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ABSTRACT

How can we generate samples from a conditional distribution that we never fully
observe? This question arises across a broad range of applications in both modern
machine learning and classical statistics, including image post-processing in com-
puter vision, approximate posterior sampling in simulation-based inference, and
conditional distribution modeling in complex data settings. In such settings, com-
pared with unconditional sampling, additional feature information can be lever-
aged to enable more adaptive and efficient sampling. Building on this, we in-
troduce Conditional Generator using MMD (CGMMD), a novel framework for
conditional sampling. Unlike many contemporary approaches, our method frames
the training objective as a simple, adversary-free direct minimization problem. A
key feature of CGMMD is its ability to produce conditional samples in a single
forward pass of the generator, enabling practical one-shot sampling with low test-
time complexity. We establish rigorous theoretical bounds on the loss incurred
when sampling from the CGMMD sampler, and prove convergence of the esti-
mated distribution to the true conditional distribution. In the process, we also
develop a uniform concentration result for nearest-neighbor based functionals,
which may be of independent interest. Finally, we show that CGMMD performs
competitively on synthetic tasks involving complex conditional densities, as well
as on practical applications such as image denoising and image super-resolution.

1 INTRODUCTION

A fundamental problem in statistics and machine learning is to model the relationship between a re-
sponse Y € ) and a predictor X € X. Classical regression methods [Hastie et al., 2009; Koenker
& Bassett Jr, 1978], typically summarize this relationship through summary statistics, which are of-
ten insufficient for many downstream tasks that require the knowledge of the entire conditional law.
Access to the full conditional distribution enables quantification of uncertainty associated with pre-
diction [Castillo & Randrianarisoa, 2022], uncovers latent structure [Mimno et al., 2015], supports
dimension reduction [Reich et al., 2011], and graphical modeling [Chen et al., 2024]. In modern sci-
entific applications, it provides a foundation for simulation-based inference [Cranmer et al., 2020]
across various domains, including computer vision [Gupta et al., 2024], neuroscience [von Krause
et al., 2022], and the physical sciences [Hou et al., 2024; Mastandrea et al., 2024].

Classical approaches such as distributional regression and conditional density estimation [Rosen-
blatt, 1969; Fan et al., 1996; Hothorn et al., 2014] model the full conditional distribution directly
but often rely on strong assumptions and offer limited flexibility. In contrast, recent advances in
generative models like Generative Adversarial Networks (GANs) [Zhou et al., 2023; Mirza & Osin-
dero, 2014; Odena et al., 2017], Variational Autoencoders (VAEs) [Harvey et al., 2021; Doersch,
2016; Mishra et al., 2018], and diffusion models [Rombach et al., 2022; Saharia et al., 2022; Zhan
et al., 2025] provide more flexible, assumption lean alternatives for conditional distribution learning
across applications in vision, language, and scientific simulation. A more detailed discussion of
related work, background, and connections to simulation-based inference is provided in Section A.

GAN:Ss, introduced by Goodfellow et al. [2014] as a two-player minimax game optimizing the
Jensen—Shannon divergence [Fuglede & Topsoe, 2004], are a widely adopted class of generative
models, known for their flexibility and empirical success. However, training remains delicate and
unstable, even in the unconditional setting [Arjovsky & Bottou, 2017; Salimans et al., 2016]. As Ar-
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Figure 1: Schematic overview of CGMMD: Given training data (Yi, X1),..., (Y, X,), the samples
Zn = {Xi,...,X,} and auxiliary noise 1, ..., N, are passed through the generator g to produce sam-
ples g(n1,X1),...,9(Mn, Xn). These outputs are compared with the observed Y7, ..., Y, values using a
nearest-neighbor (G (.27, )) based estimate of the ECMMD discrepancy (see (1.2)) between true and generated
conditional distributions. Edges are color-coded to highlight the dependence of each section on the correspond-
ing inputs. After training, sampling is immediate: for any new input X, independently generate new n ~ P, ,
the trained model g then produces g(n, X') as the conditional output. Each component is described in greater
details in Section 2 and Section 3.

jovsky & Bottou [2017] point out, the generator and target distributions often lie on low-dimensional
manifolds that do not intersect, rendering divergences like Jensen—Shannon or KL constant or infi-
nite and thus providing no useful gradient. To address this, alternative objectives based on Integral
Probability Metrics (IPMs) [Miiller, 1997], such as the Wasserstein distance [Villani et al., 2008]
and Maximum Mean Discrepancy (MMD) [Gretton et al., 2012], have been proposed for more sta-
ble training in unconditional sampling using GANS.

