
Under review as a conference paper at ICLR 2021

AN ALGORITHM FOR OUT-OF-DISTRIBUTION ATTACK
TO NEURAL NETWORK ENCODER

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs), especially convolutional neural networks, have
achieved superior performance on image classification tasks. However, such per-
formance is only guaranteed if the input to a trained model is similar to the train-
ing samples, i.e., the input follows the probability distribution of the training set.
Out-Of-Distribution (OOD) samples do not follow the distribution of training set,
and therefore the predicted class labels on OOD samples become meaningless.
Classification-based methods have been proposed for OOD detection; however,
in this study we show that this type of method has no theoretical guarantee and
is practically breakable by our OOD Attack algorithm because of dimensionality
reduction in the DNN models. We also show that Glow likelihood-based OOD
detection is breakable as well.

1 INTRODUCTION

Deep neural networks (DNNs), especially convolutional neural networks (CNNs), have become the
method of choice for image classification. Under the i.i.d. (independent and identically distributed)
assumption, a high-performance DNN model can correctly-classify an input sample as long as the
sample is “generated” from the distribution of training data. If an input sample is not from this
distribution, which is called Out-Of-Distribution (OOD), then the predicted class label from the
model is meaningless. It would be great if the model has the ability to distinguish OOD samples
from in-distribution samples. OOD detection is needed especially when applying DNN models in
life-critical applications, e.g., vision-based self-driving or image-based medical diagnosis.

It was shown by Nguyen et al. (2015) (Nguyen et al., 2015) that DNN classifiers can be easily
fooled by OOD data, and an evolutionarily algorithm was used to generate OOD samples such that
DNN classifiers had high output confidence on these samples. Since then, many methods have been
proposed for OOD detection using classifiers or encoders (Hendrycks & Gimpel, 2017; Hendrycks
et al., 2019; Liang et al., 2018; Lee et al., 2018b;a; Alemi et al., 2018; Hendrycks & Gimpel, 2017).
For instance, Hendrycks et al. (Hendrycks & Gimpel, 2017) show that a classifier’s prediction
probabilities of OOD examples tend to be more uniform, and therefore the maximum predicted
class probability from the softmax layer was used for OOD detection. Regardless of the details of
these methods, every method needs a classifier or an encoder, which takes an image x as input and
compresses it into a vector z in the laten space; after some further transform, z is converted to an
OOD detection score τ . This computing process can be expressed as: z = f(x) and τ = d(z).
To perform OOD detection, a detection threshold needs to be specified, and then x is OOD if τ
is smaller/larger than the threshold. For the evaluation of OOD detection methods, (Hendrycks
& Gimpel, 2017), an OOD detector is usually trained on a dataset (e.g. Fashion-MNIST as in-
distribution) and then it is tested on another dataset (e.g. MNIST as OOD).

As will be shown in this study, the above mentioned classification-based OOD detection methods
are practically breakable. As an example (more details in Section 3), we used the Resnet-18 model
(He et al., 2016) pre-trained on the ImageNet dataset. Let xin denote a 224×224×3 image (in-
distribution sample) in ImageNet and xout denote an OOD sample which could be any kinds of
images (even random noises) not belonging to any category in ImageNet. Let z denote the 512-
dimensional feature vector in Resnet-18, which is the input to the last fully-connected linear layer
before the softmax operation. Thus, we have zin = f(xin) and zout = f(xout). In Fig. 1, xin

1

Under review as a conference paper at ICLR 2021

(a) (b) (c)

Figure 1: The 1st column shows the image of Santa Claus xin and the scatter plot of zin using blue
dots. The 2nd column shows a chest x-ray image xout and the scatter plot of zout (red circles) and
zin (blue). The 3rd column shows a random image xout, and the scatter plot of zout (red) and zin
(blue).

is the image of Santa Claus, and xout could be a chest x-ray image or a random-noise image, and
“surprisingly”, zout ∼= zin which renders OOD detection score to be useless: d(zout) ∼= d(zin).

In Section 2, we will introduce an algorithm to generate OOD samples such that zout ∼= zin. In
Section 3, we will show the evaluation results on publicly available datasets, including ImageNet
subset, GTSRB, OCT, and COVID-19 CT. Since some generative models (e.g. Glow (Kingma &
Dhariwal, 2018)) can approximate the distribution of training samples (i.e. p(xin)), likelihood-based
generative models were utilized for OOD detection (Nalisnick et al., 2019). It has been shown that
likelihoods derived from generative models may not distinguish between OOD and training samples
(Nalisnick et al., 2019; Ren et al., 2019; Choi et al., 2018), and a fix to the problem could be using
likelihood ratio instead of raw likelihood score (Serrà et al., 2019). Although not the main focus
of this study, we will show that the OOD sample’s likelihood score from the Glow model (Kingma
& Dhariwal, 2018; Serrà et al., 2019) can be arbitrarily manipulated by our algorithm (Section 2.1)
such that the output probability p(xin) ∼= p(xout), which further diminishes the effectiveness of any
Glow likelihood-based detection methods.

2 METHODOLOGY

2.1 OOD ATTACK ON DNN ENCODER

We introduce an algorithm to perform OOD attack on a DNN encoder z = f(x) which takes an
image x as input and transforms it into a feature vector z in a latent space. Preprocessing on x
can be considered as the very first layer inside of the model f(x). The algorithm needs a weak
assumption that f(x) is sub-differentiable. A CNN classifier can be considered a composition of
a feature encoder z = f(x) and a feature classifier p = g(z) where p is the softmax probability
distribution over multiple classes.

Let’s consider an in-distribution sample xin and an OOD sample x′out, and apply the model: zin =
f(xin) and z′out = f(x′out). Usually, z′out 6= zin. However, if we add a relatively small amount of
noise δ to x′out, then it could be possible that f (x′out + δ) = zin and x′out + δ is still OOD. This
idea is realized in Algorithm 1, OOD Attack on DNN Encoder.

The clip operation in Algorithm 1 is very important: it will limit the difference between xout and
x′out so that xout may be OOD. The algorithm is inspired by the method called projected gradient
descent (PGD) (Kurakin et al., 2016; Madry et al., 2018) which is used for adversarial attacks.
We note that the term “adversarial attack” usually refers to adding a small perturbation to a clean
sample x in a dataset such that a classifier will incorrectly-classify the noisy sample while being

2

Under review as a conference paper at ICLR 2021

Algorithm 1 OOD Attack on DNN Encoder
Input: An in-distribution sample xin in a dataset. An OOD sample x′out not similar to any sample

in the dataset. f , the neural network feature encoder. ε, the maximum perturbation measured by
Lp norm. N , the total number of iterations. α the learning rate of the optimizer.

