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Abstract001

Detectors of LLM-generated text suffer from002
poor domain shifts generalization ability. Yet,003
reliable text detection methods in the wild004
are of paramount importance for plagiarism005
detection, integrity of the public discourse,006
and AI safety. Linguistic and domain con-007
founders introduce spurious correlations, lead-008
ing to poor out-of-distribution (OOD) perfor-009
mance. In this work we introduce the con-010
cept of confounding neurons, individual neu-011
rons within transformers-based detectors that012
encode dataset-specific biases rather than task-013
specific signals. Leveraging confounding neu-014
rons, we propose a novel post-hoc, neuron-015
level intervention framework to disentangle016
AI-generated text detection factors from data-017
specific biases. Through extensive experiments018
we prove its ability to effectively reduce topic-019
specific biases, enhancing the model’s ability020
to generalize across domains.021

1 Introduction022

The rapid development of Large Language Models023

(LLMs) has revolutionized natural language pro-024

cessing (NLP), allowing machines to produce text025

that mirrors human writing in coherence and con-026

textual relevance. However, as LLMs become in-027

creasingly sophisticated, identifying AI-generated028

text poses a critical challenge (Wu et al., 2025a;029

Zhou and Wang, 2024). This task is particularly030

pressing in contexts such as academic integrity, mis-031

information detection, authorship attribution, and032

cybersecurity, where the misuse of AI-generated033

content raises ethical and societal issues (Beigi034

et al., 2024; Gui et al., 2025). Despite advance-035

ments in AI detection methods, state-of-the-art036

(SOTA) systems still exhibit significant general-037

ization failures, especially when applied across di-038

verse domains, languages, and models (Wu et al.,039

2025a; Gritsai et al., 2024).040

Detection methodologies for AI-generated text,041

based on fine-tuned transformer models (e.g.,042
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Figure 1: Accuracy gain in a human-vs-LLM detector
BERT-based removing the top-K (K = 1 − 50) con-
founding neurons. Removing as few as 20 (∼ 0.05%)
confounding neurons in the feed-forward MLPs interme-
diate layers results in up to a 6.9% improvement in the
test sets (in-domain, out-of-sample (OOS), and two out-
of-distribution (OOD)). The shaded area around zero
corresponds to the random baseline.

RoBERTa, XLM-R), achieve high accuracy (>99%) 043

on controlled datasets, their performance on out-of- 044

distribution (OOD) data remains unreliable, limit- 045

ing their applicability in real-world scenarios (Wu 046

et al., 2025a; Wang et al., 2024b). 047

Recent benchmarks, such as M4 (Multi- 048

Generator, Multi-Domain, Multi-Lingual) (Wang 049

et al., 2024b) and the GenAI Content Detection 050

Tasks (Lekkala et al., 2025), have underscored the 051

fragility of current detectors, particularly in cross- 052

domain generalization (Xu et al., 2024; Guo et al., 053

2024). 054

Detectors struggle with generalization due to lin- 055

guistic and domain confounders, which introduce 056

spurious correlations that bias detection models 057

(Dai et al., 2022a; Voita et al., 2024). Linguistic 058

confounders, such as sentence length and lexical 059

diversity, reflect training data artifacts rather than 060

intrinsic AI text features, leading to poor out-of- 061

distribution (OOD) performance (Leng and Xiong, 062

2025; Wu et al., 2025b). 063
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Domain confounders further complicate detec-064