Building on the success of MMD-GANS [Li et al., 2015; Dziugaite et al., 2015; Binkowski et al.,
2018; Huang et al., 2022b], we propose an MMD-based loss using nearest neighbors to quantify dis-
crepancies between conditional distributions. While MMD has been used in conditional generation,
to the best of our knowledge we are the first to provide sharp theoretical guarantees for MMD based
conditional sampling, offering a principled foundation for training conditional generators. Initially
developed for two-sample testing by Gretton et al. [2012], MMD has since seen broad adoption
across the statistical literature [Gretton et al., 2007; Fukumizu et al., 2007; Chwialkowski et al.,
2016; Sutherland et al., 2016]. It quantifies the discrepancy between two probability distributions as
the maximum difference in expectations over functions f drawn from the unit ball of a Reproducing
Kernel Hilbert Space (RKHS) defined on Y [Aronszajn, 1950]. Formally, let )’ be a separable met-
ric space equipped with By, the sigma-algebra generated by the open sets of ). Let P()) be the
collection of all probability measures on (), By). Then for any Py, Pz € P(Y),

MMD(Fi, Py, Pz) := supsc s E[f(Y)] — E[f(Z)], (1.1)
where Fic is the unit ball of a reproducing kernel Hilbert space (RKHS) IC on ).

1.1 CONDITIONAL GENERATOR USING MAXIMUM MEAN DISCREPANCY (CGMMD)

To extend MMD to the conditional setting, we employ the expected conditional MMD (ECMMD)
from Chatterjee et al. [2024] (also see Huang et al. [2022b]), which naturally generalizes the MMD
distance to a discrepancy between conditional distributions. Formally, for X ~ Px, conditional
distributions Py x and Pz x supported on Y, the squared ECMMD can be defined as,

ECMMD?(Fk, Py|x, Pz|x) = Ex~px [MMD?(Fk, Py|x, Pz x)]. (1.2)

We discuss simplified formulations of this measure later in Section 2.1. By Chatter-
jee et al. [2024, Proposition 2.3], ECMMD is indeed a strict scoring rule, meaning that
ECMMDQ(}";C,PY‘X,PZ‘X) = 0if and only if Py |x = Pz x almost surely. This property
establishes ECMMD as a principled and reliable tool for comparing conditional distributions.

Instead of estimating the target conditional distribution Py-|x directly, we follow the generative ap-
proach from Zhou et al. [2023] and Song et al. [2025]. By the noise outsourcing lemma (see Lemma
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2.1), the problem of nonparametric conditional density estimation can be reformulated as a general-
ized nonparametric regression problem. In particular, for a given predictor value X = x, our goal
is to learn a conditional generator g(, ), where 1 is drawn from a simple reference distribution
(e.g., Gaussian or uniform). The generator is trained so that g(, ) approximates the conditional
distribution of Y | X = @ for all . Discrepancy between the true conditional distribution Py-|x
and the model distribution Py, x)x is measured using the squared ECMMD. Once training is
complete, conditional sampling becomes a one-shot procedure: draw 77 from the reference distribu-
tion and sample g(n, «). In this way, the generator provides an explicit and efficient representation
of the conditional distribution of Y | X. We refer to g(n, ) as the Conditional Generator using
Maximum Mean Discrepancy, or CGMMD for short. We provide the schematic overview of the
method in Figure 1. Now, we turn to the main contributions of our proposed method.

1.2 MAIN CONTRIBUTIONS
Our main contributions are summarized below.

* Direct Minimization. Similar to MMD-GANSs in the unconditional setting, CGMMD avoids
adversarial min-max optimization and instead enables direct minimization of a well-defined loss,
offering a more straightforward and tractable alternative to GAN-based training [Zhou et al., 2023;
Song et al., 2025; Ramesh et al., 2022]. This design helps avoid common issues in conditional
GANsS, such as mode collapse and unstable min—max dynamics.

