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ABSTRACT

How can we generate samples from a conditional distribution that we never fully
observe? This question arises across a broad range of applications in both modern
machine learning and classical statistics, including image post-processing in com-
puter vision, approximate posterior sampling in simulation-based inference, and
conditional distribution modeling in complex data settings. In such settings, com-
pared with unconditional sampling, additional feature information can be lever-
aged to enable more adaptive and efficient sampling. Building on this, we in-
troduce Conditional Generator using MMD (CGMMD), a novel framework for
conditional sampling. Unlike many contemporary approaches, our method frames
the training objective as a simple, adversary-free direct minimization problem. A
key feature of CGMMD is its ability to produce conditional samples in a single
forward pass of the generator, enabling practical one-shot sampling with low test-
time complexity. We establish rigorous theoretical bounds on the loss incurred
when sampling from the CGMMD sampler, and prove convergence of the esti-
mated distribution to the true conditional distribution. In the process, we also
develop a uniform concentration result for nearest-neighbor based functionals,
which may be of independent interest. Finally, we show that CGMMD performs
competitively on synthetic tasks involving complex conditional densities, as well
as on practical applications such as image denoising and image super-resolution.

1 INTRODUCTION

A fundamental problem in statistics and machine learning is to model the relationship between a re-
sponse Y € ) and a predictor X € X. Classical regression methods [Hastie et al., 2009; Koenker
& Bassett Jr, 1978], typically summarize this relationship through summary statistics, which are of-
ten insufficient for many downstream tasks that require the knowledge of the entire conditional law.
Access to the full conditional distribution enables quantification of uncertainty associated with pre-
diction [Castillo & Randrianarisoa, 2022], uncovers latent structure [Mimno et al., 2015], supports
dimension reduction [Reich et al., 2011], and graphical modeling [Chen et al., 2024]. In modern sci-
entific applications, it provides a foundation for simulation-based inference [Cranmer et al., 2020]
across various domains, including computer vision [Gupta et al., 2024], neuroscience [von Krause
et al., 2022], and the physical sciences [Hou et al., 2024; Mastandrea et al., 2024].

Classical approaches such as distributional regression and conditional density estimation [Rosen-
blatt, 1969; Fan et al., 1996; Hothorn et al., 2014] model the full conditional distribution directly
but often rely on strong assumptions and offer limited flexibility. In contrast, recent advances in
generative models like Generative Adversarial Networks (GANs) [Zhou et al., 2023; Mirza & Osin-
dero, 2014; Odena et al., 2017], Variational Autoencoders (VAEs) [Harvey et al., 2021; Doersch,
2016; Mishra et al., 2018], and diffusion models [Rombach et al., 2022; Saharia et al., 2022; Zhan
et al., 2025] provide more flexible, assumption lean alternatives for conditional distribution learning
across applications in vision, language, and scientific simulation. A more detailed discussion of
related work, background, and connections to simulation-based inference is provided in Section A.

GAN:Ss, introduced by Goodfellow et al. [2014] as a two-player minimax game optimizing the
Jensen—Shannon divergence [Fuglede & Topsoe, 2004], are a widely adopted class of generative
models, known for their flexibility and empirical success. However, training remains delicate and
unstable, even in the unconditional setting [Arjovsky & Bottou, 2017; Salimans et al., 2016]. As Ar-
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Figure 1: Schematic overview of CGMMD: Given training data (Yi, X1),..., (Y, X,), the samples
Zn = {Xi,...,X,} and auxiliary noise 1, ..., N, are passed through the generator g to produce sam-
ples g(n1,X1),...,9(Mn, Xn). These outputs are compared with the observed Y7, ..., Y, values using a
nearest-neighbor (G (.27, )) based estimate of the ECMMD discrepancy (see (1.2)) between true and generated
conditional distributions. Edges are color-coded to highlight the dependence of each section on the correspond-
ing inputs. After training, sampling is immediate: for any new input X, independently generate new n ~ P, ,
the trained model g then produces g(n, X') as the conditional output. Each component is described in greater
details in Section 2 and Section 3.

jovsky & Bottou [2017] point out, the generator and target distributions often lie on low-dimensional
manifolds that do not intersect, rendering divergences like Jensen—Shannon or KL constant or infi-
nite and thus providing no useful gradient. To address this, alternative objectives based on Integral
Probability Metrics (IPMs) [Miiller, 1997], such as the Wasserstein distance [Villani et al., 2008]
and Maximum Mean Discrepancy (MMD) [Gretton et al., 2012], have been proposed for more sta-
ble training in unconditional sampling using GANS.

Building on the success of MMD-GANS [Li et al., 2015; Dziugaite et al., 2015; Birikowski et al.,
2018; Huang et al., 2022b], we propose an MMD-based loss using nearest neighbors to quantify dis-
crepancies between conditional distributions. While MMD has been used in conditional generation,
to the best of our knowledge we are the first to provide sharp theoretical guarantees for MMD based
conditional sampling, offering a principled foundation for training conditional generators. Initially
developed for two-sample testing by Gretton et al. [2012], MMD has since seen broad adoption
across the statistical literature [Gretton et al., 2007; Fukumizu et al., 2007; Chwialkowski et al.,
2016; Sutherland et al., 2016]. It quantifies the discrepancy between two probability distributions as
the maximum difference in expectations over functions f drawn from the unit ball of a Reproducing
Kernel Hilbert Space (RKHS) defined on ) [Aronszajn, 1950]. Formally, let ) be a separable met-
ric space equipped with By, the sigma-algebra generated by the open sets of ). Let P())) be the
collection of all probability measures on (), By ). Then for any Py, Pz € P(Y),

MMD(Fk, Py, Pz) := sup e 7 E[f(Y)] - E[f(Z)], (1.1
where Fi is the unit ball of a reproducing kernel Hilbert space (RKHS) C on ).

1.1 CONDITIONAL GENERATOR USING MAXIMUM MEAN DISCREPANCY (CGMMD)

To extend MMD to the conditional setting, we employ the expected conditional MMD (ECMMD)
from Chatterjee et al. [2024] (also see Huang et al. [2022b]), which naturally generalizes the MMD
distance to a discrepancy between conditional distributions. Formally, for X ~ Px, conditional
distributions Py x and Pz x supported on Y, the squared ECMMD can be defined as,

ECMMD?*(Fi, Py|x, Pz /x) := Ex~py [MMD*(Fi, Py x, Pz x)]. (1.2)

We discuss simplified formulations of this measure later in Section 2.1. By Chatter-
jee et al. [2024, Proposition 2.3], ECMMD is indeed a strict scoring rule, meaning that
ECMMDQ(}";C,PY‘X,PZ‘X) = 0if and only if Py |x = Pz x almost surely. This property
establishes ECMMD as a principled and reliable tool for comparing conditional distributions.

Instead of estimating the target conditional distribution Py-|x directly, we follow the generative ap-
proach from Zhou et al. [2023] and Song et al. [2025]. By the noise outsourcing lemma (see Lemma
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2.1), the problem of nonparametric conditional density estimation can be reformulated as a general-
ized nonparametric regression problem. In particular, for a given predictor value X = x, our goal
is to learn a conditional generator g(, ), where 1 is drawn from a simple reference distribution
(e.g., Gaussian or uniform). The generator is trained so that g(, ) approximates the conditional
distribution of Y | X = @ for all . Discrepancy between the true conditional distribution Py-|x
and the model distribution Py, x)x is measured using the squared ECMMD. Once training is
complete, conditional sampling becomes a one-shot procedure: draw 77 from the reference distribu-
tion and sample g(n, «). In this way, the generator provides an explicit and efficient representation
of the conditional distribution of Y | X. We refer to g(n, ) as the Conditional Generator using
Maximum Mean Discrepancy, or CGMMD for short. We provide the schematic overview of the
method in Figure 1. Now, we turn to the main contributions of our proposed method.

1.2 MAIN CONTRIBUTIONS

Our main contributions are summarized below.

* Direct Minimization. Similar to MMD-GANSs in the unconditional setting, CGMMD avoids
adversarial min-max optimization and instead enables direct minimization of an ECMMD based
objective (see (1.1)), offering a more straightforward and tractable alternative to GAN-based train-
ing [Zhou et al., 2023; Song et al., 2025; Ramesh et al., 2022]. This design helps avoid common
issues in conditional GANSs, such as mode collapse and unstable min—-max dynamics.

* One-shot Sampling. While diffusion models have demonstrated remarkable success in generat-
ing high-quality and diverse samples, their iterative denoising procedure [Ho et al., 2020] makes
sampling computationally expensive and time-consuming. In contrast, CGMMD enables efficient
one-shot sampling, i.e., conditional samples are obtained in a single forward pass of the generator.
Specifically, to sample from Y | X = a, one simply draws 7 from a simple reference distribution
(e.g., Gaussian or uniform) and evaluates g(n, ), where g is a solution of (3.2).

* Theoretical Guarantees. We provide rigorous theoretical guarantees for CGMMD. Theorem 4.1
gives a non-asymptotic finite-sample bound on the error of the conditional sampler g(n, ), and
Corollary 4.1 establishes convergence to the true conditional distribution as the sample size in-
creases. Together, these results provide strong theoretical justification for CGMMD.

To the best of our knowledge, this is the first application of tools from uniform concentration of
nonlinear functionals, nearest neighbor methods, and generalization theory to conditional genera-
tive modeling. In the process, we also establish a general uniform concentration result for a broad
class of nearest-neighbor-based functionals (Appendix G), which may be of independent interest.

* Numerical Experiments. Finally, we provide experiments on both synthetic and real data (mainly
in image post-processing tasks) to evaluate the performance of CGMMD and compare it with
existing approaches in the literature. Overall, our proposed approach performs reliably across
different settings and often matches or exceeds the alternative approaches in more challenging
cases.

2 TECHNICAL BACKGROUND

In this section, we introduce the necessary concepts and previous works required to understand our
proposed framework, CGMMD. To that end, we begin with the necessary formalism.

Let X', Y be Polish spaces, that is, complete separable metric spaces equipped with the correspond-
ing Borel-sigma algebras By and By respectively. Let P(X) and P()’) be the collection of all
probability measures defined on (X, Byx) and (), By) respectively. Recalling the RKHS /C defined
on ) from (1.1), the Riesz representation theorem [Reed & Simon, 1980, Therorem I1.4] guarantees
the existence of a positive definite kernel K : ) x J — R such that for every y € ), the feature

map ¢y € K satisfies K(y, -) = ¢y (-) and K(y1, y2) = (dy,, Pys k-

The definition of feature maps can now be extended to embed any distribution P € P(}) into
K. In particular, for P € P()) we can define the kernel mean embedding pp as (f, pp)x =
Ey~p[f(Y)]. Moreover, by the canonical form of the feature maps, it follows that up(t) :=
Ey.p[K(Y,t)] forallt € ). Henceforth, we make the following assumptions on kernel K.

Assumption 2.1. The kernel K : ) x ) — R is positive definite and satisfies the following:
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1. The kernel K is bounded, that is ||K||cc < K for some K > 0 and Lipschitz continuous.

2. The kernel mean embedding 1 : P(Y) — K is a one-to-one (injective) function. This is
also known as the characteristic kernel property [Sriperumbudur et al., 2011].

Assumption 2.1 ensures that the mean embedding pp € K (see Lemma 3 in Gretton et al. [2012]
and Lemma 2.1 in Park & Muandet [2020]), and that MMD defines a metric on P())). While
these properties can be guaranteed under weaker conditions on the kernel K, we adopt the above
assumption for technical convenience. With the above notations the MMD (recall (1.1)) can be
equivalently expressed as MMD?(Fx, Py, Pz) = ||up, — pip,||% (see Lemma 4 from Gretton
et al. [2012]) where || - || is the norm induced by the inner product (-, -)x. In the following, we
express the ECMMD in an equivalent form and leverage it to obtain a consistent empirical estimator.

2.1 ECMMD: REPRESENTATION VIA KERNEL EMBEDDINGS

Recalling the definition of ECMMD from (1.2), we note that it admits an equivalent formulation. In
particular, for distributions Py-|x and Pz x (which exists by Klenke [2008, Theorem 8.37]), define
the conditional mean embeddings jip, , (t) := E[K(Y',?) | X]and up,  (t) == EK(Z,t) | X]
for all ¢ € Y. Under Assumption 2.1, the conditional mean embeddings are indeed well defined
by Park & Muandet [2020, Lemma 3.2]. Consequently, ||upy »_, — kP, «—. ||% is the squared

MMD metric between the conditional distributions for a particular value of X = x. Averaging this
quantity over the marginal distribution of X yields the squared ECMMD distance:
ECMMD?(Fi, Py x, Pzix) = Ex~px [Py x — 1Pz x 1] @2.1)

However, to use ECMMD as a loss function for estimating the conditional sampler, we require a
consistent estimator of the expression in (2.1). To that end, the well-known kernel trick enables a
more tractable reformulation of ECMMD, making it amenable to estimation from observed data. By
Chatterjee et al. [2024, Proposition 2.4] (also see Huang et al. [2022b] and Park & Muandet [2020]),
the squared ECMMD admits the tractable form

ECMMD?(F, Py|x, Pzix) = E[K(Y,Y') +K(Z,2Z') = K(Y, Z') - K(Z,Y")], (2)

where (Y,Y',Z,Z’, X) is generated by first sampling X ~ Px, then drawing (Y, Z) and
(Y', Z’) independently from Py |x X Pz x. Note that when Y, Z are independent of X, the
expression from (2.2) is equivalent to the classical expression of squared MMD [Gretton et al.,
2012].

2.2 ECMMD: CONSISTENT ESTIMATION USING NEAREST NEIGHBORS

Towards estimating the ECMMD, we leverage the equivalent expression from (2.2). By the tower
property of conditional expectations, (2.2) can be further expanded as,

ECMMD?(Fi, Py|x, Pzx) = E[E[K(Y,Y") +K(Z,Z') —K(Y,Z') - K(Z,Y") | X]].

To estimate ECMMD, we observe that it involves averaging a conditional expectation over the dis-
tribution Px . Given observed samples {(Y;, Z;, X;) : 1 < i < n} drawn from the joint distribution
Pyzx = Py|x X Pzx X Px, we proceed by first estimating the inner conditional expectation
given X = X, and then averaging these estimates over the observed values X, ..., X,,. To es-
timate the inner conditional expectation given X = X, one can, in principle, average the inner
function over sample indices whose corresponding predictors are ‘close’ to X;. A natural way to
quantify such proximity is through nearest-neighbor graphs. Formally we construct the estimated
ECMMD as follows.

Fix k = k,, > 1 and let G(Z,) be the directed k—nearest neighbor graph on Z;, = {X1,..., X, }.
Moreover let Ng(4,)(i) := {j € [n] : X; = X isanedgein G(Z;,)} foralli € [n]. Now the
k—NN based estimator of ECMMD can be defined as,

— 2
ECMMD (Fk, Py|x, Pzix) == £ Yimy 7o JeNao, () H (Wi, W) (2.3)

where W; = (Y;, Z;) forall i € [n] and H(W;,W;) = K(Y,,Y;) - K(Y;,. Z;) — K(Z,,Y;) +
K(Z;,Z;) forall 1 < i,j5 < n. Chatterjee et al. [2024, Theorem 3.2] shows that under mild
conditions, this estimator is consistent for the oracle ECMMD. We exploit this nearest-neighbor
construction to define the CGMMD objective in Section 3.
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Algorithm 1: CGMMD Training

Input: Training dataset {(Y;, X;)}i=,. Conditional generator g = gy with initial parameters 6.
Auxillary Kernel function H (see (2.3)). Noise distribution P,. Learning rate ¢, epochs E, batch
size B and number of nearest neighbors kp.

