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ABSTRACT

Mixture-of-Experts (MoE) architectures have emerged as a promising direction,
offering efficiency and scalability by activating only a subset of parameters during
inference. However, current research remains largely performance-centric, with
limited understanding of its internal mechanisms, thereby constraining broader
progress. In this work, we use an internal metric to investigate the mechanisms of
MoE architecture by explicitly incorporating routing mechanisms and analyzing
expert-level behaviors. Through systematic analyses of a wide range of publicly
available MoE models, we uncover several findings: (1) neuron utilization de-
creases as models evolve, reflecting stronger generalization; (2) training exhibits
a dynamic trajectory, where benchmark performance alone provides limited signal
while MUI reveals deeper insights; (3) task completion emerges from collabora-
tive contributions of multiple experts, with shared experts driving concentration;
and (4) activation patterns at the neuron level provide a fine-grained proxy for
data diversity. Together, these results demonstrate the potential of MUI as a com-
plementary indicator to benchmark performance, offering new insights into the
capacity, dynamics, and specialization of MoE models.

1 INTRODUCTION

With the rapid advancement of Large Language Models (LLMs), an increasing number of Mixture-
of-Experts (MoE) architectures have been proposed, such as DeepSeek (Liu et al.l 2024), GPT-
OSS (OpenAl, 2025), and Qwen3 (Yang et al.| 2025)). Unlike dense models that rely on fixed
forward parameters, MoE models employ dynamic routing, selectively activating different subsets
of parameters known as experts. This design offers two key advantages: 1) both training and in-
ference are more efficient, as only a small fraction of parameters are activated for each input; and
2) performance can be improved, one common explanation is that, under the same computational
budget, MoE models can be scaled to much larger parameter sizes. However, are these advantages
the only reason behind MoE’s success? Our current understanding of MoE architectures remains
limited, and this lack of interpretability poses challenges for their further development.

From these perspectives, it is essential to investigate the mechanisms of MoE architectures. Current
research primarily focuses on benchmark performance for understanding, but benchmark perfor-
mance alone is insufficient. As LLMs increasingly saturate widely used benchmarks, the perfor-
mance differences across models become marginal, while potential benchmark leakage (Zhou et al.,
2023} |Ying et al., [2024a) further undermines the reliability of these results. In this work, we use an
internal metric to investigate the mechanisms of MoE architectures, extending the Model Utilization
Index (MUI) originally proposed on dense models|Cao et al.|(2025), which measures the proportion
of neurons required for task completion. However, unlike dense models, MoE requires explicitly
accounting for routing mechanisms when evaluating the degree to which a model utilizes its internal
capacity. Moreover, it is equally important to enable fine-grained investigations at the expert level
in order to better understand the functional roles and contributions of individual experts. Through
systematic analyses of a wide range of publicly available MoE models, and by tracing how internal
mechanisms evolve as model capabilities change, we not only demonstrate the applicability of our
adapted indicators but also conduct in-depth analyses at the expert-level. Based on these analyses,
we uncover several findings and provide the following key insights:
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1. Reduced neuron utilization with model evolution: within the same family, we observe that as
models evolve, their performance improves while requiring fewer neurons to accomplish the
same tasks. We believe this is a reflection of stronger generalization. Notably, GPT-OSS models
exhibit strikingly low MUI, which may explain why GPT-5 achieve superior performance in
real-world applications — strong generalization (Section [3.2).

2. Dynamic MUI trajectory during training: by tracking how MUI evolves throughout the training
process, we provide insights beyond performance metrics, showing how MUI can serve as an
indicator for monitoring training dynamics and guiding model development (Section [3.3).

3. Collaborative expert contributions: task completion often emerges from the joint collaboration of
multiple experts. Stronger models exhibit a higher proportion of expert cooperation, with GPT-
OSS showing the highest. Interestingly, the presence of shared experts further drives expert con-
centration, potentially diminishing the diversity advantages of distributed experts (Section[3.4).

4. Data measurement: activation patterns at both the neuron and expert levels reflect data diversity,
while neuron-level offering a more efficient way (Section|[3.5).

2 MOE MODEL UTILIZATION INDEX

To address limitations in performance-only evaluation, we propose designing internal indicators that
monitor MoE models from the perspective of underlying mechanisms. Building on recent advances
in interpretability, which have shown how model components, such as neurons and layers, interact
to produce overall behavior (Pan et al., 2024} |Cao et al.| [2025), we extend this line of inquiry to
MoE architectures. Specially, we focus on identifying the proportion of key neurons required for
task completion, and study how this proportion evolves during capability shifts and across training
iterations. These dynamics form the basis of a meaningful measure for model monitoring, which we
term the MoE-MUI (MUI for simple). To this end, we first introduce the neuron importance calcu-
lation method primarily used in our study in the following section. It is important to note that our
proposed metric is not tied to any specific interpretation method. To ensure robustness, we further
consider several alternative formulations, which are detailed in our ablation studies (Section [4).

2.1 PRELIMINARY

Neuron-level interpretable methods (Dai et al.l|2022a; |Geva et al.,|2021)) connect individual neurons
in the feed-forward network (FFN) sub-layer of LLMs to specific semantic meanings. These neurons
can be treated as mediator variables (Meng et al.,[2022) for certain model behaviors. In MoE models,
each expert E; corresponds to one FFN. Specifically, omitting the layer normalization for brevity,
the MoE layer [ can be defined as a function of input hidden state x':

MoE'(x') = > GI(x)HEi(x') + > GL(x"HEL(),
iER(x1) seS (1)
Ei (Xl) = (lefm © (Xlwglg,i))wfl,iv

where R(x!) is the routed (top-k) expert set, S is the shared expert set, G!(x!) are routing weights
(for shared experts, set G (x') = 1 if they are always active), and W/, ;, WL ;, W/ _ are the projec-

u,%’ g,1?
tions in SwiGLU. Following (nostalgebraist, 2020), for j-th neuron in expert ¢ at layer [ contributing
to prediction of token ¢ when given input sequence x, we define the token-level neuron contribution:

fneuron(iaja Ly | fﬂ) = (Gi(xl) ’ (Xlwé,i) ’ Wé,z) []] : Whead[:a g]a (2

where Wie,q is the unembedding matrix mapping hidden states to vocabulary logits. For a given
threshold 7, the key activated neurons for task sample s = (z, y) is defined as:

Nactivated(s) - {(ijvl) ‘ El gtafneuron (ivjala gt ‘ x®g<t) > 7]}7 (3)

where g; denotes the t-th token in y, §-+ denotes the partial output sequence before the ¢-th token,
and & represents concatenation with the input sequence.
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Figure 1: Illustration of getting key neurons and key experts for given task samples (s1 to s;,).