tion by linking AI-generated text with specific top-065

ics or styles rather than universal generation pat-066

terns (Wang et al., 2024b; Doughman et al., 2025).067

For instance, detectors trained on academic AI text068

often fail with news articles, revealing a lack of069

cross-domain robustness (Wang et al., 2024b).070

We propose a neuron-level framework of071

training-based AI text detectors, leveraging the con-072

cept of Confounding Neurons: specific neuronal073

activations that encode dataset-specific biases (Pan074

et al., 2024; Voita et al., 2024). By systematically075

identifying these neurons, we can analyze how and076

where spurious correlations emerge in detectors, en-077

abling the development of generalizable detection078

strategies that prioritize intrinsic textual features079

rather than dataset-dependent artifacts. We show080

an example of the effectiveness of our approach in081

Figure 1.082

Emerging research indicates that LLMs encode083

knowledge, writing styles, and topic preferences084

within specific neurons (Dai et al., 2022b; Tang085

et al., 2024; Zhao et al., 2025). While prior work086

has examined neurons in the context of knowl-087

edge storage and language generation, their role in088

AI-generated text detection remains largely unex-089

plored. Given that AI text detectors unintentionally090

encode dataset-specific biases, understanding their091

neuronal activations is crucial for disentangling092

the detection task from these confounding factors.093

We focus on computationally inexpensive and vali-094

dated techniques within Knowledge Editing (Wang095

et al., 2024a) to build a framework for interven-096

ing at the neuronal level, enabling more reliable097

detection systems that generalize across text distri-098

butions.099

Contributions This study advances robust100

LLM–generated text detection through the follow-101

ing contributions:102

• Introduction of confounding neurons in the103

context of LLM-generated text detection.104

• Development of an experimental framework105

for identifying and mitigating confounding106

neurons to improve detector performance.107

• Analysis of neuron localization, showing that108

early-layer neurons can boost OOD accuracy109

while maintaining in-domain performance110

• Evaluation of neuron-ranking methods, iden-111

tifying critical neurons whose removal en-112

hances generalization and accuracy. 113

2 Related Works 114

Detection methods are mainly categorized into Sta- 115

tistical methods, Neural-based and LLM-based de- 116

tectors. Statistical methods detect AI-generated 117

text by analyzing linguistic features such as per- 118

plexity, n-gram frequency, or token distribution 119

(Hamed and Wu, 2024; Yang et al., 2024). These 120

methods are computationally efficient and perform 121

well for simple LLMs, but their effectiveness de- 122

creases when faced with larger more advanced mod- 123

els (Wu et al., 2025a). Neural-based detectors, em- 124

ploying transformer architectures like BERT (De- 125

vlin et al., 2019), RoBERTa (Zhuang et al., 2021), 126

and XLM-R (Chi et al., 2022), achieve high accu- 127

racy (often exceeding 99%) on controlled datasets 128

(Zeng et al., 2024). However, their performance de- 129

grades significantly on out-of-distribution (OOD) 130

data, revealing limited generalization (Wu et al., 131

2025a). 132

A fundamental challenge for detection systems is 133

achieving OOD robustness. Despite their high accu- 134

racy within specific domains, neural detectors strug- 135

gle with diverse text types (Wang et al., 2024b), as 136

linguistic and domain confounders introduce spuri- 137

ous correlations that hinder generalization across 138

domain shifts (Wu et al., 2025a; Dai et al., 2022a). 139

Generalization in AI-Generated Text Detection 140

In this direction, Wang et al. (2024b) introduced 141

the M4 benchmark, a large-scale dataset designed 142

to evaluate detection models across multiple AI 143

generators and linguistic styles. Their findings re- 144

vealed that most models exhibit severe performance 145

degradation when tested on OOD data. 146

Similarly, Lekkala et al. (2025) investigated 147

domain-specific biases in AI text detection, demon- 148

strating that models trained on one dataset struggle 149

to adapt to new text domains. Gritsai et al. (2024) 150

reinforced these findings by analyzing dataset 151

quality issues, concluding that models are often 152

trained on unrepresentative samples, leading to 153

poor real-world adaptability. Wu et al. (2025b) 154

benchmarked several detection techniques in real- 155

world settings, revealing that even high-performing 156

models struggle with cross-domain generalization. 157

Gui et al. (2025) proposed AIDER, a robust topic- 158

independent model that generalizes well across 159

multiple domains using domain adaptation tech- 160

niques. 161

Studies such as Fraser et al. (2025) and Dough- 162
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man et al. (2025) have also shown that detection163

