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ABSTRACT

How can we generate samples from a conditional distribution that we never fully
observe? This question arises across a broad range of applications in both modern
machine learning and classical statistics, including image post-processing in com-
puter vision, approximate posterior sampling in simulation-based inference, and
conditional distribution modeling in complex data settings. In such settings, com-
pared with unconditional sampling, additional feature information can be lever-
aged to enable more adaptive and efficient sampling. Building on this, we in-
troduce Conditional Generator using MMD (CGMMD), a novel framework for
conditional sampling. Unlike many contemporary approaches, our method frames
the training objective as a simple, adversary-free direct minimization problem. A
key feature of CGMMD is its ability to produce conditional samples in a single
forward pass of the generator, enabling practical one-shot sampling with low test-
time complexity. We establish rigorous theoretical bounds on the loss incurred
when sampling from the CGMMD sampler, and prove convergence of the esti-
mated distribution to the true conditional distribution. In the process, we also
develop a uniform concentration result for nearest-neighbor based functionals,
which may be of independent interest. Finally, we show that CGMMD performs
competitively on synthetic tasks involving complex conditional densities, as well
as on practical applications such as image denoising and image super-resolution.

1 INTRODUCTION

A fundamental problem in statistics and machine learning is to model the relationship between a re-
sponse Y ∈ Y and a predictor X ∈ X . Classical regression methods [Hastie et al., 2009; Koenker
& Bassett Jr, 1978], typically summarize this relationship through summary statistics, which are of-
ten insufficient for many downstream tasks that require the knowledge of the entire conditional law.
Access to the full conditional distribution enables quantification of uncertainty associated with pre-
diction [Castillo & Randrianarisoa, 2022], uncovers latent structure [Mimno et al., 2015], supports
dimension reduction [Reich et al., 2011], and graphical modeling [Chen et al., 2024]. In modern sci-
entific applications, it provides a foundation for simulation-based inference [Cranmer et al., 2020]
across various domains, including computer vision [Gupta et al., 2024], neuroscience [von Krause
et al., 2022], and the physical sciences [Hou et al., 2024; Mastandrea et al., 2024].

Classical approaches such as distributional regression and conditional density estimation [Rosen-
blatt, 1969; Fan et al., 1996; Hothorn et al., 2014] model the full conditional distribution directly
but often rely on strong assumptions and offer limited flexibility. In contrast, recent advances in
generative models like Generative Adversarial Networks (GANs) [Zhou et al., 2023; Mirza & Osin-
dero, 2014; Odena et al., 2017], Variational Autoencoders (VAEs) [Harvey et al., 2021; Doersch,
2016; Mishra et al., 2018], and diffusion models [Rombach et al., 2022; Saharia et al., 2022; Zhan
et al., 2025] provide more flexible, assumption lean alternatives for conditional distribution learning
across applications in vision, language, and scientific simulation. A more detailed discussion of
related work, background, and connections to simulation-based inference is provided in Section A.

GANs, introduced by Goodfellow et al. [2014] as a two-player minimax game optimizing the
Jensen–Shannon divergence [Fuglede & Topsoe, 2004], are a widely adopted class of generative
models, known for their flexibility and empirical success. However, training remains delicate and
unstable, even in the unconditional setting [Arjovsky & Bottou, 2017; Salimans et al., 2016]. As Ar-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Y1,X1
...

Yn,Xn


Training Data
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η1...
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

Nearest Neighbor Graph : G(Xn)

ECMMD2
[
FK, PY |X , Pg(η,X)|X

]
L̂ (g)

Generator (g)

≈

min
g∈G
L̂ (g)

ĝ

η ∼ Pη

X ∼ PX

ĝ (η,X)
such that

Pĝ(η,X)|X ≈ PY |X

Training Sampling

Figure 1: Schematic overview of CGMMD: Given training data (Y1,X1), . . . , (Yn,Xn), the samples
Xn = {X1, . . . ,Xn} and auxiliary noise η1, . . . ,ηn are passed through the generator g to produce sam-
ples g(η1,X1), . . . , g(ηn,Xn). These outputs are compared with the observed Y1, . . . ,Yn values using a
nearest-neighbor (G(Xn)) based estimate of the ECMMD discrepancy (see (1.2)) between true and generated
conditional distributions. Edges are color-coded to highlight the dependence of each section on the correspond-
ing inputs. After training, sampling is immediate: for any new input X , independently generate new η ∼ Pη ,
the trained model ĝ then produces ĝ(η,X) as the conditional output. Each component is described in greater
details in Section 2 and Section 3.

jovsky & Bottou [2017] point out, the generator and target distributions often lie on low-dimensional
manifolds that do not intersect, rendering divergences like Jensen–Shannon or KL constant or infi-
nite and thus providing no useful gradient. To address this, alternative objectives based on Integral
Probability Metrics (IPMs) [Müller, 1997], such as the Wasserstein distance [Villani et al., 2008]
and Maximum Mean Discrepancy (MMD) [Gretton et al., 2012], have been proposed for more sta-
ble training in unconditional sampling using GANs.

Building on the success of MMD-GANs [Li et al., 2015; Dziugaite et al., 2015; Bińkowski et al.,
2018; Huang et al., 2022b], we propose an MMD-based loss using nearest neighbors to quantify dis-
crepancies between conditional distributions. While MMD has been used in conditional generation,
to the best of our knowledge we are the first to provide sharp theoretical guarantees for MMD based
conditional sampling, offering a principled foundation for training conditional generators. Initially
developed for two-sample testing by Gretton et al. [2012], MMD has since seen broad adoption
across the statistical literature [Gretton et al., 2007; Fukumizu et al., 2007; Chwialkowski et al.,
2016; Sutherland et al., 2016]. It quantifies the discrepancy between two probability distributions as
the maximum difference in expectations over functions f drawn from the unit ball of a Reproducing
Kernel Hilbert Space (RKHS) defined on Y [Aronszajn, 1950]. Formally, let Y be a separable met-
ric space equipped with BY , the sigma-algebra generated by the open sets of Y . Let P(Y) be the
collection of all probability measures on (Y,BY). Then for any PY , PZ ∈ P(Y),

MMD(FK, PY , PZ) := supf∈FK
E[f(Y )]− E[f(Z)], (1.1)

where FK is the unit ball of a reproducing kernel Hilbert space (RKHS) K on Y .

1.1 CONDITIONAL GENERATOR USING MAXIMUM MEAN DISCREPANCY (CGMMD)

To extend MMD to the conditional setting, we employ the expected conditional MMD (ECMMD)
from Chatterjee et al. [2024] (also see Huang et al. [2022b]), which naturally generalizes the MMD
distance to a discrepancy between conditional distributions. Formally, for X ∼ PX , conditional
distributions PY |X and PZ|X supported on Y , the squared ECMMD can be defined as,

ECMMD2(FK, PY |X , PZ|X) := EX∼PX

[
MMD2(FK, PY |X , PZ|X)

]
. (1.2)

We discuss simplified formulations of this measure later in Section 2.1. By Chatter-
jee et al. [2024, Proposition 2.3], ECMMD is indeed a strict scoring rule, meaning that
ECMMD2(FK, PY |X , PZ|X) = 0 if and only if PY |X = PZ|X almost surely. This property
establishes ECMMD as a principled and reliable tool for comparing conditional distributions.

Instead of estimating the target conditional distribution PY |X directly, we follow the generative ap-
proach from Zhou et al. [2023] and Song et al. [2025]. By the noise outsourcing lemma (see Lemma
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2.1), the problem of nonparametric conditional density estimation can be reformulated as a general-
ized nonparametric regression problem. In particular, for a given predictor value X = x, our goal
is to learn a conditional generator g(η,x), where η is drawn from a simple reference distribution
(e.g., Gaussian or uniform). The generator is trained so that g(η,x) approximates the conditional
distribution of Y | X = x for all x. Discrepancy between the true conditional distribution PY |X
and the model distribution Pg(η,X)|X is measured using the squared ECMMD. Once training is
complete, conditional sampling becomes a one-shot procedure: draw η from the reference distribu-
tion and sample g(η,x). In this way, the generator provides an explicit and efficient representation
of the conditional distribution of Y | X . We refer to g(η,x) as the Conditional Generator using
Maximum Mean Discrepancy, or CGMMD for short. We provide the schematic overview of the
method in Figure 1. Now, we turn to the main contributions of our proposed method.

1.2 MAIN CONTRIBUTIONS

Our main contributions are summarized below.

• Direct Minimization. Similar to MMD-GANs in the unconditional setting, CGMMD avoids
adversarial min-max optimization and instead enables direct minimization of an ECMMD based
objective (see (1.1)), offering a more straightforward and tractable alternative to GAN-based train-
ing [Zhou et al., 2023; Song et al., 2025; Ramesh et al., 2022]. This design helps avoid common
issues in conditional GANs, such as mode collapse and unstable min–max dynamics.

• One-shot Sampling. While diffusion models have demonstrated remarkable success in generat-
ing high-quality and diverse samples, their iterative denoising procedure [Ho et al., 2020] makes
sampling computationally expensive and time-consuming. In contrast, CGMMD enables efficient
one-shot sampling, i.e., conditional samples are obtained in a single forward pass of the generator.
Specifically, to sample from Y | X = x, one simply draws η from a simple reference distribution
(e.g., Gaussian or uniform) and evaluates ĝ(η,x), where ĝ is a solution of (3.2).

• Theoretical Guarantees. We provide rigorous theoretical guarantees for CGMMD. Theorem 4.1
gives a non-asymptotic finite-sample bound on the error of the conditional sampler ĝ(η,x), and
Corollary 4.1 establishes convergence to the true conditional distribution as the sample size in-
creases. Together, these results provide strong theoretical justification for CGMMD.
To the best of our knowledge, this is the first application of tools from uniform concentration of
nonlinear functionals, nearest neighbor methods, and generalization theory to conditional genera-
tive modeling. In the process, we also establish a general uniform concentration result for a broad
class of nearest-neighbor-based functionals (Appendix G), which may be of independent interest.

• Numerical Experiments. Finally, we provide experiments on both synthetic and real data (mainly
in image post-processing tasks) to evaluate the performance of CGMMD and compare it with
existing approaches in the literature. Overall, our proposed approach performs reliably across
different settings and often matches or exceeds the alternative approaches in more challenging
cases.

2 TECHNICAL BACKGROUND

In this section, we introduce the necessary concepts and previous works required to understand our
proposed framework, CGMMD. To that end, we begin with the necessary formalism.

Let X ,Y be Polish spaces, that is, complete separable metric spaces equipped with the correspond-
ing Borel-sigma algebras BX and BY respectively. Let P(X ) and P(Y) be the collection of all
probability measures defined on (X ,BX ) and (Y,BY) respectively. Recalling the RKHS K defined
on Y from (1.1), the Riesz representation theorem [Reed & Simon, 1980, Therorem II.4] guarantees
the existence of a positive definite kernel K : Y × Y → R such that for every y ∈ Y , the feature
map ϕy ∈ K satisfies K(y, ·) = ϕy(·) and K(y1,y2) = ⟨ϕy1

, ϕy2
⟩K.

The definition of feature maps can now be extended to embed any distribution P ∈ P(Y) into
K. In particular, for P ∈ P(Y) we can define the kernel mean embedding µP as ⟨f, µP ⟩K =
EY∼P [f(Y )]. Moreover, by the canonical form of the feature maps, it follows that µP (t) :=
EY∼P [K(Y, t)] for all t ∈ Y . Henceforth, we make the following assumptions on kernel K.
Assumption 2.1. The kernel K : Y × Y → R is positive definite and satisfies the following:
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1. The kernel K is bounded, that is ∥K∥∞ < K for some K > 0 and Lipschitz continuous.

2. The kernel mean embedding µ : P(Y) → K is a one-to-one (injective) function. This is
also known as the characteristic kernel property [Sriperumbudur et al., 2011].

Assumption 2.1 ensures that the mean embedding µP ∈ K (see Lemma 3 in Gretton et al. [2012]
and Lemma 2.1 in Park & Muandet [2020]), and that MMD defines a metric on P(Y). While
these properties can be guaranteed under weaker conditions on the kernel K, we adopt the above
assumption for technical convenience. With the above notations the MMD (recall (1.1)) can be
equivalently expressed as MMD2(FK, PY , PZ) = ∥µPY

− µPZ
∥2K (see Lemma 4 from Gretton

et al. [2012]) where ∥ · ∥K is the norm induced by the inner product ⟨·, ·⟩K. In the following, we
express the ECMMD in an equivalent form and leverage it to obtain a consistent empirical estimator.

2.1 ECMMD: REPRESENTATION VIA KERNEL EMBEDDINGS

Recalling the definition of ECMMD from (1.2), we note that it admits an equivalent formulation. In
particular, for distributions PY |X and PZ|X (which exists by Klenke [2008, Theorem 8.37]), define
the conditional mean embeddings µPY |X (t) := E[K(Y , t) | X] and µPZ|X (t) := E[K(Z, t) | X]
for all t ∈ Y . Under Assumption 2.1, the conditional mean embeddings are indeed well defined
by Park & Muandet [2020, Lemma 3.2]. Consequently, ∥µPY |X=x

− µPZ|X=x
∥2K is the squared

MMD metric between the conditional distributions for a particular value of X = x. Averaging this
quantity over the marginal distribution of X yields the squared ECMMD distance:

ECMMD2(FK, PY |X , PZ|X) = EX∼PX

[
∥µPY |X − µPZ|X∥2K

]
(2.1)

However, to use ECMMD as a loss function for estimating the conditional sampler, we require a
consistent estimator of the expression in (2.1). To that end, the well-known kernel trick enables a
more tractable reformulation of ECMMD, making it amenable to estimation from observed data. By
Chatterjee et al. [2024, Proposition 2.4] (also see Huang et al. [2022b] and Park & Muandet [2020]),
the squared ECMMD admits the tractable form

ECMMD2(FK, PY |X , PZ|X) = E
[
K(Y ,Y ′) + K(Z,Z ′)− K(Y ,Z ′)− K(Z,Y ′)

]
, (2.2)

where (Y ,Y ′,Z,Z ′,X) is generated by first sampling X ∼ PX , then drawing (Y ,Z) and
(Y ′,Z ′) independently from PY |X × PZ|X . Note that when Y ,Z are independent of X , the
expression from (2.2) is equivalent to the classical expression of squared MMD [Gretton et al.,
2012].

2.2 ECMMD: CONSISTENT ESTIMATION USING NEAREST NEIGHBORS

Towards estimating the ECMMD, we leverage the equivalent expression from (2.2). By the tower
property of conditional expectations, (2.2) can be further expanded as,

ECMMD2(FK, PY |X , PZ|X) = E
[
E
[
K(Y ,Y ′) + K(Z,Z ′)− K(Y ,Z ′)− K(Z,Y ′) | X

]]
.

