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Abstract

Recent advancements in multimodal transformers have shown remarkable success in com-
puter vision and natural language tasks, yet their adaptation to the clinical world remains
challenging. We introduce CXformer, a vision transformer adapted for chest X-ray anal-
ysis, through systematic investigation of architectural choices and training modifications
from DINOv2. Our empirical results show that using registers in ViT training, centering
the teacher model’s softmax outputs, and optimizing the number of heads leads to better
performance. The small version of CXformer(S) (22M parameters) achieves 83.28% mean
AUROC on CheXpert test set, surpassing the baseline of 80.46% achieved with vanilla
DINOv2 settings. Contrary to common assumptions, our larger model CXformer(B) with
87M parameters shows similar performance at 84% mean AUROC on CheXpert, suggest-
ing that training optimizations matter more than model size. Furthermore compared to
the current state-of-the-art RAD-DINO, our CXformer(B), with 46% reduced pretraining
compute (in FLOPs) achieves an average AUROC of 87.93% (vs 87.32% by RAD-DINO)
on pathology image classification task evaluated across three widely used CXR datasets
i.e. CheXpert, RSNA Pneumonia, and NIH CXR8. Beyond classification, CXformer also
delivers competitive, and occasionally superior, performance in semantic segmentation and
radiology report generation, underscoring its versatility. CXformer base and small models
can be found at https://huggingface.co/m42-health.
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1. Introduction

Recent advancements in large language models (LLMs) have demonstrated strong perfor-
mance across a variety of natural language understanding and generation tasks (Grattafiori
et al., 2024; Jiang et al., 2024; Bai et al., 2023a; DeepSeek-AI et al., 2024; Christophe et al.,
2024). Typically, LLMs are pretrained using large-scale unlabeled datasets which has em-
pirically shown to help capture general domain knowledge. However, as pretraining focuses
on predicting next token, these models often require finetuning or instruction tuning to
perform tasks in real world settings (Wu et al.; Luo et al., 2022; Wei et al., 2022). This
paradigm has since inspired extensions to multimodal contexts, where models combine vi-
sual and textual modalities to form vision-language models (VLMs) (Liu et al., 2024; Bai
et al., 2023b; Xiao et al., 2023; Agrawal et al., 2024). Like LLMs, VLMs are also trained with
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Figure 1: Overview of the CXformer development pipeline, which consists of two train-
ing stages: (1) continuous pretraining, starting from DINOv2 checkpoints, and
(2) finetuning for adaptation to downstream tasks such as image classification,
semantic segmentation, and report generation. During pretraining, we follow
the DINOv2 training pipeline and optimize it in order to adapt to CXR im-
ages. Specifically, we incorporate the usage of registers and reduce the number
of prototype heads which helps improve training efficiency without compromising
downstream performance. Refer Section 3.1 for more details.

large-scale datasets such as COYO (Byeon et al., 2022), LLaVa-Instruct (Liu et al., 2023)
and LLaVA-CC3M (Liu et al., 2024). Additionally, recent work has explored pretraining
image encoders using contrastive learning on image-text pairs (Radford et al., 2021), with
biomedical applications including (Zhang et al., 2023; Tiu et al., 2022; Khattak et al., 2024;
You et al., 2023; Xu et al., 2023). However, reliance on extensive paired image-text data
sets presents a significant bottleneck in medical imaging. Curating high-quality datasets at
such a large scale (in the millions) is inherently difficult due to privacy concerns, data het-
erogeneity, and the need for corresponding expert text reports. To address this dependency,
we propose developing a foundation model trained solely on large-scale Chest X-Ray (CXR)
image data, which we hypothesize will enable the model to achieve robust and competitive
performance across downstream tasks. Notably, methods such as DINO (Caron et al., 2021)
and DINOv2 (Oquab et al., 2023) shows impressive performances (on image classification,
semantic segmentation, and depth estimation tasks) on natural images, without the need
of text supervision. Inspired by these methods, we employ a similar self-supervised frame-
work to train Vision Transformers (ViTs) (Alexey, 2020) on CXR datasets, and explore its
performance on downstream tasks.

Our work builds on RAD-DINO (Pérez-Garćıa et al., 2024), which utilized the DINOv2
framework for pretraining models on CXRs (Figure 1). We extend this by conducting a
systematic empirical study of the key individual components within the DINOv2 training
pipeline, evaluating their significance during continual pretraining on CXR datasets. Addi-

2



Empirical Analysis of Scaling Vision Foundation Models for Chest X-rays

tionally, we introduce substantial modifications to the original training pipeline, simplifying
it while achieving improved performance, even with smaller-sized models. We propose CX-
former (Figure 1) CXR foundation models, where (S) and (B) represent ViT-S and ViT-B
backbones, respectively. Our contributions are as follows: (i) We perform a empirical
analysis on continual pretraining DINOv2 on CXRs, systematically showing the effect of
individual components in training pipeline. (ii) We simplify the DINOv2 training pipeline
by introducing key changes: incorporating registers in ViT, replacing Sinkhorn-Knopp cen-
tering with moving average centering for teacher model outputs, and reducing the number
of prototype heads from 131k to 16k. (iii) Using the simplified pipeline, CXformer(S)
achieves performance comparable to SOTA RAD-DINO across tasks such as image classifi-
cation, semantic segmentation, and radiology report generation, while requiring over 7 times
less compute (in terms of FLOPs) and yet being approximately 3 times smaller in space
complexity. (iv) We release both CXformer(S) and CXformer(B) models on HuggingFace
along with training codebase1 to support reproducible research in this area.

2. Methods

2.1. Models and Datasets

Models: Vision Transformers (Alexey, 2020) have demonstrated impressive performance
(Azad et al., 2024) in medical imaging across a variety of tasks, including medical image
classification, semantic segmentation, radiology report generation, multimodal VLMs (Chen
et al., 2024; Li et al., 2024), and models pretrained on image-text contrastive loss (Zhang
et al., 2022; Wang et al., 2022; Zhang et al., 2023). Inspired from these methods, we also
conduct our empirical analysis utilizing the widely used small and base architectures of ViT,
and with our proposed training pipleine (refer 2.2 for details), we term our final models as
CXformer(S) and CXformer(B) models respectively.