Output: Trained generator parameters 6.

Sample {n; : 1 <i < n} ~ Pp,.

for epoch = 1 to E do

for each I C [n] of size B do
21+ {Xi}tien;
G(Z71) < kp-Nearest Neighbor graph on 27;
Ne(arp) (i) < neighbors of X; in G(Z271),g: < go (i, Xi), Wig < (Yi,g:) Vi€ I;

Lbatch ﬁ Zie[ ZjENG(%‘I)(i) H (Wi,ga Wj,g);
0« 6— ave)ﬁbatch.

return trained parameters 6+ 6.

2.3  GENERATIVE REPRESENTATION OF CONDITIONAL DISTRIBUTION

As outlined in Section 1.1, conditional density estimation can be reformulated as a generalized
nonparametric regression problem. Suppose (Y, X) € X x ) follows some joint distribution
Py x, and we observe n independent samples {(Y7, X1),...,(Y,, X,)} from Pyx. Our goal
is to generate samples from the unknown conditional distribution Py |x. The noise outsourcing
lemma (see Kallenberg, Theorem 5.10, Zhou et al. [2023, Lemma 2.1] and Bloem-Reddy & Teh
[2020, Lemma 5]) formally connects conditional distribution estimation with conditional sample
generation. For completeness, we state it below.

Lemma 2.1 (Noise Outsourcing Lemma). Suppose (Y, X) ~ Py x. Then, for any m > 1, there
exist a random vector § ~ P, = N (0, I,,,) and a Borel-measurable function g : R™ x X — Y
such that 77 is generated independent of X and (Y, X) = (g(n, X), X) almost surely.

Under appropriate conditions the above result also follows from Brenier’s theorem [Villani, 2021,

Theorem 3.8]. Moreover, by Zhou et al. [2023, Lemma 2.2], (Y, X) 4 (g(n, X), X) if and only
if g(n, ) ~ Py|x—, for every & € X. This identifies g as a conditional generator. Consequently,
to draw from Py | x, we sample 1 ~ N (0,,, I'),,) and output g(n, X).

This perspective places conditional density estimation firmly within the realm of generative model-
ing. The task reduces to: given n independent samples from Py x, learn the conditional generator
g. Zhou et al. [2023]; Ramesh et al. [2022]; Song et al. [2025]; Liu et al. [2021] leveraged this idea
to develop a GAN-based (respectively Wasserstein-GAN) framework for conditional sampling. In
contrast, our approach follows a similar path but replaces the potentially unstable min—max opti-
mization of GANs with a principled minimization objective based on ECMMD discrepancy. The
precise formulation is given in the following section.

3 ECMMD BASED OBJECTIVE FOR CGMMD

Building on the generative representation of conditional distributions and the ECMMD discrepancy
introduced earlier, our goal is to learn a conditional generator g by minimizing the ECMMD distance
between the true conditional distribution Y | X and the generated conditional distribution g(n, X) |
X. We restrict our attention to a parameterized function class G, as solving this unconstrained
minimization problem over all measurable functions is intractable. To that end, we begin by defining
the population objective

L(g) :== ECMMD? [Fic, Py |x, Py(n.x)1x] = Ex~px [[ltPy x = 1P,y 5 x I E]-

The target generator is then given by g* € arg mingecg £(g). Since the oracle objective £(-) is not
directly available, we employ the estimation strategy outlined in Section 2.2 to construct a consistent
empirical approximation of £(g). Given n independent samples (Y1, X1),...,(Yn, X,) ~ Pyx
and independent draws of noise variables 1, ..., n,~F;,, we define the empirical objective,

. 2 n
L(g) := ECMMD (f’Cv Py|x, Py(mX)IX) = % > i ZjeNc;(x,L>(i) H(Wig, Wijg) (3.1)
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where H is defined from (2.3) and W, 4 := (Y5, g (m;, X;)) forall 1 <4 < n. Our estimate of the
conditional generator is then defined as

g € argmingeg ﬁ(g) (3.2)

With the framework now in place, we emphasize that CGMMD offers substantial flexibil-
ity to practitioners. In our experiments, we restrict G to deep neural networks, ie., G =
{ g :R"x X —=>Y|0¢€ RS} where S is the total number of parameters of the neural network

gp. Here, (3.2) reduces to solving € arg mingeps ﬁ(gg). A corresponding pseudo-code is pro-
vided in Algorithm 1. In this algorithm, we generate all 7); before the training starts and construct
a dataset of triplets (Y;, X;,n;), which are fed to the dataloader (i.e., no on-the-fly sampling dur-
ing training). During training, each epoch makes a full pass over this dataset. At every iteration,
we take a mini-batch of size B and build the nearest-neighbor graph within that mini-batch only,
i.e, we compute pairwise distances among the B examples and connect each example to its kp
nearest-neighbors in the current batch.

In practice, the user may tailor the method by selecting the kernel K, the function class G, number
of neighbors k,,, and the manner in which the auxiliary noise variable 7 is incorporated into g(-, ).
We discuss some of these potential choices as well as refinements to the CGMMD objective when
Px has discrete support in Appendix D.

4 ANALYSIS AND CONVERGENCE GUARANTEES

In this section, we analyze the error of estimating the true conditional sampler g (see Lemma 2.1).
This section is further divided into two parts. In Section 4.1 we begin by deriving a finite-sample
bound on the error arising from replacing the true conditional sampler g with its empirical estimate
g. As a further contribution in Section 4.2, we establish the convergence of the conditional distri-
bution induced by the empirical sampler to the true conditional distribution. For clarity and ease of
exposition, we present simplified versions of the assumptions and main results here, while deferring
the complete statements and proofs to Appendix E.

4.1 NON-ASYMPTOTIC ERROR BOUNDS

For the estimated empirical sampler g defined in (3.2) the estimation error can be defined as (recall
Definition 1.2),

. 2 .
L(g) = ECMMD? [f’ Pé(n,X)IX’Pé(mX)IX] =E [Hﬂpg(n,mwx ~ HPyn,x) 1 x H/c | g} , @D

where the expectations are taken over the randomness of 17 and X keeping the empirical sampler g
fixed. In other words, the estimation error evaluates the squared ECMMD between the conditional
distributions of g(n, X) and g(n, X) given X. In the following, we will provide non-asymptotic
bounds on the estimation error £(g). To that end, for the rest of the article, we assume ) C R? for
some p > 1 and we begin by rigorously defining the class of functions G.

Details of G:  Let G = Gy v.5.5 be the set of ReLU neural networks g : R x R? — RP with
depth H, width W, size S and ||g||,, < B. In particular, # denotes the number of hidden layers
and (wo, ws, ..., ws) denotes the width of each layer, where wg = d + m and wy = p denotes
the input and output dimension, respectively. We take W = max {wg, w1, . .., wy . Finally, size
S = Z?‘Zl w; (w;—1 + 1) refers to the total number of parameters of the network. To establish the
error bounds, we make the following assumption about the parameters of G.

Assumption 4.1. The network parameters of G satisfies B > 1 and H, W — oo such that,
HW n—00 00 B2HS logS logn n—oo

and
(log n) d#;n n

0.

The imposed conditions require that the neural network’s size grows with the sample size, specif-
ically that the product of its depth and width increases with n. These assumptions are flexible
enough to accommodate a wide range of architectures, but a key constraint is that the network size
must remain smaller than the sample size. This arises from the use of empirical process theory [Van



Under review as a conference paper at ICLR 2026

Der Vaart & Wellner, 1996; Bartlett et al., 2019] to control the stochastic error in the estimated
generator. Similar conditions appear in recent work on conditional sampling [Zhou et al., 2023;
Liu et al., 2021; Song et al., 2025] and in convergence analyses for deep nonparametric regres-
sion [Schmidt-Hieber, 2020; Kohler & Langer, 2019; Nakada & Imaizumi, 2020]. We also make
the following technical assumptions.

Assumption 4.2. The following conditions on Py x, the kernel K, the true conditional sampler g
and the class G holds.

1. Px is supported on X C R? for some d > 0 and || X; — X2||, has a continuous distribu-
tion for X1, Xy ~ Px.

2. Moreover X ~ Px is sub-gaussian, thatis ', P (|| X ||, > t) < exp (—¢?) for all t > 0.

3. The target conditional sampler g : R™xR? — R? is uniformly continuous with ||g|| < 1.

4. For any g € G consider hg(x) = E[K(Y,-) — K(g(n,X),-)|X = 2] and assume that
[(hg(x), hg(x1) — hg(x2))| S ||X1 — 2||2, for all &, 1,22 € X where the constant is
independent of g.

The first two assumptions are standard in the nearest neighbor literature and have been studied in
the context of conditional independence testing using nearest neighbor-based methods [Huang et al.,
2022a; Deb et al., 2020; Azadkia & Chatterjee, 2021; Borgonovo et al., 2025; Dasgupta & Kpotufe,
2014]. The first, concerning uniqueness in nearest neighbor selection, can be relaxed via tie-breaking
schemes (see Section 7.3 in [Deb et al., 2020]), though we do not pursue this direction. The second,
on the tail behavior of the predictor X, can be weakened to include heavier-tailed distributions,
such as those satisfying sub-Weibull conditions [Vladimirova et al., 2020] (also see (E.1)). The third
assumption is mainly for technical convenience; similar conditions appear in prior work on neural
network-based conditional sampling [Zhou et al., 2023; Song et al., 2025; Liu et al., 2021]. Its
uniform continuity condition can also be relaxed to continuity (see Appendix E).

Remark 4.1. Assumption 4.2.4 is arguably the most critical in our analysis. It quantifies the sen-
sitivity of the conditional mean embeddings to changes in the predictor X, and is essential for
establishing concentration of the nearest-neighbor-based ECMMD estimator (see (2.3)) around its
population counterpart. Similar assumptions have been used in prior work on nearest neighbor meth-
ods [Huang et al., 2022a; Deb et al., 2020; Azadkia & Chatterjee, 2021; Dasgupta & Kpotufe, 2014].
As noted in Azadkia & Chatterjee [2021, Section 4], omitting such regularity conditions can lead
to arbitrarily slow convergence rates. While the locally lipschitz-type condition can be relaxed, for
example to Holder continuity upto polynomial factors (see (E.2)) it remains a key assumption for
our theoretical guarantees. We further elaborate on this assumption in Appendix F.

Under the above assumptions, we are now ready to present our main theorem on the error incurred
by using the empirical sampler g.

Theorem 4.1 (Simpler version of Theorem E.1). Adopt Assumption 2.1, Assumption 4.1 and As-
sumption 4.2. Moreover take wg(r) := sup {||g(z) — g(y), : z,y € RFT™ ||z — y|» <7} to
be the optimal modulus of continuity of the true conditional sampler g. Let k,, = o (n") for some
0 <« < 1. Then for any § > 0, with probability at least 1 — 9,

poly log(n) B2HS log Slogn 2v/logn log (1/0)
o fuwg | o)
n (HW) &

n d

n

L(9)

A

The first two terms capture the stochastic error from the uniform concentration of the empirical loss
around the population ECMMD objective. The third term reflects approximation error from esti-
mating the true conditional sampler g using neural networks in G. While we defer the proof of
this result and its generalization to Appendix B.1 and Appendix E, respectively, we highlight the
main novelty of our analysis here. Specifically, it integrates tools from recent advances in uniform
concentration for non-linear functionals [Maurer & Pontil, 2019; Ni & Huo, 2024], nearest neigh-
bor methods [Azadkia & Chatterjee, 2021; Deb et al., 2020], and generalization theory, including
neural network approximation of smooth functions [Shen et al., 2020; Zhang et al., 2022]. To our

"We use the notation a <S¢ b to imply a < Cyb for some constant Cy > 0 depending on the parameter 6. In
particular a < b implies a < Cb for some universal constant C' > 0. Henceforth take 8 = (d, m, p, K).



Under review as a conference paper at ICLR 2026

knowledge, this is the first application of these techniques to conditional generative modeling with
nonparametric nearest neighbor objectives. Additionally, we establish a uniform concentration result
for a broad class of nearest-neighbor-based functionals (Appendix G), which may be of independent
interest.

4.2 CONVERGENCE OF THE EMPIRICAL SAMPLER

As outlined earlier, in this section, we leverage the bound established in Theorem 4.1 to demonstrate
the convergence of the conditional distribution identified by the estimated sampler g(n, X) to the
true conditional distribution.

While Theorem 4.1 provides a finite-sample quantitative guarantee on the loss incurred by using
the estimated sampler in place of the true sampler g, we now show that the conditional distribution
induced by g converges to the true conditional distribution. Furthermore, we strengthen this result
by establishing convergence in terms of characteristic functions as well. By a classical result by
Bochner (see Theorem H.1) every continuous positive definite function ¢ is associated with a finite
non-negative Borel measure A,,. With this notation, we have the following convergence result with
proof given in Appendix B.2.

Corollary 4.1. Suppose the assumptions from Theorem 4.1 hold. Then,
E [MMD? [F, Py(n, ) Pa(n.301x]] — 0. (4.2)

Moreover, if the kernel K(x, y) = 1 (x —1y) for some bounded, lipschitz continuous positive definite
function . Then,

E [ / (Ga(m3)1x (£) — Gg(nx)x (£))* dAy(£)| — 0 (4.3)

where ¢g(n,x)1x and ¢g(n x) x are the characteristic functions of the conditional distributions
Py(n.x)1x and Py(y, x| x respectively.

The above results demonstrate the efficacy of CGMMD. In particular, they show that the condi-
tional distribution learned by the conditional sampler in CGMMD closely approximates the true
conditional distribution.

5 NUMERICAL EXPERIMENTS

We begin our empirical study with toy examples of bivariate conditional sample generation, then
move to practical applications such as image denoising and super-resolution on MNIST [Yann,
2010], denoising on CelebHQ [Karras et al., 2018], super-resolution on STL10 [Coates et al., 2011]
and inpainting on FashionMNIST [Xiao et al., 2017]. We compare CGMMD with the methods in
Zhou et al. [2023] and Song et al. [2025] on synthetic data and also add comparisons with con-
ditional normalizing flows in synthetic benchmarks. Moreover, to assess test-time complexity, we
compare CGMMD with a diffusion model using classifier-free guidance [Ho & Salimans, 2022].
Due to space constraints, only selected results are shown here; full details appear in Appendix C.
For all the experiments presented here, we have used the Gaussian kernel and batch-size 200.

5.1 SYNTHETIC EXPERIMENT: CONDITIONAL BIVARIATE SAMPLING

In this section, we compare our proposed CGMMD with two baseline approaches: the GCDS [Zhou
etal., 2023], a vanilla GAN framework, and a Wasserstein-based modification, WGAN (trained with
pure Wasserstein loss) [Song et al., 2025].

