
Thermodynamic AI and
Thermodynamic Linear Algebra

Anonymous Author(s)
Affiliation
Address
email

Abstract

Many Artificial Intelligence (AI) algorithms are inspired by physics and employ1

stochastic fluctuations, such as generative diffusion models, Bayesian neural net-2

works, and Monte Carlo inference. These algorithms are currently run on dig-3

ital hardware, ultimately limiting their scalability and overall potential. Here,4

we propose a novel computing device, called Thermodynamic AI hardware, that5

could accelerate such algorithms. Thermodynamic AI hardware can be viewed6

as a novel form of computing, since it uses novel fundamental building blocks,7

called stochastic units (s-units), which naturally evolve over time via stochastic8

trajectories. In addition to these s-units, Thermodynamic AI hardware employs9

a Maxwell’s demon device that guides the system to produce non-trivial states.10

We provide a few simple physical architectures for building these devices, such11

as RC electrical circuits. Moreover, we show that this same hardware can be used12

to accelerate various linear algebra primitives. We present simple thermodynamic13

algorithms for (1) solving linear systems of equations, (2) computing matrix in-14

verses, (3) computing matrix determinants, and (4) solving Lyapunov equations.15

Under reasonable assumptions, we rigorously establish asymptotic speedups for16

our algorithms, relative to digital methods, that scale linearly in dimension. Nu-17

merical simulations also suggest a speedup is achievable in practical scenarios.18

1 Introduction19

With recent breakthroughs from text-to-image to large language models, AI progress has exceeded20

the expectations of even many optimists. Much of this progress has happened through software and21

algorithmic advances. This includes the scaling up of deep neural-network architectures, which in22

turn was enabled by a hardware “fluke” for accelerating matrix-vector multiplications (MVMs) [28].23

Namely, this has been driven by parallelized digital hardware such as graphical processing units24

(GPUs) and field-programmable gate arrays (FPGAs) [37]. More recently, analog hardware has25

been developed to reduce the power consumption in performing MVMs [18, 57], and there is a rich26

history of analog hardware for neural networks [8, 48, 53].27

However, there may await another revolution in scaling up AI through fundamentally distinct,28

domain-specific hardware. This viewpoint has amassed increasing popularity, with initial strides29

where algorithm and hardware are considered inseparable [25]. The next revolution in AI hard-30

ware may involve connecting AI to physics, i.e., identifying the physical basis of intelligence.31

In support of this view, some of the most successful AI algorithms, such as generative diffusion32

models [52], time-series analysis with neural stochastic differential equations (SDEs) [36, 41] and33

Bayesian neural networks [23, 58], are inspired by physics and often employ stochastic fluctuations.34

This suggests that thermodynamic fluctuations could be a key ingredient for building AI. Instead35

Submitted to the First Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNPCP
2023). Do not distribute.

Figure 1: Physical realization of s-modes. (A) Circuit diagram of a possible physical realization of
an s-mode, consisting of a noisy resistor and a capacitor. (B) Circuit diagram of a possible means to
couple s-modes, using a coupling resistor.

of simulating such fluctuations with standard digital hardware, we propose a hardware paradigm36

that has thermodynamic fluctuations already built in as a fundamental building block, which we call37

Thermodynamic AI.38

We note that Thermodynamic AI can be viewed as a sub-field of Thermodynamic Computing. The39

latter was discussed broadly in a workshop report [16], and was further explored with thermody-40

namic neural networks [31, 32], thermodynamic neuromorphic systems [20, 22, 21], probabilistic41

bit computers [10, 35, 1], work production [9], and other thermodynamic perspectives on learn-42

ing [3, 51, 24, 4]. We use the term Thermodynamic AI to refer to a thermodynamic viewpoint on43

hardware for modern AI applications.44

2 Fundamental building blocks45

classical quantum thermodynamic
discrete bit qubit s-bit

continuous mode qumode s-mode
46

Let us now discuss the fundamental building blocks of thermodynamic AI hardware. As the name47

suggests, a thermodynamic system is inherently dynamic in nature. Therefore, the fundamental48

building blocks should also be dynamic. This is contrast to classical bits or qubits, where the state of49

the system ideally remains fixed unless it is actively changed by gates. The thermodynamic building50

block should passively and naturally evolve over time, even without the application of gates. But51

what dynamical process should it follow? A reasonable proposal is a stochastic Markov process.52

Naturally this should be continuous in time, since no time point is more special than any other time53

point. Hence, the discrete building block, which we call an s-bit, would follow a continuous-time54

Markov chain (CTMC). Here the “s” in s-bit stands for stochastic. For the continuous building55

block, which we call an s-mode, the natural analog would be a Brownian motion (also known as56

a Wiener process). We use s-unit as a generic term to encompass both s-bits and s-modes. We57

note that stochastic building blocks were also considered by Mansinghka et al. [42, 43] using digital58

logic, which is different from our (analog) approach.59

3 Physical realizations of stochastic units60

While additional details on s-bits are given in Ref. [15], we focus our attention on s-modes, since61

continuous variables are particularly relevant to AI applications. An s-mode represents a continuous62

stochastic variable whose dynamics are governed by drift, diffusion, or other physical processes63

(akin to a Brownian particle). At the heart of any physical implementation of such a variable will64

be a source of stochasticity. A natural starting point for implementing thermodynamic AI hardware65

is analog electrical circuits, as these circuits have inherent fluctuations that could be harnessed for66

computation.67

The most ubiquitous source of noise in electrical circuits is thermal noise [29]. Thermal noise, also68

called Johnson-Nyquist noise, comes from the random thermal agitation of the charge carriers in69

a conductor, resulting in fluctuations in voltage or current inside the conductor. Thermal noise is70

2

Gaussian and has a flat frequency spectrum (white noise) with fluctuations in the voltage of standard71

deviation vtn =
√
4kBTR∆f . Another type of electrical noise is shot noise [29], which arises72

from the discrete nature of charge carriers and from the fact that the probability of a charge carrier73

crossing a point in a conductor at any time is random. Regardless of the physical source, variable-74

gain amplifiers can allow one to independently control the amplitude of the fluctuations.75

The s-mode can be represented through the dynamics of any degree of freedom of an electrical76

circuit. If we chose the voltage on a particular node in the circuit as our degree of freedom of77

choice, a simple stochastic voltage noise source plays the role of the s-mode. This can be realized78

by using a noisy resistor at non-zero temperature. Figure 1(A) shows the typical equivalent noise79

model for a noisy resistor composed of a stochastic voltage noise source, δv(t), in series with an80

ideal (non-noisy) resistor of resistance R. The inherent terminal capacitance, C, of the resistor is81

also added to the equivalent resistor model. The voltage on node 1 (labeled simply as v(t) here) is82

the state variable, whose dynamics obey:83

−v̇(t) = (v(t) + δv(t))/RC. (1)

This stochastic differential equation (SDE) comprises a drift term proportional to v(t) and a diffusion84

or stochastic term proportional to δv(t).85

When building systems of many s-modes, one will wish to couple them to express correlations and86

geometric constraints. Again, the medium of analog electrical circuits presents a natural option87

for the coupling of s-modes. As an example, two s-modes could be coupled through a resistor, as88

pictured in Fig. 1(B). The coupled s-modes, represented by the voltage on nodes 1 and 2, are then89

coupled through their drift terms as90

−v̇ = C−1
(
Jv +R−1δv

)
, (2)

where v̇ ≡ d
dtv and91

v ≡
[
v1
v2

]
, C ≡

[
C1 0
0 C2

]
, R ≡

[
R1 0
0 R2

]
, J ≡

[1
R1

+ 1
R12

− 1
R12

− 1
R12

1
R2

+ 1
R12

]
, δv ≡

[
δv1
δv2

]
.

Here we introduced the self-resistance matrix R, the capacitance matrix C, and the conductance92

matrix J. Capacitive coupling is an alternative means to couple s-modes [15].93

4 Maxwell’s Demon94

Maxwell’s Demon is a thermodynamic concept that is similar to refrigeration, as it allows a system’s95

entropy to be reduced over time by interacting with an external system. Here, the demon acts96

as an intelligent observer who regularly gathers data from (i.e., measures) the system, and based97

on the gathered information, the demon performs some action on the system. We argue that a98

Maxwell Demon is both: (1) Essential to the success of Thermodynamic AI systems due to the99

complex entropy dynamics required for AI applications, and (2) Quite straightforward to implement100

in practice for several different hardware architectures.101

Regarding the first point, AI applications like Bayesian inference aim to approximate a posterior dis-102

tribution, and it is known that such posteriors can be extremely complicated and multi-modal [33].103

Similarly, generative modeling is intended to handle arbitrary data distributions. Hence, producing104

only Gaussian distributions, as an isolated s-mode system would do, will not suffice for these appli-105

cations. Regarding the second point, one can either use digital or analog hardware to implement a106

Maxwell’s Demon. A digital Maxwell’s Demon can correspond to a neural network that is stored on107

a digital central processing unit, which then communicates back-and-forth with the stochastic unit108

system via analog / digital signal interconversion. An analog Maxwell’s Demon could allow one to109

integrate it more closely to the rest of the thermodynamic hardware. Moreover, this could allow one110

to avoid interconverting signals. Various analog approaches are discussed in Ref. [15].111

