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Abstract

Detectors of LLM-generated text suffer from
poor domain shifts generalization ability. Yet,
reliable text detection methods in the wild
are of paramount importance for plagiarism
detection, integrity of the public discourse,
and Al safety. Linguistic and domain con-
founders introduce spurious correlations, lead-
ing to poor out-of-distribution (OOD) perfor-
mance. In this work we introduce the con-
cept of confounding neurons, individual neu-
rons within transformers-based detectors that
encode dataset-specific biases rather than task-
specific signals. Leveraging confounding neu-
rons, we propose a novel post-hoc, neuron-
level intervention framework to disentangle
Al-generated text detection factors from data-
specific biases. Through extensive experiments
we prove its ability to effectively reduce topic-
specific biases, enhancing the model’s ability
to generalize across domains.

1 Introduction

The rapid development of Large Language Models
(LLMs) has revolutionized natural language pro-
cessing (NLP), allowing machines to produce text
that mirrors human writing in coherence and con-
textual relevance. However, as LLMs become in-
creasingly sophisticated, identifying Al-generated
text poses a critical challenge (Wu et al., 2025a;
Zhou and Wang, 2024). This task is particularly
pressing in contexts such as academic integrity, mis-
information detection, authorship attribution, and
cybersecurity, where the misuse of Al-generated
content raises ethical and societal issues (Beigi
et al., 2024; Gui et al., 2025). Despite advance-
ments in Al detection methods, state-of-the-art
(SOTA) systems still exhibit significant general-
ization failures, especially when applied across di-
verse domains, languages, and models (Wu et al.,
2025a; Gritsai et al., 2024).

Detection methodologies for Al-generated text,
based on fine-tuned transformer models (e.g.,
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Figure 1: Accuracy gain in a human-vs-LLM detector
BERT-based removing the top-K (K = 1 — 50) con-
founding neurons. Removing as few as 20 (~ 0.05%)
confounding neurons in the feed-forward MLPs interme-
diate layers results in up to a 6.9% improvement in the
test sets (in-domain, out-of-sample (OOS), and two out-
of-distribution (OOD)). The shaded area around zero
corresponds to the random baseline.

RoBERTa, XLLM-R), achieve high accuracy (>99%)
on controlled datasets, their performance on out-of-
distribution (OOD) data remains unreliable, limit-
ing their applicability in real-world scenarios (Wu
et al., 2025a; Wang et al., 2024b).

Recent benchmarks, such as M4 (Multi-
Generator, Multi-Domain, Multi-Lingual) (Wang
et al., 2024b) and the GenAl Content Detection
Tasks (Lekkala et al., 2025), have underscored the
fragility of current detectors, particularly in cross-
domain generalization (Xu et al., 2024; Guo et al.,
2024).

Detectors struggle with generalization due to lin-
guistic and domain confounders, which introduce
spurious correlations that bias detection models
(Dai et al., 2022a; Voita et al., 2024). Linguistic
confounders, such as sentence length and lexical
diversity, reflect training data artifacts rather than
intrinsic Al text features, leading to poor out-of-
distribution (OOD) performance (Leng and Xiong,
2025; Wu et al., 2025b).



Domain confounders further complicate detec-
tion by linking Al-generated text with specific top-
ics or styles rather than universal generation pat-
terns (Wang et al., 2024b; Doughman et al., 2025).
For instance, detectors trained on academic Al text
often fail with news articles, revealing a lack of
cross-domain robustness (Wang et al., 2024b).

We propose a neuron-level framework of
training-based Al text detectors, leveraging the con-
cept of Confounding Neurons: specific neuronal
activations that encode dataset-specific biases (Pan
et al., 2024; Voita et al., 2024). By systematically
identifying these neurons, we can analyze how and
where spurious correlations emerge in detectors, en-
abling the development of generalizable detection
strategies that prioritize intrinsic textual features
rather than dataset-dependent artifacts. We show
an example of the effectiveness of our approach in
Figure 1.

Emerging research indicates that LLMs encode
knowledge, writing styles, and topic preferences
within specific neurons (Dai et al., 2022b; Tang
et al., 2024; Zhao et al., 2025). While prior work
has examined neurons in the context of knowl-
edge storage and language generation, their role in
Al-generated text detection remains largely unex-
plored. Given that Al text detectors unintentionally
encode dataset-specific biases, understanding their
neuronal activations is crucial for disentangling
the detection task from these confounding factors.
We focus on computationally inexpensive and vali-
dated techniques within Knowledge Editing (Wang
et al., 2024a) to build a framework for interven-
ing at the neuronal level, enabling more reliable
detection systems that generalize across text distri-
butions.

Contributions This study advances robust
LLM-generated text detection through the follow-
ing contributions:

¢ Introduction of confounding neurons in the
context of LLM-generated text detection.

* Development of an experimental framework
for identifying and mitigating confounding
neurons to improve detector performance.