* One-shot Sampling. While diffusion models have demonstrated remarkable success in generat-
ing high-quality and diverse samples, their iterative denoising procedure [Ho et al., 2020] makes
sampling computationally expensive and time-consuming. In contrast, CGMMD enables efficient
one-shot sampling, i.e., conditional samples are obtained in a single forward pass of the generator.
Specifically, to sample from Y | X = x, one simply draws 1 from a simple reference distribution
(e.g., Gaussian or uniform) and evaluates g(n, ), where g is a solution of (3.2).

* Theoretical Guarantees. We provide rigorous theoretical guarantees for CGMMD. Theorem 4.1
gives a non-asymptotic finite-sample bound on the error of the conditional sampler g(n, ), and
Corollary 4.1 establishes convergence to the true conditional distribution as the sample size in-
creases. Together, these results provide strong theoretical justification for CGMMD.

To the best of our knowledge, this is the first application of tools from uniform concentration of
nonlinear functionals, nearest neighbor methods, and generalization theory to conditional genera-
tive modeling. In the process, we also establish a general uniform concentration result for a broad
class of nearest-neighbor-based functionals (Appendix G), which may be of independent interest.

* Numerical Experiments. Finally, we provide experiments on both synthetic and real data (mainly
in image post-processing tasks) to evaluate the performance of CGMMD and compare it with
existing approaches in the literature. Overall, our proposed approach performs reliably across
different settings and often matches or exceeds the alternative approaches in more challenging
cases.

2 TECHNICAL BACKGROUND

In this section, we introduce the necessary concepts and previous works required to understand our
proposed framework, CGMMD. To that end, we begin with the necessary formalism.

Let X', Y be Polish spaces, that is, complete separable metric spaces equipped with the correspond-
ing Borel-sigma algebras By and By respectively. Let P(X) and P()) be the collection of all
probability measures defined on (X, Bx) and (), By ) respectively. Recalling the RKHS K defined
on ) from (1.1), the Riesz representation theorem [Reed & Simon, 1980, Therorem II.4] guarantees
the existence of a positive definite kernel K : V) x J — R such that for every y € ), the feature

map ¢,, € K satisfies K(y, -) = ¢y, (+) and K(y1,y2) = (dy, , Do) ic-

The definition of feature maps can now be extended to embed any distribution P € P()) into
K. In particular, for P € P(Y) we can define the kernel mean embedding up as (f, up)x =
Ey~p[f(Y)]. Moreover, by the canonical form of the feature maps, it follows that up(t) :=
Ey.p[K(Y,t)] forallt € Y. Henceforth, we make the following assumptions on the kernel
K.

Assumption 2.1. The kernel K : ) x ) — R is positive definite and satisfies the following:

1. The kernel K is bounded, that is ||K||o, < K for some K > 0 and Lipschitz continuous.



Under review as a conference paper at ICLR 2026

2. The kernel mean embedding p : P(Y) — K is a one-to-one (injective) function. This is
also known as the characteristic kernel property [Sriperumbudur et al., 2011].

Assumption 2.1 ensures that the mean embedding pp € K (see Lemma 3 in Gretton et al. [2012]
and Lemma 2.1 in Park & Muandet [2020]), and that MMD defines a metric on P())). While
these properties can be guaranteed under weaker conditions on the kernel K, we adopt the above
assumption for technical convenience. With the above notations the MMD (recall (1.1)) can be
equivalently expressed as MMD?(Fi, Py, Pz) = ||up, — pip, |3 (see Lemma 4 from Gretton
et al. [2012]) where || - || is the norm induced by the inner product (-, -)x. In the following, we
express the ECMMD in an equivalent form and leverage it to obtain a consistent empirical estimator.

2.1 ECMMD: REPRESENTATION VIA KERNEL EMBEDDINGS

Recalling the definition of ECMMD from (1.2), we note that it admits an equivalent formulation. In
particular, for distributions Py x and Pz x (which exists by Klenke [2008, Theorem 8.37]), define
the conditional mean embeddings jip, , (t) := E[K(Y,?) | X]and pp,  (t) == EK(Z,t) | X]
for all ¢ € Y. Under Assumption 2.1, the conditional mean embeddings are indeed well defined
by Park & Muandet [2020, Lemma 3.2]. Consequently, [|upy »_, — kP, «—. ||% is the squared