2.2  MODEL UTILIZATION INDEX

Given a task set 7 = {s1, s2,..., Sk}, we first identify the set of key activated neurons for each
sample s; using Equation 2] By accumulating across all samples, we obtain the union of neurons
required to complete the task. The neuron-level MUI for MoE is then defined as the proportion of
activated neurons relative to the total available neurons in the model:

| U Nactivated(si)‘
N x L x (|E4| +|E:|)’
where N is the number of neurons per expert, L is the number of MoE layers, |E;| is the number

of shared experts, and | F,| is the number of routed experts per layer. Correspondingly, if we focus
only on the expert information contained in the activated neuron set we can identify the experts

set Eaclivaled(s) = {(% l)
frequency threshold 7jexperi, We could find the set of key experts for a task set 7 as those experts that
consistently contribute across samples:

| {3 € T‘ (7;’ l) € Nactivated(s)} ’
71
Meanwhile, by aggregating the sets of task-responsible experts, we can derive both the overall pro-

portion of key experts within the model as well as the MUI for each individual expert. Formally, the
proportion of key experts for a given task 7 is defined as:

MUL(T) = @)

34,0,4,0) € Namivaled(s)} that are responsible for sample s. Given a

Ekey(T) - (i, l)

> Tlexpert ( - (5)

. | U Ekey(T)|
KeyExpertProportion(7") = (6)
L x (|Es| +|E\])
In addition, for a specific expert (i/, l/) its MUI with respect to task 7 is computed as:
N, %
MUI(Z/ ) (T) | U {.7 |( i, Jl 3\]6 act ated(s)}| 7

Figure [I] provides an illustration of our methodology. Starting from a given sample (e.g., sample 1),
we identify the key neurons that contribute to the model’s response during inference. By aggregating
results from multiple samples, we can identify the corresponding task-level experts (shown in red).
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3 EXPERIMENTS

In this section, we present our empirical study on a broad set of open-source MoE models. Specifi-
cally, we conduct interpretability-based analyses on 13 publicly available models ranging from 20B
to 200B parameters, as well as 10 intermediate checkpoints from the OLMOoE series. By monitoring
how the MUI changes alongside changes in model capabilities, we aim to reveal the potential of
MUI as an internal indicator of model capacity. Furthermore, we demonstrate how MUI enables
fine-grained expert-level analysis, offering insights into the internal dynamics of MoE architectures.

3.1 SETUP

Dataset Selection. To ensure reliable conclusions, we adopt a diverse set of widely used bench-
marks. Following (Cao et al., [2025; |Ying et al., [2024b), our evaluation covers three categories: 1)
GSMB8K (Cobbe et al 2021), MATH (Hendrycks et al., 2021, and ARC-Challenge (Clark et al.,
2018) for math reasoning, 2) HumaEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for
coding, 3) BIG-bench Hard (BBH) (bench authors, 2023) and MMLU (Hendrycks et al.l |2020) to
cover general tasks. Statistical result for the selected benchmarks is shown in Table [2]

Model Selection. To maximize the applicability of MUI and ensure fairness in evaluation, we
select four widely used series of open-source LLMs: 1) GPT Series: GPT-OSS-20B and GPT-OSS-
120B (OpenAl [2025). 2) Qwen Series: Qwenl.5-MoE (Team, [2024), Qwen3-30B, Qwen3-Coder-
30B, Qwen3-235B-Thinking (Yang et al., 2025), and Qwen3-Next. 3) DeepSeek Series: DeepSeek-
MoE (Dai et al., [2024), DeepSeek-V2-Lite (abbreviated as DeepSeek-LV2), DeepSeek-Coder-V2-
Lite, DeepSeek-V2, and DeepSeek-Coder-V2 (et al.,2024). 4) OLMOoE Series: several checkpoints
from OLMOoE-7B (et al.}[2025); detailed checkpoint information is provided in Appendix

Implementation. Details of the response generation parameters for each model are provided in the
Appendix. For the threshold 7 in Equation 3] we set it to the top 1%o of total neurons, applied at the
layer level (additional implementation details are reported in the Appendix [A.3). Furthermore, we
discuss the neuron selection strategy and justify the choice of threshold in our Section ]

3.2 REDUCED NEURON UTILIZATION WITH MODEL EVOLUTION
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Figure 2: Overall weighted-average performance (%) and MUI (%) across selected benchmarks.

By comparing earlier and later versions within the same model families, we examine how MUI
reflects the impact of model iteration or evolution. Specifically, within the DeepSeek family, we
compare DeepSeek-V2 and DeepSeek-V2-Lite with their enhanced counterparts, DeepSeek-Coder-
V2/DeepSeek-V2.5 and DeepSeek-Coder-V2-Lite. Although labeled as “Coder” versions, model
reports (Zhu et al.l [2024)) and benchmark results indicate that these are a comprehensive evolution
of the V2 series (MUI changes under specific capabilities improvement will be discussed in Sec-
tion @]) Similarly, in the Qwen family, we compare Qwen3-30B-A3B with its iterative successor,
Qwen3-Next. The performance and corresponding MUI values (Equation {4)) for these models are
shown in Figure[2] Analyzing all neurons jointly, we observe that later-released models consistently
achieve stronger performance on the same datasets while exhibiting lower MUI. If we assume that
these newer models indeed possess higher true capability and stronger generalization (i.e., the ability
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to handle a broader range of tasks beyond the specific evaluation sets), then MUI may serve as an
indicator of intrinsic capacity and generalization rather than benchmark-specific performance. This
interpretation is supported by two pieces of evidence. First, prior work on dense models |Cao et al.
(2025) reached a similar conclusion, showing that lower MUI correlates with stronger generaliza-
tion (Cao et al., 2025). Second, Team|(2023) found that with increased training data, parameters
become more specialized even in a single ReLU output model, while generalization simultaneously
improves. Notably, GPT-OSS exhibits strikingly low MUI, which may explain why the GPT series
provides consistently strong user experience in real-world — superior generalization capability.

Combining performance with MUI offers an indicator of a model’s underlying generalization
capability, mitigating the risks of misleading evaluations caused by leakage.

3.3 DYNAMIC MUI TRAJECTORY DURING TRAINING
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change across OLMOoE checkpoints trained with
0.5T, 1T, 2T, 3T, 4T and 5T tokens on the bench-
mark MBPP.

Previous results indicate that later-stage models achieve lower MUI alongside improved perfor-
mance. However, an important question remains: does MUI decrease monotonically throughout
training, or do different phases exhibit distinct trajectories? To address this, we monitor MUI for
the fully open-source OLMoE models across the entire training process, with the goal of deriving
insights that can inform training strategies and model development. Figure 3| plots the overall per-
formance across seven selected tasks alongside the corresponding MUI values for each checkpoint,
with more detailed statistics reported in Table[5} The results reveal a two-phase trajectory in train-
ing. At earlier stages, performance improvements are accompanied by an increase in MUI, which we
refer to as the ” phase. In this phase, the model appears to recruit a larger set of neu-
rons for memorization and learning (Team) [2023)). This trend also emerges when models undergo
capability-specific improvements. For example, compared to DeepSeek-V2, DeepSeek-Coder-V2
places greater emphasis on coding ability. As a result (Table ), its MUI increases on coding tasks
such as MBPP (from 4.9 to 6.3) and HumanEval (from 2.7 to 3.3).

At later stages, however, further performance gains occur together with a decrease in MUI, which
we call the “ ” phase. This suggests that with continued exposure to more data, the model
transitions toward more efficient utilization. As indicated by our earlier analysis in Section[3.2] such
efficiency is closely associated with improved generalization. Importantly, this dynamic learning
trajectory is not uniform across all capabilities but results from a mixture of ability-specific trends.
For instance, as shown in Figure |3} after training on 1T tokens, OLMOoE-1T exhibits an Evolving
trend on GSM8K, whereas ARC and MMLU continue to follow the Accumulating trajectory. These
heterogeneous ability-specific patterns collectively determine whether the model’s overall trajectory
appears Accumulating or Evolving at the aggregate level. Thus, we summarize our takeaway as:
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Monitoring performance alone is insufficient; MUI provides a complementary perspective
for performance for detecting divergent trajectories and adjusting training accordingly.