Output: an OOD sample xout s.t. f(xout) ∼= f(xin)
Process:

1: Generate a random noise ξ with ||ξ|| ≤ ε
2: Initialize xout = x′out + ξ
3: Setup loss J(xout) = ||f(xout)− f(xin)||2 (L2 norm)
4: for n from 1 to N do
5: xout ← clip(xout − α · h(J ′(xout))), where J ′(x) = ∂J/∂x.
6: end for

Note: The clip operation ensures that ||xout − x′out||p ≤ ε. The clip operation also ensures
that pixel values stay within the feasible range (e.g. 0 to 1). If L-inf norm is used, h (J ′) is the
sign function; and if L2 norm is used, h (J ′) is a function that normalizes J ′ by its L2 norm.
Adamax optimizer is used in the implementation

able to correctly-classify the original clean sample x. Thus, OOD attack and adversarial attack are
completely different things.

In practice, the Algorithm 1 can be repeated many times to find the best solution. Random initial-
ization is performed in line-1 and line-2 of the algorithm process. By adding initial random noise ξ
to x′out, the algorithm will have a better chance to avoid local minima caused by a bad initialization.

2.2 DIMENSIONALITY REDUCTION AND OOD ATTACK

Recall that in a classification-based OOD Detection approach, a DNN encoder transforms the input
to a feature vector, i.e., z = f(x), and an OOD detection score is computed by another transform
on z, i.e., and τ = d(z). If zout ∼= zin, then d(zout) ∼= d(zin) which breaks the OOD detector
regardless of the transform d. Usually, a DNN encoder makes dimensionality reduction: the dimen-
sion of z is significantly smaller than the dimension of x. In the example shown in Fig. 1, z is a
512-dimensional feature vector (dim(z) = 512) in Resnet-18, and the dimension of x is 150528
(224× 224× 3).

Dimensionality reduction in an encoder provides the opportunity for the existence of the map-
ping of OOD and in-distribution samples to the same locations in the latent space. This is sim-
ply because the vectors in a lower-dimensional space cannot represent all of the vectors/objects in a
higher-dimensional space, which is the Pigeonhole Principle. Let’s do an analysis on the Resnet-18
example in Fig. 1. A pixel of the color image x has 8-bits. In the 150528-dimension discrete input
space, there are 256224×224×3 different images/vectors, which defines the size of the input space.
float32 data type is usually used in computation, a float32 variable can roughly represent 232 unique
real numbers. Thus, in the 512-dimensional latent space, there are 232×512 unique vectors/objects,
which defines the size of the latent space. The ratio is

(
232×512

256224×224×3

)
� 1, and it shows that the

latent space is significantly smaller than the input space. Thus, for some sample x in the dataset,
we can find another sample x′ such that f (x′) = f (x) as long as dim(z) < dim(x). A question
arises: will the x′ be in-distribution or OOD? To answer this question, let’s partition the input dis-
crete space Ω into two disjoint regions (Ω = Ωin ∪ Ωout), Ωin of in-distribution samples and Ωout

of OOD samples. |Ω| denotes the size of Ω. Usually, the training set is only a subset of Ωin, and
the size of Ωout is significantly larger than the size of Ωin. For example, if Ωin is ImageNet, then
Ωout contains medical images, noise images, and other weird images. If Ωin contains human face
images, then Ωout contains non-face images and then |Ωin| � |Ωout|. The latent space (z-space) is
denoted by F and partitioned into two subspaces: F = Fin ∪Fout. An encoder is applied such that
Ωin → Fin and Ωout → Fout. If there is overlap Fin∩Fout 6= ∅, then the encoder is vulnerable to
OOD attack. Usually, the encoder is a part of a classifier trained to classify in-distribution samples
into different classes, and therefore the encoder cannot guarantee that there is no overlap between
Fin andFout. What is the size ofFin∩Fout or what is the probability P (|Fin ∩ Fout| ≥ a)? While
it is hard to calculate it for an arbitrary encoder and dataset, we can do a worst-case-scenario analy-

3

Under review as a conference paper at ICLR 2021

sis. Assuming that every OOD sample is i.i.d. mapped to the latent space with a uniform distribution
over a number of |F| spots, then the probability of OOD samples covering the entire latent space is
P (Fout = F) = |F|!×Stirling(|Ωout| , |F|)/ |F||Ωout| → 1 as |F| / |Ωout| → 0, where Stirling
is the Stirling number of the second kind. Noting that |F| / |Ωout| = 232×512

256224×224×3−1.4×107 ≈ 0 and
1.4 × 107 being the number of samples in ImageNet, then it could be true that almost (with proba-
bility close to 1) the entire latent space of Resnet-18 is covered by the z vectors of OOD samples.

Next, we discuss how to construct OOD samples to fool neural networks. First, let’s take a look at
one-layer linear network: z = Wx, and make notations: an in-distribution input x ∈ RM , latent
code z ∈ RK and K � M . W is a K ×M matrix, and rank (W) ≤ K. The null space of W
is Ωnull = {η; Wη = 0}. Now, let’s take out the basis vectors of this space, η1, η2, . . ., ηM−K ,
and compute x′ =

∑
i λiηi + x where λi is a non-zero scalar. Obviously, z′ = Wx′ = z. We can

set the magnitude of the “noise”
∑

i λiηi to be arbitrarily large such that x′ will look like garbage
and become OOD, which is another explanation of the existence of OOD samples. Then, we can
try to apply this attack method to multi-layer neural network. If the neural network only uses ReLU
activation, then the input-output relationship can be exactly expressed as a piecewise-linear mapping
(Ding et al., 2020), a similar approach can be applied layer by layer. If ReLU is not used, a new
method is needed. We note that the filter bank of a convolution layer can be converted to a weight
matrix. We have examined the state-of-the-art CNN models that are pre-trained on ImageNet and
available in Pytorch, and dimensionality reduction is performed in most of the layers (except 1 or 2
layers near the input), i.e. |F| ≤ |Ωin| � |Ωout|. Instead of constructing an OOD sample by adding
perturbations to an in-distribution sample, in Algorithm-1, we construct an OOD sample paired with
an in-distribution sample by starting from an initial sample that is OOD.

Could an encoder be made robust to the OOD attack by including OOD samples in training set for
supervised binary classification: in vs out? Usually |Ωin| � |Ωout| and we will have to collect and
label “enough” samples in Ωout, which is infeasible considering the large size of Ωout ≈ Ω. As a
comparison, to enhance DNN classifier robustness against adversarial noises, it is very effective to
include noisy samples in the training set, i.e. Ωin = Ωin clean∪Ωin noisy . It is known as adversarial
training (Goodfellow et al., 2018) and computationally feasible as |Ωin noisy| � |Ωout|.

2.3 PROBLEM OF GLOW LIKELIHOOD-BASED OOD DETECTION

Generative models have been developed to approximate the training data distribution. Glow
(Kingma & Dhariwal, 2018) is one of these models, and it has a very special property: it is bijective
and the latent space dimension is the same as the input space dimension, i.e., no dimensionality
reduction, which is the reason that we studied this model.