models perform poorly on short-form AI-generated164

content, such as news articles, where stylistic dif-165

ferences between AI- and human-generated text are166

less pronounced. Lee et al. (2024) demonstrated167

that reward-based learning techniques can improve168

robustness, but even these models fail when con-169

fronted with adversarially optimized text.170

Neuron-Level Interpretability and Detection171

A rapidly growing area in LLMs interpretability172

research have explored how neurons can store fac-173

tual knowledge and respond to specific concepts174

and how we can exploit these findings to perform175

model interventions, that is, local modifications of176

a LM performed after training for improving ef-177

ficiency, knowledge editing, or unlearning (Wang178

et al., 2024a). We can roughly categorize knowl-179

edge discovery in transformer-based models in180

activation-based (Voita et al., 2024), attribution-181

based (Dai et al., 2022b), and probing (Gurnee182

et al., 2023).183

In Suau et al. (2024), neural intervention is used184

to reduce toxic outputs in text generation tasks,185

Tang et al. (2024) argue that a small subset of186

neurons is responsible for language selection in187

multilingual models. Chen et al. (2025) employ188

attribution-based methods for finding clusters of189

query-relevant neurons in LLMs for long-form190

texts, while Dai et al. (2022a) use gradient-based191

methods to trace neurons connected to syntactic192

phenomena and discuss the practical relevance of193

interventions on those neurons. To the best of our194

knowledge, this is the first study of confounding195

neurons in text detection systems.196

3 Methods197

The guiding hypothesis is that the cross-domain198

fragility of modern AI–text detectors originates199

in a small, localized subset of neurons whose ac-200

tivity encodes linguistic and domain confounders201

rather than generation source-specific signals. If202

these neurons are identified and "deactivated" af-203

ter training in a post-hoc approach, the detector204

should preserve in-domain accuracy while exhibit-205

ing better generalization to unseen text distribu-206

tions. To examine this hypothesis, we propose207

a model-agnostic framework (Figure 2) based on208

neuron-level intervention:209

1. Domain-aware data partitioning210

(§3.1): construct a three-way split211

(train / in-domain / OOD) that effectively212

separates domains and topics, enabling 213

controllable distribution shifts. 214

2. Detector Training (§3.2) : fine-tune a pre- 215

trained transformer (BERT in our running ex- 216

ample) on the training split to obtain the refer- 217

ence model M0. 218

3. Confounding-neuron discovery (§3.3): Iden- 219

tify neurons correlated with domain-specific 220

cues by extracting topic-salient keywords, 221

scoring hidden units for keyword sensitiv- 222

ity, and aggregating scores through a label- 223

stratified top-K intersection. 224

4. Neuron patching / model steering (§3.4) : 225

mask the feed-forward layers of the trans- 226

former blocks at inference time to create a 227

patched model Mp effectively removing con- 228

founders from the inference path. 229

The framework allows for a controlled compari- 230

son between M0 and Mp on identical inputs; any 231

gain in OOD performance can thus be attributed 232

to the removal of the confounding neurons. The 233

remainder of this section details each stage, and §4 234

reports the empirical findings. 235

3.1 Domain-Aware Data Partitioning 236

We frame LLM-generated text detection as a binary 237

sequence-classification task over an open set of 238

textual domains. Given a labelled corpus 239

D = {(ti, yi)}Ni=1, yi ∈ {0 (human), 1 (LLM)}, 240

the goal is to learn a detector M0 : t 7→ [0, 1] that 241

predicts the origin –human or machine– of texts, 242

and exploit our framework to mitigate model degra- 243

dation when applied previously unseen texts do- 244

mains and topics. The degradation stems from spu- 245

rious cues, including linguistic confounders (e.g., 246

sentence length, lexical diversity) and domain con- 247

founders, where specific topics or styles are incor- 248

rectly linked to authorship (Doughman et al., 2025). 249

This work primarily addresses the latter. 250

To disentangle genuine generative signals from 251

these confounders, we impose a three-way partition 252

that can be in principle instantiated on any multi- 253

domain corpus. 254

Let J be the set of topics in domain A and choose 255

a random subset Jtrain ⊂ J . 256

Dtrain ={(t, y) | dom(t) = A, topic(t)∈Jtrain}, 257

DOOS ={(t, y) | dom(t) = A, topic(t)∈J \ Jtrain}, 258

DOOD ={(t, y) | dom(t) = B, topic(t)∈JOOD}, 259
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Figure 2: Confounding Neuron framework: Given a text corpus, for each topic we extract the most topic-related
keywords 1 , and from the output embeddings of each keyword we compute the relevance score of the transformer
MLPs’ neurons for each text 2 . The scores are aggregated across texts and keywords obtaining a relevance
score matrix for each neuron in each transformer layer 3 . Finally, the top-K neurons (Confounding Neuron) are
suppressed based on the score ranking in order to improve the classification accuracy 4 .

Split Domain(s) Topic(s)

Train (Dtrain) A Jtrain
OOS (DOOS) A Jtest = J \ Jtrain
OOD (DOOD) B ̸= A any JOOD

Table 1: Domain-aware three-way dataset partition.

where J ∩ JOOD = ∅ and A ̸= B. This partition260

controls both topic-level {Jtrain, J \ Jtrain, JOOD}261

and domain-level {A,B} distribution gaps.262

3.2 Detector263

In this work we assume to have a detector trained264

for the task of binary LLM-vs-human text classi-265

fication. In particular, we use a pre-trained trans-266

former encoder that has been fine-tuned only on the267

training split Dtrain. Unless otherwise specified, we268

take a BERT encoder followed by a fully-connected269

classification head, and refer to the resulting model270

as M0. This choice reflects standard practice in271

recent studies of AI-text detection and provides a272

clear reference point for the neuron-level analysis273

that follows. The purpose of selecting a single base-274

line detector is purely expository: it allows us to275

trace how neuron-level interventions modify a spe-276

cific network while clearly demonstrating that the277

framework can be applied to alternative detection278

models (e.g., RoBERTa, mBERT).279

3.3 Confounding-Neuron Discovery280

The aim of this stage is to pinpoint individual neu-281

rons whose activity tracks confounding factors, as282

topic, genre, length, surface style, rather than rele- 283

vant generation cues (Voita et al., 2024; Pan et al., 284

2024). We decompose the procedure into three 285

modular blocks that can be instantiated with either 286

unsupervised or supervised topic information. 287

(i) Relevant-token extraction. The goal is to 288

get a set K = {k = 1, . . . ,K} of topic-salient 289

token indices that are potentially irrelevant to the 290

detection. 291

Two alternative routes are available Supervised 292

or Unsupervised, depending if topic labels are 293

given in the considered corpus. For the supervised 294

case, Dtrain is divided by topics Jtrain and labels 295

{0, 1}. Within each slice, the top–K tokens are 296

retrieved and ranked by TF-IDF (term frequency- 297

inverse document frequency) weighting. In the 298

unsupervised setting, Latent Dirichlet Allocation 299

(LDA) (Blei et al., 2003) is applied to Dtrain, retain- 300

ing the top-K tokens with the highest component 301

probability from each latent components 302

(ii) Neuron-level relevance scoring. Consider- 303

ing a BERT-based detector, each transformer block 304

contains an intermediate dense layer in its feed- 305

forward network (FFN); we examine the H=3072 306

hidden units of each of its L=12 transformer lay- 307

ers, which are known to store factual, stylistic, and 308

topic features (Dai et al., 2022b; Pan et al., 2024). 309

For each transformer block ℓ ∈ 1, . . . , L and 310

each neuron h ∈ 1, . . . ,H , let aℓh(tik) denote the 311

activation of neuron (ℓ, h) (prior to applying the 312

nonlinearity) for the token at position j in the i-th 313

input text. The first is the Integrated Gradient (IG) 314
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(Sundararajan et al., 2017). For each text in a sam-315

ple xi ∈ D̂train ⊂ Dtrain and topic-related keyword316

index k ∈ K(xi), the IG score is computed as:317

wIG
iℓhk = IG

(
aℓh(tik)