To estimate ECMMD, we observe that it involves averaging a conditional expectation over the dis-
tribution PX . Given observed samples {(Yi,Zi,Xi) : 1 ≤ i ≤ n} drawn from the joint distribution
PY ZX = PY |X × PZ|X × PX , we proceed by first estimating the inner conditional expectation
given X = Xi, and then averaging these estimates over the observed values X1, . . . ,Xn. To es-
timate the inner conditional expectation given X = Xi, one can, in principle, average the inner
function over sample indices whose corresponding predictors are ‘close’ to Xi. A natural way to
quantify such proximity is through nearest-neighbor graphs. Formally we construct the estimated
ECMMD as follows.

Fix k = kn ≥ 1 and letG(Xn) be the directed k−nearest neighbor graph on Xn = {X1, . . . ,Xn}.
Moreover let NG(Xn)(i) := {j ∈ [n] : Xi → Xj is an edge in G(Xn)} for all i ∈ [n]. Now the
k−NN based estimator of ECMMD can be defined as,

̂ECMMD
2 (

FK, PY |X , PZ|X
)
:= 1

n

∑n
i=1

1
kn

∑
j∈NG(Xn)(i)

H (Wi,Wj) (2.3)

where Wi = (Yi,Zi) for all i ∈ [n] and H (Wi,Wj) = K (Yi,Yj) − K (Yi,Zj) − K (Zi,Yj) +
K (Zi,Zj) for all 1 ≤ i, j ≤ n. Chatterjee et al. [2024, Theorem 3.2] shows that under mild
conditions, this estimator is consistent for the oracle ECMMD. We exploit this nearest-neighbor
construction to define the CGMMD objective in Section 3.
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Algorithm 1: CGMMD Training
Input: Training dataset {(Yi,Xi)}ni=1. Conditional generator g = gθ with initial parameters θ.

Auxillary Kernel function H (see (2.3)). Noise distribution Pη . Learning rate α, epochs E, batch
size B and number of nearest neighbors kB .

Output: Trained generator parameters θ̂.
Sample {ηi : 1 ≤ i ≤ n} ∼ Pη .
for epoch = 1 to E do

for each I ⊆ [n] of size B do
XI ← {Xi}i∈I ;
G(XI)← kB-Nearest Neighbor graph on XI ;
NG(XI )(i)← neighbors of Xi in G(XI), gi ← gθ (ηi,Xi) ,Wi,g ← (Yi, gi) ∀i ∈ I;
L̂batch ← 1

BkB

∑
i∈I

∑
j∈NG(XI )(i)

H (Wi,g,Wj,g);

θ ← θ − α∇θL̂batch.

return trained parameters θ̂ ← θ.

2.3 GENERATIVE REPRESENTATION OF CONDITIONAL DISTRIBUTION

As outlined in Section 1.1, conditional density estimation can be reformulated as a generalized
nonparametric regression problem. Suppose (Y ,X) ∈ X × Y follows some joint distribution
PY X , and we observe n independent samples {(Y1,X1), . . . , (Yn,Xn)} from PY X . Our goal
is to generate samples from the unknown conditional distribution PY |X . The noise outsourcing
lemma (see Kallenberg, Theorem 5.10, Zhou et al. [2023, Lemma 2.1] and Bloem-Reddy & Teh
[2020, Lemma 5]) formally connects conditional distribution estimation with conditional sample
generation. For completeness, we state it below.
Lemma 2.1 (Noise Outsourcing Lemma). Suppose (Y ,X) ∼ PY X . Then, for any m ≥ 1, there
exist a random vector η ∼ Pη = N(0m, Im) and a Borel-measurable function ḡ : Rm × X → Y
such that η is generated independent of X and (Y ,X) = (ḡ(η,X),X) almost surely.

Under appropriate conditions the above result also follows from Brenier’s theorem [Villani, 2021,
Theorem 3.8]. Moreover, by Zhou et al. [2023, Lemma 2.2], (Y ,X)

d
= (ḡ(η,X),X) if and only

if ḡ(η,x) ∼ PY |X=x for every x ∈ X . This identifies ḡ as a conditional generator. Consequently,
to draw from PY |X , we sample η ∼ N(0m, Im) and output ḡ(η,X).

This perspective places conditional density estimation firmly within the realm of generative model-
ing. The task reduces to: given n independent samples from PY X , learn the conditional generator
ḡ. Zhou et al. [2023]; Ramesh et al. [2022]; Song et al. [2025]; Liu et al. [2021] leveraged this idea
to develop a GAN-based (respectively Wasserstein-GAN) framework for conditional sampling. In
contrast, our approach follows a similar path but replaces the potentially unstable min–max opti-
mization of GANs with a principled minimization objective based on ECMMD discrepancy. The
precise formulation is given in the following section.

3 ECMMD BASED OBJECTIVE FOR CGMMD

Building on the generative representation of conditional distributions and the ECMMD discrepancy
introduced earlier, our goal is to learn a conditional generator ḡ by minimizing the ECMMD distance
between the true conditional distribution Y | X and the generated conditional distribution ḡ(η,X) |
X . We restrict our attention to a parameterized function class G, as solving this unconstrained
minimization problem over all measurable functions is intractable. To that end, we begin by defining
the population objective

L(g) := ECMMD2
[
FK, PY |X , Pg(η,X)|X

]
= EX∼PX

[
∥µPY |X − µPg(η,X)|X∥2K

]
.

The target generator is then given by g⋆ ∈ argming∈G L(g). Since the oracle objective L(·) is not
directly available, we employ the estimation strategy outlined in Section 2.2 to construct a consistent
empirical approximation of L(g). Given n independent samples (Y1,X1), . . . , (Yn,Xn) ∼ PY X

and independent draws of noise variables η1 . . . ,ηn∼Pη , we define the empirical objective,

L̂(g) := ̂ECMMD
2 (

FK, PY |X , Pg(η,X)|X
)
= 1

nkn

∑n
i=1

∑
j∈NG(Xn)(i)

H (Wi,g,Wj,g) (3.1)
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where H is defined from (2.3) and Wi,g := (Yi, g (ηi,Xi)) for all 1 ≤ i ≤ n. Our estimate of the
conditional generator is then defined as

ĝ ∈ argming∈G L̂(g). (3.2)

With the framework now in place, we emphasize that CGMMD offers substantial flexibil-
ity to practitioners. In our experiments, we restrict G to deep neural networks, i.e., G ={
gθ : Rm ×X → Y | θ ∈ RS} where S is the total number of parameters of the neural network

gθ. Here, (3.2) reduces to solving θ̂ ∈ argminθ∈RS L̂(gθ). A corresponding pseudo-code is pro-
vided in Algorithm 1. In this algorithm, we generate all ηi before the training starts and construct
a dataset of triplets (Yi,Xi,ηi), which are fed to the dataloader (i.e., no on-the-fly sampling dur-
ing training). During training, each epoch makes a full pass over this dataset. At every iteration,
we take a mini-batch of size B and build the nearest-neighbor graph within that mini-batch only,
i.e, we compute pairwise distances among the B examples and connect each example to its kB
nearest-neighbors in the current batch.

In practice, the user may tailor the method by selecting the kernel K, the function class G, number
of neighbors kn, and the manner in which the auxiliary noise variable η is incorporated into g(·,x).
We discuss some of these potential choices as well as refinements to the CGMMD objective when
PX has discrete support in Appendix D.

4 ANALYSIS AND CONVERGENCE GUARANTEES

In this section, we analyze the error of estimating the true conditional sampler ḡ (see Lemma 2.1).
This section is further divided into two parts. In Section 4.1 we begin by deriving a finite-sample
bound on the error arising from replacing the true conditional sampler ḡ with its empirical estimate
ĝ. As a further contribution in Section 4.2, we establish the convergence of the conditional distri-
bution induced by the empirical sampler to the true conditional distribution. For clarity and ease of
exposition, we present simplified versions of the assumptions and main results here, while deferring
the complete statements and proofs to Appendix E.

4.1 NON-ASYMPTOTIC ERROR BOUNDS

For the estimated empirical sampler ĝ defined in (3.2) the estimation error can be defined as (recall
Definition 1.2),

L(ĝ) = ECMMD2
[
F , Pḡ(η,X)|X , Pĝ(η,X)|X

]
= E

[∥∥µPḡ(η,X)|X − µPĝ(η,X)|X

∥∥2
K | ĝ

]
, (4.1)

where the expectations are taken over the randomness of η and X keeping the empirical sampler ĝ
fixed. In other words, the estimation error evaluates the squared ECMMD between the conditional
distributions of ḡ(η,X) and ĝ(η,X) given X . In the following, we will provide non-asymptotic
bounds on the estimation error L(ĝ). To that end, for the rest of the article, we assume Y ⊆ Rp for
some p ≥ 1 and we begin by rigorously defining the class of functions G.

Details of G: Let G = GH,W,S,B be the set of ReLU neural networks g : Rm × Rd → Rp with
depth H, width W , size S and ∥g∥∞ ≤ B. In particular, H denotes the number of hidden layers
and (w0, w2, . . . , wH) denotes the width of each layer, where w0 = d + m and wH = p denotes
the input and output dimension, respectively. We take W = max {w0, w1, . . . , wH}. Finally, size
S =

∑H
i=1 wi (wi−1 + 1) refers to the total number of parameters of the network. To establish the

error bounds, we make the following assumption about the parameters of G.
Assumption 4.1. The network parameters of G satisfies B ≥ 1 and H,W → ∞ such that,

HW
(log n)

d+m
2

n→∞−−−−→ ∞ and
B2HS logS log n

n

n→∞−−−−→ 0.

The imposed conditions require that the neural network’s size grows with the sample size, specif-
ically that the product of its depth and width increases with n. These assumptions are flexible
enough to accommodate a wide range of architectures, but a key constraint is that the network size
must remain smaller than the sample size. This arises from the use of empirical process theory [Van
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Der Vaart & Wellner, 1996; Bartlett et al., 2019] to control the stochastic error in the estimated
generator. Similar conditions appear in recent work on conditional sampling [Zhou et al., 2023;
Liu et al., 2021; Song et al., 2025] and in convergence analyses for deep nonparametric regres-
sion [Schmidt-Hieber, 2020; Kohler & Langer, 2019; Nakada & Imaizumi, 2020]. We also make
the following technical assumptions.
Assumption 4.2. The following conditions on PY X , the kernel K, the true conditional sampler ḡ
and the class G holds.

1. PX is supported on X ⊆ Rd for some d > 0 and ∥X1 −X2∥2 has a continuous distribu-
tion for X1,X2 ∼ PX .

2. Moreover X ∼ PX is sub-gaussian, that is 1, P (∥X∥2 > t) ≲ exp
(
−t2

)
for all t > 0.

3. The target conditional sampler ḡ : Rm×Rd → Rp is uniformly continuous with ∥ḡ∥∞ ≤ 1.

4. For any g ∈ G consider hg(x) = E [K(Y , ·)− K (g (η,X) , ·)|X = x] and assume that
|⟨hg(x), hg(x1)− hg(x2)⟩| ≲ ∥x1 − x2∥2, for all x,x1,x2 ∈ X where the constant is
independent of g.

The first two assumptions are standard in the nearest neighbor literature and have been studied in
the context of conditional independence testing using nearest neighbor-based methods [Huang et al.,
2022a; Deb et al., 2020; Azadkia & Chatterjee, 2021; Borgonovo et al., 2025; Dasgupta & Kpotufe,
2014]. The first, concerning uniqueness in nearest neighbor selection, can be relaxed via tie-breaking
schemes (see Section 7.3 in [Deb et al., 2020]), though we do not pursue this direction. The second,
on the tail behavior of the predictor X , can be weakened to include heavier-tailed distributions,
such as those satisfying sub-Weibull conditions [Vladimirova et al., 2020] (also see (E.1)). The third
assumption is mainly for technical convenience; similar conditions appear in prior work on neural
network-based conditional sampling [Zhou et al., 2023; Song et al., 2025; Liu et al., 2021]. Its
uniform continuity condition can also be relaxed to continuity (see Appendix E).
Remark 4.1. Assumption 4.2.4 is arguably the most critical in our analysis. It quantifies the sen-
sitivity of the conditional mean embeddings to changes in the predictor X , and is essential for
establishing concentration of the nearest-neighbor-based ECMMD estimator (see (2.3)) around its
population counterpart. Similar assumptions have been used in prior work on nearest neighbor meth-
ods [Huang et al., 2022a; Deb et al., 2020; Azadkia & Chatterjee, 2021; Dasgupta & Kpotufe, 2014].
As noted in Azadkia & Chatterjee [2021, Section 4], omitting such regularity conditions can lead
to arbitrarily slow convergence rates. While the locally lipschitz-type condition can be relaxed, for
example to Hölder continuity upto polynomial factors (see (E.2)) it remains a key assumption for
our theoretical guarantees. We further elaborate on this assumption in Appendix F.

Under the above assumptions, we are now ready to present our main theorem on the error incurred
by using the empirical sampler ĝ.
Theorem 4.1 (Simpler version of Theorem E.1). Adopt Assumption 2.1, Assumption 4.1 and As-
sumption 4.2. Moreover take ωḡ(r) := sup {∥ḡ(x)− ḡ(y)∥2 : x,y ∈ Rp+m, ∥x− y∥2 ≤ r} to
be the optimal modulus of continuity of the true conditional sampler ḡ. Let kn = o (nγ) for some
0 < γ < 1. Then for any δ > 0, with probability at least 1− δ,

L (ĝ) ≲θ
poly log(n)

n
1−γ
d

+

√
B2HS logS log n

n
+ ωḡ

(
2
√
log n

(HW)
1

d+m

)
+

√
log (1/δ)

n
.

The first two terms capture the stochastic error from the uniform concentration of the empirical loss
around the population ECMMD objective. The third term reflects approximation error from esti-
mating the true conditional sampler ḡ using neural networks in G. While we defer the proof of
this result and its generalization to Appendix B.1 and Appendix E, respectively, we highlight the
main novelty of our analysis here. Specifically, it integrates tools from recent advances in uniform
concentration for non-linear functionals [Maurer & Pontil, 2019; Ni & Huo, 2024], nearest neigh-
bor methods [Azadkia & Chatterjee, 2021; Deb et al., 2020], and generalization theory, including
neural network approximation of smooth functions [Shen et al., 2020; Zhang et al., 2022]. To our

1We use the notation a ≲θ b to imply a ≤ Cθb for some constant Cθ > 0 depending on the parameter θ. In
particular a ≲ b implies a ≤ Cb for some universal constant C > 0. Henceforth take θ = (d,m, p,K).
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knowledge, this is the first application of these techniques to conditional generative modeling with
nonparametric nearest neighbor objectives. Additionally, we establish a uniform concentration result
for a broad class of nearest-neighbor-based functionals (Appendix G), which may be of independent
interest.