Several studies have found the problem of Glow-based OOD detection: likelihoods derived from
Glow may not distinguish between OOD and training samples (Ren et al., 2019; Choi et al., 2018),
and a possible fix to the issue could be using likelihood ratio (Serrà et al., 2019). In this study, we
further show that negative log-likelihood (NLL) from the Glow model can be arbitrarily manipulated
by our algorithm in which f(x) denotes NLL. The results on CelebA face image dataset are in
Section 3. We think the major reason causing Glow’s vulnerability to OOD attack is that we do not
have enough training data in high dimensional space. Glow is a mapping: xin → zin → p(zin) →
p(xin), the probability of xin. For an OOD sample xout, the mapping is xout → zout → p(zout)→
p(xout). Since the number of training samples is significantly smaller than the size of the space,
there are a huge number of “holes” in the latent space (i.e., regions that no training samples are
mapped to), and it is easy to put zout in one of these “holes” close to zin such that p(zout) ∼= p(zin).

2.4 RECONSTRUCTION-BASED OOD DETECTION

Auto-encoder style OOD detection has been developed for anomaly detection (Chalapathy &
Chawla, 2019; Cohen et al., 2019) based on reconstruction error. The data flow of an auto-encoder
is x → z → x̂ where x̂ is the reconstruction of x. The OOD detection score can be the difference
between x and x̂, e.g., the Lp distance ||x − x̂||p or Mahalanobis Distance. This type of method
has two known issues. The first issue is that auto-encoder may well reconstruct OOD samples, i.e.,
xout ≈ x̂out. Thus, one needs to make sure it has large reconstruction errors on OOD samples, which
can be done by limiting the capacity of auto-encoder or saturating it with in-distribution samples.

4

Under review as a conference paper at ICLR 2021

The second issue is that pixel-to-pixel distance is not a good measurement of image dissimilarity,
especially for medical images. For example, x could be a CT image of a heart and x̂ could be the
image of the same heart that deforms a little bit, but the pixel-to-pixel distance between x and x̂ can
be very large. Thus, a robust image similarity measurement is needed.

Interestingly, the proposed OOD attack algorithm has no effect on this type of method. Let’s con-
sider the data flow: xin → zin → x̂in and xout → zout → x̂out. If zout = zin, then x̂out = x̂in
. Then, it is easy to find out that xout is OOD because ||xout − x̂out||p = ||xout − x̂in||p which is
very large. Ironically, in this case, the attack algorithm helps to identify the OOD sample. In future
work, we will evaluate the effectiveness of combining the proposed algorithm and auto-encoder for
OOD detection.

3 EXPERIMENTS

We applied the proposed algorithm to attack state-of-the-art DNN models on image datasets. For
each in-distribution sample xin, an OOD sample xout is generated by the algorithm. To measure
attack strength, mean absolute percentage error is calculated by MAPE(zout) = mean(|zout −
zin|)/max(|zin|). Here, zout = f (xout) and zin = f(xin). |zout − zin| is an error vector, and
mean(|zout−zin|) is the average error. max(|zin|) is the maximum absolute value in the vector zin.
We also applied the algorithm to attack the Glow model on CelebA dataset. In all of the evaluations,
L2 norm was used in the proposed algorithm. Pytorch was used to implement the algorithm. Nvidia
Titan V GPUs were used for model training and testing.

3.1 EVALUATION ON A SUBSET OF IMAGENET

ILSVRC2012 ImageNet has over 1 million images in 1000 classes. Given the limited computing
power, it is impractical to test the algorithm on the whole dataset. Instead, we used a subset of 1000
images in 200 categories. The size of each image is 224×224×3. Two CNN models pretrained on
the ImageNet were evaluated, which are Resnet-18 and Densenet-121 available in Pytorch.

Resnet-18 latent space has 512 dimensions. Since ImageNet covers a variety of natural and artificial
objects, we choose medical images and random-noise images to make sure that x′out is indeed OOD.
Using each of the three initial OOD samples (chest x-ray, lung-CT, and random noise to be x′out),
we generated 1000 OOD samples paired with the 1000 (in-distribution) samples in the dataset and
calculated MAPE values. The three MAPE histograms are shown in Fig. 3. Most of the MAPE
values are less than 0.1%.

We also evaluated another CNN, named Densenet-121, and obtained similar results. The latent space
has 1024 dimensions. Again, using each of the three initial OOD samples, 1000 OOD samples are
generated for the samples in the dataset, and then MAPE values are calculated. The three MAPE
histograms are shown in Fig. 4. Most of the MAPE values are less than 0.1%, indicating strong
OOD attack.

From the results in Fig.2 to Fig. 4, it can be seen that each of the two CNN models mapped sig-
nificantly different OOD samples and in-distribution samples to almost the same locations in the
latent space. Dimensionality reduction leads to the existence of such mapping, and our algorithm
can find such OOD samples out. In other words, the mapping from input space to the latent space
is many-to-one, not bijective. And therefore, it is almost guaranteed that such OOD samples exist
and they can break any OOD detector d that computes a detection score d(z) only from the latent
space (z-space). We tested a classical OOD detection method using the maximum of softmax output
as detection score (Hendrycks & Gimpel, 2017). The results are shown in Table-1, and the AUROC
scores are close to 0.5, showing that the method is unable to tell the difference between the 1000
OOD samples and 1000 in-distribution samples.

5

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 2: The 1st column shows three in-distribution samples (e.g. Santa Claus) xin, and the
corresponding scatter plots of zin (blue dots). The 2nd column shows OOD samples xout generated
from a CT image x′out, and the corresponding scatter plots of zout (red) and zin (blue). The 3rd
column shows OOD samples xout generated from a random image x′out, and the corresponding
scatter plots of zout (red) and zin (blue). The 4th column shows OOD samples xout generated from
a x-ray image x′out, and the corresponding scatter plots of zout (red) and zin (blue). MAPE values
are embedded in these scatter-plots. Please zoom-in for better visualization.

Figure 3: Left: the MAPE histogram using a chest x-ray as the initial OOD sample. Middle: the
MAPE histogram using a lung CT image as the initial OOD sample. Right: the MAPE histogram
using a random-noise image as the initial OOD sample. The results are from Resnet-18.

6

Under review as a conference paper at ICLR 2021

Figure 4: Left: MAPE histogram using a chest x-ray as the initial OOD sample. Middle: MAPE
histogram using a lung CT image as the initial OOD sample. Right: MAPE histogram using a
random-noise image as the initial OOD sample. The results are from Densenet-121.