For example, as shown in Figure [ in coding tasks such as MBPP, OLMOoE consistently
remains in the phase without entering the phase. This suggests that
additional coding data, or a higher proportion of coding tasks during earlier training stages,
may be required to help the model further improve its generalization ability.

3.4 COLLABORATIVE EXPERT CONTRIBUTIONS
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Figure 5: Proportion of key experts for the ARC  Figure 6: Proportion of key experts for the Task
task and the corresponding MUI within those  task and the corresponding MUI within those
key experts across the OLMOE series. key experts across the selected MoE models.

After establishing the potential of neuron-level activation as an indicator of model capacity, we now
extend our analysis to the expert level. Specifically, following Equation [5] we examine how ex-
perts contribute to completing the task. For a given task, the distribution of activated experts can be
viewed as a probability distribution over the expert set. To quantify expert contributions, we adopt
a frequency threshold of 7experr = 0.6 to identify key experts that only with consistently involved.
While detailed activation distributions for each benchmark are presented in Figures [I2] through [16]
Considering that different architectures employ varying numbers of experts, we focus here on mod-
els within the same architecture family for comparison. As shown in Figure[5] 1). OLMOoE exhibits
an increasing proportion of key experts (Equation [6) as training progresses (solid bar), with more
consistent results reported in Table [6] through Table [9] With GPT-OSS consistently demonstrates
the highest proportion of key experts among the models studied. 2). At the same time, the MUI
within these key experts (Equation [/)) shows a trajectory that first rises and then falls. That is,
during early training, the model recruits a large number of neurons (reflected by increasing MUI).
As training progresses, specialization emerges, potentially consolidated within experts, leading to a
compression phase where MUI decreases. At the same time, having a broader set of experts in “Col-
laboration”, results in stronger overall performance and improved generalization. This suggests that
for MoE models, activating a larger number of experts while requiring fewer neurons within
each expert is often associated with stronger true capability and better generalization. This
observation is consistent with the pattern shown in Figure [f] where GPT-OSS exhibits a markedly
different trajectory from other models — aligning well with our hypothesis above.

After analyzing the overall trend of expert utilization, we further analyze the distribution of key
experts, particularly in light of architectural differences between shared and routed experts. As
shown in Figure[7| we present the results on the MMLU dataset, with additional results provided in
Appendix B.3] For MoE architectures that include shared experts, the findings reveal that the top-10
most frequently activated experts are exclusively shared experts. Moreover, the utilization rate of
these shared experts is extremely high; for instance, in Qwen3-Next, each shared expert is activated
in more than 90% of the cases. By contrast, in GPT-OSS, a routed-only MoE, the activation rate
is extremely low. Considering the training dynamics of the two types of experts — shared experts

MwBAY 142dX3 HLYW
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being persistently active versus routed experts only being activated when selected by the router —
this implicates how experts emerge differently across MoE architectures:

Though exhibiting an increasing trend of expert “collaborative” during training. In models
having shared experts, their persistent activation leads to concentrated responsibility within
the shared pool, whereas in routed-only architectures, the influence of load-balancing losses
drives a more dispersed “many-hands” collaboration among a broader set of experts.
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Figure 7: Top-10 experts (ranked by activation frequency in Equation[)) for the selected MoE models
with shared-expert structures (the exception GPT-OSS-20B model is included for comparison) on
MMLU. The corresponding MUI for each expert is reported. Shared experts are denoted as S;.

Given that the proportion of shared experts is relatively small, task-responsible experts tend to
be disproportionately concentrated within the shared pool. To test this hypothesis, we examine
whether shared experts are enriched in the intersection of per—task key experts. Specifically, we
evaluate three benchmarks from different domains and report in Table[I]} Fisher’s exact tests reveal
highly significant enrichment, with odds ratios ranging over 54.6 and two-sided p-values from 10~

to 10757, This indicates that shared experts are not only frequently activated within individual
tasks but also disproportionately dominate the set of experts consistently activated across multiple
tasks. In other words, shared experts act as common capacity hubs that concentrate responsibility
across tasks, confirming our hypothesis that training tends to centralize task responsibility within this
subset. Notably, Qwen3-Next shows the lowest proportion of key experts, which can be attributed to
its architecture containing the smallest shared-expert ratio (1 out of 513 experts). This concentration
has a dual implication. On the one hand, shared experts provide “capacity hubs” that can enable
efficient cross-task knowledge transfer. On the other hand, such reliance risks over-centralization,
potentially limiting expert specialization and reducing the effective diversity of the expert pool.

Task DeepSeek-MoE  Qwenl.5-MoE  DeepSeek-V2-Lite DeepSeek-Coder-LV2  Qwen3-Next
GSMBK 8.3/35.6 10.2/57.1 11.9/254 14.1/21.5 2.8/7.0
GSM8K + MBPP 4.8/614 6.6/82.3 59/51.5 7.9/38.5 0.6/31.3
GSMSK + MBPP + MMLU 3.5/844 6.0/90.3 33/91.2 5.8/52.0 0.4/49.0

Table 1: Key experts proportion(%) / proportion of shared experts among key experts(%).

In summary, although the feed-forward networks in MoE architectures are referred to as “Experts,”
it is difficult in practice to interpret them as independent task-specific units, whether in routed-
only designs or in ones that also include shared experts. In routed-only architectures, the presence

Expert MUI (%)
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of load-balancing losses prevents learning from consistently concentrating on specific experts, and
continued training instead yields experts with sparse and diffuse specialization. As a result, it is
difficult to establish a stable union of task-responsible experts that could facilitate further analysis.
In architectures with shared experts, task responsibility tends to converge largely within the shared
pool, leading to substantial overlap in the experts activated across different tasks. In some sense,
this behavior resembles that of dense models, but it also risks undermining the diversity benefits that
multiple experts are expected to provide.

3.5 DATA MEASUREMENT

Since the activation of different neurons or experts corresponds to engaging distinct regions of the
model’s internal capacity, these activation patterns GPT-055

can be leveraged as an internal proxy for measuring e e eensanes

the diversity of input data. To illustrate this, we con-  **
duct experiments by randomly sampling data from  *°
the three selected domains. In addition, considering
the potential influence of reasoning length, we divide
each domain into two subsets: the top 50% longest

22

CERY BN+

Mut

1.9

e
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samples (denoted as long) and the remaining shorter o . randor
samples (denoted as short). The results in Figure 07 fong
and Figure 23]indicate: 1) both the neuron-level MUI e et s code  math v code generel

and the proportion of activated experts (Negpert = 0) . ) . .

are positively correlated with data diversity, and this ~ Figure 8: MUT across different diversity.
correlation remains robust regardless of input length.

This confirms the validity of our case-level, rather than token-level, measurement strategy, as MUI
is not artificially inflated by longer reasoning chains; 2) compared to neurons, expert-level activation
yields much higher ratios (typically above 90%) due to the larger parameter scale. As a result, the
expert-level activation rate saturates and is less suitable for measuring diversity across datasets. In
contrast, neuron-level MUI offers finer granularity and efficiency: 600 samples spanning from three
domains have comparable MUI to 900 samples from a single domain.

4 ABLATION STUDY
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Figure 9: Performance (ACC%) of the Llama-3-8B-Instruction model on the and

datasets, with key neurons masked specifically for ARC and GSM8K. Key neurons are identified
using Equation [3]and a layer-level top-k threshold function (detailed in Appendix[A.3). The thresh-
old value used for our MUI analysis —1%eo, is visually indicated by a green box .