)
,318

The second is the topic-prediction Average Pre-319

cision score (AP), inspired by (Suau et al.,320

2024). Given the train corpus Dtrain, we build321

|Jtrain| complementary labeled datasets Dj =322

{(xi, ci)}Ni=i, j ∈ Jtrain, where ci = j. For each323

neuron (ℓ, h) and keyword k of an input text xi of324

topic ci, the activation value aℓh(tik) is used as a325

one-vs-rest predictor of ci, and the relevance score326

is then given by the Average Precision score (AP)327

over Dj with j ∈ Jtrain:328

wAP
jℓhk = AP ({(aℓh(tik), ci), (xi, ci) ∈ Dj})329

The tensor w is then reduced across texts and330

either the keywords dimension for IG or the topic331

dimension for AP, yielding an L×H importance332

matrix from which the confounding-neuron ordered333

sequence C is derived.334

(iii) Score aggregation. Several aggregation335

strategies can map the w relevance tensor onto the336

L×H final neuron relevance representation, taking337

into account that we want to simultaneously mini-338

mize the importance of the selected neurons for the339

final text detection task. We adopt a label-stratified340

top-K intersection scheme that pinpoints neurons341

whose largest relevant score are driven by topic342

keywords in both classes, as a proxy for a purely343

spurious correlation. Namely, for each text label344

y ∈ {0, 1} we take the maximum across all the ex-345

tra dimensions (qualitatively similar results are ob-346

tained by taking the mean) and we keep the top-K ′347

highest scoring indices, obtaining two ordered lists348

R(0) and R(1). The final relevance score matrix349

entries Slh are obtained by taking the intersection350

R(0) ∩R(1) while assigning the maximum scores351

between the two labels for each neuron, keeping352

the top-K with K ≤ K ′ indices, and setting all the353

other indices to zero.354

Finally, from the matrix S we obtain the or-355

dered confounding neurons sequence C = ⟨(ℓ, h) |356

Sℓh ≥ 0⟩ that highlights hidden units that consis-357

tently align with topic keywords across both author358

labels, making them prime candidates for the patch-359

ing intervention in §3.4.360

3.4 Neuron Patching and Model Steering361

From the confounding neurons sequence C, we362

intervene on the baseline detector M0 without363

touching any other parameters. We define a bi- 364

nary mask mℓ ∈ {0, 1}H for each block such that 365

mℓ[h] = 1 ⇐⇒ (ℓ, h) ∈ C. The mask is frozen 366

and applied at run time; no additional learning is 367

performed. For every input text t and block ℓ, let 368

aℓ(t) ∈ RH be the activations of the intermediate 369

feed-forward layer (see §3.3). We apply: 370

ãℓ(t) = (1−mℓ)⊙ aℓ(t) +mℓ ⊙ g
(
aℓ(t)

)
, (1) 371

where g(·) is a patching policy. Several policies can 372

be applied (Wang et al., 2024a; Voita et al., 2024; 373

Pan et al., 2024), such as hard ablation g(a) = 0, 374

soft scaling g(a) = αa, 0 < α < 1, or noise in- 375

jection. In this work we consider the hard ablation, 376

that is, the complete suppression of the considered 377

neuron obtaining the final patched detector Mp. 378

4 Experiments 379

In this section, we evaluate the proposed neuron- 380

level intervention framework for LLM-generated 381

text detection1. The experiments are designed to 382

assess the efficacy of our approach in addressing 383

domain generalization challenges. 384

We aim to answer three research questions: 385

RQ1 Localisation & distribution: where are con- 386

founding signals concentrated, and how do 387

they spread across layers? 388

Finding: Just 20 neurons in the early trans- 389

former blocks govern up to +7% accuracy 390

gains on OOD text, while leaving in-domain 391

performance intact, meanwhile, task-relevant 392

“detection” neurons cluster almost exclusively 393

in the final layers (Fig. 1, Fig. 4). 394

RQ2 Representation geometry: how does sup- 395

pressing confounding neurons reshape the de- 396

tector’s embedding space? 397

Finding: Patching collapses topic-driven clus- 398

ters in the classification embedding space, and 399

increasing detector specificity on unseen do- 400

mains (Fig. 3). 401

RQ3 Attribution robustness: do different neuron- 402

ranking methods yield consistent improve- 403

ments and similar high-leverage neurons? 404

Finding: Integrated Gradients exposes a hand- 405

ful of neurons whose removal causes stepwise 406

accuracy jumps, whereas probing allows to 407

1Code available at https://anonymous.4open.
science/r/confounding_neurons-1EC2
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pruning up to ∼ 30% of the FFN units with408