* Analysis of neuron localization, showing that
early-layer neurons can boost OOD accuracy
while maintaining in-domain performance

 Evaluation of neuron-ranking methods, iden-
tifying critical neurons whose removal en-

hances generalization and accuracy.

2 Related Works

Detection methods are mainly categorized into Sta-
tistical methods, Neural-based and LLM-based de-
tectors. Statistical methods detect Al-generated
text by analyzing linguistic features such as per-
plexity, n-gram frequency, or token distribution
(Hamed and Wu, 2024; Yang et al., 2024). These
methods are computationally efficient and perform
well for simple LLMs, but their effectiveness de-
creases when faced with larger more advanced mod-
els (Wu et al., 2025a). Neural-based detectors, em-
ploying transformer architectures like BERT (De-
vlin et al., 2019), RoBERTa (Zhuang et al., 2021),
and XLM-R (Chi et al., 2022), achieve high accu-
racy (often exceeding 99%) on controlled datasets
(Zeng et al., 2024). However, their performance de-
grades significantly on out-of-distribution (OOD)
data, revealing limited generalization (Wu et al.,
2025a).

A fundamental challenge for detection systems is
achieving OOD robustness. Despite their high accu-
racy within specific domains, neural detectors strug-
gle with diverse text types (Wang et al., 2024b), as
linguistic and domain confounders introduce spuri-
ous correlations that hinder generalization across
domain shifts (Wu et al., 2025a; Dai et al., 2022a).

Generalization in AI-Generated Text Detection
In this direction, Wang et al. (2024b) introduced
the M4 benchmark, a large-scale dataset designed
to evaluate detection models across multiple Al
generators and linguistic styles. Their findings re-
vealed that most models exhibit severe performance
degradation when tested on OOD data.

Similarly, Lekkala et al. (2025) investigated
domain-specific biases in Al text detection, demon-
strating that models trained on one dataset struggle
to adapt to new text domains. Gritsai et al. (2024)
reinforced these findings by analyzing dataset
quality issues, concluding that models are often
trained on unrepresentative samples, leading to
poor real-world adaptability. Wu et al. (2025b)
benchmarked several detection techniques in real-
world settings, revealing that even high-performing
models struggle with cross-domain generalization.
Gui et al. (2025) proposed AIDER, a robust topic-
independent model that generalizes well across
multiple domains using domain adaptation tech-
niques.

Studies such as Fraser et al. (2025) and Dough-



man et al. (2025) have also shown that detection
models perform poorly on short-form Al-generated
content, such as news articles, where stylistic dif-
ferences between Al- and human-generated text are
less pronounced. Lee et al. (2024) demonstrated
that reward-based learning techniques can improve
robustness, but even these models fail when con-
fronted with adversarially optimized text.

Neuron-Level Interpretability and Detection

A rapidly growing area in LLMs interpretability
research have explored how neurons can store fac-
tual knowledge and respond to specific concepts
and how we can exploit these findings to perform
model interventions, that is, local modifications of
a LM performed after training for improving ef-
ficiency, knowledge editing, or unlearning (Wang
et al., 2024a). We can roughly categorize knowl-
edge discovery in transformer-based models in
activation-based (Voita et al., 2024), attribution-
based (Dai et al., 2022b), and probing (Gurnee
et al., 2023).

In Suau et al. (2024), neural intervention is used
to reduce toxic outputs in text generation tasks,
Tang et al. (2024) argue that a small subset of
neurons is responsible for language selection in
multilingual models. Chen et al. (2025) employ
attribution-based methods for finding clusters of
query-relevant neurons in LLMs for long-form
texts, while Dai et al. (2022a) use gradient-based
methods to trace neurons connected to syntactic
phenomena and discuss the practical relevance of
interventions on those neurons. To the best of our
knowledge, this is the first study of confounding
neurons in text detection systems.

3 Methods

The guiding hypothesis is that the cross-domain
fragility of modern Al-text detectors originates
in a small, localized subset of neurons whose ac-
tivity encodes linguistic and domain confounders
rather than generation source-specific signals. If
these neurons are identified and "deactivated" af-
ter training in a post-hoc approach, the detector
should preserve in-domain accuracy while exhibit-
ing better generalization to unseen text distribu-
tions. To examine this hypothesis, we propose
a model-agnostic framework (Figure 2) based on
neuron-level intervention:

1. Domain-aware data
(§3.1): construct a
(train / in-domain / OOD)

partitioning
three-way  split
that effectively

separates domains and topics,
controllable distribution shifts.

enabling

2. Detector Training (§3.2): fine-tune a pre-
trained transformer (BERT in our running ex-
ample) on the training split to obtain the refer-
ence model M.

3. Confounding-neuron discovery (§3.3): Iden-
tify neurons correlated with domain-specific
cues by extracting topic-salient keywords,
scoring hidden units for keyword sensitiv-
ity, and aggregating scores through a label-
stratified top-K intersection.