Dataset Source #Samples

CheXpert USA 191,010
MIMIC-CXR USA 237,962
PadChest Spain 108,709
NIH CXR8 USA 69,625
BRAX Brazil 19,307

Total - 626,613

Table 1: Datasets used for pretraining af-
ter filtering non-frontal views.

Tasks Dataset Train Validation Test

Classification
CheXpert 191,010 202 500
NIH CXR8 69,625 16,899 2,797
RSNA Pneumonia 21,347 5,337 3,000
VinDR-CXR 15,000 - 3,000

Segmentation CheXmask MIMIC-CXR 237,923 1,959 3,403

Radiology Report
Generation

MIMIC-CXR 161,923 1,269 2,461

IU-Xray - - 3,309

Table 2: Datasets used for evaluating downstream tasks: image classification, se-
mantic segmentation, and radiology report generation.

Datasets: We utilized widely used publicly available CXR datasets (refer to Table 1). For
pretraining, we utilize CheXpert (Irvin et al., 2019), MIMIC-CXR (Johnson et al., 2019),
PadChest (Bustos et al., 2020), NIH-CXR8 (Wang et al., 2017), and BRAX (Reis et al.,
2022). For the downstream image classification task, we additionally incorporate RSNA
Pneumonia (Shih et al., 2019) and VinDR-CXR (Nguyen et al., 2022). For semantic seg-
mentation and radiology report generation, we use CheXmask (Gaggion et al., 2023) and
IU-Xray (Demner-Fushman et al., 2016) dataset respectively along with the previously men-
tioned MIMIC-CXR dataset. These datasets provide a broad spectrum of CXRs spanning

1. https://github.com/m42-health/CXformer
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diverse geographical regions (such as Brazil, USA and Spain), different patient demograph-
ics (e.g., age groups ranging from pediatric to elderly patients), clinical settings (inpatient
and outpatient data), and a wide range of findings labeled manually by radiologists or ex-
tracted from radiology reports using NLP-based labelers (Smit et al., 2020; Irvin et al.,
2019). We hypothesize that such diverse data in pretraining stage will help our models
with robustness and eventually generalize better. To maintain consistency and promote re-
producibility in the literature, we adhered to the official training, validation, and test splits
whenever provided by the original dataset sources. Additionally, we filtered out non-frontal
views, retaining only PA/AP views. The final number of datapoints retained after this
filtration process are summarized in Table 1, yielding with a total of 626K datapoints.

Model Pretrain
compute
(exaFLOPs)

# Samples
Trained

DINOv2 (B) 299.52 1.28B
CheXzero 0.03 1.5M
BiomedCLIP 3.24 480M
RAD-DINO 26.71 88.2M
CXformer(S) 3.63 62.6M
CXformer(B) 14.42 62.6M

Table 3: Comparison of models based on their total pretraining compute and the number
of samples used for training.

2.2. Experimental Setup

In traditional self-supervised learning, the base model is first pretrained using loss functions
such as contrastive learning or masked language modeling. It is then finetuned for specific
downstream tasks. In this section, we delve into the details of each learning stage and
describe how we adapt them for CXRs in our implementation of DINOv2.
Pretraining: We continue pretraining (refer Figure 1) our model by initializing both
the student and teacher networks from a pretrained DINOv2 checkpoint. Additionally,
we incorporate registers, which introduce learnable tokens to ViTs (Darcet et al., 2023).
Registers function as global memory, absorbing redundant information from low-informative
patches and mitigating high-norm outliers (artifacts). Empirical studies have shown that
adding registers improves performance across diverse tasks without introducing significant
computational overhead. Based on this evidence, we modified the DINOv2 checkpoints to
incorporate registers (Darcet et al., 2023). This register based enhancement is one of several
optimizations we made to adapt DINOv2 training pipeline for CXRs. Detailed pretraining
modifications are provided in Section 3.1, and additional information on pretraining can be
found in Section A.1.
Finetuning: We evaluate our pretrained models across diverse set of tasks to understand
their transferability, given the high computation requirements during pretraining. We hy-
pothesize that a robust image foundation model should exhibit strong performance across
tasks. To assess such capabilities, we perform evaluations across three tasks: (i) image
classification, (ii) semantic segmentation, and (iii) radiology report generation. For these
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experiments, we use the final teacher checkpoint as the backbone and attach a task-specific
head. For example, in the CheXpert classification task, the head consists of a linear layer
with five outputs. The datasets used are presented in Table 2, and their corresponding
labels are shown in Table A1. We compare our models, CXformer(S) and CXformer(B),
against state-of-the-art approaches, including CheXzero, BiomedCLIP (both pretrained on
image-text pairs in medical domain), RAD-DINO (pretrained on CXRs), and DINOv2 (pre-
trained on natural images). Additionally, we provide a detailed comparison of pretraining
costs in terms of compute resources and training samples in Table 3. All models, except for
our lightweight ViT-S model (22M parameters), utilize the ViT-B architecture with 87M
parameters. We refer the reader to A.2 for experimental setup and hyperparameters used
for each task.

Metrics: We evaluate our pretrained models via finetuning across multiple tasks, to
test our hypothesis i.e. a robust pretrained model should serve as an effective backbone
for downstream tasks, including both linear probing and full finetuning. As we assess
performance across three different tasks, we detail the relevant evaluation metrics in this
section. Following prior works such as (Pérez-Garćıa et al., 2024), (Zhang et al., 2023),
(Tiu et al., 2022), we report mean AUROC over classes (CXR findings) for the task of
image classification, which evaluates the classifier’s ability to differentiate between classes
by measuring the area under the receiver operating characteristic curve. For semantic
segmentation, we use the Dice coefficient, which quantifies the overlap between predicted
and ground truth masks by comparing shared (intersection) and total pixels (union). For
report generation, we assess performance using standard NLP metrics: ROUGE-L, which
captures the longest common subsequence overlap between generated and reference reports;
BLEU-4, which evaluates n-gram precision; RGER, which measures clinical coherence; and
CheXbert(Smit et al., 2020) scores, which assess correctness based on classifier trained from
labels extracted using Bert model instead of classic rule based CheXpert labeler, computed
for both 14-label and 5-label settings from the CheXpert competition.