4.2 CONVERGENCE OF THE EMPIRICAL SAMPLER

As outlined earlier, in this section, we leverage the bound established in Theorem 4.1 to demonstrate
the convergence of the conditional distribution identified by the estimated sampler ĝ(η,X) to the
true conditional distribution.

While Theorem 4.1 provides a finite-sample quantitative guarantee on the loss incurred by using
the estimated sampler in place of the true sampler g, we now show that the conditional distribution
induced by ĝ converges to the true conditional distribution. Furthermore, we strengthen this result
by establishing convergence in terms of characteristic functions as well. By a classical result by
Bochner (see Theorem H.1) every continuous positive definite function ψ is associated with a finite
non-negative Borel measure Λψ . With this notation, we have the following convergence result with
proof given in Appendix B.2.

Corollary 4.1. Suppose the assumptions from Theorem 4.1 hold. Then,

E
[
MMD2

[
F , Pĝ(η,X)|X , Pḡ(η,X)|X

]]
−→ 0. (4.2)

Moreover, if the kernel K(x,y) = ψ(x−y) for some bounded, lipschitz continuous positive definite
function ψ. Then,

E
[∫ (

ϕĝ(η,X)|X(t)− ϕḡ(η,X)|X(t)
)2

dΛψ(t)

]
−→ 0 (4.3)

where ϕĝ(η,X)|X and ϕḡ(η,X)|X are the characteristic functions of the conditional distributions
Pĝ(η,X)|X and Pḡ(η,X)|X respectively.

The above results demonstrate the efficacy of CGMMD. In particular, they show that the condi-
tional distribution learned by the conditional sampler in CGMMD closely approximates the true
conditional distribution.

5 NUMERICAL EXPERIMENTS

We begin our empirical study with toy examples of bivariate conditional sample generation, then
move to practical applications such as image denoising and super-resolution on MNIST [Yann,
2010], denoising on CelebHQ [Karras et al., 2018], super-resolution on STL10 [Coates et al., 2011]
and inpainting on FashionMNIST [Xiao et al., 2017]. We compare CGMMD with the methods in
Zhou et al. [2023] and Song et al. [2025] on synthetic data and also add comparisons with con-
ditional normalizing flows in synthetic benchmarks. Moreover, to assess test-time complexity, we
compare CGMMD with a diffusion model using classifier-free guidance [Ho & Salimans, 2022].
Due to space constraints, only selected results are shown here; full details appear in Appendix C.
For all the experiments presented here, we have used the Gaussian kernel and batch-size 200.

5.1 SYNTHETIC EXPERIMENT: CONDITIONAL BIVARIATE SAMPLING

In this section, we compare our proposed CGMMD with two baseline approaches: the GCDS [Zhou
et al., 2023], a vanilla GAN framework, and a Wasserstein-based modification, WGAN (trained with
pure Wasserstein loss) [Song et al., 2025].
We consider a synthetic setup with X ∼ N(0, 1), U ∼ Unif[0, 2π], and ε1, ε2

iid∼ N(0, σ2). The
response variables are

Y1 = 2X +U sin(2U) + ε1,Y2 = 2X +U cos(2U) + ε2,

and our goal is to generate conditional samples from (Y1,Y2) | X at varying noise levels (σ). All
three methods use the same two-hidden-layer feed-forward ReLU generator with noise η concate-
nated to the generator input, and are evaluated at noise levels σ ∈ {0.2, 0.4, 0.6}. At low noise
(σ = 0.2), all three methods recover the helix structure well. As the noise level rises, however,
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CGMMD maintains the overall curvature,
in particular at the ‘eye’ (the center of
the helix), while the reconstructions from
GCDS and WGAN degrade noticeably
(See Figure 2). In this regard we have no-
ticed that without ℓ1 regularisation WGAN
training is often unstable. We also explore
an additional conditional bivariate setting
(which imitates circular structure), with
qualitatively similar results deferred to Ap-
pendix C.1 and Appendix C.2.

5.2 REAL DATA ANALYSIS: IMAGE
SUPER-RESOLUTION AND
DENOISING

In this section, we evaluate the perfor-
mance of CGMMD across two tasks: im-
age super-resolution and image denoising.
For this, we use the MNIST and CelebHQ
datasets.
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Figure 2: Comparison of conditional generators on the
Helix benchmark at X = 1.

Low-Res SR Mean ( )

Figure 3: Low and high resolution images for
MNIST digits {0, 1, 2, 3, 4}.

Noisy Denoised Mean ( )

Figure 4: Noisy and denoised MNIST digits
{5, 6, 7, 8, 9} at σ = 0.5.

Super-Resolution. We now implement CGMMD for 4X
image super-resolution task using MNIST. Given a 7 × 7
low-resolution input, the model aims to reconstruct the original
28× 28 image, treating this as a conditional generation problem:
producing a high-resolution image from a low-resolution one.
In Figure 3 we show that CGMMD accurately reconstructs the
high-resolution images (right panel) from the low-resolution
inputs (left panel), and they closely match the ground-truth
digits. Additional results and details are given in Appendix C.3

Image Denoising. We evaluate CGMMD on the image denoising
task using the MNIST (28×28 iamges) and CelebHQ (3×64×64
images) datasets. In this task, the inputs are images (digits for
MNIST and facial images for CelebHQ) corrupted with additive
Gaussian noise (σ = 0.5, 0.25 for MNIST and CelebHQ respec-
tively). We can indeed formulate this as a conditional generation
problem. In Figure 4, the left 5 columns represent the noisy digit
images while the right 5 columns are the clean images recon-
structed using CGMMD.Additional experiments and details are
given in Appendix C.3.
For the CelebHQ experiment, Figure 5 shows original images
(left), noisy inputs (middle), and denoised outputs produced by
CGMMD (right). The results demonstrate that our model effec-
tively reconstructs clean facial images from noisy inputs and pre-
serves quality even under high noise levels. Additional denoised
images and details are given in Appendix C.4.

Original Noisy Denoised

Figure 5: CelebHQ denoising
using CGMMD at σ = 0.25.
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Comparison with Conditional Diffusion Models. In Table 1, we compare CGMMD with a diffu-
sion model using classifier-free guidance [Ho & Salimans, 2022] and progressive distilled diffusion
[Meng et al., 2023; Salimans & Ho, 2022] on the MNIST image denoising task (σ = 0.9). The
results in Table 1 indicate that the diffusion model achieves higher-quality reconstructions but at a
substantially higher computational cost compared to CGMMD. Distilled diffusion offers compara-
ble performance to CGMMD, achieving better PSNR but lower SSIM, while incurring a moderate
increase in computation. Overall, CGMMD provides a favorable trade-off, generating images of
reasonable quality much faster, making it particularly well-suited for applications where rapid con-
ditional sampling is essential.

Table 1: Comparison of CGMMD with conditional diffusion model for MNIST image denoising.

Model PSNR SSIM Generation Time
(seconds/ batch)

Generation Time
(seconds/ image)

Diffusion Model 13.326 0.861 6.94 5.42× 10−2

Distilled Diffusion 10.658 0.508 1.18× 10−1 9.2× 10−4

CGMMD 8.922 0.718 7.21× 10−2 5.6× 10−4

5.3 SUPER-RESOLUTION WITH STL10 DATASET

Similar to the MNIST 4X super-resolution experiment, we apply CGMMD to reconstruct high-
resolution 3× 96× 96 images from low-resolution 3× 24× 24 color inputs from STL-10 [Coates
et al., 2011]. Our aim is not to surpass state-of-the-art super-resolution methods [Kim et al., 2016;
Zhang et al., 2018], but to demonstrate flexibility of our own approach. As shown in Figure 6, our
method generates high-resolution images that closely resemble the ground truth. Furthermore, the
pixel-wise standard deviation image demonstrates that our method produces substantial diversity in
the generated outputs, highlighting the effectiveness of the CGMMD objective. We add details about
this experiment in Appendix C.5.

Figure 6: High resolution reconstructions of STL10 images from low resolution inputs. From left
to right: The low resolution input images, the true high resolution images, mean of reconstructed
images from CGMMD, pixel-wise standard deviation of the reconstructed images.
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tized inference. Annual Review of Statistics and Its Application, 12, 2024.

Zheyuan Zhan, Defang Chen, Jian-Ping Mei, Zhenghe Zhao, Jiawei Chen, Chun Chen, Siwei Lyu,
and Can Wang. Conditional image synthesis with diffusion models: A survey, 2025. URL
https://arxiv.org/abs/2409.19365.

Shijun Zhang, Zuowei Shen, and Haizhao Yang. Deep network approximation: Achieving arbitrary
accuracy with fixed number of neurons. Journal of Machine Learning Research, 23(276):1–60,
2022.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In Proceedings of the European
conference on computer vision (ECCV), pp. 286–301, 2018.

Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang. A deep generative approach to conditional
sampling. Journal of the American Statistical Association, 118(543):1837–1848, 2023.

17

https://arxiv.org/abs/2409.19365


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Supplementary Materials
CONTENTS

1 Introduction 1

1.1 Conditional Generator using Maximum Mean Discrepancy (CGMMD) . . . . . . . 2

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technical Background 3

2.1 ECMMD: Representation via Kernel Embeddings . . . . . . . . . . . . . . . . . . 4

2.2 ECMMD: Consistent Estimation using Nearest Neighbors . . . . . . . . . . . . . 4

2.3 Generative Representation of Conditional Distribution . . . . . . . . . . . . . . . 5

3 ECMMD Based Objective for CGMMD 5

4 Analysis and Convergence Guarantees 6

4.1 Non-Asymptotic Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Convergence of the Empirical Sampler . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Numerical Experiments 8

5.1 Synthetic experiment: conditional bivariate sampling . . . . . . . . . . . . . . . . 8

5.2 Real Data Analysis: image super-resolution and denoising . . . . . . . . . . . . . 9

5.3 Super-resolution with STL10 dataset . . . . . . . . . . . . . . . . . . . . . . . . . 10

A Selected Background and Influences 20

B Proofs of Theorem 4.1 and Corollary 4.1 21

B.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.2 Proof of Corollary 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Additional Experiments 22

C.1 Synthetic setup: Circle Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.2 Comparisons with Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . . 22

C.2.1 Circle Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C.2.2 Two Moons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C.3 Additional results on MNIST super-resolution and denoising . . . . . . . . . . . . 24

C.4 Additional results on image denoising with CelebHQ dataset . . . . . . . . . . . . 26

C.5 Super-resolution with STL10 dataset . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.6 Image inpainting with FashionMNIST . . . . . . . . . . . . . . . . . . . . . . . . 27

D Design Choices and Practical Considerations 28

D.1 Derandomized CGMMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E Convergence of the Empirical Sampler 31

E.1 Proof of Theorem E.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.1.1 Proof of Lemma E.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E.1.2 Proof of Lemma E.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E.1.3 Proof of Lemma E.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

E.1.4 Proof of Lemma E.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

E.2 Proof of Corollary E.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F When does Assumption (E.2) holds? 41

F.1 Proof of Proposition F.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

G Uniform Concentration under Nearest Neighbor Interactions 43

G.1 Proof of Theorem G.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

G.1.1 Proof of Lemma G.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

G.1.2 Proof of Lemma G.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

G.2 Proof of Corollary G.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

H Technical Results 47

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A SELECTED BACKGROUND AND INFLUENCES

Here we provide a concise overview of the most directly relevant lines of work that align with our
approach to conditional generative modeling. We concentrate on selected contributions that either
motivate or underpin our methodology, rather than attempting a full survey of the field.

Statistical foundations of conditional density estimation A rich line of work in statistics ad-
dresses conditional density estimation through nonparametric methods. Classical approaches in-
clude kernel and local-polynomial smoothing [Rosenblatt, 1969; Hyndman et al., 1996; Chen et al.,
2000; Hall & Yao, 2005] and regression-style formulations for conditional densities [Fan et al., 1996;
Fan & Yim, 2004]. Alternative strategies exploit nearest-neighbor ideas [Lincheng & Zhijun, 1985]
or expansions in suitable basis functions [Izbicki & Lee, 2016; Sugiyama et al., 2010]. More recent
frameworks, such as distributional regression [Hothorn et al., 2014; Rigby & Stasinopoulos, 2005;
Kock & Klein, 2025], model the entire conditional distribution directly rather than focusing on low-
order summaries. Together, these approaches form the statistical foundation for modern methods of
conditional density estimation.

Conditional GAN and MMD Gradient Flows. Alongside classical approaches, Conditional
Generative Adversarial Networks (cGANs) extend the original GAN framework [Goodfellow et al.,
2014] by conditioning both the generator and discriminator on side information such as labels or
auxiliary features [Zhou et al., 2023; Mirza & Osindero, 2014; Baptista et al., 2024; Odena et al.,
2017]. Variants employ projection-based discriminators for improved stability [Miyato & Koyama,
2018] or architectures tailored to structured outputs such as image-to-image translation [Isola et al.,
2017; Denton et al., 2015; Reed et al., 2016]. Despite strong empirical results, cGANs often in-
herit the instability and mode-collapse issues of adversarial training, motivating alternative losses
based on integral probability metrics such as MMD or Wasserstein distances [Ren et al., 2016; Liu
et al., 2021; Huang et al., 2022b; Song et al., 2025], which in turn inspire our ECMMD-based con-
ditional generator. Among the most closely related works are Ren et al. [2016] and Huang et al.
[2022b]. Ren et al. [2016] introduce an RKHS-to-RKHS operator-based embedding to measure
pointwise differences between conditional distributions. However, their formulation relies on strong
assumptions that may not hold in continuous domains [Song et al., 2009], and the estimator in-
curs a high computational cost, up to O(n3) or O(B3), where B is the batch size. In a related
direction, Huang et al. [2022b] propose a measure equivalent to ECMMD for aleatoric uncertainty
quantification and conditional sample generation. While their approach demonstrates strong empir-
ical performance, it requires Monte Carlo sampling and potentially repeated sampling from both the
generative model and the true conditional distribution, making it computationally intensive (up to
O(B2)). Furthermore, it remains unclear whether the learned generator consistently approximates
the true conditional distribution.