5 Thermodynamic Noise Robustness112

While analog and quantum computing view noise as a nuisance or roadblock, Thermodynamic AI113

views noise as essential. The electrical circuits in Thermodynamic AI will have unintentional, un-114

controllable noise. But from a mathematical perspective, this noise can be combined with whatever115

3

noise sources that one intentionally engineers. Under reasonable assumptions, this leads to the same116

mathematical form of the the differential equations governing the time evolution, i.e., unintentional117

noise preserves the mathematical framework. From a practical perspective, this unintentional noise118

can either be calibrated and compensated for, or it can be overwhelmed by the intentionally injected119

noise (and hence neglected). In addition, other sources of errors, such as parasitic couplings and120

component mis-specifications, can be compensated for in the training of the Maxwell’s Demon, i.e.,121

successful training will automatically imply good performance despite these error sources.122

6 AI algorithms suited for Thermodynamic AI Hardware123

Some modern AI algorithms that exploit stochasticity include: (1) Generative diffusion models, (2)124

Bayesian neural networks, (3) Monte Carlo inference, (4) Annealing, and (5) Time series forecast-125

ing. Each of these applications is elaborated in more detail in the Supplementary Material.126

Through careful consideration, we manage to formulate a mathematical framework that encom-127

passes all of the aforementioned algorithms as special cases. We say that these algorithms belong to128

a class called Thermodynamic AI algorithms. At a conceptual level, we can define Thermodynamic129

AI algorithms as those consisting of at least two subroutines:130

1. A subroutine in which a stochastic differential equation (SDE) is evolved over time.131

2. A subroutine in which a Maxwell’s demon (see Sec. 4 for elaboration) observes the state132

variable in the SDE and applies a drift term in response.133

At the mathematical level, we propose that Thermodynamic AI algorithms are ones that simulate or134

implement the following set of equations (or some subset of them):135

dp = [f −BM−1p]dt+Ddw (3)

dx = M−1pdt (4)
f = −∇xUθ (5)

One can see that these correspond to Newton’s laws of motion, with the addition of diffusion and136

friction. In these equations, p, x, and f respectively are the momentum, position, and force. The137

matrices M , D, and B are hyperparameters, with M being the mass matrix and D being the diffusion138

matrix. The dw term is a Wiener process. Finally, Uθ is a (trainable) potential energy function.139

Typically, much of the application-specific information, regarding the task to be solved, is encoded140

in the potential energy function Uθ.141

Note that the unification of various AI algorithms under the same framework (i.e., the above equa-142

tions) is crucial to developing a hardware paradigm that is broadly applicable to many applications.143

We encourage the reader to see the Supplementary Material for details on specific applications.144

7 Thermodynamic Linear Algebra145

Basic linear algebra primitives are at the core of many algorithms in engineering and science. They146

are also a common subroutine of many artificial intelligence (AI) algorithms, and account for a147

substantial portion of the time and energy costs in some cases. Here we discuss how Thermodynamic148

AI hardware can be used for accelerating such linear algebra primitives.149

7.1 Solving Linear Systems150

We focus here on the case of solving linear systems, while details about other primitives like matrix151

inversion and matrix determinants can be found in the Supplementary Material (see also Ref. [2]).152

The celebrated linear systems problem is to find x ∈ Rd such that Ax = b given some invertible153

matrix A ∈ Rd×d and nonzero b ∈ Rd. We assume that A is symmetric and positive definite (SPD)154

since the non-SPD case can be reformulated as an SPD linear system by considering the equation155

A⊺Ax = A⊺b.156

Now let us connect this problem to thermodynamics. We consider a macroscopic device with d de-157

grees of freedom, described by classical physics. Suppose the device has potential energy function:158

V (x) = (1/2)x⊺Ax− b⊺x, (6)

4

Figure 2: Diagram of our thermodynamic algorithm for solving linear systems and inverse
estimation. The system of linear equations, or the matrix A, is encoded into the thermodynamic
hardware, the system is then allowed to evolve until the stationary distribution has been reached,
when the trajectory is then integrated to estimate the sample mean or covariance. This gives esti-
mates of the solution of the linear system or the inverse of A respectively.

where A ∈ SPDd(R). Note that this is a quadratic potential that can be physically realized with159

a system of harmonic oscillators, where the coupling between the oscillators is determined by the160

matrix A, and the b vector describes a constant force on each individual oscillator. (We remark that161

while Figure 2 depicts mechanical oscillators, from a practical perspective, one can build the device162

from electrical oscillators such as RLC circuits, similar to the s-modes described above.)163

Suppose that we allow this device to come to thermal equilibrium with its environment, whose164

inverse temperature is β = 1/kBT . At thermal equilibrium, the Boltzmann distribution describes165

the probability for the oscillators to have a given spatial coordinate: f(x) ∝ exp(−βV (x)). Because166

V (x) is a quadratic form, f(x) corresponds to a multivariate Gaussian distribution. Thus at thermal167

equilibrium, the spatial coordinate x is a Gaussian random variable168

x ∼ N [A−1b, β−1A−1]. (7)

The key observation is that the unique minimum of V (x) occurs where Ax − b = 0, which also169

corresponds to the unique maximum of f(x). For a Gaussian distribution, the maximum of f(x)170

is also the first moment ⟨x⟩. Thus, we have that, at thermal equilibrium, the first moment is the171

solution to the linear system of equations: ⟨x⟩ = A−1b. From this analysis, we can construct a172

simple thermodynamic protocol for solving linear systems, which is depicted in Figure 2. Namely,173

the protocol involves realizing the potential in Eq. (6), waiting for the system to come to equilibrium,174

and then sampling x to estimate the mean ⟨x⟩ of the distribution.175

7.2 Algorithmic Scaling176

In Table 1, we summarize the asymptotic scaling results for our thermodynamic algorithms as com-177

pared to the best state-of-the-art (SOTA) digital methods for dense symmetric positive-definite ma-178

trices. As one can see from Table 1, an asymptotic speedup is predicted for our thermodynamic179

algorithms relative to the digital SOTA algorithms. Specifically, a speedup that is linear in d is180

expected for each of the linear algebraic primitives (ignoring a possible dependence of κ on d).181

Our numerical simulations (which are based on a detailed timing model [2]) corroborate our an-182

alytical scaling results and also provide evidence of the fast convergence of these primitives with183

the wall-clock time, with the speedup relative to digital methods getting more pronounced with184

increasing dimension and condition number. This is illustrated in Fig. 3.185

8 Conclusions186

There are several take-home messages that we would like to share with the reader:187

• There is an opportunity for a new physics-based computing paradigm where the hardware188

is stochastic by design. We identified the key ingredients of that hardware paradigm as a189

stochastic-unit (s-unit) system coupled to a Maxwell’s demon device.190

• AI applications stand to benefit most from this hardware since many such applications are191

inherently stochastic.192

5

Problem Digital SOTA Overdamped TA Underdamped TA

Linear System O(min{dω, d2√κ}) O(dκ2ε−2) O(d
√
κε−2)

Matrix Inverse O(dω) O(d2κε−2) O(d2κε−2)

Lyapunov Equation O(d3) O(d2κε−2) O(d2κε−2)

Matrix Determinant O(d3) O(dκ ln(κ)3ε−2) O(d ln(κ)3ε−2)

Table 1: Comparison of asymptotic complexities of linear algebra algorithms. Here, d is the
matrix dimension, κ is the condition number, and ϵ is the error. For our thermodynamic algo-
rithms (TAs), the complexity depends on the dynamical regime, i.e., whether the dynamics are
overdamped and underdamped. For the digital SOTA case, the complexity of solving symmetric,
positive definite linear systems, matrix inverse, Lyapunov equation, and matrix determinant prob-
lems are respectively for algorithms based on: conjugate gradient method [49], fast matrix multi-
plication/inverse [47], Bartels-Stewart algorithm [5], and Cholesky decomposition [17]. ω ≈ 2.3
denotes the matrix multiplication constant.

Figure 3: Comparison of the error εx of the thermodynamic algorithm (TA) to solve linear
systems with the conjugate gradient method and Cholesky decomposition as a function of total
runtime. The TA is shown for different values of kBT (units of 1/γ where γ is the damping rate)
for each dimension in {100, 1000, 5000}. Random matrices are drawn from the Wishart distribution
and then mixed with the identity such that their condition numbers are respectively 120, 1189, 5995.