MMD metric between the conditional distributions for a particular value of X = x. Averaging this
quantity over the marginal distribution of X yields the squared ECMMD distance:
ECMMD2(]:’C7 PY|X7 PZ|X) = IEXNPX I:H/’LPY\X — KPPz x HIQC] 2.1)

However, to use ECMMD as a loss function for estimating the conditional sampler, we require a
consistent estimator of the expression in (2.1). To that end, the well-known kernel trick enables a
more tractable reformulation of ECMMD, making it amenable to estimation from observed data. By
[Chatterjee et al., 2024, Proposition 2.4], the squared ECMMD admits the tractable form

ECMMD?(F, Py|x, Pzix) = E[K(Y,Y') + K(Z,2Z') = K(Y, Z') - K(Z,Y")], (2)

where (Y,Y’,Z,Z', X) is generated by first sampling X ~ Px, then drawing (Y, Z) and
(Y', Z') independently from Py |x X Pz x.

2.2 ECMMD: CONSISTENT ESTIMATION USING NEAREST NEIGHBORS

Towards estimating the ECMMD, we leverage the equivalent expression from (2.2). By the tower
property of conditional expectations, (2.2) can be further expanded as,

ECMMDQ(FK,Py|X,PZ|X) =E []E[K(Y,Y’) +K(Z,Z"Y-K(Y,Z)-K(Z,Y') | XH .

To estimate ECMMD, we observe that it involves averaging a conditional expectation over the dis-
tribution Px . Given observed samples {(Y;, Z;, X;) : 1 < i < n} drawn from the joint distribution
Pyzx = Py|x X Pz|x X Px, we proceed by first estimating the inner conditional expectation
given X = X, and then averaging these estimates over the observed values X, ..., X,,. To es-
timate the inner conditional expectation given X = X, one can, in principle, average the inner
function over sample indices whose corresponding predictors are ‘close’ to X;. A natural way to
quantify such proximity is through nearest-neighbor graphs. Formally we construct the estimated
ECMMD as follows.

Fix k = k,, > 1 and let G(Z,,) be the directed k—nearest neighbor graph on Z;, = {X1,..., X, }.
Moreover let Ng(4,)(i) := {j € [n] : X; = X isanedgein G(Z,)} foralli € [n]. Now the
k—NN based estimator of ECMMD can be defined as,

— 2 n
ECMMD" (Fi, Py x, Pzix) = 2 S0y 1 e noo, 0 H (Wi, W) 2.3)

where W; = (Y;, Z;) forall i € [n] and H(W;, W;) = K(Y;,Y;) — K(Y;, Z;) — K(Z,,Y;) +
K(Z;,Z;) forall 1 < i,j < n. Chatterjee et al. [2024, Theorem 3.2] shows that under mild
conditions, this estimator is consistent for the oracle ECMMD. We exploit this nearest-neighbor
construction to define the CGMMD objective in Section 3.

2.3 GENERATIVE REPRESENTATION OF CONDITIONAL DISTRIBUTION

As outlined in Section 1.1, conditional density estimation can be reformulated as a generalized
nonparametric regression problem. Suppose (Y, X) € X x ) follows some joint distribution
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Algorithm 1: CGMMD Training

Input: Training dataset {(Y;, X;)}i=,. Conditional generator g = gy with initial parameters 6.
Auxillary Kernel function H (see (2.3)). Noise distribution P,. Learning rate ¢, epochs E, batch
size B and number of nearest neighbors kp.

Output: Trained generator parameters 6.

Sample {n; : 1 <i < n} ~ Pp,.

for epoch = 1 to E do

for each I C [n] of size B do
21+ {Xi}tien;
G(Z71) < kp-Nearest Neighbor graph on 27;
Ne(arp) (i) < neighbors of X; in G(Z271),g: < go (i, Xi), Wig < (Yi,g:) Vi€ I;

1 .
Lbatch Bkg Zie[ ZjENG(%‘I)(i) H (Wi,ga Wj,g),
0« 6— ave)ﬁbatch.

return trained parameters 6« 0.

Py x, and we observe n independent samples {(Y7, X1),. .., (Y,, X,)} from Py x. Our goal is
to generate samples from the unknown conditional distribution Py x . The noise outsourcing lemma
(see Kallenberg, Theorem 5.10 and Zhou et al. [2023, Lemma 2.1]) formally connects conditional
distribution estimation with conditional sample generation. For completeness, we state it below.