Recently, another line of work has focused on (un)conditional sampling using Maximum Mean
Discrepancy (MMD) gradient flows. In particular, Arbel et al. [2019]; Hagemann et al. [2024]; Her-
trich et al. [2024]; Galashov et al. [2025] have proposed constructing Wasserstein gradient flows
of the MMD and leveraging them for both conditional and unconditional sample generation. No-
tably, the recent work of Hagemann et al. [2024] considers the same conditional sampling problem
studied in this paper and proposes a flow-based model based on the energy distance (equivalently,
a negative distance kernel). However, the key distinction between their work and ours lies in our
MMD-GAN–based formulation, flexibility in the choice of kernels, as well as the rigorous theoreti-
cal analysis we provide, including finite-sample guarantees and comprehensive convergence results.

Simulation-based inference. A parallel line of work on conditional sample generation appears
in the simulation-based inference literature. One of the earliest and most popular approaches is
Approximate Bayesian Computation (ABC) (see Martin et al. [2024] and references within), which
aims to draw approximate samples from the posterior distribution. Recent advances leverage modern
machine learning to improve this process, typically by learning surrogate posteriors from simulations
using neural networks (see Cranmer et al. [2020] for a survey). For example, Ramesh et al. [2022]
propose a GAN-based approach, while others employ normalizing flows as a powerful alternative
[Rezende & Mohamed, 2015; Papamakarios et al., 2021; Linhart et al., 2022]. We refer readers to
Zammit-Mangion et al. [2024] for a comprehensive review of recent developments.
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B PROOFS OF THEOREM 4.1 AND COROLLARY 4.1

B.1 PROOF OF THEOREM 4.1

Under Assumption 2.1, Assumption 4.2 and Assumption 4.1 Theorem 4.1 follows as a special case
of Theorem E.1. To that end, from Theorem E.1 note that for any δ > 0 with probability atleast
1− δ, there exists an universal constant C > 0 such that,

L(ĝ) ≲θ

√
B2HS logS log n

n
+

poly log(n)

n
1−γ
d

(B.1)

+ 1− Φ (R)
m (

1− C exp
(
−R2

))︸ ︷︷ ︸
L1

+
√
d+mωEḡ

(
2R (HW)

− 1
d+m

)
︸ ︷︷ ︸

L2

+

√
log (1/δ)

n

for any R > 0 with E = [−R,R]d and,

ωEḡ (r) = sup {∥ḡ(x)− ḡ(y)∥2 : ∥x− y∥2 ≤ r,x,y ∈ E} .

Note that from Assumption 4.2 we know ḡ is uniformly continuous, hence,

ωEḡ (r) ≤ ωḡ(r) for all r > 0. (B.2)

Moreover, take R = Rn =
√

(log n) then we can simplify the terms L1 and L2 as follows. To that
end recall the expression L1 and note that Φ is the CDF of standard Gaussian distribution. Then as
n→ ∞ we have the lower bound

Φ(Rn) ≥ 1− exp(−R2
n/2)√

2πRn
,

and hence by Taylor series expansion,

Φ(Rn)
m ≥ 1−

m exp
(
−R2

n/2
)

√
2πRn

+O

(
exp

(
−R2

n

)
R2
n

)
.

Then as n→ ∞ and recalling Rn =
√
log n,

L1 = 1− Φ(Rn)
m
(
1− Ce−R

2
n

)
≲
m exp

(
−R2

n/2
)

√
2πRn

+ e−R
2
n ≲

1√
n
. (B.3)

With this choice of R = Rn and recalling (B.2) we can simplify L2 as,

L2 ≲ ωḡ

(
2
√
log n

(HW)
1

d+m

)
. (B.4)

The proof is now completed by combining the bounds from (B.1), (B.3) and (B.4).

B.2 PROOF OF COROLLARY 4.1

The proof of the first convergence follows directly by observing that ωḡ(r) → 0 as r → 0 by defini-
tion, and applying Theorem 4.1, the expression for L(ĝ) in (4.1), and the Dominated Convergence
Theorem (DCT).

The proof for the second convergence is an immediate consequence of the first convergence and
Sriperumbudur et al. [2010, Corollary 4].
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C ADDITIONAL EXPERIMENTS

In this section, we present full details about the experiments from Section 5 and additional experi-
ments to depict usefulness of our approach CGMMD across varied tasks. In all of the experiments
we take K to be the Gaussian kernel, and use the AdamW optimizer with default parameters.

C.1 SYNTHETIC SETUP: CIRCLE GENERATION

Much like the helix-generation experiment in Section 5.1, we now consider a synthetic sampling
setup where the task remains to generate conditional samples from a bivariate distribution, but here
the conditional distribution follows a circular rather than a spiral structure.

Specifically, let X ∼ N(0, 1), U ∼ Unif[0, 2π], and ε1, ε2
iid∼ N(0, σ2). Define the response

variables as

Y1 = X + 3 sin(U) + ε1, Y2 = X + 3 cos(U) + ε2. (C.1)

In this experiment we compare our proposed CGMMD with the GCDS method of Zhou et al. [2023].
As before, both methods employ the same two-hidden-layer feed-forward ReLU generator with
noise η concatenated to the input, and we evaluate performance at noise levels σ ∈ {0.2, 0.4, 0.6}.

At low level noises both methods perform similarly. However, at higher noise levels, CGMMD
preserves the circular shape of the conditional distribution (Figure 7), whereas GCDS tends to
produce elliptical distortions.
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Figure 7: Comparison of conditional generators on the Circle benchmark

In Figure 8, we also demonstrate how quickly our approach CGMMD picks up the circular structure
for the setting laid out in Section 5.1 at no more than 100 epochs even with a small two-hidden-layer
feed-forward ReLU generator network.

C.2 COMPARISONS WITH NORMALIZING FLOWS

In this section we compare the CGMMD with conditional normalizing flows in two settings. For
the first experiment we consider the setting from Section C.1 and for the second setting we consider
the two-moons benchmarking example from simulation based inference [Lueckmann et al., 2021;
Ramesh et al., 2022].
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Figure 8: Conditional samples of (Y1,Y2) | X = 1 for circle experiment, generated by CGMMD
while training.

C.2.1 CIRCLE GENERATION

Recall the conditional distribution (Y1,Y2) | X from (C.1). In this experiment, we compare our
proposed CGMMD with a conditional normalizing flow (cNF) following the general framework of
Winkler et al. [2019]. Unlike their coupling-layer-based architecture, our flow uses 2–3 Masked
Autoregressive Transform (MAF) layers [Papamakarios et al., 2017], interleaved with permutation
layers, as the core building blocks. For CGMMD as before we employ two-hidden-layer feed-
forward ReLU generator with noise η concatenated to the input, and we evaluate performance at
noise levels σ ∈ {0.4, 0.8}.
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Figure 9: Conditional samples of (Y1,Y2) | X from the circle experiment generated by CGMMD
and cNF. The left panel corresponds to σ = 0.4 and the right panel to σ = 0.8. The top row shows
samples conditional on X = 1, and the bottom row shows samples conditional on X = 4.

In Figure 9, we plot the conditional samples generated by CGMMD and cNF for X = 1 and X = 4
at noise levels σ = 0.4 and 0.8. We observe that when X belongs to a high-probability region (X =
1), both CGMMD and cNF produce accurate conditional samples. However, when X belongs to a
low-probability region (X = 4), CGMMD is able to retain the semblance of the circular structure,
whereas cNF fails to capture the underlying circular conditional distribution.
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C.2.2 TWO MOONS

In this section, we consider sampling from the unknown posterior distribution in the two-moons
benchmarking task from simulation-based inference [Lueckmann et al., 2021; Ramesh et al., 2022].
The true posterior exhibits global bimodality and a locally crescent-shaped structure, making it a
challenging benchmarking problem.

Here the data generating process has the following structure. Generate Y = (Y1, Y2) from the
uniform distribution on the unit square [−1, 1]2 and then given Y generate X as follows:

X | Y = (r cos(α) + 0.25, r sin(α)) +

(
−|Y1 + Y2|√

2
,
Y2 − Y1√

2

)
where α ∼ Unif(−π/2, π/2) and r ∼ N

(
0.1, 0.012

)
. Given paired samples from the above data

generating procedure, the objective is to learn the posterior distribution of Y | X . To that end we
implement the CGMMD and flow-based neural posterior estimation (SNPE) using MAF from the
sbi [Tejero-Cantero et al., 2020] package. For CGMMD we implement a ResNet-style generator
using LayerNorm residual blocks (MLP) and also a MDN-based generator with LayerNorm residual
blocks producing full-covariance Gaussian mixtures.
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Figure 10: Conditional samples of Y | X for the two-moons experiment, generated by CGMMD
and SNPE from sbi [Tejero-Cantero et al., 2020]. The top row shows samples conditional on X =
(−0.64, 0.162), while the bottom row corresponds to X = (−0.25, 0.633). Reference posterior
samples are taken from the sbibm package [Lueckmann et al., 2021].

In Figure 10, we show conditional samples generated by CGMMD and SNPE for X =
(−0.64, 0.162) and (−0.25, 0.633). These X values are chosen from the sbibm package [Lueck-
mann et al., 2021], which provides reference posterior samples for comparison. In both cases, SNPE
captures the bimodality and the local crescent-shaped structure, whereas CGMMD preserves the bi-
modality but does not fully capture the local crescent shape. The MLP model, however, captures
the presence of local curvature. This aligns with observations in Ramesh et al. [2022], where GAN-
based models were noted to struggle in capturing the local crescent structure.

C.3 ADDITIONAL RESULTS ON MNIST SUPER-RESOLUTION AND DENOISING

Here, we present the complete results (performance for all digits in {0, 1, . . . , 9}) for the image de-
noising and image super resolution task laid out in Section 5.2. For both denoising ( see Figure 11
and Figure 12) and 4X super-resolution task (see Figure 13 and Figure 14), we present the average
reconstructed images generated by CGMMD along with the corresponding standard-deviation im-
ages for all the digits. We conclude that on average our method can reconstruct the original images
with good precision. Moreover, the non-trivial pixel-wise standard deviation indicates substantial
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diversity in the generated images, supporting the effectiveness of the conditional sampling objective
of CGMMD.

Figure 11: Additional MNIST super-resolution results for digits {0, 1, 2, 3, 4}. Rows show (top to
bottom): ground-truth images, corresponding low-resolution inputs, high-resolution mean recon-
structions, and pixel-wise standard deviations.

Figure 12: Additional MNIST super-resolution results for digits {0, 1, 2, 3, 4}. Rows show (top to
bottom): ground-truth images, corresponding low-resolution inputs, high-resolution mean recon-
structions, and pixel-wise standard deviations.

For the 4X super-resolution task on MNIST we use the following architechture: The model be-
gins with two convolutional layers, interspersed with Batch Normalization and ReLU activations.
The resulting feature maps are then concatenated with the auxiliary noise input and passed through
two transposed convolutional layers for upsampling, each again interspersed with Batch Normaliza-
tion and ReLU. A final convolutional layer with a sigmoid activation generates the high-resolution
output.

Figure 13: Additional MNIST denoising results for digits {0, 1, 2, 3, 4}. Rows show (top to bottom):
ground-truth images, corresponding noisy inputs, denoised mean images, and pixel-wise standard
deviations.

For the denoising task on MNIST, we use a CNN-based autoencoder architecture. The model begins
with an encoder composed of two convolutional layers interspersed with ReLU activations and max-
pooling operations. The encoded features are flattened and passed through two fully connected
layers with ReLU activations. After feature extraction, the auxillary noise is concatenated with the
feature representation, and the combined vector is processed by another set of fully connected layers
with ReLU activations. The resulting tensor is reshaped and passed through a decoder consisting
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Figure 14: Additional MNIST denoising results for digits {5, 6, 7, 8, 9}. Rows show (top to bottom):
ground-truth images, corresponding noisy inputs, denoised mean images, and pixel-wise standard
deviations.

of two transposed convolutional layers, the first followed by a ReLU activation and the second by a
sigmoid activation, producing the denoised output.

C.4 ADDITIONAL RESULTS ON IMAGE DENOISING WITH CELEBHQ DATASET

Here we present additional examples of the image denoising task on the CelebA-HQ dataset [Karras
et al., 2018] from Section 5. The dataset consists of 30,000 high-quality images of celebrity faces.
For our experiments, we downsampled the images to 64 × 64 resolution and added Gaussian noise
with standard deviation σ = 0.25. To generate Figure 15, we selected images at random and applied
ℓ1 regularization to enhance sharpness.

Original Noisy Denoised Original Noisy Denoised Original Noisy Denoised Original Noisy Denoised

Figure 15: Performance of CGMMD on image denoising task. For each image, we plot the original
clean image, the noisy image and the denoised image generated by CGMMD.

C.5 SUPER-RESOLUTION WITH STL10 DATASET

In this section, we add details to the experiment from Section 5.3. Since nearest-neighbor methods
scale poorly in high dimensions, we embed images in a lower dimensional space via a ResNet-18
encoder followed by PCA and perform neighborhood computations in this space. Real-world data
are usually high-dimensional, but almost always reside on low-dimensional manifolds; leveraging
such embeddings improves reconstruction quality, as also noted by prior work [Li et al., 2015;
Ren et al., 2016; Huang et al., 2022b]. We additionally apply ℓ1 regularization to obtain sharper
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reconstructions. To reiterate, as shown in Figure 6, similar to the MNIST experiments, our method
is able to generate high-resolution images that closely resemble the ground truth.

C.6 IMAGE INPAINTING WITH FASHIONMNIST

In this section, we address the task of image inpainting on the FashionMNIST dataset [Xiao et al.,
2017], where the goal is to reconstruct the right half of each fashion product image from its left half.
In our setup, the model receives the left 28 × 14 portion of the image as input and produces a full
28× 28 image, with the generated 28× 14 right half augmented with the original left half.

Figure 16: Inpainted reconstructions of FashionMNIST [Xiao et al., 2017] images. From left to
right: the left-half input, the original full image, and the inpainted output produced by CGMMD,
respectively.

In Figure 16, we present the performance of CGMMD in reconstructing full images for each Fash-
ionMNIST product category. For most examples, the reconstructions resemble the true items, and
the results further demonstrate that CGMMD effectively captures the diversity across categories.
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D DESIGN CHOICES AND PRACTICAL CONSIDERATIONS

Choice of K and kn. While various kernels K can be used, standard choices like Gaussian
Kgauss
σ (x, y) = exp

(
−∥x−y∥2

2

2σ2

)
or Laplace Klap

σ (x, y) = exp
(
−∥x−y∥2

2σ

)
kernels usually perform

well empirically. Prior work also supports rational quadratic kernels and linear combinations of
kernels [Bińkowski et al., 2018], with recent studies showing that using multiple kernels can yield
more powerful discrepancy measures [Chatterjee & Bhattacharya, 2025; Schrab et al., 2023; 2022].
In particular for a collection of kernels Kr := {K1, . . . ,Kr} the loss function can be defined as,

L̂multi(g) :=

r∑
m=1

wm
nkn

n∑
i=1

∑
j∈NG(Xn)(i)

Hm (Wi,g,Wj,g)

where Hm is defined using Km as in (2.3) and wm is the weight associated with the kernel Km.
Moreover for computational gains it is possible to implement low-rank kernel approximations like
Random Fourier Features [Rahimi & Recht, 2007].