2.3. Training Details

Following Pérez-Garćıa et al. (2024), we pretrain our model for 100 epochs. Our modified
training setup, adapted from the official DINOv2 implementation 2, utilizes 16 NVIDIA
H100 GPUs with a global batch size of 1024. The learning rate follows a cosine decay
schedule, starting at 3e−4, with a warmup phase during the first 10% of training iterations.
All input images are resized to 518 × 518 pixels, followed by histogram equalization. The
training augmentations include resized cropping, horizontal flipping, and affine transforma-
tions such as rotation (±20◦), translation (±10% in both vertical and horizontal directions),
scaling (between 80% and 120%), color jittering, gaussian blurring, and solarization.

3. Results

In this section we evaluate our pretrained models, along with state of the art RAD-DINO,
CheXzero, and BiomedCLIP (covering models trained with contrastive learning and gen-
eral biomedical data beyond CXRs), as well as the pretrained DINOv2 baseline (trained

2. https://github.com/facebookresearch/dinov2
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on natural images). All models are fully finetuned with a task-specific head and evaluated
on three tasks: image classification, semantic segmentation, and radiology report genera-
tion. For each task, we report the median and 95% confidence intervals derived from 500
bootstrapped samples.

Figure 2: (a) Ablations of hyper-parameters for pretraining and downstream linear probing on
CheXpert. Reg=registers, Proto.=prototypes, SK=Sinkhorn-Knopp, C=centering.
We indicate the number of trainable parameters for pretraining. (b) Effect of vary-
ing prototype number in DINO and iBOT heads on CheXpert classification. Additional
parameters per prototype head are also noted.

3.1. Optimizing Training Pipeline

In this section, we investigate the effect of various training techniques employed in DINOv2
and evaluate their importance in adapting to CXRs. Specifically, we apply these tech-
niques to pretrain the ViT-S model (22M parameters) using 10% of the CheXpert official
training split (≈ 19K datapoints). To reduce finetuning time, we adopt linear probing fol-
lowing (Oquab et al., 2023) evaluation protocol, systematically exploring hyperparameters–
including layer selection (last 1–4), learning rates, and average pool concatenation–to mit-
igate potential bias, as a fixed set of hyperparameters may not be optimal across all pre-
trained models. We select the classifier that achieves the best performance on the validation
set and report its results on the test set. By leveraging smaller models and reduced pre-
training data, we address the high computational cost of pretraining, enabling faster and
more efficient experimentation. The key results of this study are summarized in Figure 2(a).
As a baseline, the DINOv2 (S) model achieves an AUROC of 78.98%. When continually
pretrained on 10% of the CXR dataset, the ViT-S default model achieves an AUROC of
80.46%. This result is obtained using DINOv2’s default settings, which include Sinkhorn-
Knopp centering, 131K prototype head dimensions, and no registers. Introducing registers
further improves AUROC by 2.81%, achieving 83.27%. We hypothesize that this gain comes
from the register’s empirical ability to reduce high-norm tokens, which are shown to cause
artifacts (Darcet et al., 2023). We further explore the impact of prototype head dimensions,
which in parameteric space range from 14M to 95M parameters depending on configuration.
In our analysis, 16K as output dimensions yields best performance with results comparable
to 131K but with almost 4x fewer parameters. Lastly, we compare Sinkhorn-Knopp center-
ing to a simpler moving average centering of prototype scores, finding negligible differences
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and favoring the latter for simplicity. The final training pipeline uses ViT with registers,
16K prototype heads, and moving average centering, along with freezing of backbone for
first epoch (ref. Section A.1).

3.2. Image Classification Benchmark

In this section, we present our image classification results using the previously discussed
optimized pipeline. To address the restriction on updates inherently imposed by linear
probing, we now fully finetune the models, including the backbone and linear head. For
this task, the finetuning is performed on four widely used datasets: CheXpert, RSNA
Pneumonia3, NIH CXR84 (from NIH Clinical Center), and VinDr-CXR Dataset, and their
aggregate performances are reported in Table 4.

AUROC AUPRC
Model CheXpert RSNA Pneumonia NIH CXR8 Agg. VinDR

DINOv2 78.53[78.25,78.53] 84.83[84.74,84.89] 74.85[74.67,74.91] 79.40 21.06[20.99,21.23]
CheXzero 82.48[82.31,82.54] 89.18[89.05,89.17] 77.51[77.37,77.57] 83.06 31.77[31.53,31.80]
BiomedCLIP 83.18[83.04,83.27] 89.54[89.46,89.58] 79.30[79.10,79.31] 84.01 35.85[35.68,35.97]
RAD-DINO 85.06[84.88,85.07] 92.19[92.17,92.26] 84.73[84.53,84.71] 87.32 52.69[52.49,52.76]

CXformer(S) 83.34[83.17,83.39] 91.13[91.03,91.13] 83.68[83.51,83.68] 86.05 46.03[45.96,46.24]
CXformer(B) 86.80[86.67,86.85] 91.71[91.59,91.70] 85.28[85.17,85.32] 87.93 48.02[47.88,48.16]

Table 4: Image classification results on CheXpert, NIH, RSNA Pneumonia, and VinDR-
CXR dataset. The first four columns report AUROC, and the last column reports
AUPRC. Values in brackets [ ] indicate 95% confidence intervals, computed using
500 bootstrapped samples.