Lemma 2.1 (Noise Outsourcing Lemma). Suppose (Y, X) ~ Py x. Then, for any m > 1, there
exist a random vector n ~ P,, = N (0,,, I,;,) and a Borel-measurable function g : R™ x X — Y
such that 77 is generated independent of X and (Y, X) = (g(n, X), X) almost surely.

Moreover, by Zhou et al. [2023, Lemma 2.2], (Y, X) 4 (g(n,X), X) if and only if g(n, x) ~
Py x_5 forevery x € X. This identifies g as a conditional generator. Consequently, to draw from
Py x, we sample 17 ~ N (0,,,, I;;,) and output g(n, X).

This perspective places conditional density estimation firmly within the realm of generative model-
ing. The task reduces to: given n independent samples from Py x, learn the conditional generator
g. Zhou et al. [2023]; Ramesh et al. [2022]; Song et al. [2025]; Liu et al. [2021] leveraged this idea
to develop a GAN-based (respectively Wasserstein-GAN) framework for conditional sampling. In
contrast, our approach follows a similar path but replaces the potentially unstable min—max opti-
mization of GANs with a principled minimization objective based on ECMMD discrepancy. The
precise formulation is given in the following section.

3 ECMMD BASED OBJECTIVE FOR CGMMD

Building on the generative representation of conditional distributions and the ECMMD discrepancy
introduced earlier, our goal is to learn a conditional generator g by minimizing the ECMMD distance
between the true conditional distribution Y | X and the generated conditional distribution g(n, X) |
X. We restrict our attention to a parameterized function class G, as solving this unconstrained
minimization problem over all measurable functions is intractable. To that end, we begin by defining
the population objective

L(g) = ECMMD? [}-’0 Py x, Pg(nﬁX)lX] =Ex~px [”'“PY\X T By, x) 1 x HQIC]

The target generator is then given by g* € arg mingecg £(g). Since the oracle objective £(-) is not
directly available, we employ the estimation strategy outlined in Section 2.2 to construct a consistent
empirical approximation of £(g). Given n independent samples (Y1, X1),..., (Y, X,) ~ Pyx
and independent draws of noise variables 1, ..., n,~PF;,, we define the empirical objective,

~ — 2 n
E(g) = ECMMD (./—")C, PY|Xa PQ("LXHX) = % Zi:l ZjENG(%n)(i) H (Wi,ga Wj,g) (31)

where H is defined from (2.3) and W, 4 := (Y, g (n;, X;)) for all 1 <4 < n. Our estimate of the
conditional generator is then defined as

§ € argmingeg £(g). (3.2)

With the framework now in place, we emphasize that CGMMD offers substantial flexibil-
ity to practitioners. In our experiments, we restrict G to deep neural networks, i.e., G =



Under review as a conference paper at ICLR 2026

{go :R™ x X = Y |60 cRS} where S is the total number of parameters of the neural network

go. Here, (3.2) reduces to solving 6 arg mingcps ﬁ(gg). A corresponding pseudo-code is pro-
vided in Algorithm 1. In practice, the user may tailor the method by selecting the kernel K, the
function class G, number of neighbors k,,, and the manner in which the auxiliary noise variable 7 is
incorporated into g(-, ). We discuss some of these potential choices as well as refinements to the
CGMMD objective when Px has discrete support in Appendix D.

4 ANALYSIS AND CONVERGENCE GUARANTEES

In this section, we analyze the error of estimating the true conditional sampler g (see Lemma 2.1).
This section is further divided into two parts. In Section 4.1 we begin by deriving a finite-sample
bound on the error arising from replacing the true conditional sampler g with its empirical estimate
g. As a further contribution in Section 4.2, we establish the convergence of the conditional distri-
bution induced by the empirical sampler to the true conditional distribution. For clarity and ease of
exposition, we present simplified versions of the assumptions and main results here, while deferring
the complete statements and proofs to Appendix E.