In our experiments, we use a Gaussian kernel with bandwidth set to
√
p, where p is the dimension of

Y, following the recommendation in Reddi et al. [2014]. However, there is no universal consensus
on how to choose the bandwidth parameter. A widely used alternative in the two-sample testing
literature is the median heuristic [Gretton et al., 2012], which sets the bandwidth to the median of
the pairwise distances.

To sidestep bandwidth selection altogether, some works on unconditional generative modeling with
MMD employ linear combinations of kernels with manually chosen bandwidths [Bińkowski et al.,
2018; Li et al., 2015]. Recently, Li et al. [2017] proposed learning the bandwidth (equivalently,
learning the kernel itself) via adversarial kernel learning, in which both the generator and the kernel
are jointly optimized through a min–max formulation. An analogous extension of CGMMD is
conceivable, but lies beyond the scope of the present work.

In addition to the kernel K, CGMMD also requires choosing the number of nearest neighbors kn.
Choosing kn too large increases the computational overhead as the nearest-neighbor is recomputed
in each batch, while choosing kn too small leads to loss of local information. In our experiments,
we select kn manually based on the specific experimental setting. This practice is consistent with
the observations and recommendations in Deb et al. [2020].

Choice of batch size. In the experimental setting of Section 5.1, we examine how batch size
affects the quality of generated samples. At noise level σ = 0.2, in the top row of Figure 17, we
present the scatterplots of generated (by CGMMD) samples (Y1,Y2) conditional on X = 1 at batch
sizes {200, 400, 600, 800} along with the conditional samples from true conditional distribution. In
the second and third rows of Figure 17, we further present the scatterplots restricted to the regions
Y1 ≤ −0.5 and Y2 ≥ 3, corresponding to low-mass tail areas.

We observe that as the batch size increases, the overall scatter decreases and the proportion of
outliers in the tail regions becomes smaller, resulting in a closer match to the true helix structure.
However, larger batch sizes come with additional computational cost, and across all our experiments,
we have found that using a batch size of a few hundred typically provides a good balance between
performance and efficiency.

Refinement for Discrete Supports. The estimator ĝ based on ̂ECMMD in (3.2) is well-defined
for both continuous and discrete PX . However, for discrete supports, nearest neighbor estimates
may introduce redundancy or omit relevant structure depending on kn. To mitigate this, when PX

has discrete support we refine the empirical objective as:

L̂D(g) := 1
n

∑n
i=1

1
|{j:Xj=Xi}|

∑
j:Xj=Xi

H(Wi,g,Wj,g),

and obtain the generator via ming∈G L̂D(g). Such refinements for discrete supports are also dis-
cussed in prior work on nearest neighbor methods [Deb et al., 2020; Huang et al., 2022a]. We apply
the proposed objective to generate digit images conditioned on class labels using the MNIST dataset.
Figure 18 shows the average of the generated samples for each digit class, indicating that the outputs
are consistent, with non-trivial variation across individual samples.
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Figure 17: Effect of batch size on the generation quality of CGMMD in the simulation setting of
Section 5.1.
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Figure 18: Mean and standard deviation of generated digit images.

Computational Complexity. For kn = O(1), the estimator in (3.1) can be computed in near-
linear time O(n log n) by first constructing the k-NN graph in O(n log n) time [Friedman et al.,
1977], followed by an O(n) summation. This is substantially more efficient than standard MMD
objectives, which require O(n2) time. Moreover, it may be insightful to leverage approximate near-
est neighbor methods [Douze et al., 2024; Malkov & Yashunin, 2018] to accelerate training. In our
experiments, however, we implement a helper function that computes nearest neighbors via brute-
force search, which incurs a computational cost of O(B2) where B denotes the batch size. This
can be improved to O(B logB) by implementing efficient nearest-neighbor search or approximate
nearest neighbor methods. While our focus is on conditional generation, the same objective can be
applied to unconditional generation by taking X independent of Y and solving the corresponding
optimization problem. Although outside the scope of this work, this approach may offer improved
computational efficiency at the cost of sample quality.

D.1 DERANDOMIZED CGMMD

Recall the ECMMD-based objective for CGMMD from Section 3. In the empirical objective
from (3.1), we introduce additional noise variables η1, . . . ,ηn ∼ Pη to train the generative model
g. However, this introduces an extra source of randomness in the training procedure. As a result,
different runs of the same algorithm on the same observed dataset may produce different conditional
samplers, thereby introducing inconsistencies in the learned model due to finite-sample variability.

To mitigate this issue, in this section we introduce a derandomization procedure, albeit at the cost of
additional computational overhead.

Note that the noise variables are sampled from a known distribution Pη , which is typically chosen
to be either Gaussian or Uniform. Leveraging this, we propose the following algorithm to modify
the empirical loss L̂ accordingly.
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1. Fix Mn ≥ 1. Then generate i.i.d. samples {ηi,1, . . . ,ηi,Mn
: 1 ≤ i ≤ n} ∼ Pη .

2. Let Wi,m,g = (Yi, g (ηi,m,Xi)), for all 1 ≤ i ≤ n and 1 ≤ m ≤Mn. Now define,

L̂DR(g) :=
1

nkn

n∑
i=1

∑
j∈NG(Xn)(i)

1

Mn

Mn∑
m=1

H (Wi,m,g,Wj,m,g) .

3. Approximate the conditional sampler by solving ĝDR = argming∈G L̂DR(g).

Note that for Mn = 1, the derandomized objective L̂DR reduces to the original empirical loss
L̂ from (3.1). The inner averaging over the generated noise variables is expected to reduce the
variance introduced by the stochasticity of the noise, thereby mitigating the additional randomness
in the training procedure.

Moreover, Theorem 5.2 from Chatterjee et al. [2024] shows that, under mild conditions (in fact,
without imposing any restrictions on the choice of Mn), the derandomized loss L̂DR converges
to the true ECMMD objective. Therefore, we can expect similar convergence guarantees as those
established in Theorem 4.1 to hold in this setting as well.
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E CONVERGENCE OF THE EMPIRICAL SAMPLER

In this section we establish convergence of the empirical sampler from (3.2) under more general
settings. For the reader’s convenience we briefly recall the notations, assumptions and details about
the class of neural networks from Section 4.

Recall that we observe samples {(Yi,Xi) : 1 ≤ i ≤ n} from a joint distribution PY X on Rp × Rd
such that the regular conditional distribution PY |X exists. Our aim is to generate samples from
this conditional distribution. Towards that, by the noise outsourcing lemma (see Theorem 5.10 from
Kallenberg and Lemma 2.1 from Zhou et al. [2023]) we know there exists a measurable function
ḡ such that Pḡ(η,X)|X = PY |X for η generated independently from Nm (0, Im) for any m ≥ 1.
From Section 3 recall that to estimate the conditional sampler ḡ, we consider the ECMMD from
Chatterjee et al. [2024] as a discrepancy measure. In particular we take a kernel K satisfying the
following.
Assumption E.1. The kernel K : Rp × Rp → R is positive definite and satisfies the following:

1. The kernel K is uniformly bounded, that is ∥K∥∞ < K for some K > 0 and Lipschitz
continuous with Lipschitz constant LK.

2. The kernel mean embedding µ : P(Y) → H is a one-to-one (injective) function. This is
also known as the characteristic kernel property [Sriperumbudur et al., 2011].

Now fix m ≥ 1, generate independent samples η1,η2, . . . ,ηn from Nm (0, Im) and take a class of
neural networks G (defined below). Next, we construct the kn-nearest neighbor graphG (Xn) on the
samples Xn := {X1, . . . ,Xn} with respect to the ∥·∥2. For any g ∈ G let Wi,g = (Yi, g (ηi,Xi))
for all i ∈ [n] and define,

H (Wi,g,Wj,g) := K (Yi,Yj)− K (Yi, g (ηj ,Xj))− K (g (ηi,Xi) ,Yj) + K (g (ηi,Xi) , g (ηj ,Xj))

for all 1 ≤ i ̸= j ≤ n and for any g ∈ G take,

L̂ (g) :=
1

nkn

n∑
i=1

∑
j∈NG(Xn)(i)

H (Wi,g,Wj,g) .

With the above definition, we estimate the true function ḡ as,

ĝ := argmin
g∈G

L (g)

For establishing convergence guarantees for the estimated conditional sampler ĝ we make the fol-
lowing technical assumptions.
Assumption E.2. The following conditions on PY X , the kernel K, the true conditional sampler ḡ
and the class G holds.

1. PX is supported on X ⊆ Rd for some d > 0 and ∥X1 −X2∥2 has a continuous distribu-
tion for X1,X2 ∼ PX .

2. There exists α,C1, C2 > 0 such that for X ∼ PX ,

P (∥X∥2 > t) ≤ C1 exp (−C2t
α) , ∀t > 0. (E.1)

3. The target conditional sampler ḡ : Rm × Rd → Rp is continuous with ∥ḡ∥∞ ≤ C0 for
some constant C0 > 0.

4. For any g ∈ G consider hg(x) = E [K(Y , ·)− K (g (η,X) , ·)|X = x] and assume that
there exists β1, β2 > 0 such that,

|⟨hg(x), hg(x1)− hg(x2)⟩| ≤ C3

(
1 + ∥x∥β1

2 + ∥x1∥β1
2 + ∥x2∥β1

2

)
∥x1 − x2∥β2

2 , (E.2)

for all x,x1,x2 ∈ X where C3 is a constant independent of g.

We take G to be a class of neural networks with the following details.
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Details of G: Let G = GH,W,S,B be the set of ReLU neural networks g : Rm × Rd → Rp with
depth H, width W , size S and ∥g∥∞ ≤ B. In particular, H denotes the number of hidden layers
and (w0, w2, . . . , wH) denotes the width of each layer where w0 = d + m and wH = p denotes
the input and output dimension respectively. We take W = max {w0, w1, . . . , wH}. Finally size
S =

∑H
i=1 wi (wi−1 + 1) refers to the total number of parameters of the network.

Moreover, we make the following assumptions about the parameters of the class G.

Assumption E.3. The network parameters of G satisfies H,W → ∞ such that,

HW → ∞ and
B2HS logS log n

n
→ 0

as n→ ∞. Additionally B ≥ C0 where C0 is defined in Assumption E.2.

Before stating our main result, for a function f , uniformly continuous on a set E, define the optimal
modulus of continuity on the set E as,

ωEf (r) := sup {∥f(x)− f(y)∥ : ∥x− y∥ ≤ r,x,y ∈ E} .

We are now ready to state our result on convergence of the empirical sampler.

Theorem E.1. Adopt Assumption E.1, Assumption E.3 and Assumption E.2. Take εn =(
kn logn

n

)1/d
(log n)1/α and,

νn =


kn logn

n (log n)2β2/α if d < 2β2
kn logn

n (log n)1+d/α if d = 2β2(
kn logn

n

)2β2/d

(log n)2β2/α if d > 2β2.

Let kn = o (nγ) for some 0 < γ < 1. Then for any δ > 0 with E = [−R,R]d+m,

L (ĝ) ≲θ
1√
n
+

√
B2HS logS log n

n
+ εβ2

n +
√
νn

+ 1− Φ (R)
m
(1− C1 exp (−C2R

α)) +
√
d+mωEḡ

(
2R (HW)

− 1
d+m

)
+

√
log (1/δ)

n

for all R > 0 with probability atleast 1− δ.

The above theorem provides finite sample bounds on the loss incurred by using the estimated con-
ditional sampler ĝ. We can use the explicit bound from Theorem E.1 to confirm that the conditional
distribution induced by the empirical sampler indeed converge to the true conditional distribution.

Corollary E.1. Adopt Assumption E.1, Assumption E.3 and Assumption E.2. Then for kn = o (nγ)
for some 0 < γ < 1,

E
[
MMD2

[
F , Pĝ(η,X)|X , Pḡ(η,X)|X

]
| ĝ
]
→ 0 a.s..

Finally to complete this section on convergence guarantees for the empirical sampler, using DCT
the result from Corollary E.1 can be relaxed to claim,

E
[
MMD2

[
F , Pĝ(η,X)|X , Pḡ(η,X)|X

]]
→ 0.

E.1 PROOF OF THEOREM E.1

For simplicity we will assume that p = 1. The proof for general p > 1 is similar but with additional
notational complexities. To begin with by Proposition 2.3 from Chatterjee et al. [2024] we know
that L (ḡ) = 0 for the true conditional sampler ḡ. Then we get the decomposition,

L (ĝ) = L (ĝ)− L (ḡ) ≤ sup
g∈G

∣∣∣L̂(g)− L(g)
∣∣∣+ ∣∣∣L̂(g̃)− L(g̃)

∣∣∣+ |L(g̃)− L(ḡ)|
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for any g̃ in G. We can now relax the upper bound to get,

L (ĝ) ≤ 2 sup
g∈G

∣∣∣L̂(g)− L(g)
∣∣∣︸ ︷︷ ︸

T1

+ inf
g̃∈G

|L(g̃)− L(ḡ)|︸ ︷︷ ︸
T2

(E.3)

We will bound terms T1 and T2 individually. We first start with T2.
Lemma E.1. Adopt the conditions and notations of Theorem E.1 and recall T2 from (E.3). Then
for any R > 0,

T2 ≲K 1− Φ (R)
m
(1− C1 exp (−C2R

α)) +
√
d+mωEg

(
2R (HW)

− 1
d+m

)
where ωEḡ (·) is the optimal modulus of continuity of ḡ on the subset E = [−R,R]d+m.

Next we bound the term T1 from (E.3). To that end we start by decomposing T1. Note that,

T1 ≤ sup
g∈G

∣∣∣L̂ (g)− E
[
L̂ (g) | Xn

]∣∣∣︸ ︷︷ ︸
T1,1

+ sup
g∈G

∣∣∣∣∣E [L̂ (g) | Xn

]
− 1

n

n∑
i=1

∥hg (Xi)∥2K

∣∣∣∣∣︸ ︷︷ ︸
T1,2

+ sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

∥hg (Xi)∥2K − L (g)

∣∣∣∣∣︸ ︷︷ ︸
T1,3

. (E.4)

In the following we bound each of the terms T1,1, T1,2 and T1,3 separately. First we bound the term
T1,1.
Lemma E.2. Adopt the conditions and notations of Theorem E.1 and recall T1,1 from (E.4). Then
for any δ > 0, with probability at least 1− δ,

T1,1 ≲K,d
1

n
+

√
B2HS logS log n

n
+

√
log (2/δ)

n
.

