
Published as a conference paper at ICLR 2023

MULTIFACTOR SEQUENTIAL DISENTANGLEMENT VIA
STRUCTURED KOOPMAN AUTOENCODERS

Nimrod Berman∗, Ilan Naiman∗, Omri Azencot
Department of Computer Science
Ben-Gurion University of the Negev
{bermann,naimani}@post.bgu.ac.il, azencot@cs.bgu.ac.il

ABSTRACT

Disentangling complex data to its latent factors of variation is a fundamental task
in representation learning. Existing work on sequential disentanglement mostly
provides two factor representations, i.e., it separates the data to time-varying and
time-invariant factors. In contrast, we consider multifactor disentanglement in
which multiple (more than two) semantic disentangled components are generated.
Key to our approach is a strong inductive bias where we assume that the underlying
dynamics can be represented linearly in the latent space. Under this assumption, it
becomes natural to exploit the recently introduced Koopman autoencoder models.
However, disentangled representations are not guaranteed in Koopman approaches,
and thus we propose a novel spectral loss term which leads to structured Koopman
matrices and disentanglement. Overall, we propose a simple and easy to code new
deep model that is fully unsupervised and it supports multifactor disentanglement.
We showcase new disentangling abilities such as swapping of individual static
factors between characters, and an incremental swap of disentangled factors from
the source to the target. Moreover, we evaluate our method extensively on two
factor standard benchmark tasks where we significantly improve over competing
unsupervised approaches, and we perform competitively in comparison to weakly-
and self-supervised state-of-the-art approaches. The code is available at GitHub.

1 INTRODUCTION

Representation learning deals with the study of encoding complex and typically high-dimensional
data in a meaningful way for various downstream tasks (Goodfellow et al., 2016). Deciding whether
a certain representation is better than others is often task- and domain-dependent. However, disen-
tangling data to its underlying explanatory factors is viewed by many as a fundamental challenge in
representation learning that may lead to preferred encodings (Bengio et al., 2013). Recently, several
works considered two factor disentanglement of sequential data in which time-varying features and
time-invariant features are encoded in two separate sub-spaces. In this work, we contribute to the
latter line of work by proposing a simple and efficient unsupervised deep learning model that performs
multifactor disentanglement of sequential data. Namely, our method disentangles sequential data to
more than two semantic components.

One of the main challenges in disentanglement learning is the limited access to labeled samples,
particularly in real-world scenarios. Thus, prior work on sequential disentanglement focused on
unsupervised models which uncover the time-varying and time-invariant features with no available
labels (Hsu et al., 2017; Li & Mandt, 2018). Specifically, two feature vectors are produced, represent-
ing the dynamic and static components in the data, e.g., the motion of a character and its identity,
respectively. Subsequent works introduce two factor self-supervised models which incorporate
supervisory signals and a mutual information loss (Zhu et al., 2020) or data augmentation and a
contrastive penalty (Bai et al., 2021), and thus improve the disentanglement abilities of prior baseline
models. Yamada et al. (2020) proposed a probabilistic model with a ladder module, allowing certain
multifactor disentanglement capabilities. Still, to the best of our knowledge, the majority of existing
work do not explore the problem of unsupervised multifactor sequential disentanglement.

∗joint first authors

1

https://github.com/azencot-group/SKD

Published as a conference paper at ICLR 2023

In the case of static images, multiple disentanglement approaches have been proposed (Kulkarni
et al., 2015; Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; 2016; Burgess et al., 2018;
Kumar et al., 2017; Bouchacourt et al., 2018). In addition, there are several approaches that support
disentanglement of the image to multiple distinct factors. For instance, Li et al. (2020) design an
architecture which learns the shape, pose, texture and background of natural images, allowing to
generate new images based on combinations of disentangled factors. In (Xiang et al., 2021), the
authors introduce a weakly-supervised framework where N factors can be disentangled, given N − 1
labels. In comparison, our approach is fully unsupervised, deals with sequential data and the number
of distinct components is determined by a hyperparameter.

Recently, Locatello et al. (2019) showed that unsupervised disentanglement is impossible without
inductive biases on models and datasets. While exploiting the underlying temporal structure had
been shown as a strong inductive bias in existing disentanglement approaches, we argue in this work
that a stronger assumption should be considered. Specifically, based on Koopman theory (Koopman,
1931) and practice (Budišić et al., 2012; Brunton et al., 2021), we assume that there exists a learnable
representation where the dynamics of input sequences becomes linear. Namely, the temporal change
between subsequent latent feature vectors can be encoded with a matrix that approximates the
Koopman operator. Indeed, the same assumption was shown to be effective in challenging scenarios
such as fluid flows (Rowley et al., 2009) as well as other application domains (Rustamov et al., 2013;
Kutz et al., 2016). However, it has been barely explored in the context of disentangled representations.

In this paper, we design an autoencoder network (Hinton & Zemel, 1993) that is similar to previous
Koopman methods (Takeishi et al., 2017; Morton et al., 2018), and which facilitates the learning of
linear temporal representations. However, while the dynamics is encoded in a Koopman operator, dis-
entanglement is not guaranteed. To promote disentanglement, we make the following key observation:
eigenvectors of the approximate Koopman operator represent time-invariant and time-variant factors.
Motivated by this understanding, we propose a novel spectral penalty term which splits the operator’s
spectrum to separate and clearly-defined sets of static and dynamic eigenvectors. Importantly, our
framework naturally supports multifactor disentanglement: every eigenvector represents a unique
disentangled factor, and it is considered static or dynamic based on its eigenvalue.

Contributions. Our main contributions can be summarized as follows.

1. We introduce a strong inductive bias for disentanglement tasks, namely, the dynamics of
input sequences can be encapsulated in a matrix. This assumption is backed by the rich
Koopman theory and practice.

2. We propose a new unsupervised Koopman autoencoder learning model with a novel spectral
penalty on the eigenvalues of the Koopman operator. Our approach allows straightforward
multifactor disentanglement via the eigendecomposition of the Koopman operator.

3. We extensively evaluate our method on new multifactor disentanglement tasks, and on several
two factor benchmark tasks, and we compare our work to state-of-the-art unsupervised and
weakly-supervised techniques. The results show that our approach outperforms baseline
methods in various quantitative metrics and computational resources aspects.