4.1 NON-ASYMPTOTIC ERROR BOUNDS

For the estimated empirical sampler g defined in (3.2) the estimation error can be defined as (recall
Definition 1.2),

L(g) = ECMMD? [}-v Pé(n,X)lXﬂPQ(mX)\X} =E [H“Pg(nxnx ~ HPyn,x)1x H;2c | Q} , (4D

where the expectations are taken over the randomness of 77 and X keeping the empirical sampler g
fixed. In other words, the estimation error evaluates the squared ECMMD between the conditional
distributions of g(n, X ) and g(n, X) given X. In the following, we will provide non-asymptotic
bounds on the estimation error £(g). To that end, for the rest of the article, we assume ) C R? for
some p > 1 and we begin by rigorously defining the class of functions G.

Details of G: Let G = Gy v.5.5 be the set of ReLU neural networks g : R™ x R? — RP with
depth H, width W, size S and ||g||,, < B. In particular, # denotes the number of hidden layers
and (wo, wa, ..., ws) denotes the width of each layer, where wg = d + m and wy = p denotes
the input and output dimension, respectively. We take W = max {wg, w1, . .., wy . Finally, size

S = Zil w; (w;—1 + 1) refers to the total number of parameters of the network. To establish the
error bounds, we make the following assumption about the parameters of G.

Assumption 4.1. The network parameters of G satisfies B > 1 and H, W — oo such that,

HWL —oo o and B*HS logSlogn n—s 0.

(log n) 5" n

The imposed conditions require that the neural network’s size grows with the sample size, specif-
ically that the product of its depth and width increases with n. These assumptions are flexible
enough to accommodate a wide range of architectures, but a key constraint is that the network size
must remain smaller than the sample size. This arises from the use of empirical process theory [Van
Der Vaart & Wellner, 1996, Bartlett et al., 2019] to control the stochastic error in the estimated
generator. Similar conditions appear in recent work on conditional sampling [Zhou et al., 2023;
Liu et al., 2021; Song et al., 2025] and in convergence analyses for deep nonparametric regres-
sion [Schmidt-Hieber, 2020; Kohler & Langer, 2019; Nakada & Imaizumi, 2020]. We also make
the following technical assumptions.

Assumption 4.2. The following conditions on Py x, the kernel K, the true conditional sampler g
and the class G holds.
1. Px is supported on X C R for some d > 0 and || X; — X||, has a continuous distribu-
tion for X1, X5 ~ Px.
2. Moreover X ~ Px is sub-gaussian, thatis ', P (|| X ||, > t) < exp (—t?) forall t > 0.

"We use the notation a <S¢ b to imply a < Cyb for some constant Cy > 0 depending on the parameter 6. In
particular a < b implies a < Cb for some universal constant C' > 0. Henceforth take 8 = (d, m, p, K).
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3. The target conditional sampler g : R™xR? — R? is uniformly continuous with ||g|| < 1.

4. For any g € G consider hg(x) = E[K(Y,-) — K(g(n,X),-)|X = z] and assume that
[(hg(x), hg(x1) — hg(x2))| S ||X1 — 2||2, for all x, &1, 22 € X where the constant is
independent of g.

The first two assumptions are standard in the nearest neighbor literature and have been studied in
the context of conditional independence testing using nearest neighbor-based methods [Huang et al.,
2022a; Deb et al., 2020; Azadkia & Chatterjee, 2021; Borgonovo et al., 2025; Dasgupta & Kpotufe,
2014]. The first, concerning uniqueness in nearest neighbor selection, can be relaxed via tie-breaking
schemes (see Section 7.3 in [Deb et al., 2020]), though we do not pursue this direction. The second,
on the tail behavior of the predictor X, can be weakened to include heavier-tailed distributions,
such as those satisfying sub-Weibull conditions [Vladimirova et al., 2020] (also see (E.1)). The third
assumption is mainly for technical convenience; similar conditions appear in prior work on neural
network-based conditional sampling [Zhou et al., 2023; Song et al., 2025; Liu et al., 2021]. Its
uniform continuity condition can also be relaxed to continuity (see Appendix E).

Remark 4.1. Assumption 4.2.4 is arguably the most critical in our analysis. It quantifies the sen-
sitivity of the conditional mean embeddings to changes in the predictor X, and is essential for
establishing concentration of the nearest-neighbor-based ECMMD estimator (see (2.3)) around its
population counterpart. Similar assumptions have been used in prior work on nearest neighbor meth-
ods [Huang et al., 2022a; Deb et al., 2020; Azadkia & Chatterjee, 2021; Dasgupta & Kpotufe, 2014].
As noted in Azadkia & Chatterjee [2021, Section 4], omitting such regularity conditions can lead
to arbitrarily slow convergence rates. While the locally lipschitz-type condition can be relaxed, for
example to Holder continuity upto polynomial factors (see (E.2)) it remains a key assumption for
our theoretical guarantees. We further elaborate on this assumption in Appendix F.