Next we bound the term T1,2.
Lemma E.3. Adopt the conditions and notations of Theorem E.1 and recall T1,2 from (E.4). Recall

εn =
(
kn logn

n

)1/d
(log n)1/α and,

νn =


kn logn

n (log n)2β2/α if d < 2β2
kn logn

n (log n)1+d/α if d = 2β2(
kn logn

n

)2β2/d

(log n)2β2/α if d > 2β2.

Then for kn = o (n/ log n) and any δ > 0, with probability 1− δ,

T1,2 ≲d,K
1

n2
+ εβ2

n +
√
νn +

√
log (1/δ)

n
.

Finally we bound the remaining term T1,3.
Lemma E.4. Adopt the conditions and notations of Theorem E.1 and recall T1,3 from (E.4). Then
for any δ > 0, with probability at least 1− δ,

T1,3 ≲K
1√
n
+

√
B2HS logS log n

n
+

√
log (1/δ)

n
.

Now to complete the proof of Theorem E.1 we combine the bound from (E.3) and the bounds from
Lemma E.1, Lemma E.2, Lemma E.3 and Lemma E.4 to conclude,

L (ĝ) ≲d,K
1√
n
+

√
B2HS logS logn

n
+ ε2β2

n +
√
νn

+ 1− Φ(R)m (1− C1 exp (−C2R
α)) +

√
d+mωE

ḡ

(
2RH− 1

d+mW− 1
d+m

)
+

√
log (1/δ)

n

for any R > 0 with probability atleast 1− δ.
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E.1.1 PROOF OF LEMMA E.1

Recalling the definition of L from (2.2), for any g̃ ∈ G we get,

|L (g̃)− L (ḡ)| ≲ E [|K (Y , ḡ (η,X))− K (Y , g̃ (η,X))|]
+ E [|K (ḡ (η,X) , ḡ (η′,X))− K (g̃ (η,X) , g̃ (η′,X))|]

where η,η′ ∼ Nm (0, Im) are generated independent of X . Now take E = [−R,R]d+m for any
R > 0. Then recalling the bound on K from Assumption E.1 we can now relax the above upper
bound as,∣∣∣∣L (g̃)− L (ḡ)

∣∣∣∣ ≲ P ((η,X) ∈ Ec)

+ E [|K (Y , ḡ (η,X))− K (Y , g̃ (η,X))|1 {(η,X) ∈ E}]
+ E [|K (ḡ (η,X) , ḡ (η′,X))− K (g̃ (η,X) , g̃ (η′,X))|1 {(η,X) , (η′,X) ∈ E}]

Next we use the Lipschitz property of K from Assumption E.1 to further relax the above bound as,∣∣∣∣L (g̃)− L (ḡ)

∣∣∣∣ ≲K P ((η,X) ∈ Ec) + E [∥ḡ (η,X)− g̃ (η,X)∥2 1 {(η,X) ∈ E}]

≲K P ((η,X) ∈ Ec) + ∥(g̃ − ḡ)1E∥∞ (E.5)

Now by (E.1) and recalling that η is independent of X we know,

P ((η,X) ∈ Ec) ≤ 1− Φ (R)
m
(1− C1 exp (−C2R

α)) . (E.6)

Hence continuing the trail of inequalities from (E.5) and recalling that the choice of g̃ ∈ G was
arbitrary we can show,

inf
g̃∈G

∣∣∣∣L (g̃)− L (g)

∣∣∣∣ ≲K 1− Φ (R)
m
(1− C1 exp (−C2R

α)) + inf
g̃∈G

∥(g̃ − ḡ)1E∥∞

Now by Assumption E.2 recall that the target conditional sampler ḡ is continuous and ∥ḡ∥∞ ≤ C0.
Now for all n large enough, take L = ⌊

√
H⌋ and N = ⌊

√
W⌋. Then by Theorem 4.3 from Shen

et al. [2020] there exists a ReLU network g̃0 with depth 12L + 14 + 2 (d+m), maximum width
3d+m+3 max

{
(d+m)

⌊
N

1
d+m

⌋
, N + 1

}
and ∥g̃0∥∞ ≤ C0 such that,

∥(g̃0 − ḡ)1E∥∞ ≲
√
d+mωEg

(
2RN− 2

d+mL− 2
d+m

)
where ωEḡ (·) is the optimal modulus of continuity of ḡ on the set E (note that this is well defined
since ḡ is uniformly continuous on E). Now note that by definition of L andN , we can easily extend
g̃0 to a ReLU network g̃ ∈ G such that g̃0 = g̃. Hence,

inf
g̃∈G

∥(g̃ − ḡ)1E∥∞ ≤ ∥(g̃0 − ḡ)1E∥∞ ≲
√
d+mωEḡ

(
2RH− 1

d+mW− 1
d+m

)
.

E.1.2 PROOF OF LEMMA E.2

From Assumption E.1 recall K is bounded and Lipschitz. Hence applying Corollary G.1, we get
that,

P

T1,1 ≲K
1

n
E

sup
g∈G

n∑
i=1

√
1 +

di (Xn)

kn
Zig (ηi,Xi) | Xn

+

√
log (2/δ)

n
| Xn

 ≥ 1− δ

where Z1, . . . , Zn are generated independently from N(0, 1) and di (Xn) is the degree (in-degree +
out-degree) of Xi in G (Xn) for all i ∈ [n]. A simple application of tower property of conditional
expectation shows that with probability at least 1− δ,

T1,1 ≲K
1

n
E

sup
g∈G

n∑
i=1

√
1 +

di (Xn)

kn
Zig (ηi,Xi) | Xn

+

√
log (2/δ)

n
. (E.7)
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Now consider the set,
Gn := {(g (η1,X1) , . . . , g (ηn,Xn)) : g ∈ G}

and for any v1 = (v1,1, . . . , vn,1) and v2 = (v1,2, . . . , vn,2) consider the empirical distance,

dn,∞ (v1,v2) :=
n

max
i=1

|vi,1 − vi,2| . (E.8)

Fix ε > 0 and take Cn,ε to be the covering number of Gn at scale ε with respect to the empirical
distance dn,∞ and let Gn,ε to be one such covering set. By Lemma 2.1 from Jaffe et al. [2020] we
know that,

di (Xn) ≲d kn for all i ∈ [n]. (E.9)
Then by considering elements in Gn,ε we can now easily show,

1

n
E
[
sup
g∈G

n∑
i=1

√
1 +

di (Xn)

kn
Zig (ηi,Xi) | Xn

]

≲d ε+
1

n
E

 sup
vg∈Gn,ε

n∑
i=1

√
1 +

di (Xn)

kn
Zivg,i | Xn

 (E.10)

where vg = (vg,1, . . . ,vg,n) with vg,i = g (ηi,Xi) for all i ∈ [n] and g ∈ G. Now by applying
Lemma H.1 and once again using the bound from (E.9) we get,

1

n
E

[
sup

vg∈Gn,ε

n∑
i=1

√
1 +

di (Xn)

kn
Zivg,i | η̄n,Xn

]
≲

√
log Cn,ε

n
sup

vg∈Gn,ε

√√√√ n∑
i=1

(
1 +

di (Xn)

kn

)
|vg,i|2

≲d

√
log Cn,ε

n
sup

vg∈Gn,ε

√√√√ n∑
i=1

|vg,i|2

≲ B
√

log Cn,ε

n
(E.11)

where η̄ = (η1, . . . ,ηn) and the final bound follows by recalling that ∥g∥∞ ≤ B for all g ∈ G.
Now take pdim (G) to be the pseudo-dimension of the class G. Then by Theorem 12.2 from Anthony
& Bartlett [2009] we know that for large enough n,

log Cn,ε ≤ pdim (G) log
(

2eBn
εpdim (G)

)
≤ pdim (G) log

(
2eBn
ε

)
Now substituting bounds on pdim (G) from Bartlett et al. [2019] we get,

log Cn,ε ≲ HS logS log
2eBn
ε

(E.12)

Choosing ε = 1/n and combining (E.7), (E.10), (E.11) and (E.12) we get,

T1,1 ≲K,d
1

n
+

√
B2HS logS log (2eBn2)

n
+

√
log (1/δ)

n
(E.13)

with probability at least 1 − δ. Now to further simplify the upper bound note that, by definition
H ≥ 1 and hence,

B2HS logS log
(
2eBn2

)
n

≲
B2HS logS log n

n
+

B2HS logS logB
n

.

By definition note that w0 = d +m ≥ 2 and wi ≥ 1 for all 1 ≤ i ≤ H. Then S ≥ 4 and hence
recalling Assumption E.3 we get B2 = o (n/ log n), implying logB = O (log n). Hence we can
simplify the upper bound as,

B2HS logS log
(
2eBn2

)
n

≲
B2HS logS log n

n
. (E.14)

Now substituting in (E.13) we conclude,

T1,1 ≲K,d
1

n
+

√
B2HS logS log n

n
+

√
log (1/δ)

n
with probability at least 1− δ.
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E.1.3 PROOF OF LEMMA E.3

Recall the function hg from (E.2). Then note that,

T1,2 = sup
g∈G

∣∣∣∣∣∣ 1

nkn

n∑
i=1

∑
j∈NG(Xn)(i)

⟨hg (Xi) , hg (Xi)− hg (Xj)⟩K

∣∣∣∣∣∣ .
Now by Assumption E.2 we get,

E [T1,2] ≲ E

 1

nkn

n∑
i=1

∑
j∈NG(Xn)(i)

(
1 + ∥Xi∥β1

2 + ∥Xj∥β1

2

)
∥Xi −Xj∥β2

2


= E

 1

kn

∑
j∈NG(Xn)(1)

(
1 + ∥X1∥β1

2 + ∥Xj∥β1

2

)
∥X1 −Xj∥β2

2


= E

[(
1 + ∥X1∥β1

2 +
∥∥XN(1)

∥∥β1

2

)∥∥X1 −XN(1)

∥∥β2

2

]
, (E.15)

where the first equality follows by exchangeability and the second follows by choosing
N(1) to be an uniformly selected index from NG(Xn)(1), the neighbors of vertex X1.
Now take Mn = C (log n)

1/α, where C > 0 is a universal constant, and let En ={
max

{
∥X1∥2,

∥∥XN(1)

∥∥
2

}
≤Mn

}
. Now,

E
[(

1 + ∥X1∥β1

2 +
∥∥XN(1)

∥∥β1

2

)∥∥X1 −XN(1)

∥∥β2

2

]
≲ E

[(
1 + ∥X1∥β1

2 + ∥XN(1)∥β1

2

)
∥X1 −XN(1)∥β2

2 1 {Ecn}
]

+ E
[(

1 + ∥X1∥β1

2 + ∥XN(1)∥β1

2

)
∥X1 −XN(1)∥β2

2 1 {En}
]

(E.16)

Next, for the first term, by Cauchy-Schwartz inequality we find,

E
[(

1 + ∥X1∥β1

2 +∥XN(1)∥β1

2

)
∥X1 −XN(1)∥β2

2 1 {Ecn}
]

≤

√
E
[(

1 + ∥X1∥β1

2 + ∥XN(1)∥β1

2

)2
∥X1 −XN(1)∥2β2

2

]√
P (Ecn)

By the tail condition from (E.1), Lemma D.2 from Deb et al. [2020] and choosing C large enough
we can conclude that the first term on RHS is bounded and P (Ecn) ≲ exp (−4 log n) = n−4. Hence,

E
[(

1 + ∥X1∥β1

2 + ∥XN(1)∥β1

2

)
∥X1 −XN(1)∥β2

2 1 {Ecn}
]
≲

1

n2
.

Substituting in the bounds from (E.16) and once again using Cauchy-Schwartz inequality we get,

E
[(

1 + ∥X1∥β1

2 +
∥∥XN(1)

∥∥β1

2

)∥∥X1 −XN(1)

∥∥β2

2

]
≲

1

n2
+

√
E
[(

1 + ∥X1∥β1

2 + ∥XN(1)∥β1

2

)2]√
E
[
∥X1 −XN(1)∥2β2

2 1 {Ecn}
]

≲
1

n2
+

√
E
[
∥X1 −XN(1)∥2β2

2 1 {Ecn}
]

(E.17)

where the final bound follows by the tail condition from (E.1) and Lemma D.2 from Deb et al.
[2020]. To proceed with the second term define N = N (Mn, ε) be the covering number of the ball
B (Mn) = {x ∈ Rd : ∥x∥2 ≤ Mn} with respect to the ∥ · ∥2 norm, where ε > 0 is the diameter of
the covering balls. We now begin by expressing the expectation as a tail integral,

E
[∥∥X1 −XN(1)

∥∥2β2

2
1
{
max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
}
}
≤Mn

]
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≲ 2β2

∫ 2Mn

0

ε2β2−1P
(∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn

)
dε

≲ ε2β2
n +

∫ 2Mn

εn

ε2β2−1P
(∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn

)
dε (E.18)

where the bound follows by noticing that εn ≤ Mn for large enough C. In the following we will
bound the second term. Suppose B1, . . . ,BN are the covering balls of B (Mn) with respect to the
∥ · ∥2 norm. Now define,

S := {i : PX (Bi) ≤ Ckn log n/n} , (E.19)

to be the collection of covering balls with probability under PX smaller than Cknlog n/n. Then for
t ∈ (εn,Mn) we have the following decomposition,

P
(∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn

)
≲ P

∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn,X1,XN(1) ∈

⋃
i ̸∈S

Bi

+ P

(
X1 ∈

⋃
i∈S

Bi

)

≲ P

∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn,X1,XN(1) ∈

⋃
i ̸∈S

Bi

+
kn logn

n
N ,

(E.20)

where the first inequality follows from Lemma D.2 in Deb et al. [2020] and the second inequality
is a simple application of the union bound. To bound the first term note that

∥∥X1 −XN(1)

∥∥
2
≥ ε

implies that for all j such that Xj is not a kn nearest neighbor of Xi, ∥Xi −Xj∥2 ≥ ε. Hence,

P

∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn,X1,XN(1) ∈

⋃
i̸∈S

Bi


≤ P

∃ℓ, j1, . . . , jn−kn−1 all distinct such that Xℓ ∈
⋃
i ̸∈S

Bi, min
1≤v≤n−kn−1

∥Xℓ −Xjv∥2 ≥ ε


≤

∑
ℓ,j1,...,jn−kn−1

all distinct

P

Xℓ ∈
⋃
i ̸∈S

Bi, min
1≤v≤n−kn−1

∥Xℓ −Xjv∥2 ≥ ε

 (E.21)

To bound the above probability, suppose B(Xℓ) ∈ {Bi : i ̸∈ S} denotes the covering ball where Xℓ

lies. Then for a distinct collection of indices ℓ, j1, . . . , jn−kn−1,

P

Xℓ ∈
⋃
i ̸∈S

Bi, min
1≤v≤n−kn−1

∥Xℓ −Xjv∥2 ≥ ε

 ≤ P (Xjv ̸∈ B(Xℓ), 1 ≤ v ≤ n− kn − 1)

To further bound the above probability note that,

P (Xjv ̸∈ B(Xℓ), 1 ≤ v ≤ n− kn − 1|Xℓ) = (1− P (X ∈ B(Xℓ)|Xℓ))
n−kn−1

≤
(
1− Ckn log n

n

)n−kn−1

,

where X ∼ PX is generated independent of Xℓ and the final bound follows by recalling the defini-
tion of B (Xℓ) and S . Hence recalling the bound from (E.21) we have,

P
(∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn,X1,XN(1) ∈

⋃
i̸∈S

Bi

)

≤ nkn+1

(
1− Ckn logn

n

)n−kn−1

Using the fact kn = o(n/ log n) and choosing C large enough we get,

nkn+1

(
1− Ckn log n

n

)n−kn−1

≲
1

n2
.
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Hence plugging this back into (E.20) we have,

P
(∥∥X1 −XN(1)

∥∥
2
≥ ε,max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
} ≤Mn

)
≲

1

n2
+
kn log n

n
N .