comparable OOD gains (Fig. 7).409

4.1 Dataset description410

To evaluate the proposed neuron-level intervention411

framework, we conduct experiments using three412

publicly available datasets commonly used in LLM-413

generated text detection: DAIGT2, HC3 (Guo et al.,414

2023), and XSum from Li et al. (2024). These415

datasets differ significantly in text type, generation416

methods, and domain, allowing for a robust evalua-417

tion of out-of-distribution (OOD) generalization.418

DAIGT is a large collection of student essays419

based on the Persuade corpus (Crossley et al.,420

2024), covering 23 different topics, generated using421

11 different models. HC3 is a Q&A dataset where422

responses are generated by ChatGPT. XSum is a423

news summarization dataset with texts generated424

using GPT-based models. We summarize the key425

statistics of each dataset in Table 2.426

In all the experiments, we select a subset of top-427

ics/domains from a given dataset such as DAIGT428

or HC3 that constitute the training dataset Dtrain429

for training the base detector M0. The split is per-430

formed with the Domain-Aware Data Partitioning431

§3.1. We note that even if the absolute performance432

of the detector is not important in our work, we al-433

ways obtain a in-domain, in-sample test accuracy434

above 97%, in line with state-of-the-art models.435

After training, the topics excluded from train on436

the same dataset constitute the OOS test set, and437

the remaining datasets constitute the OOD test sets.438

4.2 Results439

To evaluate the proposed framework, we conducted440

extensive experiments using multiple datasets §4.1441

and various framework configurations §3. To ad-442

dress the main research questions, we present spe-443

cific instantiations of the framework in the main444

text, while additional parameterizations and experi-445

mental variations are provided in the appendix §A.446

Detection Generalization Improvement In Figure447

1 we show an example of the efficacy of our method448

in identifying relevant confounding neurons. We449

fine-tune the detector on two topics of the DAIGT450

dataset ("car-free cities" and "distance learning")451

and use Integrated Gradients (IG) to identify the452

most important confounding neurons as described453

in §3. We then proceed to gradually remove the454

top-K neurons (here K = 50) one at the time and455

2https://www.kaggle.com/datasets/thedrcat/daigt-v4-
train-dataset

observe the difference in detection accuracy for 456

three test sets, i.e., DAIGT samples from different 457

topics (OOS), HC3 (OOD), and Xsum (OOD). We 458

observe that removing as few as 20 neurons can 459

bring an improvement in detection accuracy up to 460

7% in texts OOS and 3% in OOD, with specific 461

single neurons responsible for sudden jumps of 462

around 3% in OOS detection accuracy. The shaded 463

area acts as a baseline and depicts the effect of 464

randomly suppressing neurons from intermediate 465

layers, showing minimal effects in the overall ac- 466

curacy, as expected. 467

Figure 3: UMAP projection of the classification embed-
ding space for M0 (left panels) and Mp (right panels)
on Dtrain (top) and DOOD (bottom).

In Figure 3 we show a 2D representation of the 468

output [CLS] embeddings, that is, the input to the 469

final classification layer, obtained using UMAP 470

for the DAIGT Train (top) and HC3 OOD test 471

(bottom) datasets both without intervention (left 472

panel) and after removing the top-2 confounding 473

neurons found by our method (right panel). Each 474

dot represents a textand each color represents a 475

topic. For the top panel, human- and machine- 476

generated texts are well separated, with machine- 477

generated texts being almost perfectly clustered on 478

the left (see Figure 11 in the Appendix). For the 479

bottom panel, the labels are less well separated, as 480

expected, with right-top lobe is most associated to 481

machine-generated texts. As shown, the original 482

model clusters well the topics of each text, but after 483
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Dataset Name # Humans # Machine Confounders/Topics Text Type Generators

DAIGT 27,371 17,497 23 Student Essays 11
HC3 24,322 23,867 5 Q&A ChatGPT
XSum 3,259 5,991 1 News Articles GPT-based

Table 2: Summary of the considered human- and machine-generated text data.

the intervention on the confounding neurons the484

embeddings are collapsed and the detection model485

is not able to separate the topics anymore.486

Distribution of Confounding Neurons An inter-487

esting aspect of confounding neurons in LLM-488

generated text detection models is their distribu-489

tion across the transformer layers of the detector490

and the comparison with the intermediate neurons491

that are more associated with the main detection492

task. In Figure 4 we compare the distribution of493

the top-50 confounding neurons and the top-50494

“detection” neurons obtained by applying our neu-495

ron attribution method to the classification token496

[CLS] instead of the topic keywords. While the de-497

tection neurons are concentrated almost exclusively498

at the final layers, confirming a general observation499

in mechanistic interpretability (Dai et al., 2022b;500

Bereska and Gavves, 2024). In contrast, confound-501

ing neurons are more prevalent in the initial layers,502

suggesting that the model processes topic-related503

concepts early on and then propagates this informa-504

tion to the later layers for final detection.

2 4 6 8 10 12
Layer

0.0

0.2

0.4

0.6

Fr
ac

tio
n

Confounding Neurons
Detection Neurons

Figure 4: Distribution across layer of confounding neu-
rons (using IG scoring) and detection-relevant neurons.

505
Supervised vs. Unsupervised topic definition Un-506

supervised topic modeling techniques are powerful507

and scalable but may introduce strong spurious508

correlations with the text detection task. As illus-509

tratory example, we consider the DAIGT dataset510

with known ground-truth topics and compute the511

LDA with total components nc = 2ngt where ngt512

is the number of ground-truth topics and 2 takes513

into account the binary classification task. 514

As shown in Figure 12 in the Appendix, there is 515

a good correspondence between ground-truth top- 516

ics and LDA components with many components 517

including only one topic. In Figure 5, we show an 518

illustrative example. Many components seem to 519

separate very well the human and LLM-generated 520

texts. While components 7 and 26 map to a single 521

topic and present a balanced mix of the two classi- 522

fication labels (check Figure 12), components 15 523

and 24 separate perfectly the detection labels in the 524

same ground-truth topic.