2 RELATED WORK

Sequential Disentanglement. Most existing work on sequential disentanglement is based on the
dynamical variational autoencoder (VAE) architecture (Girin et al., 2020). Initial attempts focused on
probabilistic models that separate between static and dynamic factors, where in (Hsu et al., 2017) the
joint distribution is conditioned on the mean, and in (Li & Mandt, 2018) conditioning is defined on
past features. Subsequent works proposed self-supervised approaches that depend on auxiliary tasks
and supervisory signals (Zhu et al., 2020), or on additional data and contrastive penalty terms (Bai
et al., 2021). In Han et al. (2021a), the authors replace the common Kullback–Leibler divergence with
the Wasserstein distance between distributions. Some approaches tailored to video disentanglement
use generative adversarial network (GAN) architectures (Villegas et al., 2017; Tulyakov et al., 2018)
and a recurrent model with adversarial loss (Denton & Birodkar, 2017). Finally, Yamada et al. (2020)
proposed a variational autoencoder model including a ladder module (Zhao et al., 2017), which
allows to disentangle multiple factors. The authors demonstrated qualitative results of multifactor
latent traversal between various two static features and three dynamic features on the Sprites dataset.

2

Published as a conference paper at ICLR 2023

χenc χdec

X Z

Zp

Zf

Z, Z̃

Xrec

X̃fC

Leig

Lrec

Lpred

Koopman Module

Figure 1: Our architecture is based on a Koopman autoencoder network which includes encoder
χenc, decoder χdec, and a Koopman module that computes the Koopman operator C via least squares
solves. We augment this model with a novel spectral penalty term Leig which facilitates the learning
of spectrally structured C matrices, and thus supporting multifactor disentanglement by construction.

Dynamics Learning. Over the past few years, an increasing interest was geared towards learning
and representing dynamical systems using deep learning techniques. Two factor disentanglement
methods based on Kalman filter (Fraccaro et al., 2017), and state-space models (Miladinović et al.,
2019) focus on ordinary differential equation systems. Other methods utilize the mutual information
between past and future to estimate predictive information Clark et al. (2019); Bai et al. (2020).
Mostly related to our approach are Koopman autoencoders (Lusch et al., 2018; Yeung et al., 2019;
Otto & Rowley, 2019; Li et al., 2019; Azencot et al., 2020; Han et al., 2021b), related to classical
learning methods, e.g., Azencot et al. (2019); Cohen et al. (2021). Specifically, in (Takeishi et al.,
2017; Morton et al., 2018; Iwata & Kawahara, 2020) the Koopman operator is learned via a least
squares solve per batch, allowing to train a single neural model on multiple initial conditions. We
base our architecture on the latter works, and we augment it with a novel spectral loss term which
promotes disentanglement. Recently, an intricate model for video disentanglement was proposed
in (Comas et al., 2021). While the authors employ Koopman techniques in that work, it is only
partially related to our work since they explicitly model pose and appearance components, whereas
our approach can model an arbitrary number of disentangled factors. In addition, their architecture
is based on the attention network (Bahdanau et al., 2014), where the Koopman module is mostly
related to prediction. In comparison, in our work the Koopman module is directly responsible for
unsupervised disentanglement of sequential data.

Koopman Spectral Analysis. Our method is based on learning Koopman operators with structured
spectra. Spectral analysis of Koopman operators is an active research topic (Mezić, 2013; Arbabi
& Mezic, 2017; Mezic, 2017; Das & Giannakis, 2019; Naiman & Azencot, 2023). We explore
Koopman eigenfunctions associated with the eigenvalue 1. These eigenfunctions are related to global
stability (Mauroy & Mezić, 2016), and to orbits of the system (Mauroy & Mezić, 2013; Azencot et al.,
2013; 2014). Other attempts focused on computing eigenfunctions for a known spectrum (Mohr &
Mezić, 2014). Recently, pruning weights of neural networks using eigenfunctions with eigenvalue 1
was introduced in (Redman et al., 2021). However, to the best of our knowledge, our work is among
a few to propose a deep learning model for generating spectrally-structured Koopman operators.

3 KOOPMAN AUTOENCODER MODELS

We recall the Koopman autoencoder (KAE) architecture introduced in (Takeishi et al., 2017) as it is
the basis of our model. The KAE model consists of an encoder and decoder modules, similarly to
standard autoencoders, and in between, there is a Koopman module. The general idea behind this
architecture is that the encoder and decoder are responsible to generate effective representations and
their reconstructions, driven by the Koopman layer which penalizes for nonlinear encodings.

We denote by X ∈ Rb×(t+1)×m a batch of sequence data {xij} ⊂ Rm where i ∈ {1, . . . , b} and
j ∈ {1, . . . , t+1} represent the batch sample and time indices, respectively. The tensor X is encoded
to its latent representation Z ∈ Rb×(t+1)×k via Z = χenc(X). The Koopman layer splits the latent
variables to past Zp and future Zf observations, and then, it finds the best linear map C such that

3

Published as a conference paper at ICLR 2023

Zp ·C ≈ Zf . Formally, Zp = (zij) ∈ Rb·t×k for j ∈ {1, . . . , t} and any i, and Zf = (zij) ∈ Rb·t×k

for j ∈ {2, . . . , t+1} and any i, i.e., Zp holds the first t latent variables per sample, and Zf holds the
last t variables. Then, C = argminC̃ |Zp ·C̃−Zf |2F = Z+

p Zf , where A+ denotes the pseudo-inverse
of the matrix A. Importantly, the matrix C is computed per Z during both training and inference,
and in particular, C is not parameterized by network weights. Additionally, the pseudo-inverse
computation supports backpropagation, and thus it can be used during training (Ionescu et al., 2015).
Lastly, the latent samples are reconstructed with the decoder Xrec = χdec(Z).

