allows for solving tasks that are not typical goal-reaching problems, such as the
CHASER environment, see below.

D Sensitivity to the Planning Horizon

We provide a sensitivity analysis of the performance with different planning horizons. Our results
indicate that longer horizons benefit environments with increased dynamical interactions. As apparent
from Fig. 5, our method outperforms the imitation baseline greatly in the crash environment, the gap
between the methods being correlated with the complexity of the environment (5× 5 vs 5× 10). It
can be seen also that making the planning horizon smaller in these environments hurts performance.

On the other hand, for environments with no dynamics, such as the maze environment, there is no
benefit in using time-dependent costs, as expected. Nevertheless, there is still strong performance
gain in generalization when using NAP oppose to vanilla imitation learning from expert trajectories.
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Figure 5: Test success rate of our method with different horizon lengths.

E Cost Margin

Our work is related to the problem of metric learning in the sense that we learn the distance metric
between the current position of the agent (state) and the target position in the underlying gcMDP,
allowing us to solve it with a shortest path algorithm. It has been shown that inducing a margin on
the metric can be beneficial for generalization. Similarly to (Rolínek et al., 2020) in the context of
rank-based metric learning, we induce a margin α on the costs of the latent gcMDP, increasing the
cost of ground truth path and decreasing the rest in the training stage of the algorithm:

cti =

{
cti +

α
2 if (vi, t) ∈ Y ∗

cti − α
2 if (vi, t) /∈ Y ∗

∀ (vi, t) ∈ V ∗. (2)

During evaluation, the cost margin is removed from the shortest path calculation.

F Environments

F.1 CRASH JEWEL HUNT

We first consider an environment we constructed to test NAP, called CRASH JEWEL HUNT which
can be seen in Fig. 2. The environment corresponds to a grid-world of dimensions h× w where the
goal is to move the agent (Fox) from an arbitrary start position in the left-most column to the goal
position (jewel) arbitrarily positioned in the right-most column. Between the agent and the goal are
obstacles, wooden boxes that move downwards (with cyclic boundary conditions) with velocities that
vary across levels but not within a level, see Fig. 2(right). At each time step, the agent can choose to
move horizontally or vertically in the grid by one cell or take no action.

To make the task challenging, we sample distinct environment configurations for the training set and
the test set, respectively. More concretely, we vary the velocities, sizes and initial positions of the
boxes as well as the initial and goal positions.
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F.2 ProcGen Benchmark

In addition to the jewel hunt environment, we evaluate our method on the MAZE, LEAPER and
CHASER environments from the ProcGen suite Cobbe et al. (2019). We have chosen these envi-
ronments because their structure adheres to our assumptions. For the LEAPER we modified the
environment such that a grid-world dynamics applies (LEAPER(GRID)). Based on performance of
the baselines, the resulting (LEAPER(GRID)) is not an easier environment.

The MAZE and the LEAPER(GRID) tasks have a static goal whose position only varies across levels,
whereas the CHASER requires collection of all orbs without contact with the spiders, so the local
goals need to be inferred on the fly. The CHASER environment is also particularly challenging as
even the expert episodes require on average 150 steps, each of which carries a risk of dying. For this
reason, we used three expert trajectories per level.

G Results on CHASER Environment

Here we provide additional results of NAP in comparison to PPO on the CHASER environment. This
environment is specific in that there are not explicit goals needed to be reached, but the agent needs
to pick up all of the green orbs while avoiding the enemies. This poses a challenge, since we are
reduced to a very short-horizon in comparison to the episode length of the expert. Furthermore, the
environment doesn’t have independent dynamics but the dynamics depend on the movement of the
agent. Experiments show that NAP still outperforms PPO considerably in the low data regime (Fig 6)

(a) Performance on CHASER (b) Short-horizon plans
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Figure 6: Performance of NAP against PPO on the CHASER environment (a) trained on 10, 20, 50,
and 100 levels. In (b) we show the short-horizon plans (white) of the agent (blue) at step 5 and 110 in
the environment.
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