We consider a synthetic setup with X ~ N(0,1), U ~ Unif[0, 27|, and &1, &5 X N(0,0?). The
response variables are

Y1 =2X +Usin(2U) + €1, Ys = 2X + U cos(2U) + &3,

and our goal is to generate conditional samples from (Y7,Y3) | X at varying noise levels (o). All
three methods use the same two-hidden-layer feed-forward ReLU generator with noise 7 concate-
nated to the generator input, and are evaluated at noise levels ¢ € {0.2,0.4,0.6}. At low noise
(0 = 0.2), all three methods recover the helix structure well. As the noise level rises, however,
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CGMMD maintains the overall curvature,
in particular at the ‘eye’ (the center of
the helix), while the reconstructions from
GCDS and WGAN degrade noticeably -
(See Figure 2). In this regard we have no-
ticed that without ¢; regularisation WGAN
training is often unstable. We also explore
an additional conditional bivariate setting
(which imitates circular structure), with
qualitatively similar results deferred to Ap-
pendix C.1 and Appendix C.2.

0=0.2

0.4

o

=0.6

5.2 REAL DATA ANALYSIS: IMAGE
SUPER-RESOLUTION AND
DENOISING

o

In this section, we evaluate the perfor-
mance of CGMMD across two tasks: im-

age super-resolution and image denoising. Figure 2: Compgrison of conditional generators on the
For this, we use the MNIST and CelebHQ Helix benchmark at X' = 1.
datasets.
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Figure 3: Low and high resolution images for Figure 4: Noisy and denoised MNIST digits
MNIST digits {0, 1,2, 3, 4}. {5,6,7,8,9} at o = 0.5.
Original

Super-Resolution. We now implement CGMMD for 4X
image super-resolution task using MNIST. Given a 7 x 7
low-resolution input, the model aims to reconstruct the original
28 x 28 image, treating this as a conditional generation problem:
producing a high-resolution image from a low-resolution one.
In Figure 3 we show that CGMMD accurately reconstructs the
high-resolution images (right panel) from the low-resolution
inputs (left panel), and they closely match the ground-truth
digits. Additional results and details are given in Appendix C.3

Noisy  Denoised

Image Denoising. We evaluate CGMMD on the image denoising
task using the MNIST (28 x 28 iamges) and CelebHQ (3 x 64 x 64
images) datasets. In this task, the inputs are images (digits for
MNIST and facial images for CelebHQ) corrupted with additive
Gaussian noise (o = 0.5, 0.25 for MNIST and CelebHQ respec-
tively). We can indeed formulate this as a conditional generation
problem. In Figure 4, the left 5 columns represent the noisy digit
images while the right 5 columns are the clean images recon-
structed using CGMMD.Additional experiments and details are
given in Appendix C.3. :
For the CelebHQ experiment, Figure 5 shows original images

(left), noisy inputs (middle), and denoised outputs produced by

CGMMD (right). The results demonstrate that our model effec- ﬁ‘

tively reconstructs clean facial images from noisy inputs and pre-

serves quality even under high noise levels. Additional denoised

images and details are given in Appendix C.4. 9 Figure 5: CelebHQ denoising

using CGMMD at o = 0.25.
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Comparison with Conditional Diffusion Models. In Table 1, we compare CGMMD with a diffu-
sion model using classifier-free guidance [Ho & Salimans, 2022] and progressive distilled diffusion
[Meng et al., 2023; Salimans & Ho, 2022] on the MNIST image denoising task (¢ = 0.9). The
results in Table 1 indicate that the diffusion model achieves higher-quality reconstructions but at a
substantially higher computational cost compared to CGMMD. Distilled diffusion offers compara-
ble performance to CGMMD, achieving better PSNR but lower SSIM, while incurring a moderate
increase in computation. Overall, CGMMD provides a favorable trade-off, generating images of
reasonable quality much faster, making it particularly well-suited for applications where rapid con-
ditional sampling is essential.

Table 1: Comparison of CGMMD with conditional diffusion model for MNIST image denoising.

Generation Time Generation Time

Model PSNR | SSIM (seconds/ batch) (seconds/ image)
Diffusion Model | 13.326 | 0.861 6.94 5.42 x 1072
Distilled Diffusion | 10.658 | 0.508 1.18 x 10~ 1 9.2 x107%
CGMMD 8.922 | 0.718 7.21 x 1072 5.6 x 1074

5.3 SUPER-RESOLUTION WITH STL10 DATASET

Similar to the MNIST 4X super-resolution experiment, we apply CGMMD to reconstruct high-
resolution 3 x 96 x 96 images from low-resolution 3 x 24 x 24 color inputs from STL-10 [Coates
et al., 2011]. Our aim is not to surpass state-of-the-art super-resolution methods [Kim et al., 2016;
Zhang et al., 2018], but to demonstrate flexibility of our own approach. As shown in Figure 6, our
method generates high-resolution images that closely resemble the ground truth. Furthermore, the
pixel-wise standard deviation image demonstrates that our method produces substantial diversity in
the generated outputs, highlighting the effectiveness of the CGMMD objective. We add details about
this experiment in Appendix C.5.

Std Dev

Figure 6: High resolution reconstructions of STL10 images from low resolution inputs. From left
to right: The low resolution input images, the true high resolution images, mean of reconstructed
images from CGMMD, pixel-wise standard deviation of the reconstructed images.

10



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

As this study is purely exploratory and theoretical, relying solely on simulated and benchmark
datasets, we do not anticipate any significant ethical concerns.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we include all theoretical results, corresponding proofs, assumptions,
and discussions of potential limitations in the main text and Supplementary Materials. All relevant
codes are also provided in the Supplementary Materials.

LLM USAGE STATEMENT

The authors recognize the use of LLMs for polishing and improving the clarity of the manuscript.

REFERENCES

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. cambridge
university press, 2009.

Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient
flow. Advances in Neural Information Processing Systems, 32, 2019.

Martin Arjovsky and Leon Bottou. Towards principled methods for training generative adversarial
networks. In International Conference on Learning Representations, 2017.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337-404, 1950.

Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence. The Annals of
Statistics, 49(6):3070-3102, 2021.

Ricardo Baptista, Bamdad Hosseini, Nikola B Kovachki, and Youssef M Marzouk. Conditional
sampling with monotone gans: From generative models to likelihood-free inference. SIAM/ASA
Journal on Uncertainty Quantification, 12(3):868-900, 2024.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1-17, 2019.

Mikotaj Bifikowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1-61, 2020.

Emanuele Borgonovo, Alessio Figalli, Promit Ghosal, Elmar Plischke, and Giuseppe Savaré. Con-
vexity and measures of statistical association. Journal of the Royal Statistical Society Series B:
Statistical Methodology, pp. gkaf018, 2025.

Stéphane Boucheron, Gabor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer
school on machine learning, pp. 208-240. Springer, 2003.

Ismaél Castillo and Thibault Randrianarisoa. Optional pdlya trees: Posterior rates and uncertainty
quantification. Electronic Journal of Statistics, 16(2):6267-6312, 2022.

Anirban Chatterjee and Bhaswar B Bhattacharya. Boosting the power of kernel two-sample tests.
Biometrika, 112(1):asae048, 2025.

Anirban Chatterjee, Ziang Niu, and Bhaswar B Bhattacharya. A kernel-based conditional two-
sample test using nearest neighbors (with applications to calibration, regression curves, and
simulation-based inference). arXiv preprint arXiv:2407.16550, 2024.

11



Under review as a conference paper at ICLR 2026

Jie Chen, Hua Mao, Yuanbiao Gou, Zhu Wang, and Xi Peng. Conditional distribution learning on
graphs. arXiv preprint arXiv:2411.15206, 2024.

Xiaohong Chen, Oliver Linton, and Peter M Robinson. The estimation of conditional densities.
Asymptotics in Statistics and Probability: Papers in Honor of George Gregory Roussas, pp. 71—
84, 2000.

Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit. In
International conference on machine learning, pp. 2606-2615. PMLR, 2016.

Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the 14th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pp. 215-223, 2011.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

Sanjoy Dasgupta and Samory Kpotufe. Optimal rates for k-nn density and mode estima-
tion. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/a5549f3f66cedf4204ffe35552e5b59c-Paper.pdf.

Nabarun Deb, Promit Ghosal, and Bodhisattva Sen. Measuring association on topological spaces
using kernels and geometric graphs. arXiv preprint arXiv:2010.01768, 2020.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. Advances in neural information processing systems,
28, 2015.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. In Proceedings of the Thirty-First Con-
ference on Uncertainty in Artificial Intelligence, pp. 258-267, 2015.

Jianging Fan and Tsz Ho Yim. A crossvalidation method for estimating conditional densities.
Biometrika, 91(4):819-834, 2004.

Jianging Fan, Qiwei Yao, and Howell Tong. Estimation of conditional densities and sensitivity
measures in nonlinear dynamical systems. Biometrika, 83(1):189-206, 1996.

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3
(3):209-226, 1977.

Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and hilbert space embedding. In
International symposium onlnformation theory, 2004. ISIT 2004. Proceedings., pp. 31. IEEE,
2004.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Scholkopf. Kernel measures of condi-
tional dependence. Advances in neural information processing systems, 20, 2007.

Alexandre Galashov, Valentin De Bortoli, and Arthur Gretton. Deep MMD gradient flow without
adversarial training. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=Pf85K2wt z8.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

12


https://proceedings.neurips.cc/paper_files/paper/2014/file/a5549f3f66cedf4204ffe35552e5b59c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a5549f3f66cedf4204ffe35552e5b59c-Paper.pdf
https://openreview.net/forum?id=Pf85K2wtz8

Under review as a conference paper at ICLR 2026

Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Scholkopf, and Alex Smola. A
kernel statistical test of independence. Advances in neural information processing systems, 20,
2007.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schoélkopf, and Alexander Smola.
A kernel two-sample test. The journal of machine learning research, 13(1):723-773, 2012.

Parul Gupta, Munawar Hayat, Abhinav Dhall, and Thanh-Toan Do. Conditional distribution mod-
elling for few-shot image synthesis with diffusion models. In Proceedings of the Asian Conference
on Computer Vision, pp. 818-834, 2024.

Paul Hagemann, Johannes Hertrich, Fabian Altekriiger, Robert Beinert, Jannis Chemseddine, and
Gabriele Steidl. Posterior sampling based on gradient flows of the MMD with negative dis-
tance kernel. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=YrXHEb2gMb.

Peter Hall and Qiwei Yao. Approximating conditional distribution functions using dimension re-
duction. 2005.

William Harvey, Saeid Naderiparizi, and Frank Wood. Conditional image generation by condition-
ing variational auto-encoders. arXiv preprint arXiv:2102.12037, 2021.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

Johannes Hertrich, Christian Wald, Fabian Altekriiger, and Paul Hagemann. Generative sliced MMD
flows with riesz kernels. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VdkGRV1vcft.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Torsten Hothorn, Thomas Kneib, and Peter Biihlmann. Conditional transformation models. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 76(1):3-27, 2014.

Jiamin Hou, Azadeh Moradinezhad Dizgah, ChangHoon Hahn, Michael Eickenberg, Shirley Ho,
Pablo Lemos, Elena Massara, Chirag Modi, Liam Parker, and Bruno Régaldo-Saint Blancard.
Cosmological constraints from the redshift-space galaxy skew spectra. Physical Review D, 109
(10):103528, 2024.

Zhen Huang, Nabarun Deb, and Bodhisattva Sen. Kernel partial correlation coefficient—a measure
of conditional dependence. Journal of Machine Learning Research, 23(216):1-58, 2022a.

Ziyi Huang, Henry Lam, and Haofeng Zhang. Evaluating aleatoric uncertainty via conditional
generative models. arXiv preprint arXiv:2206.04287, 2022b.

Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. Estimating and visualizing condi-
tional densities. Journal of Computational and Graphical Statistics, 5(4):315-336, 1996.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125-1134, 2017.

Rafael Izbicki and Ann B Lee. Nonparametric conditional density estimation in a high-dimensional
regression setting. Journal of Computational and Graphical Statistics, 25(4):1297-1316, 2016.

Ariel Jaffe, Yuval Kluger, George C Linderman, Gal Mishne, and Stefan Steinerberger. Randomized
near-neighbor graphs, giant components and applications in data science. Journal of applied
probability, 57(2):458-476, 2020.

Olav Kallenberg. Foundations of modern probability, volume 2. Springer.

13


https://openreview.net/forum?id=YrXHEb2qMb
https://openreview.net/forum?id=VdkGRV1vcf

Under review as a conference paper at ICLR 2026

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-

proved quality, stability, and variation. In International Conference on Learning Representations
(ICLR), 2018.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1646-1654, 2016.

Achim Klenke. Probability theory: a comprehensive course. Springer, 2008.

Lucas Kock and Nadja Klein. Truly multivariate structured additive distributional regression. Jour-
nal of Computational and Graphical Statistics, pp. 1-13, 2025.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal of the Econo-
metric Society, pp. 33-50, 1978.

Michael Kohler and Sophie Langer. On the rate of convergence of fully connected very deep neural
network regression estimates. arXiv preprint arXiv:1908.11133, 2019.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabds P6czos. Mmd gan:
Towards deeper understanding of moment matching network. Advances in neural information
processing systems, 30, 2017.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In International
conference on machine learning, pp. 1718-1727. PMLR, 2015.

Zhao Lincheng and Liu Zhijun. Strong consistency of the kernel estimators of conditional density
function. Acta Mathematica Sinica, 1(4):314-318, 1985.

Julia Linhart, Alexandre Gramfort, and Pedro Luiz Coelho Rodrigues. Validation diagnostics for
sbi algorithms based on normalizing flows. In NeurIPS 2022-the 36th conference on Neural
Information Processing Systems-Machine Learning and the Physical Sciences workshop, pp. 1—
7,2022.

Shiao Liu, Xingyu Zhou, Yuling Jiao, and Jian Huang. Wasserstein generative learning of condi-
tional distribution. arXiv preprint arXiv:2112.10039, 2021.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
marking simulation-based inference. In International conference on artificial intelligence and
statistics, pp. 343-351. PMLR, 2021.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824-836, 2018.

Gael M Martin, David T Frazier, and Christian P Robert. Approximating bayes in the 21st century.
Statistical Science, 39(1):20-45, 2024.

Radha Mastandrea, Benjamin Nachman, and Tilman Plehn. Constraining the higgs potential with
neural simulation-based inference for di-higgs production. Physical Review D, 110(5):056004,
2024.

Andreas Maurer and Massimiliano Pontil. Uniform concentration and symmetrization for weak
interactions. In Conference on Learning Theory, pp. 2372-2387. PMLR, 2019.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14297-14306, 2023.

David Mimno, David M Blei, and Barbara E Engelhardt. Posterior predictive checks to quan-
tify lack-of-fit in admixture models of latent population structure. Proceedings of the National
Academy of Sciences, 112(26):E3441-E3450, 2015.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

14



Under review as a conference paper at ICLR 2026

Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model
for zero shot learning using conditional variational autoencoders. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pp. 2188-2196, 2018.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. arXiv preprint
arXiv:1802.05637, 2018.