• We identified a class of algorithms called Thermodynamic AI algorithms that not only193

use stochasticity as a resource but also employ a Maxwell’s demon subroutine to guide194

the random fluctuations in the right direction. These include generative diffusion models,195

Bayesian deep learning, and Monte Carlo inference.196

• We also identified linear algebra primitives, like estimating matrix inverses and matrix197

determinants, as falling under the framework of Thermodynamic AI.198

• All of these (seemingly distinct) algorithms can not only be run on a unified software199

platform, but can they can be run on a unified hardware platform.200

• We also presented the first theoretical speedups for thermodynamic computing hardware,201

showing that certain linear algebra primitives could achieve a speedup on Thermodynamic202

AI hardware that grows linearly with matrix dimension.203

In conclusion, various AI algorithms are simultaneously breaking practical barriers and yet also204

not reaching their full potential due to a mismatch with the underlying hardware. For example,205

approximation-free Bayesian deep learning is currently prohibitively slow on digital hardware [33].206

Thermodynamic AI hardware, which is already seeing progress and interactive tools [30], appears207

to be a natural paradigm to unlock large speedups for these AI algorithms.208

6

References209

[1] N. A. Aadit, A. Grimaldi, M. Carpentieri, L. Theogarajan, J. M. Martinis, G. Finocchio, and210

K. Y. Camsari. Massively parallel probabilistic computing with sparse Ising machines. Nat.211

Electron., 5(7):460–468, 2022.212

[2] M. Aifer, K. Donatella, M. H. Gordon, T. Ahle, D. Simpson, G. E. Crooks, and P. J. Coles.213

Thermodynamic linear algebra. arXiv preprint arXiv:2308.05660, 2023.214

[3] A. A. Alemi and I. Fischer. Therml: Thermodynamics of machine learning. arXiv preprint215

arXiv:1807.04162, 2018.216

[4] Y. Bahri, J. Kadmon, J. Pennington, S. S. Schoenholz, J. Sohl-Dickstein, and S. Ganguli. Statis-217

tical mechanics of deep learning. Annual Review of Condensed Matter Physics, 11(1):501–528,218

2020.219

[5] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C [f4].220

Commun. ACM, 15(9):820–826, 1972.221

[6] A. Batou. An approximate Itô-SDE based simulated annealing algorithm for multivariate de-222

sign optimization problems. arXiv preprint arXiv:1901.10763, 2019.223

[7] M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint224

arXiv:1701.02434, 2017.225

[8] B. E. Boser, E. Sackinger, J. Bromley, Y. Le Cun, and L. D. Jackel. An analog neural network226

processor with programmable topology. IEEE J. Solid-State Circuits, 26(12):2017–2025, 1991.227

[9] A. B. Boyd, J. P. Crutchfield, and M. Gu. Thermodynamic machine learning through maximum228

work production. New J. Phys, 24(8), 2022.229

[10] K. Y. Camsari, B. M. Sutton, and S. Datta. P-bits for probabilistic spin logic. Appl. Phys. Rev.,230

6(1), 2019.231

[11] A. Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées.232

Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.233

[12] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential234

equations. Advances in neural information processing systems, 31, 2018.235

[13] T. Chen, E. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In Interna-236

tional conference on machine learning, pages 1683–1691. PMLR, 2014.237

[14] C. D. Christ, A. E. Mark, and W. F. Van Gunsteren. Basic ingredients of free energy calcula-238

tions: a review. J. Comput. Chem., 31(8):1569–1582, 2010.239

[15] P. J. Coles, C. Szczepanski, D. Melanson, K. Donatella, A. J. Martinez, and F. Sbahi. Thermo-240

dynamic AI and the fluctuation frontier. arXiv preprint arXiv:2302.06584, 2023.241

[16] T. Conte, E. DeBenedictis, N. Ganesh, T. Hylton, J. P. Strachan, R. S. Williams, A. Alemi,242

L. Altenberg, G. E. Crooks, J. Crutchfield, et al. Thermodynamic computing. arXiv preprint243

arXiv:1911.01968, 2019.244

[17] D. Dereniowski and M. Kubale. Cholesky factorization of matrices in parallel and ranking245

of graphs. In Parallel Processing and Applied Mathematics: 5th International Conference,246

PPAM 2003, Czestochowa, Poland, September 7-10, 2003. Revised Papers 5, pages 985–992.247

Springer, 2004.248

[18] Y. Du, L. Du, X. Gu, J. Du, X. S. Wang, B. Hu, M. Jiang, X. Chen, S. S. Iyer, and M.-C. F.249

Chang. An analog neural network computing engine using CMOS-compatible charge-trap-250

transistor (CTT). IEEE Transactions on Computer-Aided Design of Integrated Circuits and251

Systems, 38(10):1811–1819, 2018.252

[19] B. Dunham, D. Fridshal, R. Fridshal, and J. North. Design by natural selection. Form and253

Strategy in Science: Studies Dedicated to Joseph Henry Woodger on the Occasion of his Sev-254

entieth Birthday, pages 306–311, 1964.255

7

[20] N. Ganesh. A thermodynamic treatment of intelligent systems. In 2017 IEEE International256

Conference on Rebooting Computing (ICRC), pages 1–4, 2017.257

[21] N. Ganesh. Thermodynamic intelligence, a heretical theory. In 2018 IEEE International Con-258

ference on Rebooting Computing (ICRC), pages 1–10, 2018.259

[22] N. Ganesh. Rebooting neuromorphic design–a complexity engineering approach. In 2020260

International Conference on Rebooting Computing (ICRC), pages 80–89. IEEE, 2020.261

[23] E. Goan and C. Fookes. Bayesian neural networks: An introduction and survey. Case Studies262

in Applied Bayesian Data Science: CIRM Jean-Morlet Chair, Fall 2018, pages 45–87, 2020.263

[24] S. Goldt and U. Seifert. Stochastic thermodynamics of learning. Phys. Rev. Lett., 118:010601,264

2017.265

[25] G. Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.266

[26] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural267

Information Processing Systems, 33:6840–6851, 2020.268

[27] M. D. Hoffman and A. Gelman. The No-U-Turn sampler: adaptively setting path lengths in269

Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.270

[28] S. Hooker. The hardware lottery. Commun. ACM, 64(12):58–65, 2021.271

[29] P. Horowitz and W. Hill. The art of electronics; 3rd ed. Cambridge University Press, 2015.272

[30] M. Hunter Gordon, A. Tan, M. Aifer, K. Donatella, D. Melan-273

son, G. Crooks, and P. J. Coles. Exploring thermodynamic AI.274

https://normalcomputing.substack.com/p/exploring-thermodynamic-ai.275

[31] T. Hylton. Thermodynamic neural network. Entropy, 22(3):256, 2020.276

[32] T. Hylton. Thermodynamic state machine network. Entropy, 24(6):744, 2022.277

[33] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson. What are Bayesian neural278

network posteriors really like? In International conference on machine learning, pages 4629–279

4640. PMLR, 2021.280

[34] C. Jarzynski. Nonequilibrium equality for free energy differences. Physical Review Letters,281

78(14):2690, 1997.282

[35] J. Kaiser, S. Datta, and B. Behin-Aein. Life is probabilistic-why should all our computers283

be deterministic? Computing with p-bits: Ising solvers and beyond. In 2022 International284

Electron Devices Meeting (IEDM), pages 21–4. IEEE, 2022.285

[36] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for286

irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707,287

2020.288

[37] S. K. Kim, L. C. McAfee, P. L. McMahon, and K. Olukotun. A highly scalable restricted289

Boltzmann machine FPGA implementation. In 2009 International Conference on Field Pro-290

grammable Logic and Applications, pages 367–372. IEEE, 2009.291

[38] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing. Science,292

220(4598):671–680, 1983.293

[39] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev. Why the Monte Carlo method is so294

important today. Wiley Interdiscip. Rev.: Comput. Stat., 6(6):386–392, 2014.295

[40] R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29(1):255, 1966.296

[41] X. Li, T.-K. L. Wong, R. T. Chen, and D. K. Duvenaud. Scalable gradients and variational297

inference for stochastic differential equations. In Symposium on Advances in Approximate298

Bayesian Inference, pages 1–28. PMLR, 2020.299

8

[42] V. K. Mansinghka et al. Natively probabilistic computation. PhD thesis, Citeseer, 2009.300

[43] V. K. Mansinghka and E. M. Jonas. Combinational stochastic logic, Jan. 8 2013. US Patent301

8,352,384.302

[44] N. Metropolis. The beginning. Los Alamos Science, 15:125–130, 1987.303

[45] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of304

state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1092, 1953.305

[46] R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,306

2(11):2, 2011.307

[47] S. Robinson. Toward an optimal algorithm for matrix multiplication. SIAM news, 38(9):1–3,308

2005.309

[48] E. Säckinger, B. E. Boser, J. M. Bromley, Y. LeCun, and L. D. Jackel. Application of the310

ANNA neural network chip to high-speed character recognition. IEEE Trans. Neural Netw.,311

3(3):498–505, 1992.312

[49] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing313

pain, 1994.314

[50] V. N. Smelyanskiy, E. G. Rieffel, S. I. Knysh, C. P. Williams, M. W. Johnson, M. C. Thom,315

W. G. Macready, and K. L. Pudenz. A near-term quantum computing approach for hard com-316

putational problems in space exploration. arXiv preprint arXiv:1204.2821, 2012.317

[51] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning318

using nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference319

on Machine Learning, volume 37, pages 2256–2265, 2015.320

[52] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-321

erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,322

2020.323

[53] M. Verleysen and P. G. A. Jespers. An analog VLSI implementation of hopfield’s neural324

network. IEEE Micro, 9(6):46–55, 1989.325

[54] J. Voss. An introduction to statistical computing: a simulation-based approach. John Wiley &326

Sons, 2013.327

[55] J. Weber. Fluctuation dissipation theorem. Physical Review, 101(6):1620, 1956.328