Table 1: AUROC of two networks under OOD attack with each of x-ray, CT and noise as the initial
OOD sample

x-ray CT random-noise
Resnet-18 0.643 0.633 0.500

Densenet-121 0.638 0.651 0.500

3.2 EVALUATION ON CELEBA DATASET

We tested the algorithm and the Glow model (Kingma & Dhariwal, 2018) on the CelebA dataset
(human face images). The size of each image is 64×64×3. After training, the model was able to
generate realistic face images. The model also outputs the negative log-likelihood (NLL) of the
input sample, i.e., NNL (x) = −log (p (x)). By setting f (x) = NNL (x), our algorithm can
make f (xout) to be close to 0 or very large to match any f (xin), which renders NLL score useless
for OOD detection. To demonstrate the effectiveness of our algorithm, we randomly selected 160
(in-distribution) samples in the dataset. We used a color spiral image as the initial OOD sample
x′out, and NNL (x′out) = 3.5268. The distributions of NLL(xin) from 160 in-distribution samples
and NLL(xout) from 160 corresponding OOD samples, as well as OOD sample images are shown
in Fig. 5. The two distributions are almost identical. More examples of OOD samples are shown in
Fig. 6. In each row of Fig. 6, although the images have different NLL scores, they look like each
other.

Figure 5: Top: NLL histogram (blue bars) of
the in-distribution; samples Middle: NLL his-
togram (red bars) of OOD samples; Bottom:
some OOD samples with NLL from 0 to 1. The
initial OOD sample is a spiral image.

Figure 6: Top: OOD samples generated by us-
ing one 2×2 checkerbox image for initializa-
tion; Bottom: OOD samples generated by using
one 8×8 checkerbox image for initialization.

7

Under review as a conference paper at ICLR 2021

We have done more evaluations of our algorithm and OOD detection methods, please read the
appendices.

4 DISCUSSION

We hypothesized that dimensionality reduction in an encoder provides the opportunity for the exis-
tence of the mapping of OOD and in-distribution samples to the same locations in the latent space.
We applied the OOD Attack algorithm to DNN classifiers on various datasets (see Appendices A
and B), and the results (i.e. low MAPE values) confirmed our hypothesis. The results imply that
classifier/encoder -based OOD detection methods may be vulnerable to the OOD attack.

By using our OOD Attack algorithm, we evaluated nine OOD detection methods (see Appendices C
to J). The AUROC scores of these methods are close to 0.5 in our experiments, which means these
methods could not distinguish between the in-distribution samples (e.g. CIFAR10) and the OOD
samples generated by our algorithms. Our algorithm was unable to break a recent method named
Certified Certain Uncertainty (Meinke & Hein, 2020), because this method utilizes Gaussian mixture
models (GMMs) in the input space (note: no dimensionality reduction in GMMs). However, it is
well known that GMMs have convergence issues for high dimensional data (e.g. medical images).

Compared to adversarial attacks and defenses, it is much more difficult to defend against OOD at-
tacks. Adversarial attacks and OOD attacks are doing completely different things to neural networks,
although the attack algorithms may use similar optimization techniques. For image classification ap-
plications, an adversarial attack will add a small amount of noise to the input (clean) image, and the
resulting noisy image is still human-recognizable. Therefore, the magnitudes of adversarial noises
are constrained. For example, a noisy image of a panda is still an image of the panda. By the judg-
ment of humans, the noisy image and the clean image are the images of the same object, and the two
images should be classified into the same class. Compared to adversarial samples, OOD samples,
which can be generated by our OOD Attack algorithm, have much more freedom (e.g. they can be
random noises), as long as they do not look like in-distribution samples. Thus, OOD detection is
very challenging.

We would like to point out that it is difficult to evaluate an OOD detector to “prove” that it can
detect, say 90% of the OOD samples by experimentally testing it on Ωout because Ωout is too large
to be tested on: |Ωin| � |Ωout| ≈ |Ω|. For example, if Fashion-MNIST is used as in-distribution,
then MINST and Omniglot are usually as OOD, which is the “standard” approach in the literature.
Clearly, MINST and Omniglot cannot cover Ωout the space of OOD samples. If the image size is
larger, then |Ωout| becomes much larger. Could we design an evaluation method (experimental or
analytical) that does not rely on OOD samples?

Before the OOD detection issue is fully resolved, for life-critical applications, any machine learning
system that uses DNN classifiers should not make decisions independently and can only serve as as-
sistants to humans. The OOD Attack algorithm and the experimental results can serve as a reference
for the evaluation of new OOD detection methods.

We will release the code on GitHub when the paper is accepted. All figures are in high-resolution,
please zoom in.

REFERENCES

Alexander A Alemi, Ian Fischer, and Joshua V Dillon. Uncertainty in the variational information
bottleneck. UAI 2018 - Uncertainty in Deep Learning Workshop, 2018.

Alvaro Arcos-Garcia, Juan A Alvarez-Garcia, and Luis M Soria-Morillo. Deep neural network for
traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation
methods. Neural Networks, 99:158–165, 2018.

Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection: A survey. arXiv
preprint arXiv:1901.03407, 2019.

Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but why? generative ensembles for robust
anomaly detection. arXiv preprint arXiv:1810.01392, 2018.

8

Under review as a conference paper at ICLR 2021

Joseph Paul Cohen, Paul Bertin, and Vincent Frappier. Chester: A web delivered locally computed
chest x-ray disease prediction system. arXiv preprint arXiv:1901.11210, 2019.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Max-margin ad-
versarial (mma) training: Direct input space margin maximization through adversarial training.
International Conference on Learning Representations, 2020.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. Ad-
vances in Neural Information Processing Systems, 2019.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1625–1634, 2018.

Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning robust against
adversarial inputs. Communications of the ACM, 61(7):56–66, 2018.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. International Conference on Learning Representations, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. International Conference on Learning Representations, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. International Conference on Learning Representations, 2019.

Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L
Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical diag-
noses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in neural information processing systems, pp. 10215–10224, 2018.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances in neural information processing
systems, pp. 6402–6413, 2017.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers
for detecting out-of-distribution samples. International Conference on Learning Representations,
2018a.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Process-
ing Systems, pp. 7167–7177, 2018b.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. International Conference on Learning Representations, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. International Conference on Learning
Representations, 2018.

Alexander Meinke and Matthias Hein. Towards neural networks that provably know when they don’t
know. International Conference on Learning Representations, 2020.

9

Under review as a conference paper at ICLR 2021

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? International Conference on Learning
Representations, 2019.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 427–436, 2015.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances in
Neural Information Processing Systems, pp. 14707–14718, 2019.

Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution examples with in-
distribution examples and gram matrices. NeurIPS 2019 Workshop on Safety and Robustness in
Decision Making, 2019.

Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F Núñez, and Jordi Luque. Input
complexity and out-of-distribution detection with likelihood-based generative models. Interna-
tional Conference on Learning Representations 2020, 2019.