The above architecture employs reconstruction and prediction loss terms: the reconstruction loss
promotes an autoencoder learning, and the prediction loss aims to capture the dynamics in C. We use
the notation LMSE(X,Y) = 1

b·t
∑

i,j |Y (i, j)−X(i, j)|22 for the average distance between tensors
X,Y ∈ Rb×t×k for i ∈ {1, . . . , b} and j ∈ {1, . . . , t}. Then, the losses are given by

Lrec(Xrec, X) = LMSE(Xrec, X) , (1)

Lpred(Z̃f , Zf , X̃f , Xf) = LMSE(Z̃f , Zf) + LMSE(X̃f , Xf) , (2)

where Z̃f := Zp · C, X̃f := χdec(Z̃f), and Xf are the inputs corresponding to Zf latent variables.
The network loss is taken to be L = λrecLrec+λpredLpred, where λrec, λpred ∈ R+ balance between
the reconstruction and prediction contributions. We show in Fig. 1 an illustration of the Koopman
autoencoder architecture using the notations above.

4 MULTIFACTOR DISENTANGLING KOOPMAN AUTOENCODERS

How disentanglement can be achieved given the Koopman autoencoder architecture? For comparison,
other disentanglement approaches typically represent the disentangled factors explicitly. In contrast
the batch dynamics in KAE models is encoded in the approximate Koopman operator matrix C, where
C propagates latent variables through time while carrying the static as well as dynamic information.
Thus, the time-varying and time-invariant factors are still entangled in the Koopman matrix. We now
show that KAE theoretically enables disentanglement under the following analysis.

Koopman disentanglement. In general, one of the key advantages of Koopman theory and practice
is the linearity of the Koopman operator, allowing to exploit tools from linear analysis. Specifically,
our approach depends heavily on the spectral analysis of the Koopman operator (Mezić, 2005). In
what follows, we perform our analysis directly on C, and we refer the reader to App. A and the
references therein for a detailed treatment of the full Koopman operator. The eigendecomposition of
C consists of a set of left eigenvectors {ϕi ∈ Ck} and a set of eigenvalues {λi ∈ C} such that

ϕT
i C = λiϕ

T
i , i = 1, . . . , k . (3)

The eigenvectors can be viewed as approximate Koopman eigenfunctions, and thus the eigenvectors
hold fundamental information related to the underlying dynamics. For instance, the eigenvectors
describe the temporal change in latent variables. Formally,

zTj C =

k∑
i=1

⟨zTj , ϕT
i ⟩ϕT

i C =
∑
i

z̄ijλiϕ
T
i ≈ zTj+1 , j = 1, . . . , t , (4)

where z̄ij := ⟨zTj , ϕT
i ⟩ is the projection of zTj on the eigenvector ϕT

i . The approximation follows from
C being the best (and not necessarily exact) linear fit between past and future features. Moreover, it
follows that predicting step j + r from j is achieved simply by applying powers of the Koopman
matrix on zTj , i.e., zTj C

r =
∑

i z̄
i
jλ

r
iϕ

T
i ≈ zTj+r.

Our approach to multifactor disentanglement is based on the following key observation: eigenvectors
of the matrix C whose eigenvalue is 1 represent time-invariant factors. For instance, assume C has a
single eigenvector ϕ1 with λ1 = 1 and λi ̸= 1 for i ̸= 1, then it follows from Eq. 4 that

zTj C
r = z̄1jϕ

T
1 +

k∑
i=2

z̄ijλ
r
iϕ

T
i . (5)

Essentially, the contribution of ϕ1 is not affected by the dynamics and it remains constant, and thus
the first addend remains constant throughout time, and it is related to static features of the dynamics.

4

Published as a conference paper at ICLR 2023

In contrast, every element in the sum in Eq. 5 is scaled by its respective λr
i , and thus the sum changes

throughout time, and these eigenvectors are related to dynamic features. We conclude that the KAE
architecture virtually allows disentanglement via eigendecomposition of the Koopman matrix where
the static factors are eigenvectors with eigenvalue 1, and the rest are dynamic factors.

Multifactor Koopman Disentanglement. Unfortunately, the vanilla KAE model is not suitable
for disentanglement as the learned Koopman matrices can generally have arbitrary spectra, with
multiple static factors or no static components at all. Moreover, KAE does not allow to explicitly
balance the number of static vs. dynamic factors. To alleviate the shortcomings of KAE, we propose
to augment the Koopman autoencoder with a spectral loss term Leig which explicitly manipulates
the structure of the Koopman spectrum, and its separation to static and dynamic factors. Formally,

real

im
ag

Lstat =
1

ks

ks∑
i

|λi − (1 + ı0)|2 , (6)

Ldyn =
1

kd

kd∑
i

ξ(|λi|, ϵ) , (7)

Leig = Lstat + Ldyn , (8)

where ks and kd represent the number of static and dynamic components, respectively, and thus
k = ks + kd. The term Lstat measures the average distance of every static eigenvalue from the
complex value 1. The role of Ldyn is to encourage separation between the static and dynamic
factors. In practice, this is achieved with a threshold function ξ which takes the modulus of λi and a
user parameter ϵ ∈ (0, 1), and it returns |λi| if |λi| > ϵ, and zero otherwise. Thus, Ldyn penalizes
dynamic factors whose modulus is outside an ϵ-ball. The inset figure shows an example spectrum we
obtain using our loss penalties, where blue and red denote static and dynamic factors, respectively.

Method Summary. Given a batch X ∈ Rb×t×m, we feed it to the encoder. Our encoder is similar
to the one used in C-DSVAE (Bai et al., 2021) having five convolutional layers, followed by a uni-
directional LSTM module. The output of the encoder is denoted by Z ∈ Rb×t×k, and it is passed to
the Koopman module. Then, Z is split to past Zp and future Zf observations, allowing to compute the
approximate Koopman operator via C = Z+

p Zf . In addition, we compute Z̃f := Zp · C which will
be used to compute Lpred. After the Koopman module, we apply the decoder whose structure mimics
the encoder but in reverse having an LSTM component and de-convolutional layers. Additional
details on the encoder and decoder are detailed in Tab. 5. We decode Z to obtain the reconstructed
signal Xrec, and we decode Z̃f to approximate the future recovered signals X̃f . The total loss is given
by L = λrecLrec + λpredLpred + λeigLeig, where the balance weights λrec, λpred and λeig scale the
loss penalty terms and the exact values are given in Tab. 6. To compute Leig, we identify the static
and dynamic subspaces. This is done by simply sorting the eigenvalues based on their modulus, and
taking the last ks eigenvectors, whereas the rest kd are dynamic factors. Identifying multiple factors
is more involved and can be obtained by manual inspection or via an automatic procedure using a
pre-trained classifier, see App. B.5.