4. Neuron patching / model steering (§3.4):
mask the feed-forward layers of the trans-
former blocks at inference time to create a
patched model M), effectively removing con-
founders from the inference path.

The framework allows for a controlled compari-
son between My and M, on identical inputs; any
gain in OOD performance can thus be attributed
to the removal of the confounding neurons. The
remainder of this section details each stage, and §4
reports the empirical findings.

3.1 Domain-Aware Data Partitioning

We frame LLM-generated text detection as a binary
sequence-classification task over an open set of
textual domains. Given a labelled corpus

D = {(t;,yi) }L1,

the goal is to learn a detector My : ¢~ [0, 1] that
predicts the origin —human or machine— of texts,
and exploit our framework to mitigate model degra-
dation when applied previously unseen texts do-
mains and topics. The degradation stems from spu-
rious cues, including linguistic confounders (e.g.,
sentence length, lexical diversity) and domain con-
founders, where specific topics or styles are incor-
rectly linked to authorship (Doughman et al., 2025).
This work primarily addresses the latter.

To disentangle genuine generative signals from
these confounders, we impose a three-way partition
that can be in principle instantiated on any multi-
domain corpus.

Let J be the set of topics in domain A and choose
a random subset Jiain C J.

Dirain ={(t,y) | dom(t) = A, topic(t) € Jirain},

y; € {0 (human), 1 (LLM)},

Doos ={(t,y) | dom(t) = A, topic(t) €J \ Jiain},

Doop :{(t,y) | dom(t) = B, tOpiC(t) EJOOD},
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Figure 2: Confounding Neuron framework: Given a text corpus, for each topic we extract the most topic-related
keywords @, and from the output embeddings of each keyword we compute the relevance score of the transformer
MLPs’ neurons for each text @. The scores are aggregated across texts and keywords obtaining a relevance
score matrix for each neuron in each transformer layer 9 Finally, the top- K neurons (Confounding Neuron) are
suppressed based on the score ranking in order to improve the classification accuracy @.

Split Domain(s) Topic(s)
Train (Dtrain) A Ji train

00S (DOOS) A Jtest = J\ Jtrain
OOD (Doop) B 75 A any Joop

Table 1: Domain-aware three-way dataset partition.

where J N Joop = @ and A # B. This partition
controls both topic-level { Jiain, J \ Jirain, JoOD }
and domain-level { A, B} distribution gaps.

3.2 Detector

In this work we assume to have a detector trained
for the task of binary LLM-vs-human text classi-
fication. In particular, we use a pre-trained trans-
former encoder that has been fine-tuned only on the
training split Dy.in. Unless otherwise specified, we
take a BERT encoder followed by a fully-connected
classification head, and refer to the resulting model
as My. This choice reflects standard practice in
recent studies of Al-text detection and provides a
clear reference point for the neuron-level analysis
that follows. The purpose of selecting a single base-
line detector is purely expository: it allows us to
trace how neuron-level interventions modify a spe-
cific network while clearly demonstrating that the
framework can be applied to alternative detection
models (e.g., ROBERTa, mBERT).

3.3 Confounding-Neuron Discovery

The aim of this stage is to pinpoint individual neu-
rons whose activity tracks confounding factors, as

topic, genre, length, surface style, rather than rele-
vant generation cues (Voita et al., 2024; Pan et al.,
2024). We decompose the procedure into three
modular blocks that can be instantiated with either
unsupervised or supervised topic information.

(i) Relevant-token extraction. The goal is to
getaset C = {k = 1,..., K} of topic-salient
token indices that are potentially irrelevant to the
detection.

Two alternative routes are available Supervised
or Unsupervised, depending if topic labels are
given in the considered corpus. For the supervised
case, Dyqin 18 divided by topics Ji,in and labels
{0,1}. Within each slice, the top—K tokens are
retrieved and ranked by TF-IDF (term frequency-
inverse document frequency) weighting. In the
unsupervised setting, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) is applied to Dy, retain-
ing the top-K tokens with the highest component
probability from each latent components

(ii) Neuron-level relevance scoring. Consider-
ing a BERT-based detector, each transformer block
contains an intermediate dense layer in its feed-
forward network (FFN); we examine the H=3072
hidden units of each of its L=12 transformer lay-
ers, which are known to store factual, stylistic, and
topic features (Dai et al., 2022b; Pan et al., 2024).