The previous experiments have demonstrated both the effectiveness and the insightfulness of our
proposed methodology. However, one potential concern is the validity of the identified neurons,
particularly regarding the choice of thresholds in Equation 3| To address this, we employ neuron
masking, a widely used intervention technique in mechanistic interpretability, to verify whether the
selected neurons bear a causal relationship to the model’s output. Here, we mask the neurons iden-
tified on ARC and GSMS8K under different threshold values (to eliminate the confounding effect of
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varying model shape, we adopt percentage-based thresholds rather than absolute counts). Ideally,
the more task-relevant key neurons are masked, the more pronounced the resulting performance
degradation should be. The result for GPT-OSS in Figure [9] (other shown in Figure 26) confirms
our selection: The results, shown for GPT-OSS in Figure E] (with additional results in Figure @,
confirm this expectation. First, masking neurons identified by either ARC or GSM8K produce a
steady decline in performance as more neurons are removed, with a much sharper drop than under
random masking. This effect is especially pronounced when k lies in the range of 0.1% — 0.2% of
neurons. Second, masking neurons derived from ARC using k in the same interval significantly re-
duces performance on both ARC and GSMS8K. In contrast, masking neurons derived from GSM8K
has little impact on ARC performance. This arises because ARC spans a broader set of abilities
beyond mathematical reasoning, whereas GSM8K primarily focuses on arithmetic reasoning. These
findings further demonstrate the validity of our neuron selection approach, and our chosen thresh-
old evidently falls within this interval, enabling us to identify task-critical neurons in a principled
manner. In addition to the 0.1% threshold reported in the main paper, we also experiment with alter-
native thresholds, which have consistent results (Appendix|C). For completeness, we further evaluate
alternative importance scoring methods, and due to space constraints, we report in Appendix [C]

5 RELATED WORK

Recent years have seen a resurgence of MoE (Cai et al., 2025} Dai et al., 2024; Jiang et al., |2024),
whose core idea is to activate only a few experts per token. To stabilize training and improve spe-
cialization, DeepSeekMoE introduces always-on shared experts (Dai et al., 2024), a design later
integrated into DeepSeek-V2 (et al., 2024) and DeepSeek-V3 (Liu et al.,[2024)) and adopted in sub-
sequent systems such as Qwen3-Next (Yang et al., 2025).Meanwhile, a line of work analyzes and
improves expert specialization and load balancing. StableMoE proposes a two-stage training strat-
egy with router distillation to reduce routing volatility and stabilize convergence (Dati et al., 2022b).
Expert-Choice Routing instead lets experts select tokens rather than tokens selecting experts, which
leads to better load balancing (Zhou et al.,[2022). To address the issue of experts collapsing into sim-
ilar behaviors, OLMOoE introduces orthogonalization and diversity-promoting regularization (et al.,
2025)). On the balancing side, new approaches remove the dependence on auxiliary losses (Wang
et al., 2024). Beyond optimization, some works (Xue et al., 2024) conduct token-level analyses of
expert. However, there is still a lack of comprehensive and in-depth analysis of MoE models.

6 DISCUSSION

This work represents an attempt to employ interpretability methods as tools for MoE model un-
derstanding and evaluation. Through extensive experiments, we demonstrate the promise and the
practical utility of the MUI. Nonetheless, interpretability remains an evolving field, and several
limitations of our study should be acknowledged. 1) while we observe clear internal transitions to-
ward the Evolving phase across model iterations, establishing a direct and quantitative link between
MUI & performance and generalization remains challenging. 2) our implementation is grounded
in neuron-based interpretability techniques. Though we tested alternative formulations, the broader
interpretability community continues to debate best practices and methodologies. As interpretability
tools evolve, MUI itself should be revisited and refined.

7 CONCLUSION

In this work, we move beyond benchmark-centric evaluations and provide a deep analysis of MoE
models through the lens of internal utilization patterns. Our systematic investigations further high-
light that stronger models not only achieve higher performance but also have reduced neuron uti-
lization, and more collaborative expert behaviors. These findings indicate MUI with performance
serves as an indicator of both training progress and generalization strength, providing a new diagnos-
tic tool for model development. Expert-level analyses demonstrate that MoE functionality emerges
from collective expert interactions rather than isolated contributions. Further analysis shared experts
showing how their dominance centralizes task responsibility. We hope these results will encourage
future work to build on internal utilization analyses as a complementary perspective for understand-
ing, improving, and controlling MoE architectures.
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A EXPERIMENT DETAILS

A.1 DATASET STATISTICAL RESULT

Following (Cao et al., 2025} |Ying et al., [2024b), we focus on three representative abilities: Mathe-
matical and Reasoning, Coding, and General Capability. For each ability, we select a set of publicly
available datasets to evaluate. To balance computational cost and coverage, we sample from large-
scale benchmarks such as BBH (bench authors| [2023) and MMLU (Hendrycks et al., |2020), while
ensuring evaluation quality by following the sampling protocol in (Wang et al., 2025)). A detailed
summary of the statistical characteristics of the selected datasets is provided in Table[2]

Model GSMSK MATH ARC. HumanEval MBPP BBH MMLU Totally
(Math & Reasoning) (Math & ing) (Math & i (Code) (Code) (General) (General)
# Testing Samples 1,319 5,000 1,172 164 500 2,000 4,000 14,155

Table 2: The statistical detail of the selected benchmarks.

A.2 OLMOE SERIES MODEL SELECTION

For OLMOE (et al.| [2025) series model, we include eight checkpoints detailed in Table E}

Custom Checkpoint Name Original Checkpoint Name Training Steps Training Tokens

OLMOoE-0.5T step120000-tokens503B 120,000 503B
OLMOE-1T step245000-tokens1027B 245,000 1,027B
OLMOE-1.5T step365000-tokens1530B 365,000 1,530B
OLMOE-2T step490000-tokens2055B 490,000 2,055B
OLMOE-2.5T step610000-tokens2558B 610,000 2,558B
OLMOoE-3T step735000-tokens3082B 735,000 3,082B
OLMOE-3.5T step855000-tokens3586B 855,000 3,586B
OLMOoE-4T step975000-tokens4089B 975,000 4,089B
OLMoE-4.5T step1100000-tokens4613B 1,100,000 4,613B
OLMOoE-5T step1200000-tokens5033B 1,200,000 5,033B

Table 3: Summary of the checkpoints of OLMOoE used in the study. “Custom Checkpoint Name”
represents simplified names defined in this paper for clarity.

A.3 MECHANISTIC INTERPRETABILITY TECHNIQUES

For the neuron contribution score, we primarily adopt one of the most commonly used methods, as
described in Section[2] for time and computational cost considerations. Nevertheless, our approach
is not confined to a single interpretation technique. Our objective is to explore MUI under multiple
perspectives to ensure comprehensive conclusions. As detailed in our ablation study (Section[d), we
also experiment with alternative neuron analysis methods to further validate our findings.