Due to the data imbalance in the VinDr-CXR dataset, where normal CXRs dominate
for each finding, we report the AUPRC metric, while mean AUROC is reported for the
other datasets. Our exploratory data analysis revealed multiple chest X-rays from the same
patients within the training split. Without patient metadata to ensure proper separation,
we were unable to create an independent validation set. Instead, we trained the model on
the full training set and evaluated performance using the official test set (Table 4). However,
for all the other datasets we use the validation set to pick the checkpoint with best AUROC
to report on the test set. This limitation also raises concerns about reproducibility in RAD-
DINO (Pérez-Garćıa et al., 2024), as many of their experiments and ablations rely on the
VinDr-CXR dataset rather than widely adopted datasets in the medical domain.

On an average, the DINOv2 model pretrained on natural images achieves an AUROC of
79.40%. Among models evaluated on the CheXpert and NIH datasets, CXformer(B) out-
performs others, with RAD-DINO ranking second. The CXformer(B) model requires 46%
less pretraining compute and 28% fewer data samples than RAD-DINO (Table 3). While
our smaller model, CXformer(S), achieves a slightly lower AUROC (86.05% vs. 87.93%), it
significantly reduces pretraining compute. Image-text pretrained models, such as Biomed-
CLIP and CheXzero, perform worse than image-only models (CXformer(S), CXformer(B),

3. https://www.rsna.org/education/ai-resources-andtraining/ai-image-challenge/
RSNA-Pneumonia-Detection-Challenge-2018

4. https://nihcc.app.box.com/v/ChestXray-NIHCC
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and RAD-DINO), likely due to limited pretraining data, lower resolution (224 × 224 for
CheXzero), and larger patch sizes (32). However, BiomedCLIP shows marginally better
results, likely benefiting from increased dataset diversity and compute during pretraining.

3.3. Segmentation and Report Generation Results

Model Lung Heart Average

DINOv2 91.44[89.87,90.60] 85.96[84.83,85.61] 88.70

CheXzero 84.20[82.90,83.64] 91.24[89.70,90.50] 87.72

BiomedCLIP 90.56[89.11,89.82] 88.38[87.03,87.78] 89.47

RAD-DINO 93.28[91.84,92.54] 91.24[89.70,90.50] 92.26
CXformer(S) 91.69[90.16,90.90] 89.35[87.62,88.49] 90.52

CXformer(B) 91.94[90.32,91.10] 89.94[87.96,88.85] 90.94

Table 5: Segmentation results for lung and heart anatomy using the CheXmask dataset
(Gaggion et al., 2023), evaluated by the Dice score. Values in brackets [ ] indicate
95% confidence intervals, computed using 500 bootstrapped samples

In this section, we present segmentation results on the CheXmask dataset for lung and
heart regions in CXRs, evaluated using Dice score. RAD-DINO achieves the highest overall
performance of 92.3. Our CXformer models perform competitively, with CXformer(B)
achieving an average Dice score of 90.94 and CXformer(S) scoring 90.52. These results
highlight our model’s strong segmentation capabilities while maintaining parameter space
efficiency. BiomedCLIP achieves a solid average Dice score of 89.47, consistent performance
across lungs (90.56) and heart (88.38). DINOv2 shows good lung segmentation (91.44)
but underperforms for the heart (85.96). Surprisingly, CheXzero achieves the highest heart
segmentation score (91.24) but struggles with lungs (84.20), leading to an average score
of 87.72. Thus, CLIP-based models (CheXzero, BiomedCLIP) trained on image-text pairs
demonstrate inferior performance compared to other models which aligns with the findings
of (Oquab et al., 2023), which may highlight the challenges in learning localized features.
Overall, the CXformer models demonstrate robust segmentation performance comparable
to state-of-the-art methods, further validating their effectiveness in semantic segmentation
tasks. We provide qualitative analysis in Section A.3.

Finally, we discuss the radiology report generation results, as shown in Table 6. For
MIMIC-CXR, both CXformer variants deliver competitive results across datasets, with
CXformer(B) showing a balance between lexical metrics and clinical metrics. Notably,
the small variant, CXformer(S), outperforms all other models across all metrics except
for CheXbert-F1 score, where it achieves the second-highest performance. Despite this, it
requires 3× fewer parameters, 7.4× less pretraining compute, and 30% fewer pretraining
samples. CLIP-based models (CheXzero, BiomedCLIP), despite their multimodal pretrain-
ing on paired image-text datasets, do not consistently outperform image-only pretraining
models on clinically relevant metrics. The IU-Xray dataset, which was not used during
training, serves as an external, out-of-domain test set, originating from an outpatient facil-
ity. Interestingly, while the performance gap between CheXzero and image-based models is
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(a) MIMIC-CXR

Model ROUGE-L BLEU-4 RGER CheXbert F1-14 CheXbert F1-5 Average

DINOv2 24.24[24.21,24.25] 8.51[8.49,8.52] 21.43[21.42,21.46] 28.62[28.59,28.69] 42.09[42.00,42.15] 24.98

CheXzero 23.36[23.34,23.38] 7.95[7.93,7.96] 20.95[20.93,20.98] 29.06[29.04,29.13] 44.22[44.13,44.27] 25.11

BiomedCLIP 23.35[23.33,23.36] 7.71[7.70,7.73] 20.47[20.45,20.49] 28.77[28.73,28.83] 42.84[42.73,42.88] 24.63

RAD-DINO 24.91[24.89,24.92] 8.82[8.82,8.85] 22.92[22.91,22.96] 35.40[35.39,35.52] 47.54[47.46,47.61] 27.92

CXformer(S) 25.25[25.23,25.27] 9.11[9.09,9.12] 23.06[23.04,23.08] 33.85[33.83,33.94] 46.28[46.14,46.28] 27.51

CXformer(B) 24.93[24.90,24.94] 9.03[9.01,9.05] 22.94[22.93,22.98] 33.45[33.39,33.50] 45.45[45.36,45.49] 27.16

(b) IU-Xray

Model ROUGE-L BLEU-4 RGER CheXbert F1-14 CheXbert F1-5 Average

DINOv2 26.85[26.83,26.86] 8.63[8.61,8.64] 26.37[26.36,26.39] 17.49[17.43,17.58] 22.26[22.16,22.49] 20.32