Feng Shi, Jun Wang, Jun Shi, Ziyan Wu, Qian Wang, Zhenyu Tang, Kelei He, Yinghuan Shi, and
Dinggang Shen. Review of artificial intelligence techniques in imaging data acquisition, segmen-
tation and diagnosis for covid-19. IEEE reviews in biomedical engineering, 2020.

Eduardo Soares, Plamen Angelov, Sarah Biaso, Michele Higa Froes, and Daniel Kanda Abe. Sars-
cov-2 ct-scan dataset: A large dataset of real patients ct scans for sars-cov-2 identification.
medRxiv, 2020.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

A APPENDIX

The parameters in each evaluation are listed.

1. Parameters for evaluation on ImageNet subset Attacking resnet-18: ε = 5, N = 1e4, α = ε/100
with x-ray and CT; ε = 20, N = 1e4, α = ε/100 with random noise. Attacking densnet-121:
ε = 5, N = 1e4, α = ε/100 with x-ray and CT; ε = 30, N = 1e4, α = ε/100 with random noise.
We inspected the OOD images from random noise: they are not recognizable to human vision.

2. Parameters for evaluation on OCT dataset ε = 10, N = 1e4, α = ε/100 with retinal fundus
photography image ε = 20, N = 1e4, α = ε/100 with random noise.

3. Parameters for evaluation on COVID-19 CT dataset ε = 20, N = 1e4, α = ε/100

4. Parameters for evaluation on GTSRB dataset ε = 10, N = 1e4, α = ε/100

5. Parameters for Evaluation on CelebA Dataset ε = 10, N = 1e4, α = ε/100

B APPENDIX

B.1 EVALUATION ON OCT DATASET

We tested our algorithm and Resnet-18 on a retinal optical coherence tomography (OCT) dataset
(Kermany et al., 2018), which has four classes. Each image is resized to 224×224. 1000 samples per
class were randomly selected to obtain a training set of 4000 samples. The test set has 968 images.
We modified Resnet-18 for this four-class classification task. The latent space has 512 dimensions.
After training, the Resnet-18 model achieved a classification accuracy > 95% on the test set.

We used two references images as the initial OOD sample x′out. The first reference image is a
grayscale retinal image converted from an RGB color retinal fundus photography image. Compared
to this retinal fundus photography image, the OCT images have unique patterns of horizontal “white

10

Under review as a conference paper at ICLR 2021

(a) (b) (c)

Figure 7: The 1st column shows in-distribution samples xin in the OCT dataset, and the scatter
plots of zin (blue dots). The 2nd column shows OOD samples xout generated from a retinal fundus
photography image x′out, and the scatter plots of zout (red) and zin (blue). The 3rd column shows
OOD samples xout generated from a random image x′out, and the scatter plots of zout (red) and zin
(blue). MAPE values are embedded in these scatter-plots. Please zoom-in for better visualization.

bands”. We selected this OOD image by purpose: there may be a chance that both types of images
are needed for retinal diagnosis. The second reference image is generated from random noises.
Examples are shown in Fig. 7, and the two MAPE histograms are shown in Fig. 8. The results
confirm that the algorithm can generate OOD samples (968) which are mapped by the DNN model
to the locations of the in-distribution samples (968) in the latent space, i.e., zout ∼= zin.

11

Under review as a conference paper at ICLR 2021

Figure 8: Left: MAPE histogram using a retinal fundus photography image as the initial OOD
sample. Right: MAPE histogram using a random-noise image as the initial OOD sample. Please
zoom-in for better visualization.

B.2 EVALUATION ON COVID-19 CT DATASET

We also tested our algorithm and Resnet-18 on a public COVID-19 lung CT (2D) image dataset
(Soares et al., 2020). It contains 1252 CT scans (2D images) that are positive for COVID-19 in-
fection and 1230 CT scans (2D images) for patients non-infected by COVID-19, 2482 CT scans
in total. From infected cases, we randomly selected 200 samples for testing, 30 for validation, and
1022 for training. From the uninfected cases, we randomly selected 200 for testing, 30 for validation
and 1000 for training. Each image is resized to 224×224.

We modified the last layer of Resnet-18 for this binary classification task, infected vs uninfected.
We also replaced batch normalization with instance normalization because it is known that batch
normalization is not stable for small batch-size (Wu & He, 2018). The latent space still has 512
dimensions. We set batch-size to 32, the number of training epochs to 100, and used AdamW
optimizer with the default parameters. After training, the model achieved a classification accuracy
> 95% on test set.

We used two reference images as the initial OOD sample x′out, a chest x-ray image, and a random-
noise image. The two MAPE histograms are shown in Fig. 9 that most of the MAPE values are less
than 0.1%. The results also confirm that the algorithm can generate OOD samples (400) which are
mapped by the DNN model to the locations of the in-distribution samples (400) in the latent space,
i.e., zout ∼= zin.

Examples are shown in Fig. 10. As reported in the previous studies (Shi et al., 2020), infected
regions in the images have a unique pattern called ground-glass opacity. The CT images in the 1st
and 3rd rows show COVID-19 infections with ground-glass opacity on the upper-left area. The CT
image in the 5th row does not show any signs of infection. It can be seen that the random-noise
images and the COVID-19 CT images have the same feature vectors in the latent space, which is
astonishing.

Figure 9: Left: MAPE histogram using chest x-ray image as the initial OOD sample. Right:
MAPE histogram using a random-noise image as the initial OOD sample. Please zoom-in for better
visualization.

12

Under review as a conference paper at ICLR 2021

(a) (b) (c)

Figure 10: The 1st column shows in-distribution samples xin in the COVID-19 dataset, and the
scatter plots of zin (blue dots). The 2nd column shows OOD samples xout generated from a chest
x-ray image x′out, and the scatter plots of zout (red) and zin (blue). The 3rd column shows OOD
samples xout generated from a random image x′out, and the scatter plots of zout (red) and zin (blue).
MAPE values are embedded in these scatter-plots. Please zoom-in for better visualization.

B.3 EVALUATION ON GTSRB TRAFFIC SIGN DATASET

We tested our algorithm and a state-of-the-art traffic sign classifier on the GTSRB dataset. The
classifier is similar to the one in (Arcos-Garcia et al., 2018), which has a spatial-transformer network.
The size of each image is 32×32×3. The latent space has 128 dimensions. After training, the
classifier achieved over 99% accuracy on the test set. We used a random-noise image as the initial
OOD sample x′out to generate 12630 OOD samples paired with the 12630 in-distribution samples in
the test set. The MAPE histogram is shown in Fig. 11, in which most of the MAPE values are less
than 0.1%. Examples are shown in Fig. 12.

13

Under review as a conference paper at ICLR 2021

It can be seen that zout of random-noise images are almost the same as zin of the stop sign, the
speed limit sign, and the turning signs. Not only the classifier cannot tell the difference between a
real traffic sign and a generated noise image, but also any detectors based on zin for OOD detection
will fail. We note that adversarial robustness of traffic sign classifiers has been studied (Eykholt
et al., 2018), and after adding adversarial noises to the traffic sign images, the noisy images are still
recognizable. OOD noises and adversarial noises are very different (discussed in Sections 2.1 and
2.2). Thus, it would be wise to disable any vision-based auto-pilot in your self-driving cars today
until this issue is resolved.