For each transformer block ¢ € 1,..., L and
eachneuron h € 1,..., H, let ag,(t;;) denote the
activation of neuron (¢, h) (prior to applying the
nonlinearity) for the token at position j in the ¢-th
input text. The first is the Integrated Gradient (IG)



(Sundararajan et al., 2017). For each text in a sam-
ple z; € ﬁtmin C Dirain and topic-related keyword
index k € IC(z;), the IG score is computed as:
wighe = 1G (an(tir)),

The second is the topic-prediction Average Pre-
cision score (AP), inspired by (Suau et al.,
2024). Given the train corpus Dy,in, we build
| Jtrain| complementary labeled datasets D; =
{(zi,¢i)YY,, j € Jirain, Where ¢; = j. For each
neuron (¢, h) and keyword k of an input text z; of
topic ¢;, the activation value agp, (t;x) is used as a
one-vs-rest predictor of ¢;, and the relevance score
is then given by the Average Precision score (AP)
over D; with j € Jirqin:

whing = AP({(am (tik), i), (@i, i) € Dj})

The tensor w is then reduced across texts and
either the keywords dimension for IG or the topic
dimension for AP, yielding an L x H importance

matrix from which the confounding-neuron ordered
sequence C is derived.

(iii) Score aggregation. Several aggregation
strategies can map the w relevance tensor onto the
L x H final neuron relevance representation, taking
into account that we want to simultaneously mini-
mize the importance of the selected neurons for the
final text detection task. We adopt a label-stratified
top-K intersection scheme that pinpoints neurons
whose largest relevant score are driven by topic
keywords in both classes, as a proxy for a purely
spurious correlation. Namely, for each text label
y € {0, 1} we take the maximum across all the ex-
tra dimensions (qualitatively similar results are ob-
tained by taking the mean) and we keep the top- K’
highest scoring indices, obtaining two ordered lists
R©® and R, The final relevance score matrix
entries Sy, are obtained by taking the intersection
R© N RM while assigning the maximum scores
between the two labels for each neuron, keeping
the top-K with K < K’ indices, and setting all the
other indices to zero.

Finally, from the matrix S we obtain the or-
dered confounding neurons sequence C = ((¢, h) |
Spn, > 0) that highlights hidden units that consis-
tently align with topic keywords across both author
labels, making them prime candidates for the patch-
ing intervention in §3.4.

3.4 Neuron Patching and Model Steering

From the confounding neurons sequence C, we
intervene on the baseline detector M without

touching any other parameters. We define a bi-
nary mask m, € {0, 1} for each block such that
my[h] =1 <= (¢,h) € C. The mask is frozen
and applied at run time; no additional learning is
performed. For every input text ¢ and block /, let
ay(t) € R be the activations of the intermediate
feed-forward layer (see §3.3). We apply:

ag(t) = (1 —my) © a(t) + my © g(ac(t)), (1)

where g(+) is a patching policy. Several policies can
be applied (Wang et al., 2024a; Voita et al., 2024;
Pan et al., 2024), such as hard ablation g(a) = 0,
soft scaling g(a) = aa, 0 < a < 1, or noise in-
jection. In this work we consider the hard ablation,
that is, the complete suppression of the considered
neuron obtaining the final patched detector M,,.

4 Experiments

In this section, we evaluate the proposed neuron-
level intervention framework for LLM-generated
text detection!. The experiments are designed to
assess the efficacy of our approach in addressing
domain generalization challenges.

We aim to answer three research questions:

RQ1 Localisation & distribution: where are con-
founding signals concentrated, and how do
they spread across layers?

Finding: Just 20 neurons in the early trans-
former blocks govern up to +7% accuracy
gains on OOD text, while leaving in-domain
performance intact, meanwhile, task-relevant
“detection” neurons cluster almost exclusively
in the final layers (Fig. 1, Fig. 4).

RQ2 Representation geometry: how does sup-
pressing confounding neurons reshape the de-
tector’s embedding space?

Finding: Patching collapses topic-driven clus-
ters in the classification embedding space, and
increasing detector specificity on unseen do-
mains (Fig. 3).

RQ3 Attribution robustness: do different neuron-
ranking methods yield consistent improve-
ments and similar high-leverage neurons?

Finding: Integrated Gradients exposes a hand-
ful of neurons whose removal causes stepwise
accuracy jumps, whereas probing allows to

!Code available at https://anonymous.4open.
science/r/confounding_neurons-1EC2
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pruning up to ~ 30% of the FFN units with
comparable OOD gains (Fig. 7).

4.1 Dataset description

To evaluate the proposed neuron-level intervention
framework, we conduct experiments using three
publicly available datasets commonly used in LLM-
generated text detection: DAIGT?, HC3 (Guo et al.,
2023), and XSum from Li et al. (2024). These
datasets differ significantly in text type, generation
methods, and domain, allowing for a robust evalua-
tion of out-of-distribution (OOD) generalization.

DAIGT is a large collection of student essays
based on the Persuade corpus (Crossley et al.,
2024), covering 23 different topics, generated using
11 different models. HC3 is a Q&A dataset where
responses are generated by ChatGPT. XSum is a
news summarization dataset with texts generated
using GPT-based models. We summarize the key
statistics of each dataset in Table 2.