[56] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In329

Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–330

688, 2011.331

[57] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon.332

Deep physical neural networks trained with backpropagation. Nature, 601(7894):549–555,333

2022.334

[58] W. Xu, R. T. Chen, X. Li, and D. Duvenaud. Infinitely deep bayesian neural networks with335

stochastic differential equations. In International Conference on Artificial Intelligence and336

Statistics, pages 721–738. PMLR, 2022.337

9

Supplementary Material338

A Applications of Thermodynamic AI339

In this Supplementary Material, we dive deeper into each of the following applications, describing340

how each of them falls under the framework of Thermodynamic AI:341

1. Diffusion Models342

2. Bayesian Deep Learning343

3. Monte Carlo Inference344

4. Annealing345

5. Time Series Forecasting346

6. Solving Linear Systems347

7. Matrix Inversion348

8. Solving Lyapunov Equations349

9. Matrix Determinant350

B Application: Diffusion Models351

B.1 Background352

Diffusion models [26, 52] are a state-of-the-art method for implementing generative models. Fig-353

ure 4 shows the basic idea of diffusion models. These models add noise to data drawn from a data354

distribution pdata during a forward process that evolves from from t = 0 to t = T . A sample is then355

drawn from a noisy distribution, pnoise, and the process evolves in the reverse direction, from t = T356

to t = 0, to generate a novel datapoint. Both the forward and reverse processes can be described by357

SDEs [52]. Namely, the reverse SDE is similar to the forward SDE except that it has an additional358

drift term. A typical forward and reverse SDE for diffusion models has the form:359

dx = f(t)xdt+ g(t)dwt (Forward) (8)

dx = f(t)xdt− g(t)2sθ(x, t)dt+ g(t)dwt (Reverse) (9)

where x is the continuous state variable. In the reverse SDE, time t runs backwards and dwt is a360

standard Brownian motion term when time runs backwards. The vector sθ(x, t) is a model for the361

score function ∇x log pt(x) (the gradient of the logarithm of the probability distribution), and hence362

sθ(x, t) ≈ ∇x log pt(x).363

At a high level, the forward process provides training data to train a neural network, whose job is to364

output sθ(x, t). This neural network is called the score network. Once the score network is trained,365

it can be used to guide the reverse process to generate novel samples.366

In state-of-the-art diffusion models, the sampling rate still remains fairly slow. Hence, any means367

to speed up sampling rate could significantly improve this technology, and this is where Thermody-368

namic AI Hardware could help.369

B.2 Fitting into our framework370

Equations (8) and (9) each fall under the our framework, e.g., as special cases of Eq. (3). To make371

this more clear, one can do a change of variables τ = T − t in the reverse process and rewrite the372

diffusion model SDE equations as:373

dx = f(t)xdt+ g(t)dwt (Forward) (10)

dx = −f(T − τ)xdτ + g(T − τ)2sθ(x, T − τ)dτ

+ g(T − τ)dwτ (Reverse) (11)

In this case, both t and τ run forward in time, i.e., dt and dτ are positive increments in these374

equations. Note that dwτ appears in this equation since dwτ = dwt. Since the time variables375

10

Figure 4: Diffusion models add noise to data drawn from a distribution pdata during a forward
process, providing data to train a score network. A sample is then drawn from a noisy distribution,
pnoise, and the process is reversed using the trained score network to generate a novel datapoint.

in these equations run forward in time, then they can be directly implemented in physical analog376

hardware, since time always runs forward in the physical world.377

The key to fitting diffusion models into our framework is to make to following mapping:378

(diffusion process) ↔ (s-mode device) (12)
(score network) ↔ (Maxwell’s demon device) (13)

The mathematical diffusion process in diffusion models can be mapped to the physical diffusion379

process in the s-mode device. Similarly, the score vector outputted by the score network corresponds380

to the vector d(t,v(t)) outputted by the MD device. Hence, diffusion models fit in our framework381

for Thermodynamic AI systems.382

B.3 Description of Diffusion Hardware383

Figure 5 gives a schematic diagram of a Thermodynamic Diffusion Model. A variety of different384

physical paradigms can be used to implement this hardware, such as analog electrical circuits or385

continuous-variable optical systems. Hence, we describe the system an abstract level.386

As shown in Figure 5 the physical system has multiple degrees of freedom (DOFs) - which essen-387

tially correspond to the s-modes. The number of DOFs matches the dimensionality of the data, i.e.,388

the number of features in the data. Each DOF has a continuous state variable, and that variable389

evolves according to a differential equation that, in general, could have both a diffusion and drift390

term. A function generator can multiply these diffusion and drift terms by arbitrary time-dependent391

functions (hj(t) and kj(t) respectively). The problem geometry, associated with a given dataset,392

can be uploaded onto the device by selectively connecting the various DOFs, which mathematically393

couples the differential equations of the various DOFs. After some encoding, a datapoint from the394

dataset of interest can be uploaded to the device by initializing the values of the continuous state395

variables to be the corresponding feature values of the datapoint. Similarly, data can be downloaded396

(and decoded) from the device by measuring the values of the continuous state variables after some397

time evolution.398

In addition, the reverse process uses a trained score network. The inputs to the score network are399

the values of the continuous state variables at some time t, and the output is the value of the score.400

The jth component of the score, sj(t), gets added as a drift term in the evolution of the jth DOF.401

11

Figure 5: Schematic diagram of a Thermodynamic Diffusion Model. For simplicity, we show the
case of four degrees of freedom (DOFs), where each DOF corresponds to an s-mode. These s-modes
can be constructed as described in Sec. 3.

The score network acts as a Maxwell’s Demon that continuously monitors the physical system and402

appropriately adapts the drift term to reduce the physical system’s entropy.403

B.4 Analog Score Network404

We described in Sec. 4 how the Maxwell’s Demon can take many physical forms, and the same holds405

for the score network. This includes the possibility of using a digital score network in conjunction406

with an analog s-mode system. However, this can lead to latency issues, whereby the communication407

between the score network and the s-mode system has some time delay. Hence, we highlight here408

the possibility of using an analog architecture for the score network, which could address the latency409

issue. Figure 6 shows an analog circuit for the score network. This circuit is based on decomposing410

the score prediction based on the total derivative formula [15].411

C Application: Bayesian Deep Learning412

C.1 Background413

Machine learning systems such as neural networks are known to often be overconfident in their414

predictions. For low-stakes applications, this may not be a major issue. However, some applications,415

such as self-driving cars and medical diagnosis, are higher stakes in the sense that making a wrong416

decision can lead to consequences relevant to human life. Overconfidence can be catastrophic for417

these high-stakes applications.418

At a technical level, this overconfidence often arises because neural networks are trained on limited419

amounts of training data. These training data points live in a vast feature space. Hence it is common420

for some regions of feature space may not be represented by the training data, i.e., these regions421

may be far away from the training data. When it comes time to test the trained neural network on422

testing data, the testing data could be in a region that is far away from training data, and yet the423

neural network will still attempt to make a prediction in this case. Because the neural network is not424

familiar with these regions, the neural network is not aware that it should be careful when making425

predictions for them.426

One strategy for dealing with overconfidence is uncertainty quantification (UQ). UQ aims to quan-427

tify the uncertainty of the predictions made by the neural network. UQ is useful for high-stakes428

applications (e.g., cancer detection in medicine) because it provides guidance for when the user429

12

Figure 6: Schematic circuit diagram for an analog score network based on the total derivative ap-
proach. This diagram represents the process used to obtain score values during the evolution of the
reverse diffusion process.

should defer to human judgement over the machine’s predictions. UQ is widely recognized as mak-430

ing machine learning more reliable and trustworthy.431

Several different methods exist for UQ in machine learning. A simple example of UQ is adding432

confidence intervals to the predictions made by the neural network.433

A more sophisticated and rigorous approach to UQ is the Bayesian framework. The Bayesian frame-434

work quantifies uncertainty by accounting for prior knowledge (often called the prior distribution)435

and updates that knowledge due to data or observations (often called the posterior distribution).436

Bayesian methods aim to quantitatively capture knowledge in the form of probability distributions.437

C.2 Neural Differential Equations438

A continuous-time approach to Bayesian deep learning was recently developed [58], and hence we439

consider that approach in what follows.440

Neural Ordinary Differential Equations (Neural ODEs) [12] are a continuous depth version of neural441

networks. The values of the hidden units are denoted ht and the values of the weights are denoted wt.442

In general, both of these quantities depend on time, and evolve according to the coupled differential443

equations:444

d

dt

[
ht

wt

]
=

[
fh(t, ht, wt)
fw(t, wt)

]
Hence, a forward pass through the neural network involves integrating this system of differential445

equations.446

Neural Stochastic Differential Equations (Neural SDEs) [58] are a continuous depth version of447

Bayesian neural networks. Once again, the system evolves according to a system of coupled differ-448

ential equations. However, the weights of the neural ODE evolve in a stochastic manner:449

d

[
ht

wt

]
=

[
fh(t, ht, wt)
fw(t, wt)

]
dt+

[
0

gw(t, wt)

]
dB (14)

where dB is a Brownian motion term. Equation (14) provides the basis for Bayesian deep learning450

in continuous time.451

13

Figure 7: Overview of Thermodynamic Bayesian deep learning, showing how the four subroutines
interact and feed signals to each other.