Recalling the definition of N we know that,

N ≲d
(log n)

d/α

εd
.

Since ε ∈ (εn, 2Mn), then by definition of εn and Mn notice that,

1

n2
+
kn log n

n
N ≲d

kn log n

n

(log n)
d/α

εd
.

Plugging this bound back in (E.18) shows that,

E
[ ∥∥X1 −XN(1)

∥∥2β2

2
1
{
max{∥X1∥2 ,

∥∥XN(1)

∥∥
2
}
}
≤Mn

]
≲d ε

2β2
n +

kn (log n)
1+d/α

n

∫ 2Mn

εn

ε2β2−d−1dε.

≲d ε
2β2
n + νn

where the final bound follows by evaluating the integral. Now substituting the bound in (E.17) and
recalling (E.15) we get,

E [T1,2] ≲d
1

n2
+ εβ2

n +
√
νn

The proof is now completed by recalling the bound on K from Assumption E.1, (E.9) and following
the combinatorial arguments from proof of Lemma B.2 in Chatterjee et al. [2024] with an application
of McDiarmid’s bounded difference inequality on the statistic T1,2.

E.1.4 PROOF OF LEMMA E.4

By a standard symmetrisation argument,

E [T1,3] ≲ E

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

σi ∥hg (Xi)∥2K

∣∣∣∣∣
]

where σ1, . . . , σn are generated independently from Rademacher(1/2). Then expanding the func-
tion hg we get,

E [T1,3] ≲ E

[
1

n

∣∣∣∣∣
n∑

i=1

σiK
(
Yi,Y

′
i

)∣∣∣∣∣+ sup
g∈G

1

n

∣∣∣∣∣
n∑

i=1

σiK (Yi, gi)

∣∣∣∣∣+ sup
g∈G

1

n

∣∣∣∣∣
n∑

i=1

σiK
(
gi, g

′
i

)∣∣∣∣∣
]

(E.22)

where, for all i ∈ [n], Yi,Y
′
i are generated independently from PY |X=Xi

, and gi =
g (ηi,Xi) , g

′
i = g (ηi,Xi) where {ηi : i ∈ [n]} and {η′

i : i ∈ [n]} are generated independently
from Nm (0, Im). By Khintchine’s inequality,

E

[
1

n

∣∣∣∣∣
n∑
i=1

σiK (Yi,Y
′
i )

∣∣∣∣∣
]
≲

1

n

√√√√E

[
n∑
i=1

K (Yi,Y ′
i )

2

]
≲K

1√
n
,

where the final bound follows by recalling that the kernel K is bounded. Substituting this bound
back into (E.22) we get,

E [T1,3] ≲K
1√
n
+ E

[
sup
g∈G

1

n

∣∣∣∣∣
n∑
i=1

σiK (Yi, gi)

∣∣∣∣∣
]
+ E

[
sup
g∈G

1

n

∣∣∣∣∣
n∑
i=1

σiK (gi, g
′
i)

∣∣∣∣∣
]

(E.23)

To further bound the last two terms consider,

Gn := {g⃗ := (g1, . . . , gn) : g ∈ G}
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and,

G′
n := {g⃗′ := (g1, . . . , gn, g

′
1, . . . , g

′
n) : g ∈ G} .

Moreover consider dq,∞(·, ·) be the ℓ∞ distance on Rq for any q ≥ 1 (see (E.8)). Now fix ε > 0 and
let Cn,ε and C′

n,ε be the covering numbers of Gε and G′
n at scale ε with respect to the empirical dis-

tances dn,∞ and d2n,∞ respectively. Let Gn,ε and G′
n,ε be covering sets of Gn and G′

n respectively.
Now using the Lipschitz property of K we can show,

E

[
sup
g∈G

1

n

∣∣∣∣∣
n∑
i=1

σiK (Yi, gi)

∣∣∣∣∣ | Dn

]
≲K ε+ E

[
sup

g⃗∈Gn,ε

1

n

∣∣∣∣∣
n∑
i=1

σiK (Yi, gi)

∣∣∣∣∣ | Dn

]

≲ ε+

√
log Cn,ε
n

sup
g⃗∈Gn

(
n∑
i=1

K2 (Yi, gi)

)1/2

where Dn = {(Yi,ηi,Xi) : i ∈ [n]} and the last bound follows by Lemma B.4 from Zhou et al.
[2023]. Recalling that K is bounded from Assumption E.1 we conclude,

E

[
sup
g∈G

1

n

∣∣∣∣∣
n∑
i=1

σiK (Yi, gi)

∣∣∣∣∣ | Dn

]
≲K ε+

√
log Cn,ε
n

As in (E.12), taking ε = 1/n, invoking Theorem 12.2 from Anthony & Bartlett [2009], substitut-
ing the bounds on pseudo-dimension from Bartlett et al. [2019] and using the tower property of
conditional expectations we get,

E

[
sup
g∈G

1

n

∣∣∣∣∣
n∑
i=1

σiK (Yi, gi)

∣∣∣∣∣
]
≲K

1

n
+

√
B2HS logS log (2eBn2)

n
.

Similarly we can show,

E

[
sup
g∈G

1

n

∣∣∣∣∣
n∑
i=1

σiK (gi, g
′
i)

∣∣∣∣∣
]
≲K

1

n
+

√
B2HS logS log (8eBn2)

n
.

Substituting the above bounds in (E.23) we get,

E [T1,3] ≲K
1√
n
+

√
B2HS logS log (8eBn2)

n

Recalling the boundedness of the kernel K and using McDiarmid’s bounded difference inequality
we get,

T1,3 ≲K
1√
n
+

√
B2HS logS log (8eBn2)

n
+

√
log (1/δ)

n

with probability atleast 1− δ. Recalling the bound from (E.14) we conclude,

T1,3 ≲K
1√
n
+

√
B2HS logS log n

n
+

√
log (1/δ)

n

with probability at least 1− δ.

E.2 PROOF OF COROLLARY E.1

By definition one can immediately recognise that,

E
[
MMD2

[
F , Pĝ(η,X)|X , Pḡ(η,X)|X

]
| ĝ
]
= L (ĝ) a.s.

Now fix ε > 0. Then we can choose Rε > 0 large enough such that,

1− Φ (R)
m
(1− C1 exp (−C2R

α)) ≤ ε

4
.
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Moreover recall that ḡ is continuous and hence uniformly continuous in E = [−Rε, Rε]d+m. Thus
we know ωEḡ (r) → 0 as r → 0. Hence choosing n large enough and recalling Assumption E.3
shows that,

√
d+mωEḡ

(
2Rε (HW)

− 1
d+m

)
≤ ε

4
,

and once again recalling Assumption E.3,

1√
n
+

√
B2HS logS log n

n
+ εβ2

n +
√
νn ≤ ε

4
.

where εn, νn are defined in Theorem E.1. Now choosing δ = exp
(
−nε2/16

)
and applying the

bound from Theorem E.1 we get,

L(ĝ) ≲d,m,p,K ε with probability at least 1− exp
(
−nε2/16

)
for all n large enough.

The proof is now completed by an application of the Borel-Cantelli lemma.
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F WHEN DOES ASSUMPTION (E.2) HOLDS?

As discussed in Remark 4.1, the assumption in (E.2) (and in Assumption 4.2.4) is perhaps the most
crucial assumption for convergence of the empirical estimator. This assumption was also considered
in the works of Huang et al. [2022a]; Deb et al. [2020]; Azadkia & Chatterjee [2021]; Dasgupta
& Kpotufe [2014] for establishing rates of convergence of nearest neighbor based estimates. In
this section we discuss when such assumptions might hold. To that end consider the following
conditions.
Assumption F.1. Consider the following regularity conditions:

• The conditional density of Y given X = x, say f (·|x) exists, is positive everywhere in its
support, differentiable with respect to x (for every y) and for all 1 ≤ i ≤ d, the function
|(∂/∂xi) log f (y|x)| is bounded above by a polynomial in ∥y∥2 and ∥x∥2.

• For any ℓ ≥ 1,E[∥Y ∥ℓ2|X = x] is bounded above by a polynomial in ∥x∥2.

• Suppose that for all g ∈ G, the conditional density of g (η,X) given X = x, say fg (·|x)
exists and define,

rg (y,x) =
fg (y|x)
f (y|x)

to be the density ratio such that supg∈G |rg(y,x)| ≲ (1 + ∥y∥ζ2 + ∥x∥ζ2) for some ζ > 0.
Furthermore, assume that for any x1,x2 ∈ Rd,

sup
g∈G

|rg (y,x1)− rg (y,x2)| ≲ (1 + ∥y∥γ2 + ∥x1∥γ2 + ∥x2∥γ2) ∥x1 − x2∥2 , (F.1)

for some γ > 0.

In the following we now show that the locally lipschtiz property from (E.2) (and also Assumption
4.2.4) holds whenever Assumption F.1 is satisfied.
Proposition F.1. Suppose the kernel K is bounded. Then under Assumption F.1, (E.2) is satisfied
with some C3, β1 > 0 and β2 = 1.

The main message of Proposition F.1 is that the locally Lipschitz condition in (E.2) is satisfied when
the conditional density f(· | x) is a smooth function of ∥x∥2, and when the density ratio induced by
applying any function from the class G exhibits sufficiently regular behavior. Similar conditions on
density ratios have also been considered in prior work on conditional sampling [Zhou et al., 2023].

F.1 PROOF OF PROPOSITION F.1

Fix x1,x2 ∈ X . Also fix g ∈ G and for notational convenience let h = hg where hg is defined in
(E.2). Let k ∈ K such that ∥k∥K is bounded, then,∣∣∣∣〈k, h(x1)− h(x2)

〉
K

∣∣∣∣ = |E [k(Y )(1− rg(Y ,x1))|X1 = x1]− E [k(Y )(1− rg(Y ,x2))|X2 = x2]|

≤
∫
|k(y)(1− rg(y,x1)) (f(y|x1)− f(y|x2))| dy

+

∫
|k(y)(rg(y,x1)− rg(y,x2))f(y|x2)| dy

≲ ∥k∥K
(∫

|1− rg(y,x1)| |f(y|x1)− f(y|x2)| dy

+

∫
|rg(y,x1)− rg(y,x2)| f(y|x2)dy

)
,

where the last inequality follows by recalling the bounds on the kernel K, and the noticing that
|k(y)| = |⟨k,K(y, ·)⟩HK

| ≲K ∥k∥K. By using the mean value theorem along with the bounds on
|(∂/∂xi) log f (y|x)| for all 1 ≤ i ≤ d, the moment bounds from Assumption F.1, the polynomial
bounds on rg and (F.1) we now get,

|⟨k, h(x1)− h(x2)⟩K| ≲ ∥k∥K
(
1 + ∥x1∥β1

2 + ∥x2∥β1

2

)
∥x1 − x2∥2 ,
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for some β1 > 0. By Theorem 4.1 from Park & Muandet [2020], h(x) ∈ K for all x ∈ X . Recalling
the bound on K it is easy to notice that supX ∥h(x)∥K ≲ 1. Hence we now conclude,

|⟨h(x), h(x1)− h(x2)⟩K| ≲
(
1 + ∥x1∥β1

2 + ∥x2∥β1

2

)
∥x1 − x2∥2 .
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G UNIFORM CONCENTRATION UNDER NEAREST NEIGHBOR INTERACTIONS

In this section we provide a general overview about uniform concentration of non-linear statistics
under nearest neighbor based weak interactions. The results presented here are crucially used for
the proof of convergence of the proposed empirical sampler.

We begin by setting up the notations. Take n ≥ 2, d,m ≥ 1, let Xn := {x1,x2, . . . ,xn} be a
collection of n points in Rd and define G (Xn) to be the directed kn-nearest neighbor graph on Xn

with respect to the ∥·∥2 norm. Moreover, consider G to be a collection of functions g : Rm×Rd → R
and for a function h : R2 × R2 → R define the non-linear statistic,

Tn (g) :=
1

nkn

n∑
i=1

∑
j∈NG(Xn)(i)

h (Wi,g,Wj,g) (G.1)

where for all i ∈ [n], Wi,g := (Yi, g (ηi,xi)) with independent and identically distributed random
variables {(ηi, Yi) : 1 ≤ i ≤ n} ∈ Rm × R and the set

NG(Xn)(i) := {j ∈ [n] : xi → xj is a directed edge in G (Xn)}

for all 1 ≤ i ≤ n. In the following theorem we establish uniform concentration of Tn (g) around
it’s expectation.

Theorem G.1. Consider the non-linear statistic Tn (g) defined in (G.1) for all g ∈ G. Moreover,
assume that the function h : R2 × R2 → R is Lipschitz continuous with Lipschitz constant L > 0
and is symmetric, that is h (w,w′) = h (w′,w) for any w,w′ ∈ R2. Then,

E
[
sup
g∈G

Tn (g)− E [Tn (g)]

]
≲L

1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn
Zig (ηi,xi)

]
(G.2)

where for all i ∈ [n], di is the degree (in-degree + out-degree) of the vertex xi in G (Xn) and
{Zi : i ∈ [n]} are generated independently from N(0, 1).

Remark G.1. The results in Theorem G.1 can easily be extended to the case where g ∈ G maps to
Rp for some p > 1. Indeed in such setting the result from (G.2) becomes,

E
[
sup
g∈G

Tn (g)− E [Tn (g)]

]
≲L

1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn

Z⊤
i g (ηi,xi)

]
where Zi ∈ Rp for all i ∈ [n] are now generated independently from N(0, Ip). The proof is exactly
similar with additional notations and hence is omitted.