Alfred Miiller. Integral probability metrics and their generating classes of functions. Advances in
applied probability, 29(2):429-443, 1997.

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep neural
network with intrinsic dimensionality. Journal of Machine Learning Research, 21(174):1-38,
2020.

Yijin Ni and Xiaoming Huo. A uniform concentration inequality for kernel-based two-sample statis-
tics. arXiv preprint arXiv:2405.14051, 2024.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with aux-
iliary classifier gans. In International conference on machine learning, pp. 2642-2651. PMLR,
2017.

George Papamakarios, Theo Pavlakou, and lain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1-64, 2021.

Junhyung Park and Krikamol Muandet. A measure-theoretic approach to kernel conditional mean
embeddings. Advances in neural information processing systems, 33:21247-21259, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Poornima Ramesh, Jan-Matthis Lueckmann, Jan Boelts, Alvaro Tejero-Cantero, David S Greenberg,
Pedro J Goncalves, and Jakob H Macke. Gatsbi: Generative adversarial training for simulation-
based inference. In The 10th International Conference on Learning Representations (ICLR 2022).
OpenReview. net, 2022.

Sashank J Reddi, Aaditya Ramdas, Barnabds P6czos, Aarti Singh, and Larry Wasserman. On the
decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions.
arXiv preprint arXiv:1406.2083, 2014.

Michael Reed and Barry Simon. Methods of modern mathematical physics: Functional analysis,
volume 1. Gulf Professional Publishing, 1980.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In International conference on machine learning,
pp. 1060-1069. Pmlr, 2016.

Brian J Reich, Howard D Bondell, and Lexin Li. Sufficient dimension reduction via bayesian mix-
ture modeling. Biometrics, 67(3):886—-895, 2011.

Yong Ren, Jun Zhu, Jialian Li, and Yucen Luo. Conditional generative moment-matching networks.
Advances in Neural Information Processing Systems, 29, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530-1538. PMLR, 2015.

Robert A Rigby and D Mikis Stasinopoulos. Generalized additive models for location, scale and
shape. Journal of the Royal Statistical Society Series C: Applied Statistics, 54(3):507-554, 2005.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

15



Under review as a conference paper at ICLR 2026

Murray Rosenblatt. Conditional probability density and regression estimators. Multivariate analysis
11, 25:31, 1969.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479-36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhol.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU acti-
vation function. The Annals of Statistics, 48(4):1875 — 1897, 2020. doi: 10.1214/19-A0S1875.
URL https://doi.org/10.1214/19-A0S1875.

Antonin Schrab, Benjamin Guedj, and Arthur Gretton. Ksd aggregated goodness-of-fit test. Ad-
vances in Neural Information Processing Systems, 35:32624-32638, 2022.

Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, and Arthur Gret-
ton. Mmd aggregated two-sample test. Journal of Machine Learning Research, 24(194):1-81,
2023.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approxima-
tion characterized by number of neurons. Communications in Computational
Physics, 28(5):1768-1811, 2020. ISSN 1991-7120. doi:  https://doi.org/10.4208/
cicp.OA-2020-0149. URL https://global-sci.com/article/79740/

deep-network—-approximation-characterized-by—-number-of-neurons.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of condi-
tional distributions with applications to dynamical systems. In Proceedings of the 26th annual
international conference on machine learning, pp. 961-968, 2009.

Shanshan Song, Tong Wang, Guohao Shen, Yuanyuan Lin, and Jian Huang. Wasserstein generative
regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, pp. qgkaf053,
08 2025. ISSN 1369-7412. doi: 10.1093/jrsssb/qgkaf053. URL https://doi.org/10.
1093/jrsssb/qgkaf053.

Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schoélkopf, and Gert RG
Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of Ma-
chine Learning Research, 11:1517-1561, 2010.

Bharath K Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. Universality, characteristic
kernels and rkhs embedding of measures. Journal of Machine Learning Research, 12(7), 2011.

Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and
Daisuke Okanohara. Least-squares conditional density estimation. [EICE Transactions on In-
formation and Systems, 93(3):583-594, 2010.

Danica J Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex
Smola, and Arthur Gretton. Generative models and model criticism via optimized maximum
mean discrepancy. arXiv preprint arXiv:1611.04488, 2016.

Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pe-
dro J. Gongalves, David S. Greenberg, and Jakob H. Macke. sbi: A toolkit for simulation-based
inference. Journal of Open Source Software, 5(52):2505, 2020. doi: 10.21105/joss.02505. URL
https://doi.org/10.21105/joss.025065.

Aad W Van Der Vaart and Jon A Wellner. Weak convergence. In Weak convergence and empirical
processes: with applications to statistics, pp. 16-28. Springer, 1996.

16


https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://doi.org/10.1214/19-AOS1875
https://global-sci.com/article/79740/deep-network-approximation-characterized-by-number-of-neurons
https://global-sci.com/article/79740/deep-network-approximation-characterized-by-number-of-neurons
https://doi.org/10.1093/jrsssb/qkaf053
https://doi.org/10.1093/jrsssb/qkaf053
https://doi.org/10.21105/joss.02505

Under review as a conference paper at ICLR 2026

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.
Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Mariia Vladimirova, Stéphane Girard, Hien Nguyen, and Julyan Arbel. Sub-weibull distributions:
Generalizing sub-gaussian and sub-exponential properties to heavier tailed distributions. Stat, 9
(1):e318, 2020.

Mischa von Krause, Stefan T Radev, and Andreas Voss. Mental speed is high until age 60 as revealed
by analysis of over a million participants. Nature human behaviour, 6(5):700-708, 2022.

Holger Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with
conditional normalizing flows. arXiv preprint arXiv:1912.00042, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

LeCun Yann. Mnist handwritten digit database. ATT Labs., 2010.

Andrew Zammit-Mangion, Matthew Sainsbury-Dale, and Rapha&l Huser. Neural methods for amor-
tized inference. Annual Review of Statistics and Its Application, 12, 2024,

Zheyuan Zhan, Defang Chen, Jian-Ping Mei, Zhenghe Zhao, Jiawei Chen, Chun Chen, Siwei Lyu,
and Can Wang. Conditional image synthesis with diffusion models: A survey, 2025. URL
https://arxiv.org/abs/2409.19365.

Shijun Zhang, Zuowei Shen, and Haizhao Yang. Deep network approximation: Achieving arbitrary
accuracy with fixed number of neurons. Journal of Machine Learning Research, 23(276):1-60,
2022.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In Proceedings of the European
conference on computer vision (ECCV), pp. 286-301, 2018.

Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang. A deep generative approach to conditional
sampling. Journal of the American Statistical Association, 118(543):1837-1848, 2023.

17


https://arxiv.org/abs/2409.19365

Under review as a conference paper at ICLR 2026

Supplementary Materials

CONTENTS

1 Introduction
1.1  Conditional Generator using Maximum Mean Discrepancy (CGMMD) . . . . . . .

1.2 Main Contributions . . . . . . . . . . . . e e e

2 Technical Background
2.1 ECMMD: Representation via Kernel Embeddings . . . . . . ... ... ... ...
2.2 ECMMD: Consistent Estimation using Nearest Neighbors . . . . .. ... .. ..

2.3 Generative Representation of Conditional Distribution . . . . . . ... ... ...
3 ECMMD Based Objective for CGMMD

4 Analysis and Convergence Guarantees
4.1 Non-Asymptotic ErrorBounds . . . . . ... ... ... 0oL

4.2 Convergence of the Empirical Sampler . . . . . . . ... ... ... ........

5 Numerical Experiments
5.1 Synthetic experiment: conditional bivariate sampling . . . . . ... ... ... ..
5.2 Real Data Analysis: image super-resolution and denoising . . . . . .. ... ...

5.3 Super-resolution with STL10dataset . . . . . ... ... .. ... .. .......
A Selected Background and Influences

B Proofs of Theorem 4.1 and Corollary 4.1
B.1 Proofof Theorem 4.1 . . . . . . . . . . . .
B.2 Proofof Corollary 4.1 . . . . . . . . . . e

C Additional Experiments

C.1 Synthetic setup: Circle Generation . . . . . . . . ... ... ...
C.2 Comparisons with Normalizing Flows . . . . . ... ... ... ... ......

C2.1 CircleGeneration . . . . . . . . . .. i

C22 TwWOoMOONS . . . . . v vttt it
C.3 Additional results on MNIST super-resolution and denoising . . . . ... ... ..
C.4 Additional results on image denoising with CelebHQ dataset . . . . . . ... ...
C.5 Super-resolution with STL10dataset . . . . . . . .. ... ... ... .......
C.6 Image inpainting with FashionMINIST . . . . . ... ... ... ... ... ....

D Design Choices and Practical Considerations

D.1 Derandomized CGMMD . . . .. . . . . . . ... . ...

w

v A~ B~ W

10

20

21
21
21

22
22
22
23
24
24
26
26
27

28



Under review as a conference paper at ICLR 2026

E Convergence of the Empirical Sampler
E.1 Proofof TheoremE.1 . . . . .. ... . ... ... ... ... . .....
E.1.1 Proofof LemmaE.1 . .. ... ... ... ... ... .. .. .....
E.1.2 Proofof LemmaE.2 . ... ... ... ... ... ... . . ...
E.1.3 Proofof LemmaE.J3 . .. .. .. ... ... ... .
E.1.4 Proofof LemmaE.4 . . ... ... ... ... ... ..
E.2 Proofof Corollary E.1 . . . . . . ... . ... ..

F When does Assumption (E.2) holds?
F.1 Proof of Proposition F.1 . . . . . . .. .. ... ... ...

G Uniform Concentration under Nearest Neighbor Interactions
G.1 Proofof Theorem G.1. . . . . . . . . ... ... ...
G.1.1 Proofof LemmaG.1. . . . . ... ... ... ...
G.1.2 Proofof LemmaG.2 . . .. ... ... ... ...
G.2 Proofof Corollary G.1 . . . . . ... ... ..

H Technical Results

19

31
32
34
34
36
38
39

41
41

43
44
45
46
46

47



Under review as a conference paper at ICLR 2026

A SELECTED BACKGROUND AND INFLUENCES

Here we provide a concise overview of the most directly relevant lines of work that align with our
approach to conditional generative modeling. We concentrate on selected contributions that either
motivate or underpin our methodology, rather than attempting a full survey of the field.

Statistical foundations of conditional density estimation A rich line of work in statistics ad-
dresses conditional density estimation through nonparametric methods. Classical approaches in-
clude kernel and local-polynomial smoothing [Rosenblatt, 1969; Hyndman et al., 1996; Chen et al.,
2000; Hall & Yao, 2005] and regression-style formulations for conditional densities [Fan et al., 1996;
Fan & Yim, 2004]. Alternative strategies exploit nearest-neighbor ideas [Lincheng & Zhijun, 1985]
or expansions in suitable basis functions [Izbicki & Lee, 2016; Sugiyama et al., 2010]. More recent
frameworks, such as distributional regression [Hothorn et al., 2014; Rigby & Stasinopoulos, 2005;
Kock & Klein, 2025], model the entire conditional distribution directly rather than focusing on low-
order summaries. Together, these approaches form the statistical foundation for modern methods of
conditional density estimation.

Conditional GAN and MMD Gradient Flows. Alongside classical approaches, Conditional
Generative Adversarial Networks (cGANs) extend the original GAN framework [Goodfellow et al.,
2014] by conditioning both the generator and discriminator on side information such as labels or
auxiliary features [Zhou et al., 2023; Mirza & Osindero, 2014; Baptista et al., 2024; Odena et al.,
2017]. Variants employ projection-based discriminators for improved stability [Miyato & Koyama,
2018] or architectures tailored to structured outputs such as image-to-image translation [Isola et al.,
2017; Denton et al., 2015; Reed et al., 2016]. Despite strong empirical results, cGANs often in-
herit the instability and mode-collapse issues of adversarial training, motivating alternative losses
based on integral probability metrics such as MMD or Wasserstein distances [Ren et al., 2016; Liu
et al., 2021; Huang et al., 2022b; Song et al., 2025], which in turn inspire our ECMMD-based con-
ditional generator. Among the most closely related works are Ren et al. [2016] and Huang et al.
[2022b]. Ren et al. [2016] introduce an RKHS-to-RKHS operator-based embedding to measure
pointwise differences between conditional distributions. However, their formulation relies on strong
assumptions that may not hold in continuous domains [Song et al., 2009], and the estimator in-
curs a high computational cost, up to O(n?) or O(B?), where B is the batch size. In a related
direction, Huang et al. [2022b] propose a measure equivalent to ECMMD for aleatoric uncertainty
quantification and conditional sample generation. While their approach demonstrates strong empir-
ical performance, it requires Monte Carlo sampling and potentially repeated sampling from both the
generative model and the true conditional distribution, making it computationally intensive (up to
O(B?)). Furthermore, it remains unclear whether the learned generator consistently approximates
the true conditional distribution.

Recently, another line of work has focused on (un)conditional sampling using Maximum Mean
Discrepancy (MMD) gradient flows. In particular, Arbel et al. [2019]; Hagemann et al. [2024]; Her-
trich et al. [2024]; Galashov et al. [2025] have proposed constructing Wasserstein gradient flows
of the MMD and leveraging them for both conditional and unconditional sample generation. No-
tably, the recent work of Hagemann et al. [2024] considers the same conditional sampling problem
studied in this paper and proposes a flow-based model based on the energy distance (equivalently,
a negative distance kernel). However, the key distinction between their work and ours lies in our
MMD-GAN-based formulation, flexibility in the choice of kernels, as well as the rigorous theoreti-
cal analysis we provide, including finite-sample guarantees and comprehensive convergence results.

Simulation-based inference. A parallel line of work on conditional sample generation appears
in the simulation-based inference literature. One of the earliest and most popular approaches is
Approximate Bayesian Computation (ABC) (see Martin et al. [2024] and references within), which
aims to draw approximate samples from the posterior distribution. Recent advances leverage modern
machine learning to improve this process, typically by learning surrogate posteriors from simulations
using neural networks (see Cranmer et al. [2020] for a survey). For example, Ramesh et al. [2022]
propose a GAN-based approach, while others employ normalizing flows as a powerful alternative
[Rezende & Mohamed, 2015; Papamakarios et al., 2021; Linhart et al., 2022]. We refer readers to
Zammit-Mangion et al. [2024] for a comprehensive review of recent developments.
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B PROOFS OF THEOREM 4.1 AND COROLLARY 4.1

B.1 PROOF OF THEOREM 4.1

Under Assumption 2.1, Assumption 4.2 and Assumption 4.1 Theorem 4.1 follows as a special case
of Theorem E.1. To that end, from Theorem E.1 note that for any § > 0 with probability atleast
1 — ¢, there exists an universal constant C' > 0 such that,

2
£(§) < \/B HSlog Slogn n poly log(n)

~6 p— (B.1)
n n-da
m 9 5 1 log (1/90)
+1-@(R)" (1 - Coxp (—R?)) +Vd+mwf (2R(HW) 77 ) 4| 222
L, P
for any R > 0 with E = [~ R, R]¢ and,
wh (r) = sup{|lg(x) —g(W)l,: |z —yl2 < r,@,y € E}.
Note that from Assumption 4.2 we know g is uniformly continuous, hence,
wg (1) < wg(r) forall r > 0. (B.2)

Moreover, take R = R,, = /(logn) then we can simplify the terms L; and Ly as follows. To that
end recall the expression L; and note that ® is the CDF of standard Gaussian distribution. Then as
n — oo we have the lower bound

exp(— 17 /2)
O(R,) 21— )
(Bn) V21 R,

and hence by Taylor series expansion,

- mexp (*R%/Q) exp (*Ri)
O(R,)">1— JooT, +0< o2 )

Then as n — oo and recalling R,, = v/logn,

: _R2 /9
Li=1-@(R,)" (1-Ce ) 5 W

With this choice of R = R,, and recalling (B.2) we can simplify L5 as,
2+/1
Ly Swy | Y281 (B.4)
(HW)TFm
The proof is now completed by combining the bounds from (B.1), (B.3) and (B.4).