When applying the method defined in Section |2} the response ¥, in Equation [3|is generated under
benchmark-specific conditions. For BBH, we use the original 3-shot setting. For all other bench-
marks, instruction-tuned models are evaluated in a zero-shot setting, while OLMoE models, being
base models, are evaluated with a one-shot prompt. Detailed configurations of model generation,
along with the few-shot examples, are provided in Appendix

The threshold 7 in Equation [3]is set to the top 1%o of neurons per layer (corresponding to the top
1%o of IN), thereby selecting the most salient neurons at each layer level. This threshold function is
detailed as follows:

Nactivated(S) = {(%]J) ‘ 3 ghfneuron (i>j7l7 Tt | x® g<t) > Vvltopl%o}, (8)
where :V; = [ foeuron (0, 7,0, Gt | c D <) |1 € {1,2,...,n},j €{1,2,...,|E|},i € {1,2,...,N}],

with IV representing the number of neurons in the tested model, n representing the length for
response y, and | E| representing the number total experts.
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A.4 IMPLEMENTATION FOR ALTERNATIVE NEURON IMPORTANCE DEFINITIONS

In addition to the contribution-based method described in the main text, we also explored several
alternative definitions of neuron importance. These implementations include threshold-based func-
tions as well as other heuristic approaches for quantifying neuron contribution. Here we are also
considering directly using the activation score (Marked as activate):

fneuronactivate (i,j, L,y | CU) = <Gi(xl) ’ (thm, © (Xlwé,i))) []]7 )

where G!(x!) are routing weights (for shared experts, set GL(x!) = 1 if they are always active),
and me, Wéi, W(IM are the projections in SwiGLU. Moreover, in architectures that only employ
a single up-projection and down-projection without a gating mechanism, the output directly maps to
the vocabulary space (nostalgebraist, [2020). We adapt this formulation to the MoE setting:

Frewong (123,07 | ) = (GHx') - (W, © (<'WE)) - W )] Whealis 9], (10)

A.5 MODEL PARAMETER SETTING

Response Generation. All models are evaluated with a fixed decoding temperature of 0.0. For non-
reasoning models, the maximum output length is set to 1,024 tokens, while for reasoning-oriented
models we follow their default maximum lengths: 16,384 tokens for Qwen3-235B and 131,072
tokens for the GPT series. For computational efficiency, we use the default reasoning effort setting,
which we found to perform comparably, or in some cases, better than the “high” setting.

Benchmark Conditions. Generation settings vary depending on the benchmark. For BBH, we
adopt the standard 3-shot prompts provided in the benchmark. For all other benchmarks, responses
are generated in a zero-shot manner for instruction-tuned models, while OLMoE series models are
evaluated under a human-crafted one-shot setting, following [Cao et al.{(2025)).

All experiments are conducted on 32 NVIDIA H2000 GPUs, totaling approximately 1,536 GPU
hours for the interpretation experiment.

B MORE EXPERIMENT RESULTS

B.1 MODEL PERFORMANCE AND MUI

Model GSMSK MATH ARC, HumanEval MBPP BBH MMLU
(Math & ing)  (Math & ing)  (Math & ing) (Code) (Code) (General) (General)
DeepSeek-MoE-A2.8 59.6/1.6 13.2/3.7 524/69 | 469/13 473/2.0 | 423/3.6 44.8/147
Qwenl1.5-MoE-A2.7B 53.8/5.1 17.4717.1 70.0/10.3 46.3/1.4 427/22 | 355/58 549/23.1
DeepSeek-LV2-A2.4B 70.4/4.8 23.1/17.17 69.2/105 | 50.0/1.7 483/29 | 494/55 53.4/23.1
DeepSeek-Coder-LV2-A2.4B 85.7/4.2 56.4/8.3 69.5/8.5 72.6/1.8 649/34 | 638/6.0 559/185
Qwen3-Coder-A3B 86.4/7.5 81.2/10.4 90.7/108 | 927/33 729/5.7 | 871.5/11.0 77.5/23.7
Qwen3-A3B 90.0/7.2 90.7/11.5 93.3/12.0 92.7/3.4 749/57 | 90.5/10.5 81.6/26.1
Qwen3-Next 93.6/5.6 92.0/9.1 925/103 | 94.5/2.0 80.8/3.6 | 93.3/7.8 84.7/25.7
GPT-OSS-A3.6B 87.9/1.6 742125 88.3/3.2 84.7/0.8 705/13 | 80.0/24 80.1/6.8
DeepSeek-V2-A21B 91.2/6.3 435/13.2 90.8/159 | 76.8/2.7 643/53 | 80.7/87 754/354
DeepSeek-Coder-V2-A21B 95.0/5.9 67.2/13.7 91.1/14.4 82.9/3.3 70.0/63 | 845/9.6 755/29.8
DeepSeek-V2.5-A21B 91.4/6.6 64.5/12.2 88.4/154 | 84.8/26 67.1/49 | 856/89 752/33.8
Qwen3-A22B 91.4/6.3 89.2/9.0 89.3/11.3 87.8/2.6 822/4.6 | 79.8/79 83.1/242
GPT-OSS-A5.1B 85.7/4.4 759176.6 889/80 | 8L1/17 70.1/28 | 78.0/6.0 84.5/17.2

Table 4: Performance (accuracy %) and MUI (%), as determined by neuron analysis (Equation
with threshold top & = 0.1%
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Model GSMSK MATH ARC, HumanEval MBPP BBH MMLU
(Math & Reasoning) (Math & Reasoning) (Math & Reasoning) (Code) (Code) (General) (General)
OLMOoE-0.5T 28/74 33/11.9 25.7/10.8 85/1.6 104724 | 257/81 27.2/25.0
OLMOoE-1T 3.6/10.5 32/129 33.6/15.3 6.1/1.6 10.8/2.6 | 25.3/83 322/263
OLMOoE-1.5T 3.8/10.4 3.8/10.9 42.2/17.3 8.0/1.7 10.6/2.6 | 25.6/8.7 41.3/28.0
OLMOoE-2T 4417179 417125 4771159 8.0/1.8 12.8/2.9 | 27.7/9.2 42.1/279
OLMOoE-2.5T 47195 4.0/11.9 50.8/15.9 11.6/1.9 17.4/3.1 | 26.2/83 44.0/26.4
OLMOoE-3T 6.4/10.1 4.2/10.6 53.8/15.9 8.0/1.8 16.4/3.0 | 29.5/8.6 46.3/28.1
OLMOoE-3.5T 6.4/10.0 4.5/13.1 545/15.6 9.1/1.8 16.0/29 | 20.0/9.0 46.7/27.4
OLMOoE-4T 5.0/9.2 46/11.8 57.6/16.0 11.0/1.9 20.8/3.0 | 30.7/8.6 47.5/282
OLMOE-4.5T 44765 4.7/10.5 56.7/15.3 11.6/1.8 18.0/3.0 | 31.8/8.5 48.5/28.0
OLMOoE-5T 6.0/6.2 4.9/710.7 60.5/15.2 14.6/2.0 23.8/3.2 | 30.2/8.5 50.1/28.0

Table 5: Performance (accuracy %) and MUI (%), as determined by neuron analysis (Equation |Z|)
with top & = 0.1%