While Theorem G.1 provides bounds on uniform concentration in expectation, an application of Mc-
Diarmid’s bounded difference inequality (see Theorem 6.5 of Boucheron et al. [2003]) extends these
results to high-probability bounds on uniform concentration in absolute difference. We formalize
the result in the following.

Corollary G.1. Adopt notations and settings from Theorem G.1. Moreover, assume that the func-
tion h is uniformly bounded. Then for any δ > 0, with probability at least 1− δ,

sup
g∈G

|Tn(g)− E [Tn(g)]| ≲L,h
1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn
Zig (ηi,xi)

]
+

√
log (2/δ)

n

The result from Corollary G.1 can easily be extended to the case when g ∈ G maps to Rp for some
p > 1. Indeed following the discussion from Remark G.1 one can show,

sup
g∈G

|Tn(g)− E [Tn(g)]| ≲L,h
1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn

Z⊤
i g (ηi,xi)

]
+

√
log (2/δ)

n

holds with probability at least 1− δ.
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G.1 PROOF OF THEOREM G.1.

To begin with we set up some additional notations. For simplicity we take N(i) = NG(Xn)(i) for
all i ∈ [n]. Define,

t (w̄n) :=
1

nkn

n∑
i=1

∑
j∈NG(Xn)(i)

h (wi,wj) for all w̄n := (w1, . . . ,wn) ∈ R2n.

Then note that Tn (g) = t
(
W̄n,g

)
where W̄n,g := (W1,g, . . . ,Wn,g). Now take W̄ ′

n,g :=(
W ′

1,g, . . . ,W
′
n,g

)
to be an independent copy of W̄n,g and note that,

E
[
sup
g∈G

Tn (g)− E [Tn (g)]

]
≤ E

[
sup
g∈G

t
(
W̄n,g

)
− t
(
W̄ ′

n,g

) ]
. (G.3)

To complete the proof it is now enough to bound the right hand side of (G.3). To this end we begin
by defining a partial difference operator. Take m ∈ [n] and for v,v′ ∈ R2 define,

Dm
v,v′t (w̄n) := t (w1, . . . ,wm−1,v,wm+1, . . . ,wn)− t

(
w1, . . . ,wm−1,v

′,wm+1, . . . ,wn

)
. (G.4)

Moreover for any i ∈ [n] let,

N̄(i) := {j ∈ [n] : xj → xi is a directed edge in G (Xn)} .
Next, we first show a Lipschitz type property for the partial difference operator D.
Lemma G.1. Fix m ∈ [n] and take w̄n := {w1, . . . ,wn} ∈ R2n, w̄′

n := {w′
1, . . . ,w

′
n} ∈ R2n.

Then for any v,v′ ∈ R2,∣∣Dm
v,v′t(w̄n)−Dm

v,v′t(w̄′
n)
∣∣ ≲L 1

nkn

∑
j∈N (m)

∥∥wj −w′
j

∥∥
2

where D is defined in (G.4) and N (m) := N(m)
⋃
N̄(m) for all m ∈ [n].

Now we will use this partial difference operator to expand the difference t (w̄n) − t (w̄′
n). To-

wards that we first define a new collection combining w̄n and w̄′
n. For any A ⊆ [n] define

w̄A
n =

(
wA

1 , . . . ,w
A
n

)
as,

wA
i =

{
w′
i if i ∈ A

wi if i ̸∈ A.

Furthermore for m ∈ [n] define,

Fm(w̄n, w̄
′
n) =

1

2m

∑
A⊆[m−1]

(
Dm

wm,w′
m
t
(
w̄A
n

)
+Dm

wm,w′
m
t
(
w̄Ac

n

))
(G.5)

Then by Lemma 9 from [Maurer & Pontil, 2019] we know,

t (w̄n)− t (w̄′
n) =

n∑
m=1

Fm (w̄n, w̄
′
n) for all w̄n, w̄

′
n ∈ R2n. (G.6)

Now for all m ∈ [n] define an operator Mm as Mmw̄n = (Mm,1w1, . . . ,Mm,nwn) where,

Mm,i =


1/n if i = m

1/n
√
kn if i ∈ N (m)

0 otherwise
(G.7)

and let Mm (w̄n, w̄
′
n) = (Mmw̄n,Mmw̄′

n). These definition now lead to a Lipschitz type prop-
erty for Fm. In particular we have the following lemma.
Lemma G.2. For any w̄n, v̄n, w̄

′
n, v̄

′
n ⊆ R2n and m ∈ [n] we have,

Fm (w̄n, w̄
′
n)− Fm (v̄n, v̄

′
n) ≲d,L E

[∣∣∣Z⊤
m (Mm (w̄n, w̄

′
n)−Mm (v̄n, v̄

′
n))
∣∣∣]

where Zm =
(
Zm,1, . . . ,Zm,n,Z ′

m,1, . . . ,Z ′
m,n

)⊤
with {Zm,i : 1 ≤ i ≤ n}, {Z ′

m,i : 1 ≤ i ≤ n}
generated independently from N2 (0, I2).
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Using the decomposition from (G.6) and applying Lemma G.2 we can now replicate the proof of
equation (12) in Maurer & Pontil [2019] to get,

E
[
sup
g∈G

t
(
W̄n,g

)
− t
(
W̄ ′

n,g

) ]
≲d,L E

[
sup
g∈G

n∑
m=1

Z⊤
mMm

(
W̄n,g, W̄

′
n,g

)]
. (G.8)

By definition of the operator Mm from (G.7) we get,
n∑

m=1

Z⊤
mMm

(
W̄n,g, W̄

′
n,g

)
=

n∑
m=1

n∑
i=1

Mm,iZ⊤
m,iWi,g +Mm,iZ ′⊤

m,iW
′
i,g

=

n∑
i=1

( n∑
m=1

Mm,iZm,i

)⊤

Wi,g +

(
n∑

m=1

Mm,iZ ′
m,i

)⊤

W ′
i,g


d
=

1

n

n∑
i=1

√
1 +

di
kn

[
Z⊤
i Wi,g + Z ′⊤

i W ′
i,g

]
(G.9)

where {Zi : 1 ≤ i ≤ n}, {Z ′
i, 1 ≤ i ≤ n} are generated independently from N2 (0, I2). The equal-

ity in distribution from (G.9) follows by recalling the definition of N from Lemma G.1, operator M
from (G.7) and noting that for any i ∈ [n],

n∑
m=1

M2
m,i =

1

n2
+

1

n2kn

n∑
m=1

1 {i ∈ N (m)}

=
1

n2
+

1

n2kn

n∑
m=1

1 {m ∈ N (i)} =
1

n2

(
1 +

di
kn

)
where di is the degree (in-degree + out-degree) of vertex xi in G (Xn). Now substituting the
expression from (G.9) in the bound from (G.8) we get,

E
[
sup
g∈G

t
(
W̄n,g

)
− t
(
W̄ ′

n,g

) ]
≲d,L

1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn

[
Z⊤
i Wi,g + Z ′⊤

i W ′
i,g

]]

≲d,L
1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn

Z⊤
i Wi,g

]

≲d,L
1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn
Zig (ηi,xi)

]
(G.10)

where {Zi : i ∈ [n]} are generated independently from the standard Gaussian distribution and the
final inequality follows by recalling the definition of Wi,g, i ∈ [n] from (G.1). The proof is now
completed by substituting the bound from (G.10) in (G.3).

G.1.1 PROOF OF LEMMA G.1.

By definition note that,

Dm
v,v′t(w̄n) =

1

nkn

 ∑
j∈N(m)

h(v,wj)− h(v′,wj) +
∑

j∈N̄(m)

h(wj ,v)− h(wj ,v
′)

 (G.11)

Then, using the Lipschitz property of h we have,∣∣Dm
v,v′t (w̄n)−Dm

v,v′t (w̄′
n)
∣∣ = ∣∣∣∣∣ 1

nkn

[ ∑
j∈N(m)

h(v,wj)− h(v,w′
j)− h(v′,wj) + h(v′,w′

j)

+
∑

j∈N̄(m)

h(wj ,v)− h(w′
j ,v)− u(wj ,v

′) + h(wj ,v
′)

]∣∣∣∣∣
≲L

1

nkn

∑
j∈N (m)

∥∥wj −w′
j

∥∥ (G.12)

where recall N (m) = N(m)
⋃
N̄(m) and L is the Lipschitz constant of h.
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G.1.2 PROOF OF LEMMA G.2

Let the collections w̄n, v̄n, w̄
′
n, v̄

′
n be defined as w̄n := (w1, . . . ,wn) , v̄n := (v1, . . . ,vn) , w̄

′
n :=

(w′
1, . . . ,w

′
n) and v̄′

n := (v′
1, . . . ,v

′
n). Now by Lemma 2.1 from Jaffe et al. [2020] we know that

|N (m)| ≲d kn for all m ∈ [n]. (G.13)
Then by recalling the definition of the partial difference operator from (G.4), the expansion from
(G.11) and the bound from (G.12) we get,

Dm
wm,w′

m
t
(
wA
)
−Dm

vm,v′
m
t
(
vA
)

= Dm
wm,vm

t
(
wA
)
+Dm

w′
m,v

′
m
t
(
wA
)
+Dm

vm,v′
m

(
t
(
wA
)
− t
(
vA
))

≲d,L
1

n
∥wm − vm∥+ 1

n
∥w′

m − v′
m∥+ 1

nkn

∑
j∈N (m)

∥∥wA
j − vAj

∥∥ (G.14)

where the final bound follows using the Lipschitz property of h and Lemma G.1. Now recalling the
definition of Fm from (G.5) we get,

Fm

(
w̄, w̄′)− Fm

(
v̄, v̄′)

=
1

2m

∑
A⊆[m−1]

(
Dm

wm,w′
m
f(wA)−Dm

vm,v′
m
f(vA) +Dm

wm,w′
m
f(wAc

)−Dm
vm,v′

m
f(vAc

)
)

≲d,L
1

n

(
∥wm − vm∥+ ∥w′

m − v′
m∥
)
+

1

nkn

∑
j∈N (m)

∥wj − vj∥+ ∥w′
j − v′

j∥ (G.15)

≲d,L
1

n

(
∥wm − vm∥2 + ∥w′

m − v′
m∥2

)1/2
+

1

n
√
kn

 ∑
j∈N (m)

∥wj − vj∥2 + ∥w′
j − v′

j∥2
1/2

(G.16)

≲d,L
1

n

∥wm − vm∥2 + ∥w′
m − v′

m∥2 +
1

kn

∑
j∈N (m)

∥wj − vj∥2 + ∥w′
j − v′

j∥2
1/2

=
∥∥Mm

(
w,w′)−Mm

(
v,v′)∥∥ (G.17)

≲d,L E
[∣∣∣Z⊤

m

(
Mm

(
w,w′)−Mm

(
v,v′))∣∣∣] (G.18)

where the bound in (G.15) follows from (G.14), (G.16) follows using Cauchy-Schwartz inequality,
(G.17) follows by recalling the definition of operator M from (G.7) and finally (G.18) follows by
noting that E

[∣∣Z⊤v
∣∣] = ∥v∥ whenever Z ∼ N(0, I) (see Lemma 7 in Maurer & Pontil [2019]).

G.2 PROOF OF COROLLARY G.1

Note that,

sup
g∈G

|Tn (g)− E [Tn (g)]| ≤ max

{
sup
g∈G

Tn (g)− E [Tn (g)] , sup
g∈G

E [Tn (g)]− Tn (g)

}
. (G.19)

Replacing h by −h in (G.1) and applying Theorem G.1 gives,

E
[
sup
g∈G

E [Tn (g)]− Tn (g)

]
≲L

1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn
Zig (ηi,xi)

]
. (G.20)

Now recall that h is uniformly bounded. Hence, applying McDiarmid’s bounded difference inequal-
ity on both supg∈G Tn (g)−E [Tn (g)] and E

[
supg∈G E [Tn (g)]− Tn (g)

]
with Theorem G.1 and

(G.20) shows,

sup
g∈G

Tn (g)− E [Tn (g)] ≲L,h
1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn
Zig (ηi,xi)

]
+

√
log (2/δ)

n
(G.21)

with probability at least 1− δ/2 and,

sup
g∈G

E [Tn (g)]− Tn (g) ≲L,h
1

n
E

[
sup
g∈G

n∑
i=1

√
1 +

di
kn
Zig (ηi,xi)

]
+

√
log (2/δ)

n
(G.22)

with probability at least 1 − δ/2. The proof is now completed by combining (G.21), (G.22) and
(G.19).
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H TECHNICAL RESULTS

Lemma H.1. Takem ≥ 1 and letA ⊆ Rm. LetM = supa∈A
√∑m

i=1 a
2
i where a = (a1, . . . , am).

Then,

E

[
sup
a∈A

1

m

m∑
i=1

aiZi

]
≤
R
√
2 log |A|
m

where Z1, . . . , Zm are generated independently from N(0, 1).

Proof. Take s ≥ 0. Then by Jensen’s inequality we get,

exp

(
sE

[
sup
a∈A

m∑
i=1

aiZi

])
≤ E

[
exp

(
s sup
a∈A

n∑
i=1

aiZi

)]
≤
∑
a∈A

E

[
exp

(
s

n∑
i=1

aiZi

)]
Using the independence of Z1, . . . , Zn we get,

exp

(
sE

[
sup
a∈A

m∑
i=1

aiZi

])
≤
∑
a∈A

m∏
i=1

E [exp (saiZi)] =
∑
a∈A

m∏
i=1

exp

(
s2a2i
2

)
≤ |A| exp

(
s2R2

2

)
.

Taking logarithm of both sides we get,

E

[
sup
a∈A

m∑
i=1

aiZi

]
≤ log |A|

s
+
sR2

2
.

Recall that our choice of s was arbitrary, hence minimizing the right hand side with respect to s we
find,

E

[
sup
a∈A

m∑
i=1

aiZi

]
≤ R log |A|√

2 log |A|
+
R2
√
2 log |A|
2R

= R
√

2 log |A|.

The proof is now completed by dividing both sides by m.

The following classical result due to Bochner characterizes continuous positive definite functions.
The version stated below is adapted from Wendland [2004, Theorem 6.6] (also see Sriperumbudur
et al. [2010, Theorem 3]).
Theorem H.1 (Bochner). A continuous function ψ : Rp → R is positive definite if and only if it is
the Fourier transform of a finite non-negative Borel measure Λ on Rp that is,

ψ(x) =

∫
Rp

e−ιx
⊤ωdΛ(ω) for all x ∈ Rp.
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