CheXzero 26.97[26.95,26.98] 8.71[8.70,8.73] 27.73[27.71,27.75] 20.55[20.45,20.63] 29.93[29.69,30.01] 22.78

BiomedCLIP 26.65[26.64,26.67] 8.60[8.60,8.62] 27.11[27.10,27.13] 17.57[17.43,17.62] 27.21[26.85,27.25] 21.43

RAD-DINO 27.18[27.17,27.19] 9.42[9.41,9.43] 26.98[26.97,27.00] 27.19[27.08,27.31] 33.16[33.05,33.43] 24.79

CXformer(S) 26.47[26.47,26.59] 9.26[9.25,9.27] 26.26[26.23,26.27] 23.55[23.49,23.60] 29.76[29.60,29.97] 23.06

CXformer(B) 26.85[26.84,26.87] 9.54[9.53,9.55] 27.02[26.99,27.03] 25.92[25.84,26.06] 31.62[31.46,31.84] 24.19

Table 6: Performance of CXR report generation evaluated on (a) MIMIC-CXR and (b)
IU-Xray datasets across multiple metrics. Values in brackets [ ] indicate 95%
confidence intervals, computed using 500 bootstrapped samples

narrowed in this setting, but still underperforms compared to our models and RAD-DINO.
A possible explanation is the prevalence of studies with no findings (∼ 40% vs. ∼ 20%
in MIMIC-CXR), along with frequent findings such as cardiomegaly, hyperinflated lungs,
and a tortuous aorta being among the ten most common findings (Demner-Fushman et al.,
2016), which do not require fine-grained localized features. We further show and discuss
qualitative samples in A.4.

4. Conclusion

In this work, we introduce CXformer, a specialized adaptation of DINOv2 for chest X-rays
(CXRs), optimized through systematic modifications to the standard training pipeline of DI-
NOv2. Key enhancements include integrating registers in ViTs to reduce artifacts, centering
teacher outputs using a moving average, and reducing prototype heads to 16K for improved
efficiency and implicit regularization. These optimizations enable more efficient training
and superior downstream performance. Notably, CXformer(S) matches RAD-DINO while
requiring approximately 7× fewer FLOPs and 3× less memory, and CXformer(B) sur-
passes RAD-DINO in average AUROC across CheXpert, NIH CXR8, and MIMIC dataset
with a 46% FLOP reduction. Our ablation studies confirm that these improvements stem
from training optimizations rather than increased model size. Additionally, we find that
image-only self-supervised pretraining outperforms image-text contrastive methods (e.g.,
BiomedCLIP, CheXzero) by generalizing effectively without the explicit multimodal train-
ing required by image-text models. We note that while our optimizations are shown for DI-
NOv2 adapting CXRs, their effectiveness in other medical imaging modalities, like CT/MRI
imaging, remains uncertain and is an interesting direction for future research. By releasing
CXformer checkpoints, we aim to foster reproducibility and drive advancements in efficient
models in healthcare domain.
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Appendix A.

A.1. Self-supervised pretraining

Model For pretraining, we adopt the self-supervised learning framework of DINOv2
(Oquab et al., 2023). This approach leverages a teacher-student architecture, where both
networks share the same architecture, but the teacher network is updated as the exponen-
tial moving average (EMA) of the student’s weights. The pretraining process optimizes two
complementary objectives: an image-level objective and a patch-level objective. The image-
level objective computes a cross-entropy loss between features extracted by the teacher and
student networks from different crops of the same image. These features are projections of
the classification token, [CLS], processed through a learnable MLP head, followed by soft-
max and a centering operation. This objective ensures that the representations learned by
the model are invariant to different augmentations of the same image. On the other hand,
the patch-level objective focuses on learning localized features by masking random patches
in the input image fed to the student network, while the teacher sees the full image. The
masked patches are processed by the student’s learnable MLP head, while the unmasked
patches are processed by the teacher’s MLP head, with a cross-entropy loss applied to the
resulting tokens. This encourages the student network to learn fine-grained, localized infor-
mation from the image, complementing the global information captured by the image-level
objective.

A.2. Downstream finetuning

Tasks Dataset & Label

Classification

CheXpert: Atelectasis, Cardiomegaly, Con-
solidation, Edema, Pleural Effusion

NIH CXR8: Atelectasis, Cardiomegaly, In-
filtration, Pleural Effusion, Mass, Nodule,
Pneumonia, Pneumothorax

RSNA Pneumonia: Pneumonia

VinDR-CXR: Aortic enlargement, Car-
diomegaly, Lung Opacity, Pleural Effusion,
Pleural thickening, Pulmonary fibrosis, Tu-
berculosis

Segmentation CheXmask MIMIC-CXR: Lungs & Heart

Radiology Report Generation MIMIC-CXR: Findings Section

IU-Xray: Findings Section

Table A1: Overview of labels used for each dataset.

Image Classification We initialize our classification experiments using the pretrained
encoder backbone, appending a single classification layer on top of the vision backbone. To
extract meaningful features for classification, we utilize the outputs from the last four blocks
of the Vision Transformer (ViT). Specifically, we concatenate the [CLS] token embeddings
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from these blocks with the average-pooled representation of the image token embeddings
from the final block. This combined feature vector serves as the input to the classification
head. For training, we employ a batch size of 128 over two NVIDIA H100 GPUs, setting
the learning rate for the linear classifier to 5e−5 and a smaller learning rate of 5e−7 for the
backbone to prevent overfitting and preserve the pretrained representations. Preprocessing
of input images involves histogram equalization, followed by resizing the shorter edge to 518
pixels and applying a center crop of size 518× 518. To enhance generalization, we apply a
range of training augmentations, including horizontal flips, random affine transformations,
color jittering, and Gaussian blur. The final model used for evaluation is selected based
on its best performance on the validation set. For all datasets, we utilize the area under
the receiver operating characteristic curve (AUROC) as the primary evaluation metric. In
the case of multi-label classification tasks, we report the macro-average AUROC, which
considers the performance across all labels equally. A special case is with VinDr (Nguyen
et al., 2022), where we report the macro AUPRC, since there exists a significant class
imbalance, and to be able to compare to similar works (Pérez-Garćıa et al., 2024), which
report this metric.