+e BL < (B.3)

L
v

B.2 PROOF OF COROLLARY 4.1

The proof of the first convergence follows directly by observing that wg(r) — 0 as r — 0 by defini-
tion, and applying Theorem 4.1, the expression for £(g) in (4.1), and the Dominated Convergence
Theorem (DCT).

The proof for the second convergence is an immediate consequence of the first convergence and
Sriperumbudur et al. [2010, Corollary 4].
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C ADDITIONAL EXPERIMENTS

In this section, we present full details about the experiments from Section 5 and additional experi-
ments to depict usefulness of our approach CGMMD across varied tasks. In all of the experiments
we take K to be the Gaussian kernel, and use the AdamW optimizer with default parameters.

C.1 SYNTHETIC SETUP: CIRCLE GENERATION

Much like the helix-generation experiment in Section 5.1, we now consider a synthetic sampling
setup where the task remains to generate conditional samples from a bivariate distribution, but here
the conditional distribution follows a circular rather than a spiral structure.

Specifically, let X ~ N(0,1), U ~ Unif[0, 27|, and &1, &5 by N(0,0?%). Define the response
variables as

Y1 =X +3sin(U)+e&1, Yo=X+3cos(U) + es. (C.1)

In this experiment we compare our proposed CGMMD with the GCDS method of Zhou et al. [2023].
As before, both methods employ the same two-hidden-layer feed-forward ReLU generator with
noise 7) concatenated to the input, and we evaluate performance at noise levels o € {0.2,0.4,0.6}.

At low level noises both methods perform similarly. However, at higher noise levels, CGMMD
preserves the circular shape of the conditional distribution (Figure 7), whereas GCDS tends to
produce elliptical distortions.

Generated by GCDS Generated by ECMMD
4 : St 4 § WW?&L)}V%“:«( 4
o~ 2 E o~ 2
>, BN
4 -3 -2 -1 0 1 2 3 4 5
Y1
(a)o=0.2
Generated by ECMMD
4
~ 2
>‘ 0
-2 -1 o 1 2 3 4 5
Y1 Y1 Y1
(b)o=0.4
. Generated by GCDS Generated by ECMMD
. ik 50 RS 5.0
~ 2 ~ 25 ~ 25
> > o0 > o0
-2 —25 -25

Y1
(c)o=0.6
Figure 7: Comparison of conditional generators on the Circle benchmark

In Figure 8, we also demonstrate how quickly our approach CGMMD picks up the circular structure
for the setting laid out in Section 5.1 at no more than 100 epochs even with a small two-hidden-layer
feed-forward ReLLU generator network.

C.2 COMPARISONS WITH NORMALIZING FLOWS

In this section we compare the CGMMD with conditional normalizing flows in two settings. For
the first experiment we consider the setting from Section C.1 and for the second setting we consider
the two-moons benchmarking example from simulation based inference [Lueckmann et al., 2021;
Ramesh et al., 2022].
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Figure 8: Conditional samples of (Y7,Y5) | X = 1 for circle experiment, generated by CGMMD
while training.

C.2.1 CIRCLE GENERATION

Recall the conditional distribution (Y7,Y3) | X from (C.1). In this experiment, we compare our
proposed CGMMD with a conditional normalizing flow (cNF) following the general framework of
Winkler et al. [2019]. Unlike their coupling-layer-based architecture, our flow uses 2-3 Masked
Autoregressive Transform (MAF) layers [Papamakarios et al., 2017], interleaved with permutation
layers, as the core building blocks. For CGMMD as before we employ two-hidden-layer feed-
forward ReLLU generator with noise 7 concatenated to the input, and we evaluate performance at
noise levels o € {0.4,0.8}.

ECMMD (x=1.0) Test (x=1.0) cNF2 (x=1.0) Test (x=1.0)

cNF2 (x=1.0) cNF3 (x=1.0)
e T [T

.
Test (x=4.0)

Figure 9: Conditional samples of (Y7,Y2) | X from the circle experiment generated by CGMMD
and cNF. The left panel corresponds to o = 0.4 and the right panel to ¢ = 0.8. The top row shows
samples conditional on X = 1, and the bottom row shows samples conditional on X = 4.

In Figure 9, we plot the conditional samples generated by CGMMD and c¢NF for X = 1 and X = 4
at noise levels 0 = 0.4 and 0.8. We observe that when X belongs to a high-probability region (X =
1), both CGMMD and cNF produce accurate conditional samples. However, when X belongs to a
low-probability region (X = 4), CGMMD is able to retain the semblance of the circular structure,
whereas cNF fails to capture the underlying circular conditional distribution.
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C.2.2 TwO MOONS

In this section, we consider sampling from the unknown posterior distribution in the two-moons
benchmarking task from simulation-based inference [Lueckmann et al., 2021; Ramesh et al., 2022].
The true posterior exhibits global bimodality and a locally crescent-shaped structure, making it a
challenging benchmarking problem.

Here the data generating process has the following structure. Generate Y = (Y7,Y3) from the
uniform distribution on the unit square [—1, 1] and then given Y generate X as follows:

_D/l“v‘YQ‘ YQ_Yl)
V2T V2

where v ~ Unif(—/2,7/2) and » ~ N (0.1,0.01%). Given paired samples from the above data
generating procedure, the objective is to learn the posterior distribution of Y | X. To that end we
implement the CGMMD and flow-based neural posterior estimation (SNPE) using MAF from the
sbi [Tejero-Cantero et al., 2020] package. For CGMMD we implement a ResNet-style generator
using LayerNorm residual blocks (MLP) and also a MDN-based generator with LayerNorm residual
blocks producing full-covariance Gaussian mixtures.

X |Y = (rcos(a) + 0.25,rsin(a)) + (

ECMMD Posterior (MLP) ECMMD Posterior (MDN) SNPE Posterior (MAF) Reference Posterior

P Y -~
sy v
e o

5 e - 050 r )
T A
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ECMMD Posterior (MLP) ECMMD Posterior (MDN) SNPE Posterior (MAF) Reference Posterior

Figure 10: Conditional samples of Y | X for the two-moons experiment, generated by CGMMD
and SNPE from sbi [Tejero-Cantero et al., 2020]. The top row shows samples conditional on X =
(—0.64,0.162), while the bottom row corresponds to X = (—0.25,0.633). Reference posterior
samples are taken from the sbibm package [Lueckmann et al., 2021].

In Figure 10, we show conditional samples generated by CGMMD and SNPE for X =
(—0.64,0.162) and (—0.25,0.633). These X values are chosen from the sbibm package [Lueck-
mann et al., 2021], which provides reference posterior samples for comparison. In both cases, SNPE
captures the bimodality and the local crescent-shaped structure, whereas CGMMD preserves the bi-
modality but does not fully capture the local crescent shape. The MLP model, however, captures
the presence of local curvature. This aligns with observations in Ramesh et al. [2022], where GAN-
based models were noted to struggle in capturing the local crescent structure.

C.3 ADDITIONAL RESULTS ON MNIST SUPER-RESOLUTION AND DENOISING

Here, we present the complete results (performance for all digits in {0, 1, ..., 9}) for the image de-
noising and image super resolution task laid out in Section 5.2. For both denoising ( see Figure 11
and Figure 12) and 4X super-resolution task (see Figure 13 and Figure 14), we present the average
reconstructed images generated by CGMMD along with the corresponding standard-deviation im-
ages for all the digits. We conclude that on average our method can reconstruct the original images
with good precision. Moreover, the non-trivial pixel-wise standard deviation indicates substantial

24



Under review as a conference paper at ICLR 2026

diversity in the generated images, supporting the effectiveness of the conditional sampling objective
of CGMMD.
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Figure 11: Additional MNIST super-resolution results for digits {0, 1,2, 3,4}. Rows show (top to
bottom): ground-truth images, corresponding low-resolution inputs, high-resolution mean recon-
structions, and pixel-wise standard deviations.
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Figure 12: Additional MNIST super-resolution results for digits {0, 1,2, 3,4}. Rows show (top to
bottom): ground-truth images, corresponding low-resolution inputs, high-resolution mean recon-
structions, and pixel-wise standard deviations.

For the 4X super-resolution task on MNIST we use the following architechture: The model be-
gins with two convolutional layers, interspersed with Batch Normalization and ReLU activations.
The resulting feature maps are then concatenated with the auxiliary noise input and passed through
two transposed convolutional layers for upsampling, each again interspersed with Batch Normaliza-
tion and ReLLU. A final convolutional layer with a sigmoid activation generates the high-resolution
output.
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Figure 13: Additional MNIST denoising results for digits {0, 1, 2, 3,4}. Rows show (top to bottom):
ground-truth images, corresponding noisy inputs, denoised mean images, and pixel-wise standard
deviations.

For the denoising task on MNIST, we use a CNN-based autoencoder architecture. The model begins
with an encoder composed of two convolutional layers interspersed with ReLLU activations and max-
pooling operations. The encoded features are flattened and passed through two fully connected
layers with ReLU activations. After feature extraction, the auxillary noise is concatenated with the
feature representation, and the combined vector is processed by another set of fully connected layers
with ReL.U activations. The resulting tensor is reshaped and passed through a decoder consisting
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Figure 14: Additional MNIST denoising results for digits {5, 6, 7, 8,9}. Rows show (top to bottom):
ground-truth images, corresponding noisy inputs, denoised mean images, and pixel-wise standard
deviations.

of two transposed convolutional layers, the first followed by a ReLU activation and the second by a
sigmoid activation, producing the denoised output.

C.4 ADDITIONAL RESULTS ON IMAGE DENOISING WITH CELEBHQ DATASET

Here we present additional examples of the image denoising task on the CelebA-HQ dataset [Karras
et al., 2018] from Section 5. The dataset consists of 30,000 high-quality images of celebrity faces.
For our experiments, we downsampled the images to 64 x 64 resolution and added Gaussian noise
with standard deviation o = 0.25. To generate Figure 15, we selected images at random and applied
¢1 regularization to enhance sharpness.

Original  Noi Denoised Original Noisy Denoised Original Noisy Denoised Original Noisy Denoised
h VLR EFEjaass v

>
3

Figure 15: Performance of CGMMD on image denoising task. For each image, we plot the original
clean image, the noisy image and the denoised image generated by CGMMD.

C.5 SUPER-RESOLUTION WITH STL10 DATASET

In this section, we add details to the experiment from Section 5.3. Since nearest-neighbor methods
scale poorly in high dimensions, we embed images in a lower dimensional space via a ResNet-18
encoder followed by PCA and perform neighborhood computations in this space. Real-world data
are usually high-dimensional, but almost always reside on low-dimensional manifolds; leveraging
such embeddings improves reconstruction quality, as also noted by prior work [Li et al., 2015;
Ren et al., 2016; Huang et al., 2022b]. We additionally apply ¢; regularization to obtain sharper
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reconstructions. To reiterate, as shown in Figure 6, similar to the MNIST experiments, our method
is able to generate high-resolution images that closely resemble the ground truth.

C.6 IMAGE INPAINTING WITH FASHIONMNIST

In this section, we address the task of image inpainting on the FashionMNIST dataset [Xiao et al.,
2017], where the goal is to reconstruct the right half of each fashion product image from its left half.
In our setup, the model receives the left 28 x 14 portion of the image as input and produces a full
28 x 28 image, with the generated 28 x 14 right half augmented with the original left half.
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Figure 16: Inpainted reconstructions of FashionMNIST [Xiao et al., 2017] images. From left to
right: the left-half input, the original full image, and the inpainted output produced by CGMMD,
respectively.

In Figure 16, we present the performance of CGMMD in reconstructing full images for each Fash-
1onMNIST product category. For most examples, the reconstructions resemble the true items, and
the results further demonstrate that CGMMD effectively captures the diversity across categories.
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D DESIGN CHOICES AND PRACTICAL CONSIDERATIONS

Choice of K and k,,. While various kernels K can be used, standard choices like Gaussian
2
K& (3,) = exp (_M) or Laplace K& (z,y) = exp (—%) kernels usually perform

202
well empirically. Prior work also supports rational quadratic kernels and linear combinations of
kernels [Bifikowski et al., 2018], with recent studies showing that using multiple kernels can yield
more powerful discrepancy measures [Chatterjee & Bhattacharya, 2025; Schrab et al., 2023; 2022].

In particular for a collection of kernels K, := {Ky,...,K,} the loss function can be defined as,
. s w”” n
Emulti(g) = Z W Z Z Hm (m,ga Wjﬂ)
m=1"""" i=1 jENG(Z,)(i)

where H,, is defined using K,,, as in (2.3) and w,, is the weight associated with the kernel K,,.
Moreover for computational gains it is possible to implement low-rank kernel approximations like
Random Fourier Features [Rahimi & Recht, 2007].

In our experiments, we use a Gaussian kernel with bandwidth set to \/;T) where p is the dimension of
Y, following the recommendation in Reddi et al. [2014]. However, there is no universal consensus
on how to choose the bandwidth parameter. A widely used alternative in the two-sample testing
literature is the median heuristic [Gretton et al., 2012], which sets the bandwidth to the median of
the pairwise distances.

To sidestep bandwidth selection altogether, some works on unconditional generative modeling with
MMD employ linear combinations of kernels with manually chosen bandwidths [Bifikowski et al.,
2018; Li et al., 2015]. Recently, Li et al. [2017] proposed learning the bandwidth (equivalently,
learning the kernel itself) via adversarial kernel learning, in which both the generator and the kernel
are jointly optimized through a min—-max formulation. An analogous extension of CGMMD is
conceivable, but lies beyond the scope of the present work.

In addition to the kernel K, CGMMD also requires choosing the number of nearest neighbors k,.
Choosing k,, too large increases the computational overhead as the nearest-neighbor is recomputed
in each batch, while choosing k,, too small leads to loss of local information. In our experiments,
we select k,, manually based on the specific experimental setting. This practice is consistent with
the observations and recommendations in Deb et al. [2020].

Choice of batch size. In the experimental setting of Section 5.1, we examine how batch size
affects the quality of generated samples. At noise level o = 0.2, in the top row of Figure 17, we
present the scatterplots of generated (by CGMMD) samples (Y7, Y3) conditional on X = 1 at batch
sizes {200,400, 600, 800} along with the conditional samples from true conditional distribution. In
the second and third rows of Figure 17, we further present the scatterplots restricted to the regions
Y, < —-0.5and Y5 > 3, corresponding to low-mass tail areas.