7 26 15 24
LDA Component

Hu
m

an
LL

MLa
be

l

0.25
0.50
0.75

Figure 5: LDA topic components can encode detection
label information, revealing intrinsic biases in human-
vs-LLM generated detection datasets.

525
It is reasonable to assume that components such 526

as 15 and 24 can be utilized to extract relevant neu- 527

rons for the detection task. Consequently, suppress- 528

ing these neurons would likely lead to a reduction 529

in detection accuracy, as it becomes challenging to 530

effectively separate topic-related confounding fac- 531

tors from detection related information. In contrast, 532

components like 7 and 26, which map to individual 533

topics and maintain label balance, are ideal candi- 534

dates for identifying confounding neurons. 535

Figure 6 confirms this hypothesis: a model 536

trained on components 15 and 24 (top) exhibits 537

a decrease in detection accuracy when our frame- 538

work is applied, whereas a model trained on compo- 539

nents 7 and 26 (bottom) shows the opposite effect. 540

541

Comparison of Different Neuron-level Rele- 542

vance Scoring. 543

We compare two different neuron-level rele- 544

vance scoring methods, as described §3.3. The 545
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Figure 6: Relative variation in detection accuracy on
the in-domain, out-of-sample (OOS), and two out-of-
distribution (OOD) test sets of removing the top-K
(K = 1− 50) confounding neurons when the model is
trained on LDA topics that are not disentangled from the
task labels (top) and when the topics are not informative
for the detection task (bottom).

Integrated Gradient IG-based scoring method is546

derive by Knowledge Neurons (Dai et al., 2022b),547

meanwhile the Average Precision insipred by the548

Expert Neurons (Suau et al., 2024). Both methods549

aim to identify neurons that encode specific knowl-550

edge directly related to the final task (e.g., text551

generation). Our framework, however, is designed552

to find confounding neurons, that capture spuri-553

ous correlations rather than essential information,554

helping to improve the model’s generalization.555

A first comparison of IG- and AP-based relevant556

scoring can be appreciate in Figure 14 (for AP) and557

4 (for IG): we obtain a very similar distribution of558

topic vs. detection neurons across layers.559

A second comparison focuses on identifying con-560

founding neurons. While the AP-based method561

yields high scores and demonstrates near-perfect562

topic classification capabilities (Figure 13), it is not563

as effective as IG in identifying specific confound-564

ing neurons according to our definition.565

Interestingly though, as shown in Figure 7, the566

AP-based method allows for the removal of even567

30% of the total intermediate layer neurons in the568

feed-forward networks of the transformer blocks569

not only without loosing detection accuracy, but570

even improving it up to almost 7% for the OOD571

datasets. This kind of phenomenology is not new,572

as it is known that transformer-based models for573

NLP tasks are extremely redundant (Dalvi et al.,574

2020), it is worth noting the striking differences in575

the two neuron ranking approaches: the IG-based 576

attribution score is able to identify a few confound- 577

ing neurons that correspond to sudden jumps in 578

detection accuracy, while the AP-based score fail 579

to recover these specific neurons but allows for 580

an extreme pruning of the detector while reaching 581

OOD detection accuracy that is comparable or even 582

better than the IG-based approach.
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Figure 7: Effect on the in-domain, out-of-sample (OOS),
and two out-of-distribution (OOD) test sets of removing
the top-K (K = 1−50) confounding neurons computed
using the AP method for detection task.

583

5 Conclusions 584

Through extensive experiments, we demonstrated 585

that fine-tuning text detectors on specific domains 586

or topics can lead to the emergence of confounding 587

neurons: neurons that capture spurious correlations 588

associated with concepts orthogonal to the detec- 589

tion task. These confounding neurons significantly 590

compromise the model’s ability to generalize to 591

unseen domains and topics. 592

Our Framework shows that identifying and sup- 593

pressing a small number of these confounding neu- 594

rons within the intermediate layers of transformer- 595

based models can effectively mitigate this issue, 596

resulting in substantial improvements in out-of- 597

distribution performance. The proposed method 598

leverages simple yet effective neuron-relevance 599

scoring techniques, such as gradient-based attri- 600

bution and linear classification, without requiring 601

any retraining, making it scalable to larger models. 602

While the current focus is on LLM-generated 603

text detection, the proposed neuron-level interven- 604

tion framework is general and can be applied to 605

other text classification tasks where robustness to 606

domain shifts is crucial. Future work will investi- 607

gate extending this approach to a broader range of 608

classification challenges. 609
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Limitations610