B.2 EXPERT LEVEL ANALYZE RESULT

Model GSMSK MATH ARC. HumanEval MBPP BBH MMLU
(Math & Reasoning) ~ (Math & i (Math & i (Code) (Code) (General) (General)
DeepSeek-MoE-A2.8 59.6/8.2 1327738 52.4/9.1 46.9/9.9 473/93 | 423/57 448/7.6
Qwenl.5-MoE-A2.7B 53.8/10.2 17.4/8.9 70.0/9.2 46.3/11.3 4277194 | 355/6.7 549/8.0
DeepSeek-LV2-A2.4B 70.4/11.9 23.1/11.4 69.2/6.4 50.0/145 483/135 | 494/64 53.4/4.7
DeepSeek-Coder-LV2-A2.4B 85.7/14.1 56.4/11.7 69.5/15.2 72.6/139 649/13.6 | 63.8/52 559/13.3
Qwen3-Coder-A3B 86.4/10.3 81.2/8.1 90.7/11.1 92.7/124 729/11.0 | 87.5/8.1 77.5/9.8
Qwen3-A3B 90.0/11.3 90.7/9.8 93.3/12.1 92.7/9.9 749778 | 90.5/8.8 81.6/10.5
Qwen3-Next 93.6/2.8 92.0/2.2 92.5/2.6 94.5/2.4 80.8/2.0 | 933/15 847/19
GPT-OSS-A3.6B 87.9/314 74.2/26.7 88.3/33.2 84.7/39.6 70.5/37.8 | 80.0/29.4 80.1/285
DeepSeek-V2-A21B 91.2/5.9 43.5/6.9 90.8/5.3 76.8/9.8 643/89 | 80.7/43 754/49
DeepSeek-Coder-V2-A21B 95.0/10.2 67.2/8.0 91.1/2.8 82.9/9.2 70.0/8.7 | 84.5/40 755/2.7
DeepSeek-V2.5-A21B 91.4/8.4 64.5/7.8 88.4/5.7 84.8/11.5 67.1/108 | 85.6/42 752/5.0
Qwen3-A22B 91.4/16.9 89.2/16.4 89.3/15.6 87.8/174 822/17.1 | 79.8/155 83.1/143
GPT-OSS-AS5.1B 85.7/24.2 759/21.5 88.9/252 81.1/342 70.1/33.4 | 78.0/22.7 84.5/22.8

Table 6: Performance (%) and corresponding task Expert proportion(%), with nezpert = 0.6.

Model GSMSK MATH ARC,. HumanEval MBPP BBH MMLU
(Math & Reasoning) (Math & i (Math & i (Code) (Code) (General) (General)
DeepSeek-MoE-A2.8 59.6/8.9 13.2/18.3 52.4/21.9 46.9/6.8 473/9.5 | 423/189 448/31.9
Qwenl.5-MoE-A2.7B 53.8/11.2 17.4/15.0 70.0/21.8 46.3/4.3 4277155 | 355/12.6 549/36.5
DeepSeek-LV2-A2.4B 704/17.9 23.1/27.1 69.2/42.8 50.0/6.9 483/11.0 | 49.4/24.0 53.4/64.3
DeepSeek-Coder-LV2-A2.4B 85.7/12.5 56.4/23.6 69.5/25.8 72.6/6.6 64.9/10.1 | 63.8/29.3 559/38.6
Qwen3-Coder-A3B 86.4/29.9 81.2/43.6 90.7/36.8 92.7/133 729/20.2 | 87.5/344 77.5/50.8
Qwen3-A3B 90.0/22.4 90.7/33.6 93.3/31.3 92.7/15.1 749/224 | 90.5/27.0 81.6/44.4
Qwen3-Next 93.6/35.4 92.0/50.4 92.5/40.4 945/203 80.8/28.6 | 93.3/41.5 84.7/55.4
GPT-OSS-A3.6B 87.9/3.1 742147 88.3/5.8 84.7/1.5 70.5/2.1 80.0/44 80.1/9.2
DeepSeek-V2-A21B 91.2/22.1 43.5/37.2 90.8/39.0 76.8/9.8 64.3/16.0 | 80.7/24.8 75.4/57.2
DeepSeek-Coder-V2-A21B 95.0/14.8 67.2/32.5 91.1/53.6 82.9/10.5 70.0/15.8 | 84.5/26.7 75.5/65.7
DeepSeek-V2.5-A21B 91.4/19.2 64.5/29.4 88.4/34.4 84.8/7.8 67.1/12.1 | 85.6/24.3 752/52.1
Qwen3-A22B 91.4/19.6 89.2/283 89.3/30.1 87.8/10.0 82.2/16.1 | 79.8/24.2 83.1/43.7
GPT-OSS-AS.1B 85.7/10.5 7591/15.3 88.9/16.4 81.1/3.6 70.1/5.7 | 78.0/12.7 84.5/274

Table 7: Performance (accuracy %) and corresponding task Expert MUI(%) with 7)czpert = 0.6.
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Model GSMSK MATH ARC, HumanEval MBPP BBH MMLU
(Math & Reasoning) (Math & Reasoning) (Math & Reasoning) (Code) (Code) (General) (General)
OLMOoE-0.5T 2.8/6.9 33/82 25.7/14.2 8.5/10.7 104/11.6 | 25.7/11.5 272/11.2
OLMOoE-1T 3.6/72 32/6.0 33.6/16.9 6.1/11.6 10.8/11.0 | 253/10.6 32.2/12.6
OLMOoE-1.5T 3.8/8.5 3.8/7.0 4227121 8.0/11.0 10.6/109 | 25.6/11.5 41.3/11.4
OLMoE-2T 44768 4.1/8.6 47.7716.2 8.0/12.4 12.8/14.7 | 27.7/10.0 42.1/12.6
OLMOE-2.5T 47174 4.0/8.0 50.8/14.6 11.6/12.1 17.4/13.5 | 26.2/11.9 44.0/11.5
OLMOE-3T 6.4/9.3 4.2/9.5 53.8/16.6 8.0/13.6 16.4/13.4 | 295/11.8 46.3/13.6
OLMOoE-3.5T 6.4/9.3 45/6.3 545/17.0 9.1/13.9 16.0/14.6 | 200/75 46.7/14.2
OLMOoE-4T 5.0/9.1 46/84 57.6/17.0 11.0/11.6  20.8/11.3 | 30.7/11.8 47.5/12.3
OLMoE-4.5T 44797 4717182 56.7/15.7 11.6/13.5 18.0/12.8 | 31.8/11.0 48.5/12.0
OLMOoE-5T 6.0/9.5 49/78 60.5/16.2 146/132 23.8/142 | 30.2/10.4 50.1/13.4
Table 8: Performance (%) and corresponding task Expert proportion(%), with Negpert = 0.6.
Model GSMSK MATH ARC, HumanEval MBPP BBH MMLU
(Math & Reasoning) (Math & Reasoning) (Math & Reasoning) (Code) (Code) (General) (General)
OLMOoE-0.5T 2.8/20.4 3.3/38.8 25.7/19.0 85/72 104/9.6 | 25.7/13.7 27.2/26.1
OLMOE-1T 3.6/24.5 327421 33.6/25.3 6.1/7.0 10.8/10.8 | 253/145 322/27.8
OLMOoE-1.5T 3.8/253 3.8/36.6 42.2/30.6 8.0/7.38 10.6/11.1 | 25.6/14.8 41.3/28.5
OLMOoE-2T 44/21.7 4.1/36.2 47.7126.8 8.0/73 12.8/9.1 | 27.7/17.5 42.1/29.1
OLMOoE-2.5T 4.7/253 4.0/36.0 50.8/27.7 11.6/8.0 17.4/10.9 | 26.2/140 44.0/27.7
OLMOoE-3T 6.4/24.8 42/31.8 53.8/25.2 8.0/6.7 16.4/10.0 | 29.5/154 46.3/28.7
OLMOoE-3.5T 6.4/24.2 457451 54.5/25.0 9.1/6.6 16.0/9.2 | 20.0/22.6 46.7/284
OLMOE-4T 5.0/23.9 4.6/35.6 57.6/25.7 11.0/8.2 20.8/11.8 | 30.7/14.9 47.5/28.1
OLMOoE-4.5T 44/19.3 4.7/34.3 56.7/24.7 11.6/6.7 18.0/10.5 | 31.8/14.8 48.5/28.8
OLMOE-5T 6.0/19.6 4.9/36.8 60.5/24.3 14.6/7.6 23.8/10.3 | 30.2/15.1 50.1/29.0

Table 9: Performance (accuracy %) and corresponding task Expert MUI(%) with 7jczpert = 0.6.