In all the experiments, we select a subset of top-
ics/domains from a given dataset such as DAIGT
or HC3 that constitute the training dataset Dyyq;n,
for training the base detector M. The split is per-
formed with the Domain-Aware Data Partitioning
§3.1. We note that even if the absolute performance
of the detector is not important in our work, we al-
ways obtain a in-domain, in-sample test accuracy
above 97%, in line with state-of-the-art models.

After training, the topics excluded from train on
the same dataset constitute the OOS test set, and
the remaining datasets constitute the OOD test sets.

4.2 Results

To evaluate the proposed framework, we conducted
extensive experiments using multiple datasets §4.1
and various framework configurations §3. To ad-
dress the main research questions, we present spe-
cific instantiations of the framework in the main
text, while additional parameterizations and experi-
mental variations are provided in the appendix §A.
Detection Generalization Improvement In Figure
1 we show an example of the efficacy of our method
in identifying relevant confounding neurons. We
fine-tune the detector on two topics of the DAIGT
dataset ("car-free cities" and "distance learning")
and use Integrated Gradients (IG) to identify the
most important confounding neurons as described
in §3. We then proceed to gradually remove the
top-K neurons (here K = 50) one at the time and

Zhttps://www.kaggle.com/datasets/thedrcat/daigt-v4-
train-dataset

observe the difference in detection accuracy for
three test sets, i.e., DAIGT samples from different
topics (0O0OS), HC3 (OOD), and Xsum (OOD). We
observe that removing as few as 20 neurons can
bring an improvement in detection accuracy up to
7% in texts OOS and 3% in OOD, with specific
single neurons responsible for sudden jumps of
around 3% in OOS detection accuracy. The shaded
area acts as a baseline and depicts the effect of
randomly suppressing neurons from intermediate
layers, showing minimal effects in the overall ac-
curacy, as expected.
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Figure 3: UMAP projection of the classification embed-
ding space for M, (left panels) and M, (right panels)
on Dyyqin (top) and Dpoop (bottom).

In Figure 3 we show a 2D representation of the
output [CLS] embeddings, that is, the input to the
final classification layer, obtained using UMAP
for the DAIGT Train (top) and HC3 OOD test
(bottom) datasets both without intervention (left
panel) and after removing the top-2 confounding
neurons found by our method (right panel). Each
dot represents a textand each color represents a
topic. For the top panel, human- and machine-
generated texts are well separated, with machine-
generated texts being almost perfectly clustered on
the left (see Figure 11 in the Appendix). For the
bottom panel, the labels are less well separated, as
expected, with right-top lobe is most associated to
machine-generated texts. As shown, the original
model clusters well the topics of each text, but after



Dataset Name # Humans # Machine Confounders/Topics Text Type Generators
DAIGT 27,371 17,497 23 Student Essays 11

HC3 24,322 23,867 Q&A ChatGPT
XSum 3,259 5,991 1 News Articles  GPT-based

Table 2: Summary of the considered human- and machine-generated text data.

the intervention on the confounding neurons the
embeddings are collapsed and the detection model
is not able to separate the topics anymore.
Distribution of Confounding Neurons An inter-
esting aspect of confounding neurons in LLM-
generated text detection models is their distribu-
tion across the transformer layers of the detector
and the comparison with the intermediate neurons
that are more associated with the main detection
task. In Figure 4 we compare the distribution of
the top-50 confounding neurons and the top-50
“detection” neurons obtained by applying our neu-
ron attribution method to the classification token
[CLS] instead of the topic keywords. While the de-
tection neurons are concentrated almost exclusively
at the final layers, confirming a general observation
in mechanistic interpretability (Dai et al., 2022b;
Bereska and Gavves, 2024). In contrast, confound-
ing neurons are more prevalent in the initial layers,
suggesting that the model processes topic-related
concepts early on and then propagates this informa-
tion to the later layers for final detection.
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Figure 4: Distribution across layer of confounding neu-
rons (using IG scoring) and detection-relevant neurons.

Supervised vs. Unsupervised topic definition Un-
supervised topic modeling techniques are powerful
and scalable but may introduce strong spurious
correlations with the text detection task. As illus-
tratory example, we consider the DAIGT dataset
with known ground-truth topics and compute the
LDA with total components 1, = 2ngt where ng¢
is the number of ground-truth topics and 2 takes

into account the binary classification task.

As shown in Figure 12 in the Appendix, there is
a good correspondence between ground-truth top-
ics and LDA components with many components
including only one topic. In Figure 5, we show an
illustrative example. Many components seem to
separate very well the human and LLM-generated
texts. While components 7 and 26 map to a single
topic and present a balanced mix of the two classi-
fication labels (check Figure 12), components 15
and 24 separate perfectly the detection labels in the
same ground-truth topic.

c
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7 26 15 24
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Figure 5: LDA topic components can encode detection
label information, revealing intrinsic biases in human-
vs-LLM generated detection datasets.