While our proposed framework effectively im-611

proves the generalization of LLM-generated text612

detectors, it also presents several limitations. The613

approach is primarily empirical, and we lack pre-614

cise control over which confounding factors are615

being captured. This limits our ability to fully ex-616

plain the differences observed between the two617

neuron-scoring methods (IG vs. AP) and to ensure618

coverage of all relevant confounding dimensions619

beyond topic and domain.620

The datasets used for evaluation, although di-621

verse, may not reflect the full complexity of real-622

world scenarios. For instance, the performances623

of LDA in separating labels suggest that existing624

benchmarks might be relatively “easy,” lacking ad-625

versarial examples or deeper semantic variation.626

As a result, further evaluation on more challenging627

and diverse datasets is necessary to better assess628

robustness.629

Our analysis also focuses exclusively on neurons630

in the feed-forward layers of the transformer archi-631

tecture, omitting attention mechanisms and other632

components. While this already provide signifi-633

cant improvements, incorporating other layers and634

architectures could offer additional insights.635

Moreover, all experiments are conducted using636

a single model architecture (BERT) for exposition637

clarity. Although this aligns with prior work and fa-638

cilitates neuron-level analysis, confirming the gen-639

erality of the framework across other architectures640

such as RoBERTa or mBERT is an important direc-641

tion for future research.642

Finally, the framework currently relies on643

keyword-based methods (LDA or supervised topic644

extraction) to localize confounding neurons. This645

assumes that spurious correlations are lexically646

grounded, which may not hold for more abstract647

or stylistic confounders. Developing alternative648

approaches that leverage higher internal represen-649

tations of the detection model (i.e. sparse autoen-650

coder SAE) could help uncover a broader range651

and more detailed confounding factors.652
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A Appendix881

A.1 Dataset details882

As described in the main text, we consider three883

datasets:884

• DAIGT: A large collection of student essays 885

covering 23 different topics, generated using 11 886

different models. 887

• HC3: A Q&A dataset where responses are gen- 888

erated by ChatGPT. 889

• XSum: A news summarization dataset with AI- 890

generated texts generated using GPT-based mod- 891

els. 892

DAIGT is particularly fit for our study since it 893

contains several labeled topics with limited overlap 894

and clear subjects. It’s a collection of 44868 essays, 895

27371 human and 17497 LLM-generated, from 896

different transformer-based models. In Table 3 we 897

report the different generators used and their text 898

frequencies. In Table 4 we report the topics and 899

their frequencies.

Generative Model Count

mistral7binstruct_v2 2,421
chat_gpt_moth 2,421
llama2_chat 2,421
mistral7binstruct_v1 2,421
kingki19_palm 1,384
train_essays 1,378
llama_70b_v1 1,172
falcon_180b_v1 1,055
darragh_claude_v6 1,000
darragh_claude_v7 1,000
radek_500 500
NousResearch/Llama-2-7b-chat-hf 400
mistralai/Mistral-7B-Instruct-v0.1 400
cohere-command 350
palm-text-bison1 349
radekgpt4 200

Table 3: DAIGT Generative Models

900
HC3 is a corpus of 48185 texts, with 24320 hu- 901

man and 23865 generated by ChatGPT (GPT 3.5). 902

903

Xsum is a balanced dataset of 6000 news, 3000 904

human and 3000 generated using GPT-based mod- 905

els, and it does not contain topic labels. 906

A.2 Additional Experiments 907

To confirm the validity of our approach, we tested 908

our framework in different training settings. First, 909

we trained the model on DAIGT varying the num- 910

ber of training topics, and considered the case of 4 911
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Topic Count

Distance learning 5554
Seeking multiple opinions 5176
Car-free cities 4717
Does the electoral college work? 4434
Facial action coding system 3084
Mandatory extracurricular activities 3077
Summer projects 2701
Driverless cars 2250
Exploring Venus 2176
Cell phones at school 2119
Grades for extracurricular activities 2116
Community service 2092
"A Cowboy Who Rode the Waves" 1896
The Face on Mars 1893
Phones and driving 1583

Table 4: DAIGT Topics

Topic Count

reddit eli5 33769
finance 7866
medicine 2493
open qa 2373
wiki csai 1684

Table 5: HC3 Topics

different topics instead of 2. Results are shown in912

Figure 8
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Figure 8: Accuracy gain in a human-vs-LLM detec-
tor BERT-based removing the top-K (K = 1 − 50)
confounding neurons. DAIGT as training set with 4
different supervised topics.

913
In a different experiment, Figure 9, we train on914

2 topics of HC3 and test on DAIGT and XSum as915

OOD test sets. We note that using HC3 as train916

set makes the extraction of confounding neurons917

more challenging since the labeled topics are ac- 918

tually different sources of human-generated texts, 919

and consequently there may be more overlap across 920

topics. Interestingly, the best improvement in detec- 921

tion accuracy is obtained for the OOS data, while 922

the XSum OOD has always a very high accuracy 923

score. 924
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Figure 9: Accuracy gain in a human-vs-LLM detector
BERT-based removing the top-K (K = 1 − 50) con-
founding neurons. HC3 as training set.