For the posterior distribution we can specialize Eq. (14) to the following form:452

d

[
ht

wt

]
=

[
fh(t, ht, wt)

NNϕ(t, wt, ϕ) + wt

]
dt+

[
0
σId

]
dB (15)

The posterior distribution needs to be highly expressive. Hence, the SDE must be more complicated453

than that of the prior distribution. The drift term for the weights is therefore described by a neural454

network NNϕ with trainable parameters ϕ. Note that the trainable parameters in this model include455

both the parameters ϕ appearing in the drift term as well as the initial condition w0 on the weights.456

The neural network NNϕ can be referred to as the Posterior Drift Network (PDN), since it determines457

the drift associated with the posterior distribution.458

C.3 Subroutines in Bayesian deep learning hardware459

The Thermodynamic AI system for Bayesian deep learning consists of four subroutines. Each of460

these subroutines can correspond to a physical analog device, or some subset of the subroutines may461

be stored in and processed on a digital device. The four subroutines include the following:462

1. Hidden layer network463

2. Weight diffuser464

3. Posterior drift network465

4. Loss evaluator466

Figure 7 illustrates how these four subroutines interact with each other. The Weight Diffuser (WD),467

which can represent both the prior distribution and the posterior distribution, feeds weight values to468

the Hidden Layer Network (HLN). The WD also communicates back-and-forth with the Posterior469

Drift Network (PDN), in which the WD feeds weight values to the PDN and the PDN feeds drift470

values to the WD. The Loss Evaluator (LE) takes in signals from all three of the other subroutines -471

the HLN, the WD, and the PDN - in order to evaluate the loss function.472

C.4 Fitting into our Thermodynamic AI framework473

We make the following mapping in order to fit this into our framework:474

(weight diffuser) ↔ (s-mode device) (16)
(posterior drift network) ↔ (Maxwell’s demon device) (17)

The weight diffuser corresponds to the s-mode device, and the posterior drift network corresponds475

to the Maxwell’s demon device.476

14

Figure 8: Outputting weights from the weight diffuser device to the HLN device. Shown here is the
simplified case for two unit cells of the weight diffuser, although the concept applies to an arbitrary
number of unit cells. A permutation map (which physically correspond to a wire routing scheme) is
shown to provide flexibility for how the weights w outputted by the WD get incorporated as weights
ω in the HLN.

The weight diffuser uses s-mode dynamics to sample weight trajectories wt, which are then imported477

into the HLN. The Maxwell’s demon is used to produce complex s-mode dynamics that produce478

weight trajectories according to a posterior distribution.479

C.5 Description of Bayesian Deep Learning Hardware480

Figure 8 illustrates a possible hardware implementation of the weight diffuser. As shown, the outputs481

of the weight diffuser are supplied to the Hidden Layer Network device.482

The weight diffuser can be an analog circuit, with variables v(t), equal the voltage values across a set483

of capacitors located in a series of unit cells. These voltage values diffuse according to a stochastic484

process inside the circuit with analog noise sources Bi, and are output to a hidden layer network485

as time-continuous weight trajectories. The same diffusing cell can generate prior and posterior486

samples, depending on whether the posterior drift network applies a demon voltage vector to the487

circuit.488

The hidden layer network may also be an analog circuit, whose dynamics can be modeled as a neural489

ODE dependent on the sampled weight trajectory outputted by the weight diffuser.490

D Application: Monte Carlo Inference491

D.1 Background492

Monte Carlo algorithms [44] have become widely used, finding application in finance, physics,493

chemistry, and more recently, machine learning [39]. Monte Carlo algorithms provide a simple494

procedure for approximating integrals involving probability distributions. Suppose we have a prob-495

ability distribution π(x) with x ∈ X the sample space, and suppose we want to find the expectation496

value of some function f(x) with respect to π. The Monte Carlo method consists in approximating497

the integral with a simple sample average,498 ∫
f(x)π(x)dx ≈ 1

M

M∑
i=1

f(xi), (18)

where the samples xi are distributed according to π. The computational bottleneck has been trans-499

formed from integration to sampling. The best methods for sampling from π will depend on the500

form of π.501

15

Figure 9: Phase space picture of the HMC algorithm, for a 1D parabolic potential. Step 1: Initialize
at the most recent chain position xi. Step 2: Randomly sample momentum p from a known proba-
bility distribution. Step 3: Integrate Hamilton’s equations. Step 4: accept or reject the move from xi

to x′. Figure adapted from [7].

Markov Chain Monte Carlo (MCMC) is one popular strategy for constructing samplers [45], and502

can be applied whether the state space X is discrete or continuous. This strategy involves setting503

up a chain of dependent samples, such that over a long enough time, the set of samples becomes504

distributed according to π(x). In other words, it operates by constructing a Markov chain that has505

the target distribution π as its stationary distribution. An MCMC algorithm is defined by making a506

choice of conditional distribution g(x′|x) and a choice of initial state x0, then repeating the follow-507

ing for each iteration i [54]:508

1. Initialize at position xi509

2. Draw a sample from g as x′ ∼ g(x′|xi)510

3. Compute the probability Πa of accepting x′ as the next state in the chain. The probability511

is given by512

Πa(x
′,xi) = min

(
1,

π(x′)g(xi|x′)

π(xi)g(x′|xi)

)
(19)

4. Draw a random number r uniformly from the unit interval [0, 1]. If r < Πa, accept the513

move by setting xi+1 = x′. Otherwise, stay at the current position by setting xi+1 = xi.514

Note that one should choose the conditional distribution g such that it is easier to sample from than515

the target distribution π.516

In the following sections we will present how the framework of thermodynamic AI systems natu-517

rally encompasses Monte Carlo algorithms, focusing on two key algorithms: Langevin Monte Carlo518

(LMC) and Hamiltonian Monte Carlo (HMC) [7].519

D.1.1 Hamiltonian Monte Carlo520

HMC has gradually become one of the most widely used MCMC algorithms for statistical analysis521

and learning thanks to its computational efficiency and sample quality [46]. The markov chain in522

HMC is constructed by proposing new samples using a combination of gradient information and523

Hamiltonian dynamics. The key idea behind HMC is to introduce fictitious momentum variables p,524

to which x is coupled according to Hamilton’s equations:525

∂x

∂t
=

∂

∂p
H(x,p) (20)

∂p

∂t
=− ∂

∂x
H(x,p) (21)

with the Hamiltonian H defined as H(x,p) = − log π(x)+pTMp/2, with a potential term U(x) =526

− log π(x) corresponding to the landscape of the target probability distribution in log space, and527

16

M a mass matrix. At each iteration of the HMC algorithm, a new sample is proposed by integrating528

the equations of motion in phase space over a fixed time interval τ . As such, HMC is referred to529

as a gradient-augmented MCMC method, where information on the gradient of the log-probability530

is integrated in the chain. The proposed sample is then accepted or rejected using the Metropolis-531

Hastings acceptance criterion, which in the case of Hamiltonian dynamics reduces to532

Πa(x
′,x) =

π(x′)

π(x)
(22)

since the dynamics are reversible which gives g(x′,x) = g(x,x′). The gradient information in533

HMC is used to define the direction of the proposed updates, allowing the Markov chain to effi-534

ciently explore regions of high probability mass. Therefore, regions of low probability mass may be535

avoided, thus allowing the Markov chain to escape from local modes and explore the target distri-536

bution more effectively unlike random walk MCMC methods. One may already see the connection537

with force-based MD, introduced in section IX, that is made more explicitly in the next subsection.538

A more elaborate version of HMC has been developed and is also widely used in statistics, coined539

the No U-Turn sampler (NUTS). NUTS has the advantage of automatically tuning the step size and540

the trajectory during the sampling process, making it easier to use in practice [27].541

D.1.2 Stochastic Gradient Hamiltonian Monte Carlo542

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [13] is an extension of HMC, proposed to543

use HMC efficiently on large problem sizes where computing exactly the gradient of the log prob-544

ability ∇x log π(x) = ∇U(x) (which is necessary to compute the dynamics) cannot be performed.545

Indeed, this gradient can be expressed as546

∇U(x) = −
∑
xi∈D

∇ log π(xi|x)−∇ log p(x). (23)

for points xi ∈ D, with D the set of observations. For large problem sizes, this quickly becomes547

intractable. To overcome this, the gradient may be approximated by uniformly sampling points548

xi ∈ D̃, D̃ ⊂ D:549

∇Ũ(x) = −|D|
|D̃|

∑
xi∈D̃

∇ log π(xi|x)−∇ log p(x). (24)

Assuming the xi are independent, the central limit theorem leads to:550

∇Ũ(x) ≈ ∇U(x) +N (0, V (θ)) (25)

with V the covariance of Gaussian noise with zero mean coming from the stochastic gradient ap-551

proximation. In Ref. [13], it was shown that one can add a friction term to counterbalance the552

effect of the noise coming from the stochastic gradient, thus obtaining the dynamical equations for553