It is reasonable to assume that components such
as 15 and 24 can be utilized to extract relevant neu-
rons for the detection task. Consequently, suppress-
ing these neurons would likely lead to a reduction
in detection accuracy, as it becomes challenging to
effectively separate topic-related confounding fac-
tors from detection related information. In contrast,
components like 7 and 26, which map to individual
topics and maintain label balance, are ideal candi-
dates for identifying confounding neurons.

Figure 6 confirms this hypothesis: a model
trained on components 15 and 24 (top) exhibits
a decrease in detection accuracy when our frame-
work is applied, whereas a model trained on compo-
nents 7 and 26 (bottom) shows the opposite effect.

Comparison of Different Neuron-level Rele-
vance Scoring.

We compare two different neuron-level rele-
vance scoring methods, as described §3.3. The
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Figure 6: Relative variation in detection accuracy on
the in-domain, out-of-sample (OOS), and two out-of-
distribution (OOD) test sets of removing the top-K
(K =1 — 50) confounding neurons when the model is
trained on LDA topics that are not disentangled from the
task labels (top) and when the topics are not informative
for the detection task (bottom).

Integrated Gradient 1G-based scoring method is
derive by Knowledge Neurons (Dai et al., 2022b),
meanwhile the Average Precision insipred by the
Expert Neurons (Suau et al., 2024). Both methods
aim to identify neurons that encode specific knowl-
edge directly related to the final task (e.g., text
generation). Our framework, however, is designed
to find confounding neurons, that capture spuri-
ous correlations rather than essential information,
helping to improve the model’s generalization.

A first comparison of IG- and AP-based relevant
scoring can be appreciate in Figure 14 (for AP) and
4 (for IG): we obtain a very similar distribution of
topic vs. detection neurons across layers.

A second comparison focuses on identifying con-
founding neurons. While the AP-based method
yields high scores and demonstrates near-perfect
topic classification capabilities (Figure 13), it is not
as effective as IG in identifying specific confound-
ing neurons according to our definition.

Interestingly though, as shown in Figure 7, the
AP-based method allows for the removal of even
30% of the total intermediate layer neurons in the
feed-forward networks of the transformer blocks
not only without loosing detection accuracy, but
even improving it up to almost 7% for the OOD
datasets. This kind of phenomenology is not new,
as it is known that transformer-based models for
NLP tasks are extremely redundant (Dalvi et al.,
2020), it is worth noting the striking differences in

the two neuron ranking approaches: the IG-based
attribution score is able to identify a few confound-
ing neurons that correspond to sudden jumps in
detection accuracy, while the AP-based score fail
to recover these specific neurons but allows for
an extreme pruning of the detector while reaching
OOD detection accuracy that is comparable or even
better than the IG-based approach.
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Figure 7: Effect on the in-domain, out-of-sample (OOS),
and two out-of-distribution (OOD) test sets of removing
the top-K (K = 1—50) confounding neurons computed
using the AP method for detection task.

5 Conclusions

Through extensive experiments, we demonstrated
that fine-tuning text detectors on specific domains
or topics can lead to the emergence of confounding
neurons: neurons that capture spurious correlations
associated with concepts orthogonal to the detec-
tion task. These confounding neurons significantly
compromise the model’s ability to generalize to
unseen domains and topics.

Our Framework shows that identifying and sup-
pressing a small number of these confounding neu-
rons within the intermediate layers of transformer-
based models can effectively mitigate this issue,
resulting in substantial improvements in out-of-
distribution performance. The proposed method
leverages simple yet effective neuron-relevance
scoring techniques, such as gradient-based attri-
bution and linear classification, without requiring
any retraining, making it scalable to larger models.

While the current focus is on LLM-generated
text detection, the proposed neuron-level interven-
tion framework is general and can be applied to
other text classification tasks where robustness to
domain shifts is crucial. Future work will investi-
gate extending this approach to a broader range of
classification challenges.



Limitations

While our proposed framework effectively im-
proves the generalization of LLM-generated text
detectors, it also presents several limitations. The
approach is primarily empirical, and we lack pre-
cise control over which confounding factors are
being captured. This limits our ability to fully ex-
plain the differences observed between the two
neuron-scoring methods (IG vs. AP) and to ensure
coverage of all relevant confounding dimensions
beyond topic and domain.

The datasets used for evaluation, although di-
verse, may not reflect the full complexity of real-
world scenarios. For instance, the performances
of LDA in separating labels suggest that existing
benchmarks might be relatively “easy,” lacking ad-
versarial examples or deeper semantic variation.
As a result, further evaluation on more challenging
and diverse datasets is necessary to better assess
robustness.

Our analysis also focuses exclusively on neurons
in the feed-forward layers of the transformer archi-
tecture, omitting attention mechanisms and other
components. While this already provide signifi-
cant improvements, incorporating other layers and
architectures could offer additional insights.

Moreover, all experiments are conducted using
a single model architecture (BERT) for exposition
clarity. Although this aligns with prior work and fa-
cilitates neuron-level analysis, confirming the gen-
erality of the framework across other architectures
such as ROBERTa or mBERT is an important direc-
tion for future research.