B.3 EXPERT DISTRIBUTION
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Distribution by Model (Task = gsm8k) — prop_of_all_experts
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Figure 10: Frequency distribution of activated experts across all task instances for the selected
models evaluated on the GSM8K benchmark.
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Distribution by Model (Task = math) — prop_of_all_experts
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Figure 11: Frequency distribution of activated experts across all task instances for the selected
models evaluated on the MATH benchmark.
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Distribution by Model (Task = arc) — prop_of_all_experts
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Figure 13: Frequency distribution of activated experts across all task instances for the selected
models evaluated on the HumanEval benchmark.
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Figure 14: Frequency distribution of activated experts across all task instances for the selected
models evaluated on the MBPP benchmark.
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Figure 15: Frequency distribution of activated experts across all task instances for the selected
models evaluated on the BBH benchmark.
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Figure 16: Frequency distribution of activated experts across all task instances for the selected
models evaluated on the MMLU benchmark.
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Figure 17: Top-10 experts (ranked by activation frequency Equation [5) for the selected MoE models
with shared-expert structures (the exception GPT-OSS-20B model is included for comparison) on
ARC. The corresponding MUI for each expert are also reported. Shared experts are denoted as .S;.
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Figure 19: Top-10 experts (ranked by activation frequency Equation[5) for the selected MoE models
with shared-expert structures (the exception GPT-OSS-20B model is included for comparison) on
MATH. The corresponding MUI for each expert are also reported. Shared experts are denoted as .S;.
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Figure 20: Top-10 experts (ranked by activation frequency Equation[5) for the selected MoE models
with shared-expert structures (the exception GPT-OSS-20B model is included for comparison) on
HumanEval. The corresponding MUI for each expert are also reported. Shared experts are denoted
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Figure 21: Top-10 experts (ranked by activation frequency Equation3) for the selected MoE models
with shared-expert structures (the exception GPT-OSS-20B model is included for comparison) on
MBPP. The corresponding MUI for each expert are also reported. Shared experts are denoted as .5;.
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Figure 22: Top-10 experts (ranked by activation frequency Equation5) for the selected MoE models
with shared-expert structures (the exception GPT-OSS-20B model is included for comparison) on
BBH. The corresponding MUI for each expert are also reported. Shared experts are denoted as .5;.
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Figure 23: Proportion of shared experts among task experts with occurrence frequency greater than

0.9, showing a notably high level of overlap.

27



Under review as a conference paper at ICLR 2026

B.4 MUI AND ACTIVATED EXPERT PROPORTION FOR DATA MEASUREMENT
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Figure 25: Proportion of key experts across dif-

Figure 24: MUI across different data diversity. ferent data diversity

C ABLATION STUDY

In the main experiments, we primarily adopt a threshold of 0.1% for identifying key neurons. To test
the robustness of this choice, we additionally evaluate smaller thresholds of 0.08% and 0.2% when
computing MUL The results, shown in Table [I0] and Table[T1] indicate extremely high consistency
with the 0.1% setting: Pearson correlation = 0.9958 and Spearman correlation = 0.9965. These
results demonstrate that our findings are stable across threshold variations.

Model GSMSK MATH ARC, HumanEval MBPP BBH MMLU
(Math & ing)  (Math & i (Math & ing) (Code) (Code) (General) (General)
DeepSeek-MoE-A2.8 59.6/1.4 13.2/32 524/59 | 469/1.1 473717 | 423/3.0 44.8/12.6
Qwenl.5-MoE-A2.7B 53.8/4.2 17.4/59 70.0/8.4 46.3/1.1 4277/1.8 355/47 549/194
DeepSeek-V2L-A2.4B 70.4/4.1 23.1/6.6 692/9.0 | 500/14 48.3/25 | 494/47 53.4/203
DeepSeek-Coder-V2L-A2.4B 85.7/3.6 56.4/72 69.5/7.3 72.6/1.5 649/28 63.8/5.1 559/162
Qwen3-Coder-A3B 86.4/6.5 81.2/9.2 90.7/9.5 | 927/28 729749 | 87.5/9.5 71.5/214
Qwen3-A3B 90.0/6.2 90.7/10.1 93.3/10.5 927729 749749 905/9.1 81.6/234
Qwen3-Next 93.6/4.6 92.0/7.7 92.5/86 | 945/1.7 80.8/3.0 | 93.3/6.5 84.7/22.1
GPT-OSS-A3.6B 879/1.4 742122 88.3/2.7 84.7/0.7 70.5/1.1 80.0/2.0 80.1/5.8
DeepSeek-V2-A21B 91.2/54 435/11.3 90.8/13.7 | 76.8/22 64.3/44 | 80.7/74 754/315
DeepSeek-Coder-V2-A21B 95.0/5.0 67.2/11.7 91.1/12.3 829/2.8 70.0/53 84.5/8.1 755/262
DeepSeek-V2.5-A21B 91.4/5.6 64.5/10.4 88.4/132 | 84.8/2.1 67.1/4.1 | 85.6/7.6 75.2/30.0
Qwen3-A22B 91.4/54 89.2/7.8 89.3/9.7 87.8/2.2 822/39 79.8/6.8 83.1/21.4
GPT-OSS-A5.1B 85.7/3.7 759175.6 889/6.7 | 8l.1/14 70.1/23 | 78.0/50 84.5/14.8

Table 10: Performance and MUI, as determined by Equationwith threshold top k£ = 0.08%.

Model GSMSK MATH ARC, HumanEval MBPP BBH MMLU
(Math & Reasoning) (Math & ing) (Math & i (Code) (Code) (General) (General)
DeepSeek-MoE-A2.8 59.6/2.7 13.2/5.8 52.4/11.1 46.9/2.1 473/33 | 423/6.0 44.8/224
Qwenl.5-MoE-A2.7B 53.8/9.7 17.4/712.7 70.0/18.6 46.3/2.8 4277/44 355/109 549/379
DeepSeek-V2L-A2.4B 70.4/7.6 23.1/11.8 69.2/16.3 50.0/3.0 48.3/5.0 | 494/9.0 534/33.1
DeepSeek-Coder-V2L-A2.4B 85.7/6.5 56.4/12.7 69.5/13.1 72.6/3.2 64.9/5.7 63.8/94 559/269
Qwen3-Coder-A3B 86.4/11.5 81.2/14.8 90.7/15.9 927755 729/9.0 | 87.5/16.7 77.5/32.1
Qwen3-A3B 90.0/11.4 90.7/16.8 93.3/18.1 92.7/5.7 749792 905/16.2 81.6/36.1
Qwen3-Next 93.6/9.7 92.0/15.0 92.5/16.7 94.5/3.7 80.8/6.5 ‘ 93.3/13.3 84.7/38.3
GPT-OSS-A3.6B 87.9/29 74.2/4.1 88.3/5.8 84.7/1.4 70.5/2.2 80.0/43 80.1/11.6
DeepSeek-V2-A21B 91.2/10.2 43.5/20.2 90.8/24.4 76.8/4.7 64.3/8.8 | 80.7/14.0 75.4/48.0
DeepSeek-Coder-V2-A21B 95.0/9.7 67.2/21.1 91.1/22.5 82.9/5.9 70.0/10.7 84.5/152 755/42.3
DeepSeek-V2.5-A21B 91.4/11.0 64.5/19.0 88.4/23.8 84.8/4.6 67.1/85 | 856/142 752/464
Qwen3-A22B 91.4/9.9 89.2/13.5 89.3/17.1 87.8/4.5 822/75 79.8/12.4 83.1/33.7
GPT-OSS-AS5.1B 85.7/17.6 75.9/10.8 88.9/13.2 81.1/3.0 70.1/4.9 | 78.0/10.1 84.5/265

Table 11: Performance and MUI, as determined by Equation with threshold top k£ = 0.2%.