SGHMC with friction:554

dx = M−1pdt (26)

dp = −[∇U(x) +BM−1p]dt+
√
2Bdw (27)

where M is a mass matrix, B = V (θ)/2 is the diffusion matrix, ∇U(x) = f(x) is the force and555

w is the Wiener process. The stationary distribution for x obtained at long times corresponds to the556

target probability distribution π(x) = exp{−U(x)}. In fact, looking at Eq. (27), one can see the557

close connection with Eqs. (9) and (15).558

D.2 Connection to Langevin Monte Carlo559

There is a close connection between SG-HMC and Langevin Monte Carlo (LMC), in particular with560

a variation of LMC known as stochastic gradient Langevin dynamics (SGLD). SGLD is a procedure561

for Bayesian posterior sampling of the parameters of a machine learning model. As in [56], let θ562

be the parameters of the model, let p(θ) be a prior distribution on the parameters, and let p(x|θ) be563

the probability of data point x given that our model is parameterized by θ. Similarly to SGHMC,564

17

we can imagine introducing the N data points randomly in small batches of size n. Then the SGLD565

dynamics are specified by the update equation566

∆θt =
ϵt
2

(
∇ log p(θt) +

N

n
∇ log p(xti|θt)

)
+N (0, ϵt), (28)

where ϵt is a time-dependent step size. The noise term prevents the the parameters from freezing at567

a particular value, instead being spread according to the posterior distribution. From this perspective568

we can see thermodynamic fluctuations as a resource for posterior inference.569

We can further cast this equation in terms of the force framework introduced in section 6. Since570

we can treat the logarithm of a distribution as an energy, we can write U(t, θ) = log p(θ) +571
N
n log p(xti|θt), so that U(t, θ) is a time dependent energy function. Then we have572

dθ =
ϵt
2
∇U(t, θ)dt+

√
ϵtdW. (29)

Thus the data becomes part of a time dependent diffusion vector.573

D.3 Fitting into our Thermodynamic AI Framework574

Figure 10 shows how these algorithms can fit into our framework. We propose the following map-575

ping to the s-unit formalism:576

(momentum device) ↔ (s-mode device, with a noise source and an injected value for the force)
(30)

(position device) ↔ (latent variable stored in the Maxwell’s Demon memory) (31)

This mapping refers to how the differential equations in, for example, Eq. (26) and Eq. (27) are577

mapped to the devices in the Thermodynamic AI system. Assuming the noise is uncorrelated, one578

can set B in Eq. (27) to a scalar value. M will therefore be given by the connectivity of the momen-579

tum device.580

D.4 Description of Monte Carlo Hardware581

The coupled differential equations described above are amenable to being implemented on Ther-582

modynamic AI hardware. Implementing the SGHMC algorithm on digital hardware requires one583

to compute the derivatives of position and momentum, which involve diagonalizing matrices, hence584

having a computation cost in O(n3) in the general case, with n the number of data points.585

By implementing SGHMC in Thermodynamic AI hardware, this scaling may be eased. This can586

help in alleviating the bottleneck that is sampling for many applications. We coin Thermodynamic587

Monte Carlo (TMC) for the implementation of Monte Carlo algorithms in Thermodynamic AI hard-588

ware.589

For the hardware implementation of SGMHC, one can consider two devices: one whose state vari-590

able is x, and one whose state variable is p. Ultimately, one is interested in obtaining values of x,591

whose evolution is dictated by the dynamics of p. To unify the SGHMC and SGLD approaches, we592

propose a single hardware paradigm.593

This platform is depicted in Fig. 10. The force is calculated by the MD, which is then fed into the594

momentum device. The momentum vector is fed in real time to the integrator, the result of which is595

the position vector which is fed back into the Maxwell’s demon for storage.596

In the case of SGHMC, a noisy estimate of the force is calculated, which is then fed into the mo-597

mentum device, which has to have no Brownian noise so that the correct SDE is implemented. The598

friction term may be implemented by dissipative elements, such as resistors.599

In the case of SGLD, the force is calculated exactly, and then fed into the momentum device that600

will have both friction (that is high in this case) and Gaussian noise.601

18

Figure 10: Schematic diagram for a Thermodynamic Monte Carlo device. The momentum device
corresponds to an s-mode device, with s-modes constructed as described in Sec. 3. The Maxwell’s
demon is constructed via a force-based approach.

E Application: Annealing602

E.1 Background603

Many important problems can be phrased as optimization problems. Posing a problem as an opti-604

mization problem means defining a loss function on the space of potential solutions, such that the605

better the answer, the lower the corresponding value of the loss function. While many methods exist606

for solving optimization problems, a key difficulty that must be overcome is the existence of local607

minima in the loss function. These local minima show up whether the solution space is discrete608

or continuous. We outline a naive way to approach each domain, and how local minima thwart609

successfully finding the global optimum:610

• For continuous problems, we might apply gradient descent [11]. Starting from a random611

location in solution space, the algorithm repeatedly computes the local gradient and uses it612

to travel down hill. If the algorithm reaches a local minimum, the gradient becomes zero,613

so the algorithm ceases to move.614

• For discrete problems, we might apply local search [19]. Starting from a random configu-615

ration, we compute the value of all neighboring configurations; if any neighbor has a lower616

loss function value, the algorithm moves to that configuration. In a local minimum, no617

neighbor has a lower value of the loss, halting progress.618

In both of these cases, we need something more to prevent becoming trapped in a local minimum.619

The key missing ingredient is the ability to temporarily move to a solution or configuration that has620

a larger value of the loss. After such a temporary up-hill traversal, the algorithm has a chance to621

move into a neighboring, deeper minimum. This is where we can leverage thermal fluctuations as a622

resource for computation. If one perturbs the gradient direction (in continuous problems) or the loss623

values of the neighbors (for discrete problems), then the transition step no longer gets stuck in local624

minima. An illustration of this thermal escape from a minimum is illustrated in Figure 11.625

On digital systems, one algorithm which takes advantage of thermal fluctuations is Simulated An-626

nealing, initially proposed in 1983 [38]. Annealing is a process in which a metal is slowly cooled627

from a high temperature to increase its strength. Simulated Annealing makes an analogy between628

such annealing of a metal and optimization: the bonds in the metal are analogous to the loss function,629

while the strengthening of the metal is analogous to finding a better optimum.630

In a physical system, all these perturbations can be provided by thermal fluctuations. In the next631

section we formalize the connection between the stochastic dynamics of a physical system and the632

Simulated Annealing algorithm.633

19

Figure 11: Illustration of thermal and quantum fluctuations enabling escape from local minima. (a)
Thermal fluctuations provide temporary energy boosts that enable climbing over barriers. Quantum
fluctuations make it possible to tunnel through barriers. (b) For a simple rectangular barrier, we
can write down the transition probabilities provided by both thermal and quantum fluctuations. We
see that they scale differently: thermal fluctuations do not depend on the width of the barrier, while
quantum tunneling does. Figure from Ref. [50].

E.2 SDE approach to simulated annealing634

Reference [6] provides a mathematical framework for simulated annealing based on SDEs. Let us635

discuss that framework now.636

Suppose that we have an optimization problem, where the loss function L(x) of interest is a contin-637

uous function of an N-dimensional state variable x. Here, x is the variable that one is optimizing638

over to solve the optimization problem in the context of simulated annealing. In this setting, one can639

propose a coupled system of equations for the state variable x(t) and an auxiliary variable p(t):640

dx(t) = p(t)dt (32)

dp(t) = −∇L(x)dt− 1

2
D p(t)dt+ S dW (33)

Here, W is an N-dimensional Brownian motion, S an N ×N dimensional lower-triangular matrix,641

and D = SS⊺. We call the first differential equation the optimization ODE, while we call Eq. (33)642

the auxiliary SDE.643

The dynamics on the state variable x(t) are effectively stochastic, as it is coupled to the auxiliary644

variable evolving via the auxiliary SDE.645

In the long-time limit, the state variable x(t) is distributed according to a Boltzmann probability646

distribution constructed from the loss function L:647

x(t → ∞) ∼ exp(−L(x)) (34)

As such, the long-run samples will most often be concentrated around the extrema of the loss func-648

tion L, allowing one to identify the minima or maxima. As the state of x(t) is probabilistic, the649

entire extrema landscape of L can be explored.650

20

E.3 Fitting into our Thermodynamic AI framework651

Equations (32) and (33) fit into our framework for Thermodynamic AI hardware. Specifically, we652

have the following mapping to our hardware:653

(auxiliary SDE) ↔ (s-mode device) (35)
(optimization ODE) ↔ (latent variable evolution in Maxwell’s demon device) (36)

The idea is that the auxiliary SDE describing the evolution of p can be performed on the s-mode654

device. Here, S would correspond to the coefficient C(t) in our hardware, and −(1/2)D would655

correspond to the coefficient A(t) in our hardware.656

In addition, −∇L(x) would correspond to the demon vector d in our hardware. The optimization657

ODE then maps onto the evolution of the latent variable in the Maxwell’s demon device. Note658

that this employs the framework discussed in Sections 4 and 6 involving a forced-based Maxwell’s659

demon. Also, note that the mass matrix that appears in our framework is set to be the identity for660

this application: M = I .661

F Application: Time Series Forecasting662

F.1 Background663

As a final application, we consider analysis of time-series data. Time-series data provide an im-664

portant application relevant to financial analysis, market prediction, epidemiology, and medical data665

analysis. In many case one has data at particular time points that may be at irregular time intervals,666

and one wishes to have a model that makes a predictions at all times and hence one that interpolates667

between the datapoints. In addition, one may want to a model that extrapolates beyond the data, e.g.,668

to make predictions about the future where no data is available.669

Discrete neural networks, such as recurrent neural networks, have been used in the past for inter-670

polating and extrapolating time-series data. However, latent ordinary differential equations (latent671