Finally, the framework currently relies on
keyword-based methods (LDA or supervised topic
extraction) to localize confounding neurons. This
assumes that spurious correlations are lexically
grounded, which may not hold for more abstract
or stylistic confounders. Developing alternative
approaches that leverage higher internal represen-
tations of the detection model (i.e. sparse autoen-
coder SAE) could help uncover a broader range
and more detailed confounding factors.
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A Appendix
A.1 Dataset details

As described in the main text, we consider three
datasets:
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* DAIGT: A large collection of student essays
covering 23 different topics, generated using 11
different models.

* HC3: A Q&A dataset where responses are gen-
erated by ChatGPT.

* XSum: A news summarization dataset with Al-
generated texts generated using GPT-based mod-
els.

DAIGT is particularly fit for our study since it
contains several labeled topics with limited overlap
and clear subjects. It’s a collection of 44868 essays,
27371 human and 17497 LLM-generated, from
different transformer-based models. In Table 3 we
report the different generators used and their text
frequencies. In Table 4 we report the topics and
their frequencies.

Generative Model Count
mistral7binstruct_v2 2,421
chat_gpt_moth 2,421
llama2_chat 2,421
mistral7binstruct_v1 2,421
kingkil9_palm 1,384
train_essays 1,378
llama_70b_v1 1,172
falcon_180b_v1 1,055
darragh_claude_v6 1,000
darragh_claude_v7 1,000
radek_500 500
NousResearch/Llama-2-7b-chat-hf 400
mistralai/Mistral-7B-Instruct-v0.1 400
cohere-command 350
palm-text-bisonl 349
radekgpt4 200

Table 3: DAIGT Generative Models

HC3 is a corpus of 48185 texts, with 24320 hu-
man and 23865 generated by ChatGPT (GPT 3.5).

Xsum is a balanced dataset of 6000 news, 3000
human and 3000 generated using GPT-based mod-
els, and it does not contain topic labels.

A.2 Additional Experiments

To confirm the validity of our approach, we tested
our framework in different training settings. First,
we trained the model on DAIGT varying the num-
ber of training topics, and considered the case of 4
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Topic Count
Distance learning 5554
Seeking multiple opinions 5176
Car-free cities 4717
Does the electoral college work? 4434
Facial action coding system 3084
Mandatory extracurricular activities 3077
Summer projects 2701
Driverless cars 2250
Exploring Venus 2176
Cell phones at school 2119
Grades for extracurricular activities 2116
Community service 2092
"A Cowboy Who Rode the Waves" 1896
The Face on Mars 1893
Phones and driving 1583

Table 4: DAIGT Topics

Topic Count
reddit eli5 33769
finance 7866
medicine 2493
open ga 2373
wiki csai 1684

Table 5: HC3 Topics

different topics instead of 2. Results are shown in
Figure 8

—#— 00S (DAIGT)

00D (HC3)

== 00D (Xsum)

Acc.=0.76 (+3.50)

3.5 Acc.=0.87 (+3.50)

3.0
I

~ 25

2.0

Acc.=0.93 (+1.30)

0 10 20 30

Neurons suppressed

40

Figure 8: Accuracy gain in a human-vs-LLM detec-
tor BERT-based removing the top-K (K = 1 — 50)
confounding neurons. DAIGT as training set with 4
different supervised topics.

In a different experiment, Figure 9, we train on
2 topics of HC3 and test on DAIGT and XSum as
OQOD test sets. We note that using HC3 as train
set makes the extraction of confounding neurons
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more challenging since the labeled topics are ac-
tually different sources of human-generated texts,
and consequently there may be more overlap across
topics. Interestingly, the best improvement in detec-
tion accuracy is obtained for the OOS data, while
the XSum OOD has always a very high accuracy
score.

—#— 00S (HC3)

00D (DAIGT) === OOD (Xsum)

Acc.=0.74 (+4.10)

Acc.=0.88 (+0.60)

Accuracy gain (%)

Acc.=0.91 (-0.20)

0 10

20 30
Neurons suppressed

40 50

Figure 9: Accuracy gain in a human-vs-LLM detector
BERT-based removing the top-K (K = 1 — 50) con-
founding neurons. HC3 as training set.

In table 6 we report a summary of the results for
all the experiments, indicating the absolute values
for accuracy in OOS and OOD (best of the two),
both for My and M,. When topics are unsuper-
vised and computed using LDA we denote with
(LDA 1) when it is expected to see an improvement
in generalization and (LDA |) when we expect
a reduction in detection accuracy because the ex-
tracted components do not allow a disentanglement
of topic and label, as described in the main text.
Detection Neurons: In Figure 4 in the main text we
discuss “detection” neurons, that is, neurons that
are most related to the detection task and are well
separated from the confounding neurons. Even if
these neurons are in fact connected to the detection
accuracy (see Figure 10), the focus of our study
is to improve the OOD generalization by remov-
ing spurious data-related and domain biases and
not acting on the neurons directly involved in the
detection.