Multifactor Static and Dynamic Swap. Similar to previous methods our approach allows to swap
between e.g., the static factors of two different input samples. In addition, our framework naturally
supports multifactor swap as we describe next. For simplicity, we first consider the swap of a single
factor (e.g., hair color in Sprites (Reed et al., 2015)) for the given latent codes of two samples, zj(u)
and zj(v), j = 1, . . . , t + 1. Denote by ϕ1 the eigenvector of the factor we wish to swap, then a
single swap is obtained by switching the Koopman projection coefficients of ϕ1, i.e.,

ẑj(u) = z̄1j (v)ϕ1 +

k∑
i=2

z̄ij(u)ϕi , ẑj(v) = z̄1j (u)ϕ1 +

k∑
i=2

z̄ij(v)ϕi , (9)

where ẑj(u) denotes the new code of zj(u) using the swapped factor from the v sample, and similarly
for ẑj(v). If several factors are to be swapped, then ẑj(u) =

∑
i∈I z̄

i
j(v)ϕi+

∑
i∈Ic z̄ij(u)ϕi, where I

denotes the set of eigenvector indices we swap, and Ic is the complement set. The above formulation

5

Published as a conference paper at ICLR 2023

source target
h

h

s

s

t

h

t

s

t

Figure 2: In the factorial swap experiment we modify individual static factors of the source character
to match those of the target. The top row shows the gradual change of the hair, skin, and top colors.

is equivalent to the simpler tensor notation Z̄s[u, :, Ic] = Z̄[u, :, Ic] and Z̄s[u, :, I] = Z̄[v, :, I],
where Z̄ ∈ Cn×t×k is the Koopman projection coefficients of a batch with n samples, and Z̄s

represents the swapped coefficients. Thus, the swapped latent code is given by Ẑ = Z̄s · Φ, where
Φ = (ϕi) is the matrix of eigenvectors organized in columns. A more detailed description of the
swaps and how to obtain the disentangled subspaces representations is provided in App. B.

5 RESULTS

We evaluate our model on several two- and multi-factor disentanglement tasks. For every dataset, we
train our model, and for evaluation, we additionally train a vanilla classifier on the label sequences. In
all experiments, we apply our model on mini-batches, extracting the latent codes Z and the Koopman
matrix C. Disentanglement tests use the eigendecomposition of C, where we identify the subspaces
corresponding to the dynamic and static factors, denoted by Idyn and Istat, respectively. We may
label other subspaces such as Ih to note they correspond to e.g., hair color change in Sprites. To
identify the subspace corresponding to a specific factor we perform manual or automatic approaches
(App. B). Importantly, subspace’s dimension of a single factor may be larger than one. We provide
further details regarding the network architectures, hyperparameters, datasets, data pre-processing,
and a comparison of computational resources (App. B). Additional results are provided in App. C.

5.1 MULTIFACTOR DISENTANGLEMENT

We will demonstrate that our method disentangles sequential data to multiple distinct factors, and
thus it extends the toolbox introduced in competitive sequential disentanglement approaches which
only supports two factor disentanglement. Specifically, while prior techniques separate to static and
dynamic factors, we show that our model identifies several semantic static factors, allowing a finer
control over the factored items for downstream tasks. We perform qualitative and quantitative tasks
on the Sprites (Reed et al., 2015) and MUG (Aifanti et al., 2010) datasets to show those advantages.

Factorial swap. This experiment demonstrates that our method is capable of swapping individual
content components between sprite characters. We extract a batch with 32 samples, and we identify
by manual inspection the subspaces responsible for hair color, skin color, and top color, labeled by
Ih, Is, It. We select two samples from the test batch, shown as the source and target in Fig. 2. To swap
individual static factors between the source and target, we follow Eq. 9. Specifically, we gradually
change the static features of the source to be those of the target. For example, the top row in Fig. 2
shows the source being modified to have the hair color, followed by skin color, and then top color of
the target, from left to right. In practice, this is achieved via setting Z̄h = Z̄hs = Z̄hst = Z̄src and
assigning Z̄h[:, Ih] = Z̄tgt[:, Ih], Z̄hs[:, Ihs] = Z̄tgt[:, Ihs], and Z̄hst[:, Ihst] = Z̄tgt[:, Ihst],
where Z̄src, Z̄tgt ∈ C8×40 are the Koopman projection values of the source and target, respectively.
The set Ihs := Ih ∪ Is, and similarly for Ihst. The tensor Z̄h represents the new character obtained
by borrowing the hair color of the target, and similarly for Z̄hs and Z̄hst. In total, we demonstrate in
Fig. 2 the changes: h→s→t (top), h→t→s (middle), and s→h→t (bottom). We additionally show
in Fig. 12 an example of individual swaps including all possible combinations. Our results display
good multifactor separation and transfer of individual static factors between different characters.

6

Published as a conference paper at ICLR 2023

brown
light brown
light gray
gray

peach
beige

Skin

Hair
green
blue
yellow
white
red
purple

Figure 3: We show the t-SNE plot of the 4D Koopman static subspace which encodes the skin and
hair colors. The embedding perfectly clusters all (skin, hair) color combinations.

To quantitatively assess the performance of our approach in the factorial swap task, we consider the
following experiment. We iterate over test batches of size 256, and for every batch we automatically
identify its hair color and skin color subspaces, Ih, Is. Then, we compute a random sampling of Z
denoted by J , and separately swap the hair color and the skin color. In practice, this boils down
to Z̄h = Z̄s = Z̄ and setting Z̄h[:, :, Ih] = Z̄[J, :, Ih] and similarly, Z̄s[:, :, Is] = Z̄[J, :, Is].
The new latent codes are reconstructed and fed to the pre-trained classifier, and we compare the
predicted labels to the true labels of Z[J]. The results are reported in Tab. 1 where we list the
accuracy measures for every factor. For most non-swapped factors, we obtain an accuracy score
close to random guess, e.g., the skin accuracy in the hair swap is 16.25% which is very close to 1/6.
Moreover, the swapped factors yield high accuracy scores marked in bold, validating the successful
swap of individual factors.