Semantic Segmentation For the segmentation task, we append a decoder head to the
pretrained backbone, implemented as a linear layer following the approach in DINOv2
(Oquab et al., 2023). This linear layer is trained to predict class logits from the patch
tokens, generating a low-resolution logit map. The logit map is subsequently upsampled to
a resolution of 518×518 to produce the final segmentation map. We evaluate segmentation
performance using the Dice score across two classes: lungs and heart. Input images are
preprocessed by histogram equalization, resizing to 518 × 518 pixels (resizing the shorter
edge to 518 pixels, followed by center cropping), and augmented with affine transformations,
color jitter, and elastic transformations. Training is performed with a batch size of 128 across
2 NVIDIA H100 GPUs, and a learning rate of 5e− 3.

Image to Radiology Report Generation For the radiology report generation task, we
train on the MIMIC-CXR dataset (Johnson et al., 2019) (and additionally evaluate on IU-
Xray dataset (Demner-Fushman et al., 2016)), which pairs chest X-ray images with their
corresponding radiology reports. From the raw reports, we extract the findings section5

and filter the data as follows: we discard samples without a findings section, retain only
frontal-view images (AP and PA views), and exclude samples where the findings section
contains fewer than 100 characters. After preprocessing, the dataset comprises of 161,927
samples for training, 1,269 samples for validation, and 2,461 samples for testing. For IU-
Xray dataset, we end up with 3,309 samples after the filtering process. For training an
image-to-report generation model, we adopt the LLaVA-1.5 framework (Liu et al., 2024) for
visual instruction tuning, closely following the methodology and hyperparameters in (Hy-
land et al., 2023). Fine-tuning involves loading our pretrained vision backbone and append-
ing a trainable two-layer MLP projection layer to align visual tokens with textual tokens.
The projected visual tokens are combined with language instructions in the format: <image>
Provide a description of the findings in the radiology image. This input is fed
into a pretrained language decoder model to generate the findings section corresponding
to the image. We use Vicuna-7B (v1.5) (Chiang et al., 2023) as the decoder language

5. https://github.com/MIT-LCP/mimic-cxr/tree/master
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model. During training, the image encoder is kept frozen, while the projection layer and
the language decoder are trainable. Training is conducted in bfloat16 precision with a batch
size of 128 across 8 NVIDIA H100 GPUs. We employ a cosine learning rate scheduler with
a peak learning rate of 2e − 5 and a warmup phase spanning 3% of the total iterations.
The standard cross-entropy loss for next-token prediction is used as the training criterion,
consistent with language modeling tasks. After training, generations are produced with a
temperature of 0.2 and a maximum of 150 new tokens. For evaluation, we report lexical
and radiology-specific metrics, namely: BLEU-4 score (Papineni et al., 2002), ROUGE-L
score (Lin, 2004), RadGraph-F1 score (Delbrouck et al., 2022), and finally CheXbert-based
F1 score (Smit et al., 2020). We use the HuggingFace Evaluate6 library for BLEU and
ROUGE scores, and open-source implementations for CheXbert-F17 and RadGraph-F18.

A.3. Anatomy Segmentation Qualitative Results

Figure A1: Segmentation samples of different models. Lungs and heart segmentation are
highlighted in blue and green, respectively. The ground truth segmentation is
outlined in red. Dice scores are reported above each segmentation.

CXformer(B)Original RAD-DINO CheXzero BiomedCLIP CXformer(S)
0.98 0.93 0.95 0.96 0.97

0.97 0.92 0.95 0.96 0.97

0.86 0.77 0.84 0.86 0.85

In this section, we present some qualitative examples or anatomy segmentation in Fig-
ure A.3. The first row shows an example where RAD-DINO achieves the highest average
Dice score, followed by CXformer(B) and CXformer(S). Our CXformer(B) models shows
better segmentation and coverage of the heart, while the smaller variant slightly overes-
timates the heart segmentation outside of the original region. CheXzero has slightly less
precise segmentation, particularly around the lower lung and diaphragm, while Biomed-
CLIP is slightly better than CheXzero, but still falls behind RAD-DINO and CXformer

6. https://huggingface.co/docs/evaluate
7. https://pypi.org/project/f1chexbert
8. https://pypi.org/project/radgraph
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models. This same behavior is seen in the second row, where CheXzero overestimates the
lung regions beyond the original object. In the last row, we present an example where the
original groung-truth segmentation overestimates the lung boundaries. This discrepancy
may stem from the use of a deep learning algorithm to generate the ground truth segmen-
tation in the source dataset (Gaggion et al., 2023), potentially leading to an inaccurate
assessment of model performance. In this case, RAD-DINO and our CXformer models ac-
curately capture the lung region without overestimating the upper boundaries while also
providing better heart coverage. In contrast, the CheXzero model struggles to identify the
lung region and overestimates the heart beyond its actual position. Although BiomedCLIP
achieves a higher Dice score, its segmentation quality remains suboptimal, particularly as
the model appears to struggle in the presence of support devices.

A.4. Radiology Report Generation Qualitative Results

Figure A2: Comparison of a report generation study, with green highlights marking correct
identifications, and red highlights marking incorrect findings or hallucinations.

CheXzero The patient is status post median sternotomy and CABG. Left-sided 
pacemaker device is noted with leads terminating in the right atrium and right 
ventricle. Heart size remains mildly enlarged. The mediastinal and hilar contours are 
unchanged. There is mild pulmonary vascular congestion, new compared to the prior 
exam. Patchy opacities in the lung bases may reflect areas of atelectasis. No pleural 
effusion or pneumothorax is seen. There are no acute osseous abnormalities.

CXformer(B) The patient is status post median sternotomy and CABG. Left-sided pacemaker
device is noted with leads terminating in the right atrium and right ventricle. The heart size is 
mildly enlarged. The aorta is tortuous and diffusely calcified. There is mild pulmonary vascular 
congestion. Small bilateral pleural effusions are noted. Patchy opacities in the lung bases may 
reflect atelectasis. No pneumothorax is present. There are no acute osseous abnormalities. 