We observe that as the batch size increases, the overall scatter decreases and the proportion of
outliers in the tail regions becomes smaller, resulting in a closer match to the true helix structure.
However, larger batch sizes come with additional computational cost, and across all our experiments,
we have found that using a batch size of a few hundred typically provides a good balance between
performance and efficiency.

Refinement for Discrete Supports. The estimator g based on ECMMD in (3.2) is well-defined
for both continuous and discrete Px. However, for discrete supports, nearest neighbor estimates
may introduce redundancy or omit relevant structure depending on k,,. To mitigate this, when Px
has discrete support we refine the empirical objective as:

Lp(g) =3 Xt s =xy) iix,—x, HWig, Wig),

and obtain the generator via mingeg L p(g). Such refinements for discrete supports are also dis-
cussed in prior work on nearest neighbor methods [Deb et al., 2020; Huang et al., 2022a]. We apply
the proposed objective to generate digit images conditioned on class labels using the MNIST dataset.
Figure 18 shows the average of the generated samples for each digit class, indicating that the outputs
are consistent, with non-trivial variation across individual samples.
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Figure 17: Effect of batch size on the generation quality of CGMMD in the simulation setting of
Section 5.1.

Mean and Standard Deviation of Generated Samples per Digit

Mean '0' Mean'l’ Mean'2' Mean'3' Mean'4’ Mean'5' Mean'6' Mean'7" Mean'8' Mean'9'

EHABECOBOREA

Std Dev '0' Std Dev '1' Std Dev '2' Std Dev '3' Std Dev '4' Std Dev '5' Std Dev '6' Std Dev '7' Std Dev '8' Std Dev '9'

Figure 18: Mean and standard deviation of generated digit images.

Computational Complexity. For k,, = O(1), the estimator in (3.1) can be computed in near-
linear time O(nlogn) by first constructing the k-NN graph in O(nlogn) time [Friedman et al.,
19771, followed by an O(n) summation. This is substantially more efficient than standard MMD
objectives, which require O(n?) time. Moreover, it may be insightful to leverage approximate near-
est neighbor methods [Douze et al., 2024; Malkov & Yashunin, 2018] to accelerate training. In our
experiments, however, we implement a helper function that computes nearest neighbors via brute-
force search, which incurs a computational cost of O(B?) where B denotes the batch size. This
can be improved to O(B log B) by implementing efficient nearest-neighbor search or approximate
nearest neighbor methods. While our focus is on conditional generation, the same objective can be
applied to unconditional generation by taking X independent of Y and solving the corresponding
optimization problem. Although outside the scope of this work, this approach may offer improved
computational efficiency at the cost of sample quality.

D.1 DERANDOMIZED CGMMD

Recall the ECMMD-based objective for CGMMD from Section 3. In the empirical objective
from (3.1), we introduce additional noise variables 71, ..., 7, ~ Py to train the generative model
g. However, this introduces an extra source of randomness in the training procedure. As a result,
different runs of the same algorithm on the same observed dataset may produce different conditional
samplers, thereby introducing inconsistencies in the learned model due to finite-sample variability.

To mitigate this issue, in this section we introduce a derandomization procedure, albeit at the cost of
additional computational overhead.

Note that the noise variables are sampled from a known distribution F;,, which is typically chosen
to be either Gaussian or Uniform. Leveraging this, we propose the following algorithm to modify

the empirical loss L accordingly.
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1. Fix M,, > 1. Then generate i.i.d. samples {n; 1,...,m,um, : 1 <@ <n} ~ Py.
2. Let Wi g = (Yi, 9 (Mim, X)), forall 1 <i <mnand1<m < M,. Now define,

n Mn
Lpr(g) = —— Z Z ]\/[L HWim.g, Wim.g) -

i=1 jENG(a,) (i) m=1

3. Approximate the conditional sampler by solving gpr = arg mingeg Lor(g).

Note that for M,, = 1, the derandomized objective Lpr reduces to the original empirical loss

L from (3.1). The inner averaging over the generated noise variables is expected to reduce the
variance introduced by the stochasticity of the noise, thereby mitigating the additional randomness
in the training procedure.

Moreover, Theorem 5.2 from Chatterjee et al. [2024] shows that, under mild conditions (in fact,

without imposing any restrictions on the choice of M,,), the derandomized loss Lor converges
to the true ECMMD objective. Therefore, we can expect similar convergence guarantees as those
established in Theorem 4.1 to hold in this setting as well.
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E CONVERGENCE OF THE EMPIRICAL SAMPLER

In this section we establish convergence of the empirical sampler from (3.2) under more general
settings. For the reader’s convenience we briefly recall the notations, assumptions and details about
the class of neural networks from Section 4.

Recall that we observe samples {(Y;, X;) : 1 < i < n} from a joint distribution Py x on R? x R?
such that the regular conditional distribution Py-|x exists. Our aim is to generate samples from
this conditional distribution. Towards that, by the noise outsourcing lemma (see Theorem 5.10 from
Kallenberg and Lemma 2.1 from Zhou et al. [2023]) we know there exists a measurable function
g such that Py, x)x = Py|x for i generated independently from N,, (0, I,;,) for any m > 1.
From Section 3 recall that to estimate the conditional sampler g, we consider the ECMMD from
Chatterjee et al. [2024] as a discrepancy measure. In particular we take a kernel K satisfying the
following.

Assumption E.1. The kernel K : RP x RP? — R is positive definite and satisfies the following:

1. The kernel K is uniformly bounded, that is ||K||oc < K for some K > 0 and Lipschitz
continuous with Lipschitz constant Lg.

2. The kernel mean embedding p : P(Y) — H is a one-to-one (injective) function. This is
also known as the characteristic kernel property [Sriperumbudur et al., 2011].

Now fix m > 1, generate independent samples 71,72, . . ., 1, from N, (0, I,,,) and take a class of
neural networks G (defined below). Next, we construct the k,,-nearest neighbor graph G (2,,) on the
samples 2, := {X;,..., X, } withrespect to the ||-||,. Forany g € Glet W, 4 = (Y, g (m:, X;))
for all i € [n] and define,

H (Wi,g7 Wj,g) =K (}fla},]) -K (Kyg (nj7Xj)) -K (g (1717Xl) s Y}) +K (g (nlel) g (nj7Xj))
forall 1 <1 # j < mnand for any g € G take,

ag)::%z S H(Wig Wig).
1=1

n ) )
JENG (2, (1)

With the above definition, we estimate the true function g as,
g := argmin L
g g mip (9)

For establishing convergence guarantees for the estimated conditional sampler g we make the fol-
lowing technical assumptions.

Assumption E.2. The following conditions on Py x, the kernel K, the true conditional sampler g
and the class G holds.

1. Px is supported on X C R< for some d > 0 and || X; — X 2|5 has a continuous distribu-
tion for X7, X5 ~ Px.

2. There exists a, C7, Cy > 0 such that for X ~ Px,
P(| Xy, >1t) < Crexp (—Cat*), Vt>O0. (E.1)

3. The target conditional sampler g : R™ x RY — RP is continuous with ||g||., < Cj for
some constant Cy > 0.

4. For any g € G consider hg(z) = EK(Y,-) —K(g(n,X),-)|X = z] and assume that
there exists 81, 82 > 0 such that,

[(hg (@), h(@1) = hg(@2))] < Cs (1+ |l + @1 ]5* + @25 lles — @232, (E2)
for all &, x,,x2 € X where C}5 is a constant independent of g.

We take G to be a class of neural networks with the following details.
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Details of G:  Let G = Gy v.5.5 be the set of ReLU neural networks g : R x R? — RP with
depth H, width W, size S and ||g||,, < B. In particular, # denotes the number of hidden layers
and (wp, wa, ..., ws ) denotes the width of each layer where wy = d + m and wy, = p denotes
the input and output dimension respectively. We take W = max {wg, wy, ..., wy }. Finally size

S= 2311 w; (w;—1 + 1) refers to the total number of parameters of the network.
Moreover, we make the following assumptions about the parameters of the class G.

Assumption E.3. The network parameters of G satisfies 7, W — oo such that,

2HS 1 1
B*HS log Slogn .

n

HW — oo and 0

as n — oo. Additionally B > Cy where C is defined in Assumption E.2.

Before stating our main result, for a function f, uniformly continuous on a set F, define the optimal
modulus of continuity on the set F as,

wf (r) = sup {[|f () = f@) : |z — yl| < 7@,y € B}

We are now ready to state our result on convergence of the empirical sampler.

Theorem E.1. Adopt Assumption E.1, Assumption E.3 and Assumption E.2. Take &, =
1/d
(7’“" 17‘;%”> (logn)*/* and,

k”l%(log n)252/04 if d <28
vy = { B (log n) /e ifd =25
n 285/d

e o e

Let k, = o (n?) for some 0 < v < 1. Then for any § > 0 with E = [—R, R]**t™,

1 B2HS log S 1
m o E __1 log (1/9)
+1-2(R)" (1 —-Crexp(—C2R ))+MWQ (QR(’HW) d+m) + e

for all R > 0 with probability atleast 1 — §.

The above theorem provides finite sample bounds on the loss incurred by using the estimated con-
ditional sampler g. We can use the explicit bound from Theorem E.1 to confirm that the conditional
distribution induced by the empirical sampler indeed converge to the true conditional distribution.

Corollary E.1. Adopt Assumption E.1, Assumption E.3 and Assumption E.2. Then for k,, = o (n")
for some 0 < v < 1,

E [MMD? [F, Py(nx)x, Pan.x)1x] | §] = Oas.

Finally to complete this section on convergence guarantees for the empirical sampler, using DCT
the result from Corollary E.1 can be relaxed to claim,

E [MMD? [F, Py(n,x) 1, Pon.x0)1x]] = 0.
E.1 PROOF OF THEOREM E.1
For simplicity we will assume that p = 1. The proof for general p > 1 is similar but with additional

notational complexities. To begin with by Proposition 2.3 from Chatterjee et al. [2024] we know
that £ (g) = 0 for the true conditional sampler g. Then we get the decomposition,

£(9) = £(9) - £(g) < sup|L(g) — £lg)| + |£@) — £(9)| +1£() ~ £(9)
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for any g in G. We can now relax the upper bound to get,

£(9) < 2sup |L(g) ~ L{g)| + inf |£(g) ~ L(@)| (E3)

T T
We will bound terms 73 and 75 individually. We first start with 75.

Lemma E.1. Adopt the conditions and notations of Theorem E.1 and recall 75 from (E.3). Then
forany R > 0,

Ty Sk 1= @ (R)™ (1= Crexp (~CoR*)) + vV + mwf (2R (HW) =7 )

E

where wz’ (+) is the optimal modulus of continuity of g on the subset £ = [ R, R},

Next we bound the term 77 from (E.3). To that end we start by decomposing T1. Note that,

Ty <sup |L(g)—E |L(g)| Zpn||+sup |E Zn hg
L <sup |£(9) K [L(9) | Z3]|+sup |B[Z(9)| 22 - Zn X))
Ty 1 Ti,2
+sup leh Dz —L(g)| (E.4)
T3

In the following we bound each of the terms 77 1,77 o and T} 3 separately. First we bound the term
T1 1.
Lemma E.2. Adopt the conditions and notations of Theorem E.1 and recall T ; from (E.4). Then
for any § > 0, with probability at least 1 — &,
1 B2HS log Slogn log (2/6

P [

Ty1 SKa —
n

Next we bound the term 71 ».
Lemma E.3. Adopt the conditions and notations of Theorem E.1 and recall T} » from (E.4). Recall

1/d
En = (L” I;’g”) (logn)*/® and,

kn logn (10g n)252/0¢ if d < 25,
kn logn (1Og n)1+d/a if d =20,

282/d
R
Then for k,, = o (n/logn) and any 6 > 0, with probability 1 — 4,

log (1/6)

VUp =

1
T Sax — + el 4o, +

Finally we bound the remaining term 77 3.

Lemma E.4. Adopt the conditions and notations of Theorem E.1 and recall T 3 from (E.4). Then
for any § > 0, with probability at least 1 — &,

B2HSlog Slogn log (1/5)
113 Sk \f +

n n

Now to complete the proof of Theorem E.1 we combine the bound from (E.3) and the bounds from
Lemma E.1, Lemma E.2, Lemma E.3 and Lemma E.4 to conclude,

2
£(9) sd,KL+1/M+5iﬁ2+@
vn n

+1-®(R)™ (1 Cyexp(—CaRY)) + Vd+ mw? (QRH‘W%W‘ﬁ) +
for any R > 0 with probability atleast 1 — 4.

log (1/6)

n
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E.1.1 PROOF OF LEMMA E.1

Recalling the definition of £ from (2.2), for any g € G we get,

1£(g) - L(g) SE[K(Y,g(n X)) —K(Y,g(n, X))
where n,17' ~ N, (0, I,;,) are generated independent of X. Now take F = [—R, R]d+m for any

R > 0. Then recalling the bound on K from Assumption E.1 we can now relax the above upper
bound as,

£<g>—£<g>\sﬂb<<n,x> € B°)

+E[K(Y,g9((n, X)) -K(Y,g(n, X))|1{(n, X) € E}|
+E[K(g(m,X).g(n". X)) -K(g(n X),g(n', X)) 1{(n, X),(n', X) € E}]

Next we use the Lipschitz property of K from Assumption E.1 to further relax the above bound as,

‘E(é) —L(g)| sk P((n,X) € E)+E[llg(n, X) —g(n, X)ll, 1{(n, X) € E}]
Sk P((n, X) € E9) + (g —9) 1l (ES)
Now by (E.1) and recalling that 7} is independent of X we know,
P((n,X) € E)<1-2(R)"™ (1 - Crexp(~C2R%)). (E.6)

Hence continuing the trail of inequalities from (E.5) and recalling that the choice of g € G was
arbitrary we can show,

inf
geg

£(@)~ £ ()| S 1= (R)" (1= Crop (~CoR™) + 1t 3~ 9) Tl

Now by Assumption E.2 recall that the target conditional sampler g is continuous and ||g|| ,, < Cb.