Figure 11: Left: MAPE histogram. Right: zoom-in view of the histogram

(a) (b) (c) (d)

Figure 12: The 1st row shows four traffic sign images. The 3rd row shows the generated OOD im-
ages. The 2nd row shows the scatter-plots of zout (red) and zin (blue). MAPE values are embedded
in these scatter-plots. Please zoom-in for better visualization.

C APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method named ODIN (Liang et al.,
2018).

C.1 SUMMARY OF THE ODIN METHOD

The method does temperature scaling on the logits (input to softmax) by logits/T , which is the Eq.(1)
in the ODIN paper. The temperature T could be in the range of 1 to 1000. The ODIN method also
does input preprocessing, which is the Eq.(2) in the ODIN paper. For preprocessing, the perturbation

14

Under review as a conference paper at ICLR 2021

magnitude (PM) could be in the range of 0 to 0.004. The OOD score is defined to be the maximum
of the softmax outputs from a neural network, given the preprocessed input. An OOD sample is
expected to have a low OOD score.

C.2 EVALUATION ON CIFAR10

Wide residual network with depth 28 and widen factor 10 is used in the ODIN paper. After training
for 200 epochs, the model achieved the classification accuracy of 94.71 on CIFAR10 test set.

In our algorithm, we set f (x) to be the logits output from the model, given the preprocessed input.
For the CIFAR10 dataset, the logits output contains 10 elements, which is significant dimensionality
reduction compared to the size of an input color image: 32×32×3. In our algorithm, the parameters
are ε = 10, α = ε/100, N = 100. The initial OOD sample is a random noise image. For every
sample in the CIFAR10 test set, the algorithm generated an OOD sample to match the logits output.
The generated OOD samples look like random noises. The OOD scores of these samples were
calculated by the ODIN method.

The results are reported in Table 2. Fig. 13 shows the OOD score histograms of the in-distribution
and OOD samples when T=1000 and PM=0.001. When T = 1 and PM = 0, ODIN becomes the
Baseline method (Hendrycks & Gimpel, 2017).

Table 2: AUROC scores of ODIN on CIFAR10 vs OOD
T=1 T=10 T=100 T=1000

PM=0 0.500 0.500 0.500 0.500
PM=0.001 0.500 0.500 0.500 0.500
PM=0.002 0.500 0.500 0.500 0.500
PM=0.004 0.500 0.500 0.500 0.500

Figure 13: the OOD score histograms of the in-distribution (blue) and OOD (red) samples when
T=1000 and PM=0.001

D APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method named Mahalanobis (Lee
et al., 2018b).

15

Under review as a conference paper at ICLR 2021

D.1 SUMMARY OF THE MAHALANOBIS METHOD

The method extracts the feature maps from multiple layers of a neural network and applies average
pooling per channel to reduce each feature map into a 1D feature vector. Then, Mahalanobis distance
is calculated between a feature vector and the corresponding mean vector. The distance values
from all of the feature vectors are linearly combined together to produce a single distance, i.e., the
OOD score. The OOD score of an OOD sample is expected to be large. To further improve the
performance, the method does input preprocessing with a given perturbation magnitude (PM), and
then OOD score of the preprocessed input is obtained. The weights to combine the Mahalanobis
distances from multiple layers could be determined on a validation set of OOD samples. In practice,
it is impossible to obtain such a validation set. In our evaluation, we simply take the average of the
distance values, which gives the OOD score.

Although the feature maps from multiple layers are utilized, the method still does dimensionality
reduction to those feature maps (e.g. averaging). Therefore, the method is breakable by our OOD
Attack algorithm.

D.2 EVALUATION ON CIFAR10 AND CIFAR100

The neural network model is a residual network named Resnet34 in the Mahalanobis paper, and by
changing the number of outputs, it can be used for CIFAR10 and CIFAR100. We used the pre-trained
models that are available online at https://github.com/pokaxpoka/deep Mahalanobis detector/. The
layers used for feature extraction, are exactly the same as those in the source code of the method.

In our algorithm, we have two different settings for f (x): (1) it can be the OOD score, and (2) it
can be the concatenation of the feature vectors, given the original (not preprocessed) input. We did
experiments with the two settings. In our algorithm, the parameters are ε = 10, α = ε/100, N =
1000 for all experiments. The initial OOD sample is a random noise image. For every sample in the
test set, the algorithm generated an OOD sample to match the corresponding output. The generated
OOD samples look like random noises. The OOD scores of these samples were calculated by the
Mahalanobis method.

The results on the two datasets are reported in Table 3 and Table 4. Fig. 14 shows the OOD score
histograms of the in-distribution and OOD samples, when the in-distribution dataset is CIFAR10,
PM=0.01, and f (x) = OOD score.

Table 3: AUROC scores of Mahalanobis on CIFAR10 vs OOD
f (x) = OOD score of x f (x) = feature concatenation

PM=0 0.500 0.467
PM=0.01 0.500 0.179

Table 4: AUROC scores of Mahalanobis on CIFAR100 vs OOD
f (x) = OOD score of x f (x) = feature concatenation

PM=0 0.500 0.604
PM=0.01 0.500 0.377

16

Under review as a conference paper at ICLR 2021

Figure 14: The OOD score histograms of the in-distribution (blue) and OOD (red) samples. The
in-distribution dataset is CIFAR10, PM=0.01, and f (x) = OOD score of x.

Fig. 15 shows the OOD score histograms of the in-distribution and OOD samples, when the in-
distribution dataset is CIFAR10, PM=0.01, and f (x) = feature concatenation. It can be seen that the
OOD samples have smaller distances, which is caused by input preprocessing.

Figure 15: The OOD score histograms of the in-distribution (blue) and OOD (red) samples. The
in-distribution dataset is CIFAR10, PM=0.01, and f (x) = feature concatenation.

E APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method named Outlier Exposure
(Hendrycks et al., 2019).

E.1 SUMMARY OF THE OUTLIER EXPOSURE METHOD

The method trains a neural network on not only the standard training set (i.e. in distribution) but
also an auxiliary dataset of outliers (i.e. OOD samples). In the paper, it states that the OOD score is
defined to be the cross-entropy between a uniform distribution and the softmax-output distribution.

17

Under review as a conference paper at ICLR 2021

In the actual implementation (i.e. source code of the method), the OOD score is defined to be
the average of the logits minus the logsumexp of the logits. In the evaluation, we used the actual
implementation in the source code.