CXformer(S)AP upright and lateral views of the chest provided. Midline sternotomy wires and 
mediastinal clips are again noted. There is a left chest wall pacer device with leads extending to 
the region of the right atrium and right ventricle. There is a small right pleural effusion with 
right basal atelectasis. There is mild left basal atelectasis. The heart is mildly enlarged. The 
mediastinal contour is stable. Bony structures are intact. 

RAD-DINOAP upright and lateral views of the chest provided. Midline sternotomy 
wires and mediastinal clips are again noted. There is a left chest wall pacer device
with leads extending to the region of the right atrium and right ventricle. There is a 
small right pleural effusion with right basal atelectasis, difficult to exclude a 
superimposed pneumonia. The heart is mildly enlarged. The left lung appears grossly 
clear. Mediastinal contour is unchanged. Bony structures are intact.

BiomedCLIPAP upright and lateral views of the chest provided. Dual lead pacemaker is again 
noted with leads extending to the region the right atrium and right ventricle. There is a small 
right pleural effusion with right basal atelectasis. There is mild pulmonary edema. The heart is 
mildly enlarged. The mediastinal contour is stable. No pneumothorax. Bony structures are 
intact. 

Original The patient is status post median sternotomy and CABG. Left-sided dual-chamber 
pacemaker is noted with leads terminating in the right atrium and right ventricle. There is mild 
enlargement of the cardiac silhouette which is stable. The aorta remains tortuous. There is mild 
pulmonary edema and a small right pleural effusion. Previously noted left pleural effusion is not 
clearly seen on the current study. Patchy ill-defined opacity in the right base persists and is 
likely due to atelectasis, though infection cannot be excluded. There is no pneumothorax. No 
acute osseous abnormalities are present. 

In this section, we present qualitative results for the radiology report generation task on
the MIMIC-CXR (Johnson et al., 2019) test set. As shown in Figure A.4, our CXformer(B)
model accurately identifies the pacemaker and its location, mild cardiomegaly, a tortuous
aorta, pleural effusions, and patchy opacities (which may indicate atelectasis), as well as the
absence of pneumothorax. While the original report explicitly mentions ’pulmonary edema,’
the generated finding of ’mild pulmonary vascular congestion’ refers to the same underlying
condition. Our CXformer(S) model also correctly identifies these findings; however, it
hallucinates the presence of later views (which are not provided) and incorrectly attributes
atelectasis to the left side instead of the right, as stated in the original report. We note
similar hallucinations of lateral views in BiomedCLIP, CheXzero and RAD-DINO models.
Additionally, CheXzero incorrectly rules out pleural effusion. With the exception of our
CXformer(B) model, all models fail to indicate the tortous aorta.
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Figure A3: Comparison of a report generation study, with green highlights marking correct
identifications, and red highlights marking incorrect findings or hallucinations.

CheXzero As compared to the previous radiograph, the patient has been extubated
and the nasogastric tube has been removed. The right internal jugular vein catheter is 
in unchanged position. Lung volumes have slightly decreased. There is unchanged 
evidence of moderate cardiomegaly and mild pulmonary edema. In addition, a right 
pleural effusion has newly appeared. The left lung base is unremarkable. No evidence 
of pneumonia.

CXformer(B) In comparison with the study of ___, there is little overall change.  Again there is 
enlargement of the cardiac silhouette with pulmonary edema and bilateral pleural effusions with 
compressive atelectasis at the bases.  Nasogastric tube again extends well into the stomach.

CXformer(S) As compared to the previous radiograph, the patient has received a nasogastric 
tube. The course of the tube is unremarkable, the tip of the tube projects over the middle parts of 
the stomach. There is no evidence of complications, notably no pneumothorax. Otherwise, the 
radiograph is unchanged.

RAD-DINO As compared to the previous radiograph, the patient has received a 
nasogastric tube. The course of the tube is unremarkable, the tip of the tube projects 
over the middle parts of the stomach. There is no evidence of complication, notably 
no pneumothorax. The lung volumes remain low. Moderate cardiomegaly with 
bilateral areas of atelectasis and mild fluid overload.

BiomedCLIP As compared to the previous radiograph, the patient has received a nasogastric 
tube. The course of the tube is unremarkable, the tip of the tube projects over the middle parts of 
the stomach. No evidence of complications, notably no pneumothorax. Otherwise, the 
radiograph is unchanged.

Original In comparison with the earlier study of this date, the patient has taken a somewhat 
better inspiration.  Nevertheless, lines are still low. There is enlargement of the cardiac 
silhouette with vascular congestion and bilateral effusions with compressive atelectasis.  
Nasogastric tube extends to the distal stomach.

In the next example (Figure A.4), we observe that all models hallucinate the presence of
a previous study. This likely stems from the original dataset, where patients in ICU settings
undergoing portable X-rays often have multiple follow-up scans. Our CXformer(B) model
correctly identifies 1)cardiomegaly, 2)edema, 3)bilateral pleural effusion, 4)compressive at-
electasis and the 5)nasogastric tube. On the other hand, the CXformer(S) and BiomedCLIP
only identifies one finding correctly (nasogastric tube), CheXzero only identifies 3 out of
the five findings (cardiomegaly, edema and effusion), and lastly, RAD-DINO only identifies
3 different findings (nasogastric tube, cardiomegaly, atelactasis).

In Figure A.4, we present an unremarkable study with no findings and compare the out-
puts of both CXformer models. The generated reports closely match the ground truth, with
identical phrasing in both generations. This consistency likely arises from the prevalence
of template reports for normal scans, which describe the absence of commonly reported
findings.