Now for all n large enough, take L = [v/#] and N = |v/W|. Then by Theorem 4.3 from Shen
et al. [2020] there exists a ReLU network go with depth 12L + 14 + 2 (d + m), maximum width

gd+m+3 max{(dJr m) {NﬁJ N+ 1} and ||gol| ., < Co such that,

1@ — §) 15l S Vd+muwl (2RN- 77 L7717 )

where wg (+) is the optimal modulus of continuity of g on the set E (note that this is well defined
since g is uniformly continuous on E). Now note that by definition of L and IV, we can easily extend
go to a ReLU network g € G such that gg = g. Hence,

it /(g —9) Lel < 11(§0 — 9) Loll. S VA+mwf (2R W77 ).
g

E.1.2 PROOF OF LEMMA E.2

From Assumption E.1 recall K is bounded and Lipschitz. Hence applying Corollary G.1, we get
that,

1 - di (23, log (2/6
P |Tiy Sk —E |sup» /14 ( )Zig(nnXiH%L M|%n >1-9
n g9€9 kn n
where Z1, ..., Z, are generated independently from N(0, 1) and d; (27,) is the degree (in-degree +
out-degree) of X; in G (%,,) for all i € [n]. A simple application of tower property of conditional
expectation shows that with probability at least 1 — 6,

1 - di (Zn log (2/6
T, Sk —E supz 1+ (ki)Zig (ni, X3) | Zn| + M. (E.7)
n 9€9 ., n n
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Now consider the set,

Gn={(gm,X1),....9 (M, X,)) : g € G}
and for any v1 = (v1,1,...,Upn,1) and va = (V1 2,..., vy 2) consider the empirical distance,

dp,o00 (V1,02) := Ifl:af i1 — vi2l. (E.8)

Fix ¢ > 0 and take C,, . to be the covering number of G,, at scale ¢ with respect to the empirical
distance d,,.~, and let G,, . to be one such covering set. By Lemma 2.1 from Jaffe et al. [2020] we
know that,

d; (Z7) Sa ky forall i € [n]. (E.9)
Then by considering elements in G,, . we can now easily show,
1 . di (Z2)
—E| sup 1+ Zig (m;, X %n:|
PO

1
< g § Zwg i | Zul  (E.10
Nd5+n sup 9. | ( )

Vg€EG, o i=1

where vg = (Vg.1,...,0g,n) Withvg; = g (n;, X;) forall i € [n] and g € G. Now by applying
Lemma H.1 and once again using the bound from (E.9) we get,

1 ~ d1 %L _ vV logcne = dz %n
K [ sup Z 14+ (7)21-0971- | 7, ,%’n] S ~—— sup $Z <1 + #) |vg.i|?

n vg€Gn,e j_ kn VgEGn e

\/logCn -
v, 1
n ’ngEgns ;‘ <
< By /198 ne (E.11)
n

where ) = (71, ...,my) and the final bound follows by recalling that |g|| ., < Bforallg € G.
Now take pqim (G) to be the pseudo-dimension of the class G. Then by Theorem 12.2 from Anthony
& Bartlett [2009] we know that for large enough n,

2eB 2eB
10gCr.c < Paim (G) log (gpde?g)) < painm () log ( ee ”)

Now substituting bounds on pqi, (G) from Bartlett et al. [2019] we get,

logC,, - S HSlog Slog 2¢Bn (E.12)
Choosing € = 1/n and combining (E.7), (E.10), (E.11) and (E.12) we get,
2 2
Tir < % n \/B HSlogSnlog(QeBn ) n \/log 511/5) (E.13)

with probability at least 1 — §. Now to further simplify the upper bound note that, by definition
H > 1 and hence,
B*HS log Slog (2eBn?) < B*HSlog Slogn N B*HSlog Slog B
n ~ n n '
By definition note that wg = d +m > 2and w; > 1forall1 < ¢ < H. Then § > 4 and hence
recalling Assumption E.3 we get B2 = o (n/logn), implying log B = O (logn). Hence we can
simplify the upper bound as,

B*HS log Slog (2eBn?) < B2HS log Slogn
n ~ n ’
Now substituting in (E.13) we conclude,

1+\/82H81<;g810gn+\/10g511/5)

T11 SKka —
n

(E.14)

with probability at least 1 — 4.
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E.1.3 PROOF OF LEMMA E.3

Recall the function hg from (E.2). Then note that,

1 n
Ty 2 = sup ke Z Z (hg (Xi), hg (Xi) — hg (Xj)>}c :
9€g ™ i=1 jENG(a,) (3)

Now by Assumption E.2 we get,

1 « 1 !
E[Tio] SE |- (1 I + 1505 ) 16 = X1
" i=1 jENG () (4)

1 1 1 2
=B\ > (L IX I 1% - X
L " jENG (2, (1)

—E|(1+1X205 + | X [l3') 1K1 = Xnen [157] (E.15)

where the first equality follows by exchangeability and the second follows by choosing
N(1) to be an uniformly selected index from Ng(4)(1), the neighbors of vertex Xj.

Now take M, = C (log n)l/a, where C > 0 is a universal constant, and let E, =
{max {| X112, | Xn)|[,} < Mn}. Now,

B B
] (1 1 + e 2 ) 16~ Ko
SE (L1005 + 1 X 15) 12X = Xy 1521 {E5)
+E[(1+1X5 + 1 X l8) 1% - X321 (B} E16)

Next, for the first term, by Cauchy-Schwartz inequality we find,

E[(l n |X1||21+XN<1>||21) 1% — X 221 {Ez}}

1 1 2 232 c
<\|E (1+||X1||2 +HXN(1)||2) [ X1 — Xnllz P(E;)

By the tail condition from (E.1), Lemma D.2 from Deb et al. [2020] and choosing C' large enough
we can conclude that the first term on RHS is bounded and P (E¢) < exp (—4logn) = n~*. Hence,

. 1
| (14 101" + X 1)1 - Xl LB} o

Substituting in the bounds from (E.16) and once again using Cauchy-Schwartz inequality we get,

B (L 1+ Xl ) 160 = Koo

1 2
S+ \/E [(1 + 13+ 1 X 15 } JE (1%, = X 1371 {E5}]

1
St \/]E (1 = Xy 1371 (B} (E.17)

where the final bound follows by the tail condition from (E.1) and Lemma D.2 from Deb et al.
[2020]. To proceed with the second term define N' = A (M,,, €) be the covering number of the ball
B(M,) = {z € R?: ||z|, < M,} with respect to the | - || norm, where ¢ > 0 is the diameter of
the covering balls. We now begin by expressing the expectation as a tail integral,

E [[1X0 = X 3 1 a1, [ Ky |, < 2]
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2M,,
< 252/ 2P ([ X0 = X |, > & max{[| X [y, | Xne [|,} < M) de
0

2M,y,
§efﬁz+/ 7P (|| X1 — X, > emax{[| Xy, | Xne [} < Ma) de (E.18)

En

where the bound follows by noticing that €,, < M,, for large enough C. In the following we will
bound the second term. Suppose By, ..., By are the covering balls of B (M,,) with respect to the
|| - ||2 norm. Now define,

S:={i: Px (B;) < Ckylogn/n}, (E.19)

to be the collection of covering balls with probability under Px smaller than Ck,logn/n. Then for
t € (en, M,) we have the following decomposition,

P (|| X1 - XN(1>||2 > e, max{[| X1, HXN(1)H2} < M,)

SP (HXl — Xnel[, = & max{|| Xully, || Xnell,} < M, X1, Xnq) € U Bi) +P <X1 € U Bi>
igs i€s

kn 1
SP <HX1 — Xn |, > & max{[| Xy, || Xno||,} < M, X1, Xnay € U Bi) + %/\/’,
igs

(E.20)

where the first inequality follows from Lemma D.2 in Deb et al. [2020] and the second inequality
is a simple application of the union bound. To bound the first term note that HX 1— XN ||2 > €
implies that for all j such that X; is not a k,, nearest neighbor of X, || X; — X H2 > ¢. Hence,

P (HXl ~ Xy, > e max{[| X1, | Xnaw |} < Ma, X1, Xne € | BZ)
€S

<P (36,]‘1, ..+, Jn—k,—1 all distinct such that X, € U B;, ) min ) 1Xe — X5, 11, > s)

<v<n—kn
¢S
< P| X B; i X, —X; >e E.21
= Z ¢ e U “1<v<n7317nkn71 1Xe iolla 2 ( )
£,J1s s dn—kp —1 igS T
all distinct

To bound the above probability, suppose B(X ) € {B; : i ¢ S} denotes the covering ball where X,
lies. Then for a distinct collection of indices ¢, ji,. .., Jn—k, —1,

P|X Bi i X, — X
reUBe o 1% X
2

l, >e| <P(X;, €B(Xy),1<v<n—k,—-1)

v

To further bound the above probability note that,

P(X;, ¢ B(Xe),1 <v<n—k,—1|X,) = (1-P(X € B(X/)|X)" ™"
n—k,—1
< (1_Ck:nlogn> 7
n
where X ~ Px is generated independent of X, and the final bound follows by recalling the defini-
tion of B (X,) and S. Hence recalling the bound from (E.21) we have,
P( HXl - XN<1)H2 > e, max{|| X1l|,, HXN(I)HQ} < My, X1, Xnay € U Bi)

iZS

n—kp—1
< et (1 _ Cky logn)
n

Using the fact k,, = o(n/logn) and choosing C' large enough we get,

n—ky,—1
o1 (1 ~ Cky logn) < 1

n n2’
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Hence plugging this back into (E.20) we have,

1 ky, logn
1| flogn

P([|1X: = Xnell, = & max{l Xally, [ Xn ll,} < Ma) S N

n
Recalling the definition of A we know that,

(logn

)d/a
gd

N Za
Since ¢ € (e, 2M,,), then by definition of ¢,, and M,, notice that,

i—i-k lognN< knlogn (logn

)d/a
n2 n ed '

Plugging this bound back in (E.18) shows that,
1560 = X321 max{ X [ X, < ¥

1+d 2M,,
26 | kn(logn)/a/ 280-d—1
n €

Nds

n
2
S,d EnBQ +Vn

where the final bound follows by evaluating the integral. Now substituting the bound in (E.17) and
recalling (E.15) we get,

1
E [Tl,Q] ,Sd ﬁ + 552 + vV Vn

The proof is now completed by recalling the bound on K from Assumption E.1, (E.9) and following
the combinatorial arguments from proof of Lemma B.2 in Chatterjee et al. [2024] with an application
of McDiarmid’s bounded difference inequality on the statistic 77 o.

E.1.4 PROOF OF LEMMA E .4

By a standard symmetrisation argument,

E[T13] < Sup

LS ot ]

where o1, . ..,0, are generated independently from Rademacher(1/2). Then expanding the func-
tion hg we get,

K;Y Kdgl

Zgz gugg)

i=1

+ sup —
geg

E [T1,3] <E[ —l—supf

] (E22)
where, for all ¢ € [n], Y;,Y; are generated independently from Py |x_x,, and g; =

g (mi, X,),9, = g(m;, X;) where {n; : i € [n]} and {n] : ¢ € [n]} are generated independently
from N,, (0, I,,,). By Khintchine’s inequality,

1 = 1
ZUY K7Y ] ﬁ E lZK(KaE/)Q] SK %a
=1

where the final bound follows by recalling that the kernel K is bounded. Substituting this bound
back into (E.22) we get,

1
]E[Tlg] NK%+]E

To further bound the last two terms consider,

gn = {g: (gl77gn)geg}

sup —
geg

ZO-Z }flﬂgl

=1

sup —
geg N

Zgz 92791

] (E.23)

38



Under review as a conference paper at ICLR 2026

and,

g;’l = {g’ = (gl?"'?gn’gi7"'7g;) :geg}'

Moreover consider d o (+, -) be the £, distance on RY for any ¢ > 1 (see (E.8)). Now fix e > 0 and
let C,, - and C/, . be the covering numbers of G. and G/, at scale & with respect to the empirical dis-

tances dy, oo and don,oo respectively. Let G,, . and G.. . be covering sets of G,, and G/, respectively.
Now using the LlpSChltZ property of K we can show,
o]

" 1/2
\/logC,,
e VBT (Z K> (Yi,gi)>
gesn

n,e

n

i=1

sup
§egns

1
E lsup - K (Y3, 9:)

geg

|@n] §K5+E

n :
=1

where 2, = {(Yi,m:, X;) : @ € [n]} and the last bound follows by Lemma B.4 from Zhou et al.
[2023]. Recalling that K is bounded from Assumption E.1 we conclude,

[log Cp
ZUL Kagz) |@7L] NK €+ OgT

=1

As in (E.12), taking € = 1/n, invoking Theorem 12.2 from Anthony & Bartlett [2009], substitut-
ing the bounds on pseudo-dimension from Bartlett et al. [2019] and using the tower property of
conditional expectations we get,

E supf

geg

n

zdiK(Yz’,gi)

=1

E

sup —

~
geg n

]< 1+\/82H510g810g(268n2)'

Similarly we can show,

ZUZ gugz

Substituting the above bounds in (E.23) we get,

B2HS log S log (8eBn?
i e [

n

sup —

geg N n

1 1 + \/BQ”HS log S log (8eBBn?)

Recalling the boundedness of the kernel K and using McDiarmid’s bounded difference inequality
we get,

B2 S log S log (8eBn?) log (1/4)
113 Sk \f +

n n
with probability atleast 1 — . Recalling the bound from (E.14) we conclude,

1 B2HS log Slogn log (1/6
Tl,B,SK\/ﬁ‘i‘\/ g g+\/g(/)

n n

with probability at least 1 — 4.

E.2 PROOF OF COROLLARY E.1
By definition one can immediately recognise that,
E [MMD? [F, Py(n,x)x: Panx)1x] | 9] = L£(g) as.

Now fix € > 0. Then we can choose R. > 0 large enough such that,
€

1—®(R)™(1—Cyexp(—CyRY)) < =
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Moreover recall that g is continuous and hence uniformly continuous in E' = [~ R., R.]%T™. Thus

we know wg (r) — 0asr — 0. Hence choosing n large enough and recalling Assumption E.3

shows that,
Vd+mwf <2Rs (’HW)fﬁ> <

and once again recalling Assumption E.3,

c
47

1 B*HSlogSlogn = 4, €
— N
vn + \/ n e Vs 4
where ¢, v, are defined in Theorem E.1. Now choosing 6 = exp (—nEQ / 16) and applying the
bound from Theorem E.1 we get,
L(§) Sa,m,p,k € With probability at least 1 — exp (fn52/16) for all n large enough.

~

The proof is now completed by an application of the Borel-Cantelli lemma.
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F WHEN DOES ASSUMPTION (E.2) HOLDS?

As discussed in Remark 4.1, the assumption in (E.2) (and in Assumption 4.2.4) is perhaps the most
crucial assumption for convergence of the empirical estimator. This assumption was also considered
in the works of Huang et al. [2022a]; Deb et al. [2020]; Azadkia & Chatterjee [2021]; Dasgupta
& Kpotufe [2014] for establishing rates of convergence of nearest neighbor based estimates. In
this section we discuss when such assumptions might hold. To that end consider the following
conditions.

Assumption F.1. Consider the following regularity conditions:

* The conditional density of Y given X = «, say f (:|&) exists, is positive everywhere in its
support, differentiable with respect to x (for every y) and for all 1 < ¢ < d, the function
|(0/0z;)log f (y|x)| is bounded above by a polynomial in ||y||, and ||z||,.

« Forany ¢ > 1,E[||Y||5|X = «] is bounded above by a polynomial in ||z|,.

* Suppose that for all g € G, the conditional density of g (n, X) given X = x, say fq (-|z)
exists and define,
fo (ylz)

g (y,x) = m

to be the density ratio such that sup,cg [rg(y, )| S (1 + lyllS + [lz]|$) for some ¢ > 0.
Furthermore, assume that for any 1, x5 € R4,
Sup rg (Y, @1) =g (Y, 22)| S 1+ [lylly + 2ally + [22[l3) |21 — @2, (E1)
g
for some vy > 0.