Table 1: Accuracy measures of factorial swap experiments.
Test action skin top pants hair

hair swap 10.51% 16.25% 16.33% 35.51% 90.59%
skin swap 10.55% 73.01% 16.29% 30.55% 17.70%

Latent Embedding. We now explore the effect of our model on the latent representation of samples.
To this end, we consider a batch X of sprites where the motion, skin and hair colors are arbitrary,
and the top and pants colors are fixed, for a total of 324 examples. Following the above experiment,
we automatically identify the subspaces responsible for changing the hair and skin color, Ih, Is. To
explore the distribution of the latent code, we visualize the Koopman projection coefficients of the
4-dimensional subspace Ihs = Ih ∪ Is given by Z̄[:, :, Ihs] ∈ C324×8×4. We plot in Fig. 3 the
2D embedding obtained using t-SNE (Van der Maaten & Hinton, 2008). To distinguish between
skin and hair labels, we paint the face of every 2D point based on its true hair label, and we paint
the point’s edge with the true skin color. The plot resembles a grid-like pattern, showing a perfect
separation to all 36 unique combinations of (skin, hair) colors. We conclude that the Koopman
subspace Ihs indeed disentangles the samples based on either their skin or hair.

Incremental Swap. In this test we explore multifactor features of time-varying Koopman subspaces
on the MUG dataset. Given a source image u, we gradually modify its dynamic factors to be those of
the target v. In practice, we compute Z̄[u, :, Iq] = Z̄[v, :, Iq], where Iq ⊂ Idyn is an index set from
Idyn such that q ∈ {1, 2, 3} and I1 ⊂ I2 ⊂ I3 ⊂ Idyn. Specifically, |I1| = 4, |I2| = 6, |I3| = 32.
Fig. 4 shows the incremental swap results of two examples changing from disgust to happiness (left),
and happiness to anger (right). The three rows below the source row are the reconstructions of the
gradual swap denoted by X̃(Iq) := χdec(Z̄[u, :, Iq] · Φ). Our results demonstrate in both cases a
non-trivial gradual change from the source expression to the target, as more dynamic features are
swapped. For instance, the left source is mapped to a smiling character over all time samples in
X̃(I2), and then it is fixed to better match the happiness trajectory source in X̃(I3).

7

Published as a conference paper at ICLR 2023

disgust to happiness happiness to anger

source

X̃(I1)

X̃(I2)

X̃(I3)

target

Figure 4: Our method allows to swap the dynamic features incrementally, and thus it achieves a
relatively smooth transition between the source and target expressions.

5.2 TWO FACTOR DISENTANGLEMENT OF IMAGE DATA

We perform two factor disentanglement on Sprites and MUG datasets, and we compare with state-of-
the-art methods. Evaluation is performed by fixing the time-varying features of a test batch while
randomly sampling its time-invariant features. Then, a pre-trained classifier generates predicted labels
for the new samples while comparing them to the true labels. We use metrics such as accuracy (Acc),
inception score (IS), intra-entropy H(y|x) and inter-entropy H(y) (Bai et al., 2021). We extract
batches of size 256, and we identify their static and dynamic subspaces automatically. In contrast
to most existing work, our approach is not based on a variational autoencoder model, and thus the
sampling process in our approach is performed differently. Specifically, for every test sequence,
we randomly sample static features by generating a new latent code based on a random sampling
in the convex hull of the batch. That is, we generate random coefficients {αi} for every sample in
the batch such that they form a partition of unity and αi ∈ [0, 1]. Then, we swap the static features
of the batch with those of the new samples, Z̄[:, :, Istat] =

∑
i αiZ̄[i, :, Istat]. We perform 300

epochs of random sampling, and we report the average results in Tab. 2, 3. Notably, our method
outperforms previous SOTA methods on the Sprites dataset across all metrics. On the MUG dataset,
we achieve competitive accuracy results and better results on IS and H(y|x) metrics. In comparison
to unsupervised methods MoCoGAN, DSVAE and R-WAE, our results are the best on all metrics.

5.3 TWO FACTOR DISENTANGLEMENT OF AUDIO DATA

We additionally evaluate our model on a different data modality, utilizing a benchmark downstream
speaker verification task (Hsu et al., 2017) on the TIMIT dataset (Garofolo et al., 1992). In this task,
we aim to distinguish between speakers, independently of the text they read. We compute for each
test sample its latent representation Z, and its dynamic and static sub-representations Zdyn, Zstat,
respectively. In an ideal two factor disentanglement, we expect Zstat to encode the speaker identity,
whereas Zdyn should be agnostic to this data. To quantify the disentanglement we employ the Equal
Error Rate (EER) test. Namely, we compute the cosine similarity between all pairs of latent sub-
representations in Zstat. The pair is assumed to encode the same speaker if their cosine similarity is
higher than a threshold ϵ ∈ [0, 1], and the pair has different speakers otherwise. The threshold ϵ needs
to be calibrated to receive the EER (Chenafa et al., 2008). If Zstat indeed holds the speaker identity,

Table 2: Disentanglement metrics on Sprites.
Method Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 92.89% 8.461 0.090 2.192
DSVAE 90.73% 8.384 0.072 2.192
R-WAE 98.98% 8.516 0.055 2.197

S3VAE 99.49% 8.637 0.041 2.197
C-DSVAE 99.99% 8.871 0.014 2.197

Ours 100% 8.999 1.6e−7 2.197

Table 3: Disentanglement metrics on MUG.
Method Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 63.12% 4.332 0.183 1.721
DSVAE 54.29% 3.608 0.374 1.657
R-WAE 71.25% 5.149 0.131 1.771

S3VAE 70.51% 5.136 0.135 1.760
C-DSVAE 81.16% 5.341 0.092 1.775

Ours 77.45% 5.569 0.052 1.769

8

Published as a conference paper at ICLR 2023

source target

static swap dynamic swap

Leig

Lstat

Ldyn

KAE

Figure 5: Our ablation study shows that the full model Leig disentangles data well, whereas models
using only Lstat loss or only Ldyn loss or no Leig loss at all struggle with swapping static features.

then its EER score should be low. The same test is also repeated on Zdyn for which we expect high
EER scores as it should not contain speaker information.We report the results in Tab. 4. Our method
achieves the third best overall EER on the static and dynamic tests. However, S3VAE and C-DSVAE
either use significantly more data or self-supervision signals. We label by C-DSVAE∗ and C-DSVAE†

the approach C-DSVAE without content and dynamic augmentation, respectively. When comparing
to unsupervised approaches that do not use additional data (FHVAE, DSVAE, and R-WAE), we
achieve the best results with a margin of 0.27% and 3.37% static and dynamic, respectively.