Under the above assumptions, we are now ready to present our main theorem on the error incurred
by using the empirical sampler g.

Theorem 4.1 (Simpler version of Theorem E.1). Adopt Assumption 2.1, Assumption 4.1 and As-
sumption 4.2. Moreover take wg(r) := sup{|g(x) — g(y)|l,: z,y € R?, ||z — y|2 < r} to be
the optimal modulus of continuity of the true conditional sampler g. Let k,, = o(n") for some
0 < 7 < 1. Then for any § > 0, with probability at least 1 — 4,

2
L (g) 59 pOIy }(3%(77/) + \/B HS logSlogn +wg @ N M
n (HW) d+m

n 4 n

The first two terms capture the stochastic error from the uniform concentration of the empirical loss
around the population ECMMD objective. The third term reflects approximation error from esti-
mating the true conditional sampler g using neural networks in G. While we defer the proof of
this result and its generalization to Appendix B.1 and Appendix E, respectively, we highlight the
main novelty of our analysis here. Specifically, it integrates tools from recent advances in uniform
concentration for non-linear functionals [Maurer & Pontil, 2019; Ni & Huo, 2024], nearest neigh-
bor methods [Azadkia & Chatterjee, 2021; Deb et al., 2020], and generalization theory, including
neural network approximation of smooth functions [Shen et al., 2020; Zhang et al., 2022]. To our
knowledge, this is the first application of these techniques to conditional generative modeling with
nonparametric nearest neighbor objectives. Additionally, we establish a uniform concentration result
for a broad class of nearest-neighbor-based functionals (Appendix G), which may be of independent
Interest.

4.2 CONVERGENCE OF THE EMPIRICAL SAMPLER

As outlined earlier, in this section, we leverage the bound established in Theorem 4.1 to demonstrate
the convergence of the conditional distribution identified by the estimated sampler g(n, X) to the
true conditional distribution.

While Theorem 4.1 provides a finite-sample quantitative guarantee on the loss incurred by using
the estimated sampler in place of the true sampler g, we now show that the conditional distribution
induced by g converges to the true conditional distribution. Furthermore, we strengthen this result
by establishing convergence in terms of characteristic functions as well. By a classical result by
Bochner (see Theorem H.1) every continuous positive definite function ¢ is associated with a finite
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non-negative Borel measure A,,. With this notation, we have the following convergence result with
proof given in Appendix B.2.

Corollary 4.1. Suppose the assumptions from Theorem 4.1 hold. Then,
E [MMD? [, Py(n,x) x> Patn.x)1x]] — 0. 4.2)

Moreover, if the kernel K(x, y) = v (x —1y) for some bounded, lipschitz continuous positive definite
function 1. Then,

E U (ba(n.x01x () = bg(n.3)x (£)* dAy ()| — 0 (4.3)

where ¢g(n,x)1x and ¢g(n x) x are the characteristic functions of the conditional distributions
Py(n.x)x and Py(y, x| x respectively.

The above results demonstrate the efficacy of CGMMD. In particular, they show that the condi-
tional distribution learned by the conditional sampler in CGMMD closely approximates the true
conditional distribution.

5 NUMERICAL EXPERIMENTS

We begin our empirical study with toy examples of bivariate conditional sample generation, then
move to practical applications such as image denoising and super-resolution on MNIST [Yann,
2010], CelebHQ [Karras et al., 2018], and STL10 [Coates et al., 2011]. We compare CGMMD
with the methods in Zhou et al. [2023] and Song et al. [2025] on synthetic data. Moreover, to assess
test-time complexity, we compare CGMMD with a diffusion model using classifier-free guidance
[Ho & Salimans, 2022]. Due to space constraints, only selected results are shown here; full details
appear in Appendix C.