E.2 EVALUATION ON SVHN, CIFAR10 AND CIFAR100

Wide residual networks are used in the Outlier Exposure paper. We downloaded the source code and
pre-trained weights from https://github.com/hendrycks/outlier-exposure. The models were trained
from scratch using Outlier Exposure, and they were named “oe scratch” by the authors.

In our algorithm, we set f (x) to be the logits (input to softmax) from each model. The parameters
are ε=10, α = ε/100, N=1e4 for all experiments. The initial OOD sample is a random noise image.
For every sample in the test set, the algorithm generated an OOD sample to match the logits output.
The generated OOD samples look like random noises. The OOD scores of these samples were
calculated by the Outlier Exposure method.

The results are reported in Table 5. The OOD score histograms of the in-distribution and OOD
samples are shown in Fig. 16, where the in-distribution dataset is CIFAR10.

Table 5: AUROC of Outlier Exposure on three datasets

SVHN vs OOD CIFAR10 vs OOD CIFAR100 vs OOD
0.500 0.500 0.500

Figure 16: The OOD score histograms of the in-distribution (blue) and OOD (red) samples. The
in-distribution dataset is CIFAR10.

F APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method named Deep Ensemble
(Lakshminarayanan et al., 2017).

F.1 SUMMARY OF THE DEEP ENSEMBLE METHOD

Deep Ensemble is a collection of neural network models working together for a classification task.
The output of a Deep Ensemble is a probability distribution across the classes, which is the average
of the probability/softmax outputs of individual models. In the experiments, the number of models
is 5 in a Deep Ensemble. To further improve performance, adversarial training is applied to the

18

Under review as a conference paper at ICLR 2021

models. The OOD score is defined to be the entropy of the probability distribution from the Deep
Ensemble. The entropy is expected to be large for an OOD sample.

F.2 EVALUATE ON CIFAR10

The authors of the Deep Ensemble method did not provide source code and trained models. There-
fore, we used pre-trained models from a recent work on adversarial robustness (Ding et al., 2020),
which presented a state-of-the-art adversarial training method. Six pre-trained models were down-
loaded from https://github.com/BorealisAI/mma training/tree/master/trained models. The names of
the models are cifar10-L2-MMA-1.0-sd0, cifar10-L2-MMA-2.0-sd0, cifar10-L2-OMMA-1.0-sd0,
cifar10-L2-OMMA-2.0-sd0, cifar10-Linf-MMA-12-sd0, cifar10-Linf-OMMA-12-sd0. The models
were trained on CIFAR10 to be robust against adversarial noises in a large range. Classification
accuracy of the ensemble on test set is 89.85%.

In our algorithm, we set f (x) to be the concatenation of the logits from each of the six models. The
parameters are ε=10, α= ε/100, N=1e4 for all experiments. The initial OOD sample is a random
noise image. For every sample in the test set, the algorithm generated an OOD sample to match
the logits output. The generated OOD samples look like random noises. The OOD scores of these
samples were calculated by the Deep Ensemble method.

The AUROC of the Deep Ensemble method is 0.500 on CIFAR10 vs OOD. The OOD score his-
tograms of the in-distribution and OOD samples are shown in Fig. 17.

Figure 17: The OOD score histograms of the in-distribution (blue) and OOD (red) samples.

G APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method that builds Confidence-
Calibrated Classifiers (Lee et al., 2018a).

G.1 SUMMARY OF THE OOD DETECTION METHOD

The method jointly trains a classification network and a generative neural network (i.e. GAN) that
generates OOD samples for training the classification network. Given an input, the OOD score is
defined to be the maximum of the softmax outputs from the classification network. The OOD score
is expected to be low for an OOD sample.

19

Under review as a conference paper at ICLR 2021

G.2 EVALUATION ON SVHN AND CIFAR10

The neural network model is VGG13, and the source code of the method is provided by the authors
at https://github.com/alinlab/Confident classifier. We downloaded the code and trained a VGG13
model with a GAN on SVHN and another VGG13 model with a GAN on CIFAR10 by using the
parameters in the source code. VGG13 has a feature module and a classifier module.

In our algorithm, we set f (x) to be the vector input to the classifier module of VGG13. The param-
eters are ε=10, α= ε/100, N=1e4 for all experiments. The initial OOD sample is a random noise
image. For every sample in the test set, the algorithm generated an OOD sample to match the vector
input to the classifier module. The generated OOD samples look like random noises. The OOD
scores of these samples were calculated by the OOD detection method.

The results are reported in Table 6 The OOD score histograms of the in-distribution and OOD
samples are shown in Fig. 18, where the in-distribution dataset is CIFAR10.

Table 6: AUROC of the method on two datasets
SVHN vs OOD CIFAR10 vs OOD

0.501 0.576

Figure 18: The OOD score histograms of the in-distribution (blue) and OOD (red) samples. The
in-distribution dataset is CIFAR10.

H APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method named Gram (Sastry &
Oore, 2019).

H.1 SUMMARY OF THE GRAM METHOD

The method extracts the feature map Fl from every layer of a network and then computes the p-th

order Gram matrix Gp
l = (F p

l F
p
l
T

)
1/p

. Gram matrices with different p values from different layers
are then used to compute the OOD score, which is named Total Deviation of the input sample. An
OOD sample is expected to have a high OOD score.

20

Under review as a conference paper at ICLR 2021

H.2 RESOLVING A NUMERICAL PROBLEM

The formula of the p-th order Gram matrix can be written as A = (B)
1/p. The Gram matrices

caused gradients to be inf or nan during back-propagation in the OOD attack algorithm. To resolve
this problem, we tried three tricks:

(a) use double precision (float64)

(b) rewrite A = exp(1
p log(B + eps)) where eps=1e-40

(c) use the equation in (b) to generate images during OOD attack and use the original equation
A = (B)

1/p to compute OOD scores.

The above tricks work for p in the range of 1 to 5. For larger p, we still get numerical problems (inf
or nan). As shown in Fig. 2 of the Gram paper, the method has already achieved better performance
compared to the Mahalanobis method when the max value of p is 5. Thus, we set the max value of
p to 5 in our experiments.

H.3 EVALUATION ON CIFAR10 AND CIFAR100

The source code and pre-trained Resnet models are provided by the authors at
https://github.com/VectorInstitute/gram-ood-detection

Due to the unique process of the method, it is very difficult to do parallel computing with mini-
batches, and we have to set batch size =1. The computing process is very time-consuming, and
therefore we selected the first 500 samples in CIFAR10 test set and the first 500 samples in CI-
FAR100 test set in our experiments.

In our algorithm, we set f (x) to be the OOD score of x, and the parameters are ε=10, α= ε/100,
N=100. The initial OOD sample is a random noise image. For every in-distribution sample, the
algorithm generated an OOD sample to match the OOD score. The generated OOD samples look
like random noises. The OOD scores of these samples were calculated by the Gram method.