In addition, we also experimented with alternative methods for computing neuron importance.
Specifically, besides the default projection-based method, we tested using raw activations and pro-
jecting the entire upsampled outputs (details are provided in the Appendix [A:4). We further con-
ducted threshold ablations (Figure [27] and Figure 28) under these alternative formulations. After
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evaluating different settings, we selected a threshold of 0.1% as the most appropriate and carried out
experiments accordingly. For efficiency reasons, we restricted this analysis to four representative
benchmarks: ARC, GSM8K, MBPP, and BBH. The resulting MUI values are shown in Table @]
and Table [I3] We further compute similarity with Table fi] obtaining the following results: Cosine
similarity: 0.9665, Pearson correlation: 0.8511, Spearman correlation: 0.7442; Cosine similarity:
0.9835, Pearson correlation: 0.9317, Spearman correlation: 0.9236. These results demonstrate that
the overall trends remain highly consistent across different methods. Furthermore, within the same
model scale, the ranking of models is stable, with GPT-OSS consistently exhibiting the lowest MUI.

Model GSMSK | ARC. | MBPP | BBH

DeepSeek-LV2-A2.4B 70.4/34 | 69.2/8.1 | 50.0/2.3 | 49.4/4.4
DeepSeek-Coder-LV2-A2.4B  85.7/2.9 | 69.5/7.8 | 72.6/2.4 | 63.8/4.9
Qwen3-A3B 90.0/5.6 | 93.3/10.5 | 92.7/4.5 | 90.5/8.9
GPT-0SS-A3.6B 87.9/4.7 | 88.3/8.7 | 84.7/3.6 | 80.0/6.7
DeepSeek-V2-A21B 91.2/5.1 | 90.8/14.4 | 64.3/4.6 | 80.7/7.9
DeepSeek-Coder-V2-A21B  95.0/4.3 | 91.1/12.3 | 70.0/5.7 | 84.5/8.5

Table 12: Performance and MUI, as determined by Equation@]with threshold top k£ = 0.1%.

Model GSMSK | ARC. | MBPP | BBH

DeepSeck-LV2-A2.4B 70.4/63 | 69.2/160 | 50.0/3.7 | 49.4/9.4
DeepSeek-Coder-LV2-A2.4B  85.7/5.4 | 69.5/12.0 | 72.6/4.5 | 63.8/9.7
Qwen3-A3B 90.0/83 | 933/14.0 | 92.7/63 | 90.5/12.3
GPT-0SS-A3.6B 87.9/1.4 | 883/3.1 | 847/13 | 80.0/22
DeepSeck-V2-A21B 91.2/63 | 90.8/16.1 | 64.3/4.8 | 80.7/9.3
DeepSeck-Coder-V2-A21B 95.0/5.0 | 91.1/142 | 70.0/54 | 84.5/9.4

Table 13: Performance and MUI as determined by Equation With threshold top k& = 0.1%.

On the other hand, we also perform expert-level analyses using the same threshold of 7experr =
0.6 to define key experts. We compute results based on Equation [9] and Equation reported in
Table [14]and Table[I3] and then compare them with the main results (Table[6). The similarities are
as follows: Cosine similarity: 0.9947, Pearson correlation: 0.9863, Spearman correlation: 0.9533;
Cosine similarity: 0.9794, Pearson correlation: 0.9503, Spearman correlation: 0.9030. These results
demonstrate that expert-level measurements yield highly consistent trends and results. Moreover,
GPT consistently exhibits the highest proportion of key experts, further confirming our findings.

Model GSMSK | ARC, | MBPP | BBH

DeepSeek-LV2-A2.4B 70.4/9.6 | 692/68 | 50.0/11.7 | 49.4/6.2
DeepSeek-Coder-LV2-A2.4B  85.7/12.7 | 69.5/13.0 | 72.6/10.9 | 63.8/6.0
Qwen3-A3B 90.0/10.2 | 933/10.8 | 92.7/74 | 90.5/6.6
GPT-0SS-A3.6B 87.9/30.1 | 88.3/36.5 | 84.7/40.9 | 80.0/28.9
DeepSeek-V2-A21B 91.2/7.1 | 90.8/59 | 643/10.0 | 80.7/4.7
DeepSeek-Coder-V2-A21B 95.0/12.8 | 91.1/3.3 | 70.0/10.3 | 845/5.2

Table 14: Performance and corresponding task Expert proportion (the neuron is finding using Equa-

tion[9)), with 7czpert = 0.6.

Model GSMSK | ARC. | MBPP | BBH

DeepSeek-LV2-A2.4B 70.4/168 | 69.2/9.0 | 50.0/20.6 | 49.4/14.0
DeepSeek-Coder-LV2-A24B  85.7/23.7 | 69.5/23.0 | 72.6/23.7 | 63.8/13.6
Qwen3-A3B 90.0/12.0 | 933/12.4 | 927/8.4 | 90.5/8.9
GPT-0SS-A3.6B 87.9/33.1 | 88.3/35.9 | 84.7/40.5 | 80.0/29.0
DeepSeck-V2-A21B 91.2/83 | 90.8/82 | 64.3/11.7 | 80.7/5.9
DeepSeek-Coder-V2-A21B  95.0/13.5 | 91.1/33 | 70.0/11.6 | 84.5/6.1

Table 15: Performance and corresponding task Expert proportion (the neuron is finding using Equa-

tion[I0), with 9egper = 0.6.

29



Under review as a conference paper at ICLR 2026

Masking GSM8K Neuron
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Figure 26: Performance accuracy (ACC) of the on the ARC and
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masked specifically for the ARC dataset or the GSM8K dataset. Key neurons are identified using
Equation 2] and a pre-defined threshold function (Detailed in Appendix [A.3). The threshold value
used for our MUI analysis —0.1% to 0.2%, is visually indicated by a green box . The performance
impact of masking an equivalent number of key neurons as in the ARC / GSMS8K dataset on the
corresponding model is represented with a dashed line.
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Figure 27: Performance accuracy (ACC) of the on the ARC and
masked specifically for the ARC dataset or the GSM8K dataset. Key neurons are identified using
Equation [9] and a pre-defined threshold function (Detailed in Appendix [A.3). The threshold value
used for our MUI analysis —0.1% to 0.2%, is visually indicated by a green box . The performance
impact of masking an equivalent number of key neurons as in the ARC / GSMS8K dataset on the
corresponding model is represented with a dashed line.
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Figure 28: Performance accuracy (ACC) of the on the ARC and

corresponding model is represented with a dashed line.
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masked specifically for the ARC dataset or the GSM8K dataset. Key neurons are identified using
Equation [T0] and a pre-defined threshold function (Detailed in Appendix [A.3). The threshold value
used for our MUI analysis —0.1% to 0.2%, is visually indicated by a green box . The performance
impact of masking an equivalent number of key neurons as in the ARC / GSMS8K dataset on the
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