5.1 SYNTHETIC EXPERIMENT: CONDITIONAL BIVARIATE SAMPLING

In this section, we compare our proposed
CGMMD with two baseline approaches:
the GCDS [Zhou et al., 2023], a vanilla
GAN framework, and a Wasserstein-based
modification, WGAN (trained with pure
Wasserstein loss) [Song et al., 2025].

We consider a synthetic setup with X ~
N(0,1), U ~ Unif[0,27], and €1, &2 s
N(0,0%). The response variables are
YT = 2X + Usin(2U) + &1,Ys =
2X + Ucos(2U) + &3, and our goal
is to generate conditional samples from
(Y1,Y2) | X at varying noise levels
(0). All three methods use the same two-
hidden-layer feed-forward ReLLU generator
with noise 7 concatenated to the genera-
tor input, and are evaluated at noise levels
o € {0.2,04,0.6}.

Figure 2: Comparison of conditional generators on the
Helix benchmark at X = 1.

At low noise (¢ = 0.2), all three methods recover the helix structure well. As the noise level rises,
however, CGMMD maintains the overall curvature, in particular at the ‘eye’ (the center of the helix),
while the reconstructions from GCDS and WGAN degrade noticeably (See Figure 2). In this regard
we have noticed that without ¢; regularisation WGAN training is often unstable. We also explore an
additional conditional bivariate setting (which imitates circular structure), with qualitatively similar
results deferred to Appendix C.1.

5.2 REAL DATA ANALYSIS: IMAGE SUPER-RESOLUTION AND DENOISING

In this section, we evaluate the performance of CGMMD across two tasks: image super-resolution
and image denoising. For this, we use the MNIST and CelebHQ datasets.
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Figure 3: Low and high resolution images for Figure 4: Noisy and denoised MNIST digits
MNIST digits {0, 1,2, 3, 4}. {5,6,7,8,9}  ato = 0.5.

Super-Resolution. We now implement CGMMD for 4X
image super-resolution task using MNIST. Given a 7 x 7
low-resolution input, the model aims to reconstruct the original
28 x 28 image, treating this as a conditional generation problem:
producing a high-resolution image from a low-resolution one.
In Figure 3 we show that CGMMD accurately reconstructs the
high-resolution images (right panel) from the low-resolution
inputs (left panel), and they closely match the ground-truth
digits. Additional results and details are given in Appendix C.2

Image Denoising. We evaluate CGMMD on the image denoising
task using the MNIST (28 x 28 iamges) and CelebHQ (3 x 64 x 64
images) datasets. In this task, the inputs are images (digits for
MNIST and facial images for CelebHQ) corrupted with additive
Gaussian noise (¢ = 0.5, 0.25 for MNIST and CelebHQ respec-
tively). We can indeed formulate this as a conditional generation
problem. In Figure 4, the left 5 columns represent the noisy digit
images while the right 5 columns are the clean images recon-
structed using CGMMD.Additional experiments and details are
given in Appendix C.2.

For the CelebHQ experiment, Figure 5 shows original images
(left), noisy inputs (middle), and denoised outputs produced
by CGMMD (right). The results demonstrate that our model
effectively reconstructs clean facial images from noisy inputs
and preserves quality even under high noise levels. Additional
denoised images and details are given in Appendix C.3.

Comparison with Conditional Diffusion Model. In Table 1, we

Denoised

B aSnD

(4

Figure 5: CelebHQ denoising
using CGMMD at o = 0.25.

compare CGMMD with a diffusion model using classifier-free guidance [Ho & Salimans, 2022] on
the MNIST image denoising task (o = 0.9). The diffusion model produces better reconstructions,
but it comes at a much higher computational cost. As shown in the last column of Table 1, generating
a single image takes about 5.42 x 10~2 seconds with the diffusion model, whereas CGMMD requires
only 5.6 x 10~* seconds. In other words, our method is about 100x faster, while still delivering
reasonable image quality. This efficiency makes CGMMD attractive for applications where fast

conditional sampling is critical.

Table 1: Comparison of CGMMD with conditional diffusion model for MNIST image denoising.

. Generation Time Generation Time

Model PSNR | SSIM FID Inception Score (seconds/ batch) (seconds/ image)
Diffusion Model | 13.326 | 0.861 | 1.32 x 1073 2.07 6.94 5.42 x 1072
CGMMD 8.922 | 0.718 | 8x 1073 2.411 7.21 x 1072 5.6 x 1074
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