In the following we now show that the locally lipschtiz property from (E.2) (and also Assumption
4.2.4) holds whenever Assumption F.1 is satisfied.

Proposition F.1. Suppose the kernel K is bounded. Then under Assumption F.1, (E.2) is satisfied
with some C3, 51 > 0 and 5y = 1.

The main message of Proposition F.1 is that the locally Lipschitz condition in (E.2) is satisfied when
the conditional density f(- | ) is a smooth function of |||, and when the density ratio induced by
applying any function from the class G exhibits sufficiently regular behavior. Similar conditions on
density ratios have also been considered in prior work on conditional sampling [Zhou et al., 2023].

F.1 PROOF OF PROPOSITION F.1

Fix 1,22 € X. Also fix g € G and for notational convenience let h = hg where hg is defined in
(E.2). Let k € K such that ||k||x is bounded, then,

'<k:,h(m1) — h(w2)>

= EEY)1 —rg(Y,2))|Xa = 21] —E[R(Y)(1 = rg(Y, 22))| X2 = 2]

< [ )1 = ro(w2) (gl ~ (wle)| dy

+ [ 1K) 0ay.2) = oy 22) S (vlez) dy
S ([ 11 rotw@n)l 1 wlen) ~ flulen)] dy

+ [ lrotw o) = ro(w2)| (5121w ),

where the last inequality follows by recalling the bounds on the kernel K, and the noticing that
lk(y)] = [{k, K(y, )kl Sk [|k|lx. By using the mean value theorem along with the bounds on
[(0/0x;)log f (y|x)| for all 1 < i < d, the moment bounds from Assumption F.1, the polynomial
bounds on 74 and (F.1) we now get,

[k, h(@r) = h@2)) el S Ikl (1+ 2§ + 22l ) e = @2l
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for some 57 > 0. By Theorem 4.1 from Park & Muandet [2020], h(x) € K forall z € X. Recalling
the bound on K it is easy to notice that sup . ||h(x)|x < 1. Hence we now conclude,

[((@), h(@1) = h@2))l S (1+ 21§ + l22]15") 21 = @l
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G UNIFORM CONCENTRATION UNDER NEAREST NEIGHBOR INTERACTIONS

In this section we provide a general overview about uniform concentration of non-linear statistics
under nearest neighbor based weak interactions. The results presented here are crucially used for
the proof of convergence of the proposed empirical sampler.

We begin by setting up the notations. Take n > 2, d,m > 1,let Z,, := {x1,x2,...,¢,} be a
collection of n points in R? and define G (2;,) to be the directed k,,-nearest neighbor graph on 2,

with respect to the |-||2 norm. Moreover, consider G to be a collection of functions g : R™xR¢ — R
and for a function h : R? x R? — R define the non-linear statistic,

T, (g) := — nk: jg: > h(Wig, Wig) (G.1)

i=1 jENg(a,,) (%)

where for all i € [n ] W, g := (Yi, g9 (m;, z;)) with independent and identically distributed random
variables {(n;,Y;): 1 <i<n} € Rm x R and the set

Ng(ay (i) :={j € [n] : ©; — x; is a directed edge in G (27,)}
for all 1 < 4 < n. In the following theorem we establish uniform concentration of T, (g) around
it’s expectation.

Theorem G.1. Consider the non-linear statistic T,, (g) defined in (G.1) for all g € G. Moreover,
assume that the function  : R? x R? — R is Lipschitz continuous with Lipschitz constant L > 0
and is symmetric, that is h (w, w’) = h (w’, w) for any w, w’ € R?. Then,

supz \/[ 1+ 7 Zig (i, i ] (G2
9€g i _

where for all ¢ € [n], d; is the degree (in-degree + out-degree) of the vertex x; in G (Z£,,) and
{Z; : i € [n]} are generated independently from N (0, 1).

E [325 T, (g) - E [T, ()] ] <o

Remark G.1. The results in Theorem G.1 can easily be extended to the case where g € G maps to
RP for some p > 1. Indeed in such setting the result from (G.2) becomes,

supZ,/l+—ZT g (i, x;)
9€9

where Z; € R? for all i € [n] are now generated independently from N (0, I,,). The proof is exactly
similar with additional notations and hence is omitted.

E[ggg 1,(9) - BT @) | 0

While Theorem G.1 provides bounds on uniform concentration in expectation, an application of Mc-
Diarmid’s bounded difference inequality (see Theorem 6.5 of Boucheron et al. [2003]) extends these
results to high-probability bounds on uniform concentration in absolute difference. We formalize
the result in the following.

Corollary G.1. Adopt notations and settings from Theorem G.1. Moreover, assume that the func-
tion A is uniformly bounded. Then for any § > 0, with probability at least 1 — 4,

sup |Tn(g) [ ( )H ~L, h - [Supz \/ 1 + Zzg "7%%
gcg geg

The result from Corollary G.1 can easily be extended to the case when g € G maps to R? for some
p > 1. Indeed following the discussion from Remark G.1 one can show,

supZ\/l—i——ZT g (M, x;)
9€9 i _

log (2/9)

log (2/9)

n

sup |T,,(9) —E[Tn(g )]INLh -
gceg

holds with probability at least 1 — 6.
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G.1 PROOF OF THEOREM G.1.

To begin with we set up some additional notations. For simplicity we take N (i) = Ng(2,)(4) for
all ¢ € [n]. Define,

n

1
t(wy) = — Z Z h (w;, w;) forall w,, := (wy,...,w,) € R?".

i=1 jENG(a,) (%)
Then note that T}, (g) = t(W,,4) where W, g = (Wig,...,W,g). Now take W, , :=
(W{g4,..., W]/ ;) tobe an independent copy of W, 4 and note that,

B s, (9) ~EI7, (0))| < E| st (Wog) —t (W) | G3)

To complete the proof it is now enough to bound the right hand side of (G.3). To this end we begin
by defining a partial difference operator. Take m € [n] and for v, v’ € R? define,

Dyt (Wn) :=t (W1, ..., W1, U, Wi 1, ., W) — E (W1, .o, W1,V W1, ..., wn) . (G4)
Moreover for any i € [n] let,
N(i):={j € [n] : ®; — @; is a directed edge in G (2,,)} .
Next, we first show a Lipschitz type property for the partial difference operator D.

Lemma G.1. Fix m € [n] and take w,, := {w1,...,w,} € R*" w) = {w],...,w)} € R?".
Then for any v, v’ € R?,

o 1
|D v/t ) Dv,v’t(w;lﬂ ff T Z |‘wj_w;||2
JEN (m)
where D is defined in (G.4) and N'(m) := N(m) |J N(m) for all m € [n].

Now we will use this partial difference operator to expand the difference ¢ (w,,) — ¢ (w),). To-

wards that we first define a new collection combining w,, and w!,. For any A C [n] define

WA = (wf,..., wh) as, -

Furthermore for m € [n] define,

Fm(wmw;):% > (Dt (0) + Dyt (w2)) (G.5)
AC[m—1]

Then by Lemma 9 from [Maurer & Pontil, 2019] we know,

t (w, Z Fp (0, @) for all w,, w!, € R*". (G.6)
Now for all m € [n] define an operator /\/lm as M, wy, = (M, 1wy, ..., My, nwy,) wWhere,
1/n ifi=m
My = 1nvk, ifieN(m) (G.7)
0 otherwise

and let M,,, (wy,, w)) = (M, Wy, M, w),,). These definition now lead to a Lipschitz type prop-
erty for F,,,. In particular we have the following lemma.

Lemma G.2. For any w,,, ¥, w),,v,, C R?" and m € [n] we have,
Fm ('ZIJ",’J):L) F ('Una n) <dL E HZm Mm, (’lI),H'ZIJ;) 7Mm, (/ﬁn7'ﬁ;))‘:|

where Z,, = (Zm,l, oy Zmns 2

m,1

generated independently from Ny (0, I5).

Z;n’n) with {Z,,,,: 1 <i<n},{Z]

m l

:1<i<n}
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Using the decomposition from (G.6) and applying Lemma G.2 we can now replicate the proof of
equation (12) in Maurer & Pontil [2019] to get,

E[supt (Wig) — t (W) } <L E
geg

sup 3 25 My (Whg, Wy )| - (G.8)
9€g m=1
By definition of the operator M,,, from (G 7) we get,

E:‘ZT DVVQ,VV£Q E:jE:AlleT Zg‘*ﬂlmizlvazg

m=1 m=1 i=1

n n T n T
= (Z Mm,iZm,i> Wi,g + <Z Mm,izyln,i> Wi/,g
i=1 m=1

a1 - d; T 1Tyxs!
= ﬁ Z 1+ kf [Zi VVi,g + Zi VVZ,(]] (G.9)
i=1 "

where {Z; : 1 < i <n},{Z],1 <i < n} are generated independently from N3 (0, I5). The equal-
ity in distribution from (G.9) follows by recalling the definition of A from Lemma G.1, operator M
from (G.7) and noting that for any ¢ € [n]

M= b b Zu{ze/v m)}

m=1
1 . 1 d;
_n2+n2knmz_1]l{m€/\/(z)}—n2(1+kn>

where d; is the degree (in-degree + out-degree) of vertex x; in G (Z,,). Now substituting the
expression from (G.9) in the bound from (G.8) we get

- = 1
E{supt (Wn,g) -t (WAQ) } Sd.r E]E sup Z \/: ZT Wig+ me/,g]]

geg gegl 1

1 d;
<. —E |su 1+ 2w,
~d,L b i 2,
n QGQZ k g
1
SaL —E supZ\/H o Zig (i) (G.10)
n gEQ,L 1

where {Z; : i € [n]} are generated independently from the standard Gaussian distribution and the
final inequality follows by recalling the definition of W; 4,¢ € [n] from (G.1). The proof is now
completed by substituting the bound from (G.10) in (G.3).

G.1.1 PROOF OF LEMMA G.1.
By definition note that,
1
Dy yt(w,) = —— | > h(v,w;) —h@,w)+ Y h(wj,v) = h(w;,v')| (G.11)

" LieN(m) JEN(m)
Then, using the Lipschitz property of h we have,

| Dyt (wn,) — Dyt (), [ Z h(v,w;) — h(v,w}) — h(v',w;) + h(v', w))

JEN(m)
+ Z (wj,v) — h(w),v) — u(w;,v") + h(wj,v')} ’
JjEN(m)
1
Seo 2 i G.12)
JEN (m)

where recall V'(m) = N(m)|J N(m) and L is the Lipschitz constant of h.
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G.1.2 PROOF OF LEMMA G.2

Let the collections wn, Oy, W), V), be defined as w,, := (wy,...,w,), 0, = (V1,...,0,),W, =
(w),...,w))and ), := (v],...,v]). Now by Lemma 2.1 from Jaffe et al. [2020] we know that
IV (m)| Sq ky forallm € [n]. (G.13)

Then by recalling the definition of the partial difference operator from (G.4), the expansion from
(G.11) and the bound from (G.12) we get,

D3yt (w07) = D,y 1 (07

W, Vi,V
= ng,vm ( ) + Dw’ 2l t( A) + Dzﬁmvin (t (wA) —t (UA))

1 1
Sit 0 — v+ e, — 0l + S lwit—o|  (G14)
n n nk,
JEN (m)
where the final bound follows using the Lipschitz property of i and Lemma G.1. Now recalling the
definition of F,,, from (G.5) we get,

Fo (W, @) — Fn (0,0)

1 m m m © m ©
= 27771 Z (Dwm,winf(wA) - Dvm,v;nf('vA) + Dwm,w;nf(wA ) - Dvm,v;nf(vA ))

AC[m—1]

1 1
Sa,L o ([lwm — vl + [wy, — vra ) + e > llwy = vyl + [lw) — ] (G.15)
" jeN (m)

1/2
1 1/2 1
<dL*(me—vm|| + [, — ol )?) ' + ( D> llwy — v + [lw) — )|

nVEn \ jertm
(G.16)
1/2
1 ’ / 1 / ’
Sar <|wm — v ? + [lwp — v ||* + . > llwy — v + |Jw) - vj|2)
" GEN(m)

= H./\/lm ('w,w/) - My, (v,v')H (G.17)
,Sd,L E HZ;,I; (M'm (wvwl) - M'm (’val))H (Glg)

where the bound in (G.15) follows from (G.14), (G.16) follows using Cauchy-Schwartz inequality,
(G.17) follows by recalling the definition of operator M from (G.7) and finally (G.18) follows by
noting that E [| 2T v|] = ||v|| whenever Z ~ N (0, I) (see Lemma 7 in Maurer & Pontil [2019]).

G.2 PROOF OF COROLLARY G.1
Note that,

sup [Ty, (g) — E[T}, (g)]| < max {sup T, (g) —E[T, (9)],supE [T, (9)] — Ty (g)} . (G.19)
geg gceg geg

Replacing h by —h in (G.1) and applying Theorem G.1 gives

SupZMl—F Zzg i, Ty 1 . (G.20)
9€g i —

Now recall that / is uniformly bounded. Hence, applying Mcharmld s bounded difference inequal-
ity on both supgeg T (9) — E[T, (g)] and E [supgeg E [T, (g)] — T, (g)] with Theorem G.1 and
(G.20) shows,

1 / log (2/6
sup Tn (g) - ]E [Tn (g)] SL,h 7E sup Z zg "717 wz + M (G21)
geg N |geg iz n
with probability at least 1 — §/2 and,
1 / log (2/6
sup £ [Tn (g)] -1, (g) SL,h *E sup Z 1+ 7Zzg Ni, mz + M (G.22)
geg 19€9 i1 n

with probability at least 1 — §/2. The proof is now completed by combmmg (G.21), (G.22) and
(G.19).

E [swE(T, (9)] - T, <g)} wl
geg
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H TECHNICAL RESULTS

Lemma H.1. Take m > 1andlet A C R™. Let M = sup,c 4 \/Zz La?wherea = (ai,...,an).
Then,

R+\/2log |A]

m

Supizaz 7

acA

where Z1, ..., Z,, are generated independently from N (0, 1).

Proof. Take s > 0. Then by Jensen’s inequality we get,

exp (SE lsup Zal i ) <E |exp <s sup Zal 1)

acA; =1 acA; =1
Using the independence of 71, . .., Z,, we get,

exp <5E ligg;aiZi > < Z HE exp (sa; Z;) Z Hexp ( )

acAi=1 acAi=1

2 P2
g|A|exp(Sf )

Taking logarithm of both sides we get,

[bup > aiZ;

acA’

<) E

acA

exp <s i aiZi>

i=1

log |A|

2

Recall that our choice of s was arbitrary, hence minimizing the right hand side with respect to s we
find,

log |A R?,/2log|A ———
~ /2log | A 2R

The proof is now completed by dividing both sides by m. O

bupZaZ

aeA

The following classical result due to Bochner characterizes continuous positive definite functions.
The version stated below is adapted from Wendland [2004, Theorem 6.6] (also see Sriperumbudur
et al. [2010, Theorem 3]).

Theorem H.1 (Bochner). A continuous function ¢ : R? — R is positive definite if and only if it is
the Fourier transform of a finite non-negative Borel measure A on RP? that is,

U(x) = / e_LmT“’dA(w) forall x € R”.
RP
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