Finally, in Figure 11 we report the same embed-
ding projection of Figure 3 color-coded for the text
label.

A.3 Implementation and Training Details

We use the transformers python package with
torch backend. The detector is a pretrained
bert-base-cased sequence classification model,
fine-tuned on the training dataset Dy,q;, for 4



Train dataset  # Train topics  Scoring My OOS M, OOD M, OOS M, OOD # Neurons
DAIGT 2 IG 0.92 0.76 0.95 0.83 50
DAIGT 4 IG 0.92 0.72 0.93 0.76 50
HC3 2 IG 0.69 0.87 0.74 0.88 50
DAIGT 2 AP 0.93 0.76 0.95 0.82 10000
DAIGT 2 (LDA 1) IG 0.96 0.75 0.97 0.77 50
DAIGT 2 (LDA ) IG 0.88 0.76 0.86 0.70 50

Table 6: Summary of experiments.
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Figure 10: Accuracy variation in a human-vs-LLM de-
tector BERT-based removing the top-K (K =1 — 50)
detection-relevant neurons.
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Figure 11: UMAP projection of the classification em-
bedding space for M (left panels) and M), (right pan-
els). Colors indicate human (blue) and LLM (red) gen-
erated texts.

epochs, with AdamW optimizer, learning rate Ir =
2-107° and batch size bs = 32. Since BERT has a
maximum positional encoding of 512, we consider
up to the first 512 tokens for each text. In all exper-
iments we consider 5 top keywords for each topic
for topic relevance scoring.

A.4 Topics and Keywords Extraction

Supervised - TF-IDF: As detailed in the main text,
in case of data with given ground-truth topics we
extract the topic keywords by means of TF-IDF,
that is, a well known statistical measure used to
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evaluate the importance of a word in a document
relative to a collection of documents (a corpus). It
assigns a weight to each term in a document based
on how frequently it appears in that specific docu-
ment (Term Frequency) and how rare it is across all
documents in the corpus (Inverse Document Fre-
quency). TF-IDF gives a higher weight to terms
that are frequent in a specific document but infre-
quent across the entire corpus. This helps to iden-
tify keywords that best characterize the content of
a document.
Unsupervised - LDA: In case the considered train-
ing data do not have topic information, we employ
Latent Dirichlet Allocation (LDA). LDA is a gener-
ative probabilistic model used for topic modeling.
It is an unsupervised machine learning algorithm
that aims to discover the underlying “topics” that
occur in a collection of documents. LDA works
by analyzing the co-occurrence of words within
documents. It attempts to find groups of words that
frequently appear together across different docu-
ments, inferring these groups as underlying latent
topics. The model then determines the topic mix-
ture for each document and the word distribution
for each topic.

In Figure 12 we show the results when LDA to
the whole DAIGT dataset as described in the main
text and compared to the ground-truth topics.

A.5 Scoring Methods

Integrated Gradients. Integrated Gradients (IG)
(Sundararajan et al., 2017) is an axiomatic attri-
bution method used to explain the predictions of
deep neural networks. It aims to determine the
contribution of each input feature to the model’s
output. The core idea is to calculate the integral
of the gradients of the model’s output with respect
to the input features, along a straight path from a
baseline input to the actual input. The baseline is
typically set to zero.

Mathematically, for an input z, a baseline 2/,
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Figure 12: Distribution of the DAIGT corpus by LDA components and ground-truth topics. The number of
components is given by # components = 2 - # ground-truth topics

and a model F, the attribution for the i-th feature
x; 1s defined as:

1
(i)
a=0

Here, « interpolates between the baseline and the
input. Following Dai et al. (2022b), we consider
a Riemann approximation of the Integrated Gradi-
ents where the integral is substituted by a discrete
summation. In our experiments we found that al-
ready for 5 summation steps the results provide a
good trade-off between computation cost and result
accuracy.

Average Precision Following Cuadros et al. (2022),
for each neuron we treat the activation value as the
output prediction score of a linear classifier, and
compute the Average Precision score (AP), that is,
the area under the precision-recall curve using as
output labels described in the main text. In Fig-
ure 13 we show the AP scores for each neuron
when the detector is fine-tuned on DAIGT con-
sidering two topics. The surprising general high
values of the AP score seem to indicate that almost
half of all the MLPs neurons encode the ability to
discriminate topics, in agreement with the results
shown in the main text.

In Figure 14 we show the distribution of the most
important 500 neurons using the AP score. In agree-
ment with IG, most of the important confounding
neurons are in the early layers of the detector, con-
trary to the detection neurons.
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Figure 13: Distribution of the Average Precision scores
for all MLP neurons across all layers.
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Figure 14: Distribution across layer of confounding
neurons and detection-relevant neurons obtained using
the AP score.
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