Table 4: Disentanglement metrics on TIMIT.
Method FHVAE DSVAE R-WAE S3VAE C-DSVAE∗ C-DSVAE† C-DSVAE Ours

Static EER↓ 5.06% 5.65% 4.73% 5.02% 5.09% 4.31% 4.03% 4.46%
Dynamic EER↑ 22.77% 19.20% 23.41% 25.51% 24.30% 31.09% 31.81% 26.78%

5.4 ABLATION STUDY

We train different models to evaluate the effect of our loss term on the KAE architecture: full model
with Leig, KAE + Lstat, KAE + Ldyn, and baseline KAE without Leig. All other parameters are left
fixed. In Fig. 5, we show a qualitative example of static and dynamic swaps between the source and
the target. Each of the bottom four rows in the plot is associated with a different model. The full
model (Leig) yields clean disentanglement results on both swaps. In contrast, the static features are
not perfectly swapped when removing the dynamic penalty (Lstat). Moreover, the model without
static loss (Ldyn) does not swap the static features at all. Finally, the baseline KAE model generates
somewhat random samples. We note that in all cases (even for the KAE model), the motion is swapped
relatively well which can be attributed to the good encoding of the dynamics via the Koopman matrix.

6 DISCUSSION

We have proposed a novel approach for multifactor disentanglement of sequential data, extending
existing two factor methods. Our model is based on a strong inductive bias where we assumed
that the underlying dynamics can be encoded linearly. The latter assumption calls for exploiting
recent Koopman autoencoders which we further enhance with a novel spectral loss term, leading
to an effective disentangling model. Throughout an extensive evaluation, we have shown new
disentanglement sequential tasks such as factorial swap and incremental swap. In addition, our
approach achieves state-of-the-art results on two factor tasks in comparison to baseline unsupervised
approaches, and it performs similarly to self-supervised and weakly-supervised techniques.

There are multiple directions for future research. First, our approach is complementary to most
existing VAE approaches, and thus merging features of our method with variational sampling,
mutual information and contrastive losses could be fruitful. Second, theoretical aspects such as
disentanglement guarantees could be potentially shown in our framework using Koopman theory.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

This research was partially supported by the Lynn and William Frankel Center of the Computer
Science Department, Ben-Gurion University of the Negev, an ISF grant 668/21, an ISF equipment
grant, and by the Israeli Council for Higher Education (CHE) via the Data Science Research Center,
Ben-Gurion University of the Negev, Israel.

REFERENCES

Niki Aifanti, Christos Papachristou, and Anastasios Delopoulos. The MUG facial expression database.
In 11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS
10, pp. 1–4, 2010.

Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of
spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):
2096–2126, 2017.

Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovsjanikov. An operator approach
to tangent vector field processing. In Computer Graphics Forum, volume 32, pp. 73–82. Wiley
Online Library, 2013.

Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max Wardetzky, and Mirela Ben-Chen. Func-
tional fluids on surfaces. In Computer Graphics Forum, volume 33, pp. 237–246. Wiley Online
Library, 2014.

Omri Azencot, Wotao Yin, and Andrea Bertozzi. Consistent dynamic mode decomposition. SIAM
Journal on Applied Dynamical Systems, 18(3):1565–1585, 2019.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent Koopman autoencoders. In International Conference on Machine Learning,
pp. 475–485. PMLR, 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Junwen Bai, Weiran Wang, Yingbo Zhou, and Caiming Xiong. Representation learning for sequence
data with deep autoencoding predictive components. arXiv preprint arXiv:2010.03135, 2020.

Junwen Bai, Weiran Wang, and Carla P Gomes. Contrastively disentangled sequential variational
autoencoder. Advances in Neural Information Processing Systems, 34, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoencoder:
Learning disentangled representations from grouped observations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern Koopman theory for
dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

Marko Budišić, Ryan Mohr, and Igor Mezić. Applied Koopmanism. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 22(4):047510, 2012.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. Advances in neural information processing systems,
31, 2018.

10

Published as a conference paper at ICLR 2023

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
gan: Interpretable representation learning by information maximizing generative adversarial nets.
Advances in neural information processing systems, 29, 2016.

Mohamed Chenafa, Dan Istrate, Valeriu Vrabie, and Michel Herbin. Biometric system based on voice
recognition using multiclassifiers. In European Workshop on Biometrics and Identity Management,
pp. 206–215. Springer, 2008.

David Clark, Jesse Livezey, and Kristofer Bouchard. Unsupervised discovery of temporal structure
in noisy data with dynamical components analysis. Advances in Neural Information Processing
Systems, 32, 2019.

Ido Cohen, Omri Azencot, Pavel Lifshits, and Guy Gilboa. Modes of homogeneous gradient flows.
SIAM Journal on Imaging Sciences, 14(3):913–945, 2021.

Armand Comas, Sandesh Ghimire, Haolin Li, Mario Sznaier, and Octavia Camps. Self-supervised
decomposition, disentanglement and prediction of video sequences while interpreting dynamics: A
Koopman perspective. arXiv preprint arXiv:2110.00547, 2021.

Suddhasattwa Das and Dimitrios Giannakis. Delay-coordinate maps and the spectra of Koopman
operators. Journal of Statistical Physics, 175(6):1107–1145, 2019.

Emily L Denton and Vighnesh Birodkar. Unsupervised learning of disentangled representations from
video. Advances in neural information processing systems, 30, 2017.

Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel. Operator theoretic aspects of ergodic
theory, volume 272. Springer, 2015.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition and
nonlinear dynamics model for unsupervised learning. Advances in neural information processing
systems, 30, 2017.

J. Garofolo, Lori Lamel, W. Fisher, Jonathan Fiscus, D. Pallett, N. Dahlgren, and V. Zue. TIMIT
acoustic-phonetic continuous speech corpus. Linguistic Data Consortium, 11 1992.

Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and Xavier Alameda-
Pineda. Dynamical Variational Autoencoders: A comprehensive review. arXiv preprint
arXiv:2008.12595, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Jun Han, Martin Renqiang Min, Ligong Han, Li Erran Li, and Xuan Zhang. Disentangled Recurrent
Wasserstein Autoencoder. arXiv preprint arXiv:2101.07496, 2021a.

Minghao Han, Jacob Euler-Rolle, and Robert K Katzschmann. DeSKO: Stability-assured robust
control with a deep stochastic Koopman operator. In International Conference on Learning
Representations, 2021b.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
ICLR, 2017.

Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length and Helmholtz
free energy. Advances in neural information processing systems, 6, 1993.

Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentangled and interpretable
representations from sequential data. Advances in neural information processing systems, 30,
2017.

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation for deep
networks with structured layers. In Proceedings of the IEEE international conference on computer
vision, pp. 2965–2973, 2015.

11

Published as a conference paper at ICLR 2023

Tomoharu Iwata and Yoshinobu Kawahara. Neural dynamic mode decomposition for end-to-end
modeling of nonlinear dynamics. arXiv preprint arXiv:2012.06191, 2020.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pp. 2649–2658. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Bernard O Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings of the
national academy of sciences of the united states of america, 17(5):315, 1931.

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional
inverse graphics network. Advances in neural information processing systems, 28, 2015.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentangled
latent concepts from unlabeled observations. arXiv preprint arXiv:1711.00848, 2017.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode
decomposition: data-driven modeling of complex systems. SIAM, 2016.

Yueheng Lan and Igor Mezić. Linearization in the large of nonlinear systems and Koopman operator
spectrum. Physica D: Nonlinear Phenomena, 242(1):42–53, 2013.

Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder. arXiv preprint
arXiv:1803.02991, 2018.

Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. MixNMatch: Multifactor
disentanglement and encoding for conditional image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8039–8048, 2020.

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional Koopman
operators for model-based control. arXiv preprint arXiv:1910.08264, 2019.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
gled representations. In international conference on machine learning, pp. 4114–4124. PMLR,
2019.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1–10, 2018.

Alexandre Mauroy and Igor Mezić. A spectral operator-theoretic framework for global stability. In
52nd IEEE Conference on Decision and Control, pp. 5234–5239. IEEE, 2013.

Alexandre Mauroy and Igor Mezić. Global stability analysis using the eigenfunctions of the Koopman
operator. IEEE Transactions on Automatic Control, 61(11):3356–3369, 2016.

Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlin-
ear Dynamics, 41(1):309–325, 2005.

Igor Mezić. Analysis of fluid flows via spectral properties of the Koopman operator. Annual Review
of Fluid Mechanics, 45:357–378, 2013.

Igor Mezic. Koopman operator spectrum and data analysis. arXiv preprint arXiv:1702.07597, 2017.

Ðord̄e Miladinović, Muhammad Waleed Gondal, Bernhard Schölkopf, Joachim M Buhmann, and
Stefan Bauer. Disentangled state space representations. arXiv preprint arXiv:1906.03255, 2019.

Ryan Mohr and Igor Mezić. Construction of eigenfunctions for scalar-type operators via Laplace
averages with connections to the Koopman operator. arXiv preprint arXiv:1403.6559, 2014.

Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynamical
modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems,
31, 2018.

12

Published as a conference paper at ICLR 2023

Ilan Naiman and Omri Azencot. An operator theoretic approach for analyzing sequence neural
networks. In Proceedings of the AAAI conference on artificial intelligence, 2023.

Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–593, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

William T Redman, Maria Fonoberova, Ryan Mohr, Yannis Kevrekidis, and Igor Mezic. An
operator theoretic view on pruning deep neural networks. In International Conference on Learning
Representations, 2021.

Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. Advances in
neural information processing systems, 28, 2015.

Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spectral
analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

Raif M Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas
Guibas. Map-based exploration of intrinsic shape differences and variability. ACM Transactions
on Graphics (TOG), 32(4):1–12, 2013.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5–28, 2010.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning Koopman invariant subspaces
for dynamic mode decomposition. Advances in Neural Information Processing Systems, 30, 2017.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1526–1535, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(11), 2008.

Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing motion
and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033, 2017.

Stephen Wiggins, Stephen Wiggins, and Martin Golubitsky. Introduction to applied nonlinear
dynamical systems and chaos, volume 2. Springer, 2003.

Sitao Xiang, Yuming Gu, Pengda Xiang, Menglei Chai, Hao Li, Yajie Zhao, and Mingming He.
DisUnknown: Distilling unknown factors for disentanglement learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 14810–14819, 2021.

Masanori Yamada, Heecheol Kim, Kosuke Miyoshi, Tomoharu Iwata, and Hiroshi Yamakawa.
Disentangled representations for sequence data using information bottleneck principle. In Asian
Conference on Machine Learning, pp. 305–320. PMLR, 2020.

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pp. 4832–4839. IEEE, 2019.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from generative
models. arXiv preprint arXiv:1702.08396, 2017.

Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3VAE: Self-supervised
sequential VAE for representation disentanglement and data generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6538–6547, 2020.

13

Published as a conference paper at ICLR 2023

A KOOPMAN THEORY

We briefly introduce the key ingredients of Koopman theory (Koopman, 1931) which are related to
our work. Consider a dynamical system φ : M → M over the domain M given via the update rule

xt+1 = φ(xt) ,

where xt ∈ M ⊂ Rm, and t ∈ N is the time index. Koopman theory proposes an alternative
representation of the dynamical system φ by a linear yet infinite-dimensional Koopman operator Kφ.
Formally,

Kφf(xt) = f ◦ φ(xt) ,

where f : M → C is an observable complex-valued function, and f ◦ φ denotes composition of
transformations. Due to the linearity of Kφ, we can discuss its eigendecomposition, when it exists.
Specifically, let λj ∈ C, ϕj : M → C be a pair of eigenvalue and eigenfunction respectively of Kφ,
i.e., it holds that

Kφϕj = λjϕj for any j .