ODEs) [12] have been shown to outperform recurrent neural networks at this task. One can view a672

latent ODE as a parameterized ODE, where the parameters are trained in order to fit the time-series673

data (according to some loss function). More recently, latent SDEs have been explored for fitting674

and extrapolating time-series data [41].675

F.2 Fitting into our Thermodynamic AI framework676

In what follows, we discuss using Thermodynamic AI hardware as either a latent ODE or latent677

SDE, in order to interpolate and extrapolate a time-series dataset.678

For concreteness, consider the case of a latent SDE. In this case, the idea is that the SDE should have679

trainable parameters that allow it to be fit to the data. This fits well with our Thermodynamic AI680

hardware, since one can use an s-mode device combined with a (parameterized) Maxwell’s demon681

device to generate a parameterized SDE. For example, the overall dynamics associated with this682

parameterized SDE could be given by the following equation, which is a special case of Eq. (3):683

dv(t) = (A(t)v(t) + b(t) +D(t)dθ(t,v(t)))dt+ C(t)dw . (37)

Figure 12 provides a schematic diagram for a potential approach. The overall model in Fig. 12 has684

three subroutines:685

1. Encoder686

2. Latent Thermodynamic AI hardware687

3. Decoder688

The training data are provided as observations from some time series. These time-series observations689

are fed into an encoder. The encoder has free parameters that can be trained. For example, the690

encoder could be a recurrent neural network. The output of the encoder can be the initial vector691

h(0) of the hidden layer values, or the output could be a probability distribution from which h(0) is692

sampled. If the encoder is stored on a digital device, its output can converted to an analog signal.693

21

Figure 12: Illustration of latent Thermodynamic AI hardware for fitting and extrapolating time-
series data.

The Thermodynamic AI hardware acts as the latent space for the latent ODE or latent SDE. This694

latent space is initialized to h(0) by the encoder. Then then hidden layer values evolve over time695

according to ODE or SDE that describes the system, such as the SDE in Eq. (37).696

The hidden layer values h(tk) can be read off at a set {tk} of various times, e.g., by measuring the697

state variables of the s-mode system in the Thermodynamic AI hardware. This set {h(tk)} of values698

can be fed to a decoder. The decoder can have free parameters that will be trained. The outputs699

of the decoder correspond to predictions that the latent ODE model makes for the true time series.700

These predictions can go beyond the time interval associated with the observations, in which case701

the predictions correspond to extrapolated values.702

A training process occurs where the parameters of the encoder, of the decoder, and of the Maxwell’s703

demon in the Thermodynamic AI hardware optimized in order to minimize or maximize a loss704

function. This essentially corresponds to fitting the time-series data. Gradient based approaches705

such as the adjoint sensitivity method can be employed here.706

G Application: Solving Linear Systems707

We gave an overview of the Thermodynamic Linear Systems protocol in the main text. Here we708

provide a more detailed version of the protocol, as follows.709

Linear System Protocol

1. Given a linear system Ax = b, set the potential of the device to

V (x) =
1

2
x⊺Ax− b⊺x (38)

at time t = 0.
2. Choose equilibration tolerance parameters εµ0, εΣ0 ∈ R+, and choose the equili-

bration time
t0 ≥ t̂0, (39)

where t̂0 is computed from the system’s physical properties or using heuristic
methods based on Eqs. (43), (45). Allow the system to evolve under its dy-
namics until t = t0, which ensures that

∥∥⟨x⟩ −A−1b
∥∥ /∥A−1b∥ ≤ εµ0 and∥∥Σ− β−1A−1

∥∥ /∥β−1A−1∥ ≤ εΣ0.
710

22

3. Choose error tolerance parameter εx and success probability Pε, and choose the
integration time

τ ≥ τ̂ , (40)
where τ̂ is computed from the system’s physical properties, Eq. (43) or (45). Use
an analog integrator to measure the the time average

x̄ =
1

τ

∫ t0+τ

t0

dt x(t), (41)

which satisfies ∥Ax̄− b∥ /∥b∥ ≤ εx with probability at least Pδ .
711

In order to implement the protocol above, the necessary values of t̂0 and τ̂ must be identified, which712

requires a more quantitative description of equilibration and ergodicity. To obtain such a description,713

a model of the system’s microscopic dynamics may be introduced. Given that the system under714

consideration is composed of harmonic oscillators in contact with a heat bath, it is natural to allow715

for damping (i.e., energy loss to the bath) and stochastic thermal noise, which always accompanies716

damping due to the fluctuation-dissipation theorem [40, 55]. The Langevin equation accounts for717

these effects, and specifically we consider two common formulations, the overdamped Langevin718

(ODL) equation and the underdamped Langevin (UDL) equations.719

The ODL equation for this system is720

dx = − 1

γ
(Ax− b)dt+N

[
0, 2γ−1β−1 dt

]
, (42)

where γ > 0 is called the damping constant and β = 1/kBT is the inverse temperature of the721

environment. The system has a physical timescale (which is clear from dimensional analysis) that722

we call the relaxation time τr = γ/∥A∥. The condition number of A is κ = αmax/αmin, where723

α1 . . . αd are the eigenvalues of A. With these definitions, we arrive at the following formulas for t̂0724

and τ̂ in the overdamped case, which can be used in the above protocol:725

t̂0 = max

{
κτr ln

(
κε−1

µ0

)
,
1

2
κτr ln

(
2κε−1

Σ0

)}
, τ̂ =

2κ2d ∥A∥
β∥b∥2ε2x(1− Pε)

τr. (43)

The underdamped model is instead described by the UDL equations,726

dx =
1

M
pdt, dp = −(Ax− b) dt− γ

M
pdt+N [0, 2γβ−1Idt]. (44)

We define ξ = γ/2M , ωj =
√

αj/M , and ζj = ξ/ωj . Moreover, a timescale τr(UD) can be identified727

for the underdamped system which is analogous to the quantity τr associated with the overdamped728

system. In particular, we define τr(UD) = ξ−1. We introduce a dimensionless quantity χ as well,729

which is χ = (1 + ξ/ωmin)
1/2(1 − ξ/ωmin)

−1/2. With these definitions, we arrive at the following730

formulas for the timing parameters in the underdamped case:731

t̂0 = max

{
τr(UD) ln

(
κ1/2χε−1

µ0

)
,
1

2
τr(UD) ln

(
χ2κ3/2ε−1

Σ0

[
1

4ζ2max
+ 1

])}
,

τ̂ =
2
√
κχd∥A∥

β∥b∥2ε2x(1− Pε)
τr(UD). (45)

H Application: Matrix Inverse732

H.0.1 Our Thermodynamic Algorithm733

The linear systems protocol relies on estimating the mean of x, but make no use of the fluctuations734

in x at equilibrium. By using the second moments of the equilibrium distribution, we can go beyond735

solving linear systems. For example it is possible to find the inverse of a symmetric positive definite736

matrix A. As in the case of linear systems, the stationary distribution of x is N [A−1b, β−1A−1].737

This means that the inverse of A can be obtained by evaluating the covariance matrix of x. This can738

23

be accomplished in an entirely analog way, using a combination of analog multipliers and integra-739

tors. By setting b = 0 for this protocol, we ensure that ⟨x⟩ = 0, so the stationary covariance matrix740

is, by definition741

Σs = lim
t→∞

⟨x(t)x⊺(t)⟩ . (46)

In order to estimate this, we again perform time averages after allowing the system to come to742

equilibrium743

Σs ≈ xx⊺ =
1

τ

∫ t0+τ

t0

dt x(t)x⊺(t). (47)

It is therefore necessary to have an analog component which evaluates the product xi(t)xj(t) for744

each pair (i, j), resulting in d2 analog multiplier components. Each of these products is then fed745

into an analog integrator component, which computes one element of the time-averaged covariance746

matrix747

Σs,ij ≈
1

τ

∫ t0+τ

t0

dt xi(t)xj(t). (48)

While the equilibration time is the same as for the linear system protocol, the integration time is748

different, because in general the covariance matrix is slower to converge than the mean. We now749

give a detailed description of the inverse estimation protocol, assuming ODL dynamics.750

Inverse Estimation Protocol

1. Given a positive definite matrix A, set the potential of the device to

V (x) =
1

2
x⊺Ax (49)

at time t = 0.
2. Choose equilibration tolerance parameter εΣ0 ∈ R+, and choose the equilibration

time
t0 ≥ t̂0, (50)

where t̂0 is computed from the system’s physical properties, Eq. (53) or (54). Al-
low the system to evolve under its dynamics until t = t0, which ensures that∥∥Σ− β−1A−1b

∥∥ /∥β−1A−1∥ ≤ εΣ.
3. Choose error tolerance parameter εΣ and success probability Pε, and choose the

integration time
τ ≥ τ̂ , (51)

where τ̂ is computed from the system’s physical properties, Eq. (53) or (54). Use
analog multipliers and integrators to measure the the time averages

xixj =
1

τ2

∫ τ

t0

dt xi(t)xj(t), (52)

which satisfies ∥xx⊺ − β−1A−1∥F /∥β−1A−1∥F ≤ εA with probability at least
Pε.