In table 6 we report a summary of the results for 925

all the experiments, indicating the absolute values 926

for accuracy in OOS and OOD (best of the two), 927

both for M0 and Mp. When topics are unsuper- 928

vised and computed using LDA we denote with 929

(LDA ↑) when it is expected to see an improvement 930

in generalization and (LDA ↓) when we expect 931

a reduction in detection accuracy because the ex- 932

tracted components do not allow a disentanglement 933

of topic and label, as described in the main text. 934

Detection Neurons: In Figure 4 in the main text we 935

discuss “detection” neurons, that is, neurons that 936

are most related to the detection task and are well 937

separated from the confounding neurons. Even if 938

these neurons are in fact connected to the detection 939

accuracy (see Figure 10), the focus of our study 940

is to improve the OOD generalization by remov- 941

ing spurious data-related and domain biases and 942

not acting on the neurons directly involved in the 943

detection. 944

Finally, in Figure 11 we report the same embed- 945

ding projection of Figure 3 color-coded for the text 946

label. 947

A.3 Implementation and Training Details 948

We use the transformers python package with 949

torch backend. The detector is a pretrained 950

bert-base-cased sequence classification model, 951

fine-tuned on the training dataset Dtrain for 4 952

12



Train dataset # Train topics Scoring M0 OOS M0 OOD Mp OOS Mp OOD # Neurons
DAIGT 2 IG 0.92 0.76 0.95 0.83 50
DAIGT 4 IG 0.92 0.72 0.93 0.76 50
HC3 2 IG 0.69 0.87 0.74 0.88 50
DAIGT 2 AP 0.93 0.76 0.95 0.82 10000
DAIGT 2 (LDA ↑) IG 0.96 0.75 0.97 0.77 50
DAIGT 2 (LDA ↓) IG 0.88 0.76 0.86 0.70 50

Table 6: Summary of experiments.
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Figure 10: Accuracy variation in a human-vs-LLM de-
tector BERT-based removing the top-K (K = 1− 50)
detection-relevant neurons.
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Figure 11: UMAP projection of the classification em-
bedding space for M0 (left panels) and Mp (right pan-
els). Colors indicate human (blue) and LLM (red) gen-
erated texts.

epochs, with AdamW optimizer, learning rate lr =953

2 · 10−5 and batch size bs = 32. Since BERT has a954

maximum positional encoding of 512, we consider955

up to the first 512 tokens for each text. In all exper-956

iments we consider 5 top keywords for each topic957

for topic relevance scoring.958

A.4 Topics and Keywords Extraction959

Supervised - TF-IDF: As detailed in the main text,960

in case of data with given ground-truth topics we961

extract the topic keywords by means of TF-IDF,962

that is, a well known statistical measure used to963

evaluate the importance of a word in a document 964

relative to a collection of documents (a corpus). It 965

assigns a weight to each term in a document based 966

on how frequently it appears in that specific docu- 967

ment (Term Frequency) and how rare it is across all 968

documents in the corpus (Inverse Document Fre- 969

quency). TF-IDF gives a higher weight to terms 970

that are frequent in a specific document but infre- 971

quent across the entire corpus. This helps to iden- 972

tify keywords that best characterize the content of 973

a document. 974

Unsupervised - LDA: In case the considered train- 975

ing data do not have topic information, we employ 976

Latent Dirichlet Allocation (LDA). LDA is a gener- 977

ative probabilistic model used for topic modeling. 978

It is an unsupervised machine learning algorithm 979

that aims to discover the underlying “topics” that 980

occur in a collection of documents. LDA works 981

by analyzing the co-occurrence of words within 982

documents. It attempts to find groups of words that 983

frequently appear together across different docu- 984

ments, inferring these groups as underlying latent 985

topics. The model then determines the topic mix- 986

ture for each document and the word distribution 987

for each topic. 988

In Figure 12 we show the results when LDA to 989

the whole DAIGT dataset as described in the main 990

text and compared to the ground-truth topics. 991

A.5 Scoring Methods 992

Integrated Gradients. Integrated Gradients (IG) 993

(Sundararajan et al., 2017) is an axiomatic attri- 994

bution method used to explain the predictions of 995

deep neural networks. It aims to determine the 996

contribution of each input feature to the model’s 997

output. The core idea is to calculate the integral 998

of the gradients of the model’s output with respect 999

to the input features, along a straight path from a 1000

baseline input to the actual input. The baseline is 1001

typically set to zero. 1002

Mathematically, for an input x, a baseline x′,

13
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Figure 12: Distribution of the DAIGT corpus by LDA components and ground-truth topics. The number of
components is given by # components = 2 · # ground-truth topics

and a model F , the attribution for the i-th feature
xi is defined as:

IGi(x) ≡ (xi−x′i)×
∫ 1

α=0

∂M(x′ + α(x− x′))

∂xi
dα

Here, α interpolates between the baseline and the1003

input. Following Dai et al. (2022b), we consider1004

a Riemann approximation of the Integrated Gradi-1005

ents where the integral is substituted by a discrete1006

summation. In our experiments we found that al-1007

ready for 5 summation steps the results provide a1008

good trade-off between computation cost and result1009

accuracy.1010

Average Precision Following Cuadros et al. (2022),1011

for each neuron we treat the activation value as the1012

output prediction score of a linear classifier, and1013

compute the Average Precision score (AP), that is,1014

the area under the precision-recall curve using as1015

output labels described in the main text. In Fig-1016

ure 13 we show the AP scores for each neuron1017

when the detector is fine-tuned on DAIGT con-1018

sidering two topics. The surprising general high1019

values of the AP score seem to indicate that almost1020

half of all the MLPs neurons encode the ability to1021

discriminate topics, in agreement with the results1022

shown in the main text.1023

In Figure 14 we show the distribution of the most1024

important 500 neurons using the AP score. In agree-1025

ment with IG, most of the important confounding1026

neurons are in the early layers of the detector, con-1027

trary to the detection neurons.1028

0.40.60.81.0
AP Score

0

2000

4000

6000
Ne

ur
on

s C
ou

nt

Figure 13: Distribution of the Average Precision scores
for all MLP neurons across all layers.
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