The results are reported in Table 7. The OOD score histograms of the in-distribution and OOD
samples are shown in Fig. 19, where the in-distribution dataset is CIFAR10. The results show that
the OOD score from the Gram method can be arbitrarily manipulated by our algorithm.

Table 7: AUROC of Gram on two datasets.
CIFAR10 vs OOD CIFAR100 vs OOD

0.500 0.500

21

Under review as a conference paper at ICLR 2021

Figure 19: The OOD score histograms of the in-distribution (blue) and OOD (red) samples. The
in-distribution dataset is CIFAR10.

I APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method based on Glow (Serrà
et al., 2019).

I.1 SUMMARY OF THE OOD DETECTION METHOD

The method combines Glow negative log-likelihood (NLL) and input-complexity. PNG compression
is used to compress the input image. The input-complexity, L, is measured by bits per dimension,
where the “bits” refers to the number of bits of the compressed image, and the dimension is the total
number of pixels per image. The OOD score is NLL – L.

I.2 EVALUATE ON CELEBA

The source code of the Glow model is downloaded from https://github.com/rosinality/glow-pytorch,
and we trained it from scratch on CelbaA dataset, in which the size of each face image is 64643.
After training, the model was able to generate realistic face images. For method evaluation, we
randomly selected 160 samples in the dataset because the computation cost is very high.

In our algorithm, we set f (x) to be the OOD score of x, and the parameters are ε=10, α= ε/100,
N=1e4. The initial OOD sample is a color spiral image. For every in-distribution sample, the
algorithm generated an OOD sample to match the OOD score. The generated OOD samples look
like color spirals, i.e., not face images. The OOD scores of these samples were calculated by the
OOD detection method.

AUROC of the method is 0.500 on CelbaA vs OOD. The OOD score histograms of the in-
distribution and OOD samples are shown in Fig. 20, The result indicates that NLL combined with
input complexity can still be arbitrarily manipulated.

22

Under review as a conference paper at ICLR 2021

Figure 20: The OOD score histograms of the in-distribution (blue) and OOD (red) samples.

J APPENDIX

We applied our OOD Attack algorithm to test the OOD detection method using an energy-based
model named JEM (Grathwohl et al., 2020).

J.1 SUMMARY OF THE OOD DETECTION METHOD USING JEM

In the JEM paper, it was shown that a standard classifier can be trained to be an energy-based model
(EBM). Using the EBM, three types of OOD scores can be obtained for an input sample, which are:
(1) Log Likelihood logp(x), (2) the maximum of softmax classification output, i.e. maxyp (y|x),
and (3) −||∂logp(x)

∂x ||2. An OOD sample is expected to have a low OOD score.

J.2 EVALUATION ON CIFAR10

A wide residual network pretrained on CIFAR10 is available at https://github.com/wgrathwohl/JEM.

In our algorithm, we set f (x) to be the logits (i.e. input to softmax for classification), and the
parameters are ε=10, α= ε/100, N=1e3. The initial OOD sample is a color spiral image. For every
in-distribution sample, the algorithm generated an OOD sample to match the logits output. The
generated OOD samples look very weird, not in any of the 10 classes of CIFAR10. The OOD scores
of these samples were calculated by the OOD detection method.

We note that we tried to use random noises as initial OOD samples, but many generated images
look like images in CIFAR10 dataset, and therefore, we used a color spiral image as the initial OOD
sample.

The results are reported in Table 8. The OOD score histograms of the in-distribution and OOD
samples are shown in Fig. 21, Fig. 22, and Fig. 23, We note that when using −||∂logp(x)

∂x ||2 as the
OOD score, the AUROC is 0.203. One may think if we flip the sign of the OOD score, then AUROC
will increase to 0.797. If we do so, then AUROC scores in the last row of Table 3 in the JEM paper
will be close to 0 for the OOD detection experiments done by the authors.

23

Under review as a conference paper at ICLR 2021

Table 8: AUROC of the OOD detection method on CIFAR10 vs OOD

OOD score logp(x) maxyp (y|x) −||∂logp(x)
∂x ||2

AUROC 0.559 0.513 0.203

Figure 21: The OOD score (logp(x)) histograms of the in-distribution (blue) and OOD (red) sam-
ples.

Figure 22: The OOD score (maxyp (y|x)) histograms of the in-distribution (blue) and OOD (red)
samples.

24

Under review as a conference paper at ICLR 2021

Figure 23: The OOD score (−||∂logp(x)
∂x ||2) histograms of the in-distribution (blue) and OOD (red)

samples.

Fig. 24 shows an example of the loss curve over 1000 iteration in the OOD attack algorithm.

Figure 24: An example of the loss curve from the OOD Attack algorithm.

Fig. 25 shows some of the generated images, which look like the images of Frankenstein’s monsters:
randomly put some parts of objects together, twist/deform them, and then pour some paint on them.
It may be difficult for neural networks to learn what is an object (e.g. airplane) just from images and
class labels.

25

Under review as a conference paper at ICLR 2021

Figure 25: Examples of the generated images.

Energy-based models (EBMs), such as JEM, can generate OOD samples during training, which may
explain why the OOD attack failed when the initial OOD sample was random noise. If we take a
closer look at the sampling procedure (e.g. Langevin dynamics) and the objective function, it is
easy to find out EBM training algorithm is trying to pull down the energy scores of positive (in-
distribution) samples and pull up the energy scores of negative (OOD) samples (Du & Mordatch,
2019), which is similar to the basic idea of adversarial training. From this perspective, OOD de-
tection using EBMs could be a promising direction if the computation cost is acceptable, and the
challenge is how to train a neural network to learn what is an object?

26

	Introduction
	Methodology
	OOD attack on DNN Encoder
	Dimensionality Reduction and OOD Attack
	Problem of Glow likelihood-based OOD Detection
	Reconstruction-based OOD Detection

	Experiments
	Evaluation on a Subset of ImageNet
	Evaluation on CelebA Dataset

	Discussion
	Appendix
	Appendix
	Evaluation on OCT dataset
	Evaluation on COVID-19 CT Dataset
	Evaluation on GTSRB Traffic Sign Dataset

	Appendix
	Summary of the ODIN method
	Evaluation on CIFAR10

	Appendix
	Summary of the Mahalanobis method
	Evaluation on CIFAR10 and CIFAR100

	Appendix
	Summary of the Outlier Exposure method
	Evaluation on SVHN, CIFAR10 and CIFAR100

	Appendix
	Summary of the Deep Ensemble method
	Evaluate on CIFAR10

	Appendix
	Summary of the OOD detection method
	Evaluation on SVHN and CIFAR10

	Appendix
	Summary of the Gram method
	Resolving a numerical problem
	Evaluation on CIFAR10 and CIFAR100

	Appendix
	Summary of the OOD detection method
	Evaluate on CelebA

	Appendix
	Summary of the OOD detection method using JEM
	Evaluation on CIFAR10