751

The timing parameters for the inverse estimation protocol are, for the overdamped case,752

t̂0 =
1

2
κτr ln

(
2κε−1

Σ0

)
, τ̂ =

4κd(d+ 1)

(1− Pε)ε2Σ
τr, (53)

and for the underdamped case753

t̂0 =
1

2
τr(UD) ln

(
χ2κ3/2ε−1

Σ0

[
1

4ζ2max
+ 1

])
, τ̂ =

4κd(d+ 1)

(1− Pε)ε2Σ
τr(UD). (54)

24

103 104

Time (µs)

2

3

4

6

10

ε Ã
−

1

d = 64

d = 128

d = 256

d = 512

d = 1024

102 103

d

103

105

t C

d
2

d

Figure 13: Error of the inverse estimation thermodynamic algorithm as a function of the analog
integration time for different dimensions. Matrices A are drawn from a Wishart distribution with
2d degrees of freedom. Vertical dashed lines are the times tC at which error goes below a threshold
(horizontal dashed line). Inset: Crossing time tC as a function of dimension d.

H.0.2 Comparison to digital methods754

Similar to our analysis for the linear systems protocol, let us now examine the performance of the755

inverse estimation protocol in practical settings. To do so, we consider the error on the inverse,756

defined as757

εÃ =
∥Ã−A∥F
∥A∥F

, (55)

where ∥ · ∥F denotes the Frobenius norm.758

In Fig. 13, the convergence of the error as a function of the analog dynamics time for our thermo-759

dynamic inverse estimation algorithm is shown. We see that the expected convergence time to reach760

a given error is between linear and quadratic in the dimensionality of the system, in agreement with761

the analytical bounds presented in the previous section.762

In addition, a runtime comparison to Cholesky decomposition was also performed, where a timing763

model similar to that employed for the linear systems protocol was used. The results are shown764

in Fig. 14, where the error is shown as a function of physical time for dimensions 100, 1000 and765

5000. The dashed lines represent the corresponding times for Cholesky decomposition, for given766

dimensions. We see that as the dimension grows, the advantage with respect to the Cholesky de-767

composition also grows, thus highlighting a practical thermodynamic advantage. Our method for768

the inverse estimation therefore has the advantage of having well-defined convergence properties as769

a function of dimension and condition number (compared to other approximate methods for invert-770

ing dense matrices, which do not have well defined convergence properties), as well as leading to771

reasonable error values in practical settings.772

I Application: Solving Lyapunov Equations773

In this section we assume we have access to a device with a controllable noise source such that the774

covariance matrix of the noise term may be chosen to be an arbitrary symmetric positive definite775

matrix. We do not include the linear b⊺x term in the potential, and therefore obtain the following776

overdamped Langevin equation777

dx = − 1

γ
Axdt+N

[
0,

2

γβ
Rdt

]
, (56)

where R is symmetric and positive definite. In this case, the stationary distribution has mean zero778

and covariance matrix Σs, which is a solution to the Lyapunov equation779

AΣs +ΣsA
⊺ = 2β−1R. (57)

25

10−3 10−2

Time (s)

10−1

100

ε Ã
−

1

d = 5000

d = 1000

d = 100

Figure 14: Comparison of the error εÃ−1 of the thermodynamic algorithm (TA) to solve lin-
ear systems with the Cholesky decomposition as a function of total runtime. Dimensions are
d = 100, 1000, 5000, respectively in light green, light blue, and purple are shown, as well as the
corresponding Cholesky decomposition times as dashed lines. Here the condition numbers are re-
spectively {120, 1189, 5995}. Calculations were performed on an Nvidia Tesla A10 GPU.

We propose the following protocol for solving the Lyapunov equation.780

Lyapunov Equation Protocol

1. Given two symmetric positive definite matrices A and R, set the potential of the
device to

V (x) =
1

2
x⊺Ax, (58)

and the noise term in the overdamped Langevin equation to N
[
0, 2γ−1β−1Rdt

]
at time t = 0. That is, the system evolves under the dynamics of Eq. (56).

2. Choose equilibration tolerance parameter εΣ0 ∈ R+, and choose the equilibration
time

t0 ≥ t̂0, (59)

where t̂0 is computed from the system’s physical properties, Eq. (53) or (54). Al-
low the system to evolve under its dynamics until t = t0, which ensures that∥∥Σ− β−1A−1b

∥∥ /∥β−1A−1∥ ≤ εΣ.
3. Choose error tolerance parameter δΣ and success probability Pδ , and choose the

integration time
τ ≥ τ̂ , (60)

where τ̂ is computed from the system’s physical properties, Eq. (53) or (54). Use
analog multipliers and integrators to measure the the time averages

xixj =
1

τ2

∫ τ

t0

dt xi(t)xj(t), (61)

which satisfies ∥xx⊺ − Σs∥F ≤ δΣ with probability at least Pδ .
781

The timing parameters for the Lyapunov equation protocol are, for the overdamped case,782

t̂0 =
1

2
κτr ln

(∥Σ0 − Σs∥+ κβ−1∥A∥−1

δΣ0

)
, τ̂ =

4κd(d+ 1)

(1− Pε)ε2Σ
τr, (62)

For the underdamped case, t̂0 would be somewhat different, but τ̂ would be the same, because the783

behavior of the equilibrium correlation function does not depend on the noise, so the same result784

derived for the matrix inverse protocol is applicable. Note that Eq. (62) only vaguely determines the785

26

equilibration time, as the target covariance matrix Σs is not known beforehand. The corresponding786

equilibration time t̂0 for an underdamped system could also be evaluated in principle; however, this787

would only result in a similarly vague expression, which is anyway not necessary to determine the788

asymptotic time-complexity scaling of the algorithm, so it is not pursued here. Moreover, the relative789

error cannot be bounded as straightforwardly as was done for the other protocols given that there is790

no explicit formula for the target covariance matrix. For this reason, we have used absolute error as791

the error tolerance in the above protocol.792

J Application: Matrix Determinant793

The determinant of the covariance matrix appears in the normalization factor of a multivariate nor-794

mal distribution, whose density function is795

fµ;Σ(x) = (2π)−d/2 |Σ|−1/2
exp

(
−1

2
x⊺Σ−1x

)
, (63)

and it is therefore natural to wonder whether hardware which is capable of preparing a Gaussian796

distribution may be used to somehow estimate the determinant of a matrix. This can in fact be done,797

as the problem is equivalent to the estimation of free energy differences, an important application of798

stochastic thermodynamics. Recall that the difference in free energy between equilibrium states of799

potentials V1 and V2 is [14]800

∆F = F2 − F1 = −β−1 ln

(∫
dx e−βV2(x)∫
dx e−βV1(x)

)
. (64)

Suppose the potentials are quadratic, with V1(x) = x⊺A1x and V2(x) = x⊺A2x. Then each integral801

simplifies to the inverse of a Gaussian normalization factor,802 ∫
dx e−βVj(x) = (2π)d/2

√
β−1

∣∣A−1
j

∣∣, (65)

so803

∆F = −β−1 ln

(√∣∣A−1
2

∣∣∣∣A−1
1

∣∣
)

= −β−1 ln

(√
|A1|
|A2|

)
. (66)

This suggests that the determinant of a matrix A1 can found by comparing the free energies of the804

equilibrium states with potentials V1 and V2 (where A2 has known determinant), and then computing805

|A1| = e−2β∆F |A2| . (67)

Fortunately, the free energy difference ∆F can be found, assuming we have the ability to measure806

the work which is done on the system as the potential V (x) is changed from V1 to V2. According to807

the Jarzynski equality [34], the free energy difference between the (equilibrium) states in the initial808

and final potential is809

e−β∆F = ⟨e−βW ⟩ , (68)
where ⟨·⟩ denotes an average over all possible trajectories of the system between time t = 0 and810

time t = τ , weighed by their respective probabilities. This may be approximated by an average over811

N repeated trials,812

e−β∆F ≈ e−βW ≡ 1

N

N∑
j=1

e−βWj . (69)

However, while Jarzynski’s relation may be applied directly to estimate the free energy difference,813

this estimator has large bias and is slow to converge. Far more well-behaved estimators have been814

found based on work measurements. For simplicity, we here provide the expression based on Jarzyn-815

ski’s estimator, while Ref. [2] gives more suitable estimators. In summary, the determinant of A1 is816

approximated by817

|A1| ≈
(
e−βW

)2
|A2| . (70)

In practice we will generally be interested in the log determinant to avoid computational overflow.818

This is819

ln (|A1|) ≈ 2 ln
(
e−βW

)
+ ln (|A2|) . (71)

27

We observe that, to estimate the log determinant to within (absolute) error δLD with probability at820

least Pδ , the total amount of time required is roughly821

τ ≈ d ln(κ)2

δ2LD(1− Pδ)
ln

(
χ2κ3/2ε−1

Σ0

[
1

4ζ2max
+ 1

])
τr(UD) = O(d ln(κ)3). (72)

28