In Figure A.4, the ground truth report identifies a small pneumothorax, pleural effusion
on the right, compressive atelectasis, and other findings with a high level of detail. The
CXformer models, however, display varying degrees of hallucination, likely stemming from
training data references to prior studies. CXformer(S) correctly identifies the presence of
pleural effusion and notes that the central catheter remains in place, but it introduces hal-
lucinated findings such as pulmonary edema, cardiac silhouette enlargement, and references
to an earlier study, which are absent from the ground truth. On the other hand, CX-
former(B) misses the pleural effusion and central catheter findings but accurately mentions
the removal of the nasogastric tube, consistent with the ground truth.

In Figure A.4, the ground truth report describes moderate pulmonary edema, a small-to-
moderate left pleural effusion, a probable small right pleural effusion, compressive atelectasis
at the left base, and moderate cardiomegaly. Among the model generations, CXformer(S)
demonstrates better coverage of the findings compared to CXformer(B). CXformer(S) cor-
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Figure A4: Comparison of CXformer model generations for a normal study with no findings,
showing consistent phrasing and alignment with the ground truth report.

Original Report

Well expanded and clear lungs. 
No pleural effusion or 
pneumothorax. Heart size, 
mediastinal contour, and hila 
are within normal limits. 
Visualized upper abdomen is 
unremarkable.

CXformer(S) Generation CXformer(B) Generation

The lungs are clear without 
focal consolidation. No 
pleural effusion or 
pneumothorax is seen. The 
cardiac and mediastinal 
silhouettes are unremarkable. 

The lungs are clear without 
focal consolidation. No 
pleural effusion or 
pneumothorax is seen. The 
cardiac and mediastinal 
silhouettes are unremarkable. 

Figure A5: Example of model hallucination to previous studies, as well as some omission
of findings.

Original Report

In comparison with the earlier study of this 
date, the apparent small pneumothorax tracking 
along the minor fissure is not definitely 
appreciated. There is hazy opacification of 
the right hemithorax with poor definition of 
the hemidiaphragm, consistent with layering 
pleural effusion and compressive atelectasis 
at the base. Mild atelectatic changes are also 
seen on the left. The nasogastric tube has 
been removed. Right IJ catheter and left 
subclavian catheter remain in place.

CXformer(S) Generation CXformer(B) Generation

In comparison with the study of ___, 
there is little overall change. Again
there is enlargement of the cardiac 
silhouette with pulmonary edema and 
bilateral pleural effusions, more 
prominent on the right. The left base 
is essentially clear. Central catheter 
remains in place.

As compared to the previous radiograph, 
the patient has been extubated. The 
nasogastric tube has also been removed. 
The left PICC line is in unchanged 
position. The extent of the bilateral 
pleural effusions is unchanged. 
Unchanged moderate cardiomegaly. No 
pneumothorax.

rectly identifies the moderate left pleural effusion, moderate cardiomegaly, and absence of
pneumothorax, though it overestimates the pleural effusion size and understates the pul-
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monary edema as mild. In contrast, CXformer(B) only highlights the enlarged heart, but
omitting the pleural effusion and pulmonary edema. However, CXformer(B) uniquely iden-
tifies the portable nature of the imaging technique, which is not explicitly mentioned in
the ground truth but can be inferred from the radiograph. Similarly, the same behavior is
seen in Figure A.4, where CXformer(S) has better coverage of findings, whilst CXformer(B)
model exhibits some omission of findings.

Figure A6: Comparison of CXformer model generations: CXformer(S) provides better cov-
erage of findings, while CXformer(B) highlights the portable view but misses
key pathologies.

Original Report

The heart remains moderately enlarged. The 
mediastinal contours are unchanged. There is 
moderate pulmonary edema, similar compared to 
the prior exam, with a small to moderate left 
pleural effusion, also relatively unchanged. 
Probable small right pleural effusion is 
likely present. No pneumothorax is identified. 
Left basilar opacification likely reflects 
compressive atelectasis. There is no 
pneumothorax or acute osseous abnormality.

CXformer(S) Generation CXformer(B) Generation

The heart is moderately enlarged. The 
mediastinal and hilar contours are 
unremarkable. There is a moderate to 
large left pleural effusion. There is 
mild pulmonary edema. No pneumothorax 
is seen. There are no acute osseous 
abnormalities.

Single portable view of the chest. Exam 
is limited secondary to portable 
technique and patient body habitus. 
There is no definite evidence of large 
confluent consolidation. There is no 
large effusion. Cardiac silhouette is 
enlarged but likely accentuated due to 
technique and positioning. 
Atherosclerotic calcifications noted at 
the aortic arch. No acute osseous 
abnormalities detected.
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Figure A7: Comparison of CXformer model generations: CXformer(B) omits the calcifica-
tion of aorta findings, while CXformer(S) correctly covers it.

Original Report
The patient is status post median sternotomy 
and aortic valve replacement. The heart size 
is normal. The aorta is diffusely calcified. 
The mediastinal and hilar contours are normal. 
The lungs are hyperinflated with relative 
lucency within the lung apices, compatible 
with emphysema. Previously described nodular 
opacities on CT are not well demonstrated on 
the current radiograph. No focal 
consolidation, pleural effusion or 
pneumothorax is detected. Multiple compression 
deformities of the thoracic spine are 
unchanged as well as old bilateral rib 
deformities.

CXformer(S) Generation CXformer(B) Generation

The patient is status post median sternotomy 
and CABG. The heart size is normal. The aorta 
is tortuous and diffusely calcified. The 
pulmonary vascularity is not engorged. The 
lungs are hyperinflated with flattening of the 
diaphragms and increased retrosternal clear 
space compatible with underlying COPD. No 
focal consolidation, pleural effusion or 
pneumothorax is present. There are no acute 
osseous abnormalities.

The patient is status post median sternotomy
and CABG. The heart size is normal. The 
mediastinal and hilar contours are unchanged. 
The pulmonary vascularity is not engorged. 
Hyperinflation of the lungs with flattening of 
the diaphragms is compatible with underlying 
COPD. No focal consolidation, pleural effusion 
or pneumothorax is identified. There are no 
acute osseous abnormalities. Multilevel 
degenerative changes are seen within the 
imaged thoracic spine.
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