From a theoretical viewpoint, there is no loss of information to represent the dynamics with φ or
with Kφ (Eisner et al., 2015). Namely, one can recover the dynamics φ from a given Kφ operator.
Moreover, the Hartman-Grobman Theorem states that the linearization around hyperbolic fixed points
is conjugate to the full, nonlinear system (Wiggins et al., 2003). The latter result was further extended
to the entirety of the basin (Lan & Mezić, 2013). In practice, various tools were recently developed to
approximate the infinite-dimensional Koopman operator using a finite-dimensional Koopman matrix.
In particular, the Dynamic Mode Decomposition (DMD) (Schmid, 2010) is a popular technique for
approximating dynamical systems and their modes. DMD was shown to be intimately related to
Koopman mode decomposition in (Rowley et al., 2009), which deals with the extraction of Koopman
eigenvalues and eigenfunctions in a data-driven setting. Thus, the above discussion establishes the
link between our work and Koopman theory since in practice, our Koopman module is similar in
spirit to DMD. Moreover, it justifies our use of the Koopman matrix to encode the dynamics as well
as disentangle it.

B EXPERIMENTAL SETUP: ARCHITECTURE, DATASETS, HYPERPARAMETERS,
AND MORE

B.1 DATASETS

Sprites. Reed et al. (2015) introduced a dataset of animated cartoon characters. Each character is
composed of static and dynamic attributes. The static attributes include the color of skin, tops, pants
and hair; each contains six possible variants. The dynamic attributes include three different motions:
walking, casting spells and slashing, where each motion admits three different orientations: left, right,
and forward. In total there are nine motions a character can perform and 1296 unique characters.
A sequence is composed of eight RGB image frames of size of 64× 64. We use 9000 samples for
training and 2664 samples for testing.

MUG. Aifanti et al. (2010) share a facial expression dataset which contains image sequences of 52
subjects. Each subject performs six facial expressions: anger, fear, disgust, happiness, sadness and
surprise. Each video in the dataset consists of 50 to 160 frames. To create sequences of length 15
as described in previous work (Bai et al., 2021), we randomly sample 15 frames from the original
sequence. Then, we crop the faces using Haar Cascades face detection, and we resize to 64 × 64
resulting in sequences x ∈ R15×3×64×64 for a total of 3429 samples. Finally, we split the dataset
such that 75% of it is used for the train set, and 25% for the test set.

TIMIT. Garofolo et al. (1992) made TIMIT available which contains 16kHz audio recordings of
American English speakers reading short texts. In total, the dataset has 6300 utterances (5.4 hours)
aggregated from 630 speakers reading 10 phonetically rich sentences each. For each batch of samples
the data pre-processing procedure goes as follows: First, we take the maximum raw audio length in
the batch, and we zero pad all samples to match that length. Second, we calculate for each sample
its log spectrogram with 201 frequency features calculated by a window of 10ms, using Short Time
Fourier Transform (STFT). Thus, each batch has its own t (time steps) length, with an average length
after padding of t = 450. The resulting sequences are of dimension x ∈ Rt×201.

14

Published as a conference paper at ICLR 2023

B.2 DISENTANGLEMENT METRICS

Accuracy (Acc) measures how well a model preserves the fixed features while sampling the others.
We compute it using a pre-trained classifier C (also called judge) which is trained on the same train
set and tested on the same test set as our model. The classifier outputs the probability measures per
feature of the dataset. For instance, C outputs one label for the pose and additional labels for each of
the static factors (hair, skin, top and pants) for the Sprites dataset.

Inception Score (IS) measures the performance of a generator. The score is calculated by first
applying the judge C on every generated sequence x1:t, yielding the conditional predicted label
distribution p(y|x1:t). Then, given the marginal predicted label distribution p(y) we compute the
Kullback—Leibler (KL) divergence KL (p(y|x1:t) || p(y)). The inception score is given by:

IS = exp(Ex [KL(p(y|x1:T)) || p(y)]) .

Intra-Entropy H(y|x) measures the conditional predicted label entropy of all generated sequences.
To obtain the predicted labels we use the judge C, and we compute 1

b

∑b
i=1 H(p(y|xi

1:t)) where b
is the number of generated sequences. Lower intra-entropy score reflects higher confidence of the
classifier C.

Inter-Entropy H(y) measures the marginal predicted label entropy of all generated sequences.
We can compute H(p(y)) using the judge’s output on the predicted labels {y}. Higher inter-entropy
score reflects higher diversity among the generated sequences.

Equal Error Rate (EER) is used in the speaker verification task on the TIMIT dataset. It is the
value of false positive rate or false negative rate of a model over the speaker verification task, when
the rates are equal.

B.3 ARCHITECTURE AND HYPERPARAMETERS

Our models are implemented in the PyTorch (Paszke et al., 2019) framework. We used Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 0.001 for all models, with no weight decay.
Regarding hyper-parameters, in our experiments, k is tuned between 40 and 200 and λrec, λpred

and λeig are tuned over {1, 3, 5, 10, 15, 20}. ks is tuned between 4 and 20, and the ε threshold for
the dynamic loss is tuned over {0.4, 0.5, 0.55, 0.6, 0.65}. The hyper-parameters are chosen through
standard grid search.

B.3.1 ENCODER AND DECODER

Sprites and MUG. Our encoder and decoder follow the same general structure as in Bai et al.
(2021). First we have the same convolutional encoder as in C-DSVAE. Then we have a uni-directional
LSTM. The architecture is described in detail in Tab. 5, where Conv2D and Conv2DT denote a 2D
convolution layer and its transpose, and BN2D is a 2D batch normalization layer. Additionally, the
hyperparameters are listed in Tab. 6, where b is the batch size, k is the size of Koopman matrix,
h is the dimension of the LSTM hidden state, and #epochs is the number of epochs we used for
training. The balance weights λrec, λpred and λeig scale the loss penalty terms of the Koopman layer,
Lrec,Lpred and Leig, respectively. Finally, ks is the amount of static factors, and ϵ is the dynamic
threshold, see Eqs. 6 and 7 in the main text.

Table 5: Architecture details.
Encoder Decoder

64× 64× 3 image Z
Conv2D(3, 32, 4, 2, 1) → BN2D(32) → LeakyReLU LSTM(k, h)
Conv2D(32, 64, 4, 2, 1) → BN2D(64) → LeakyReLU Conv2DT(h, 256, 4, 1, 0) → BN2D(256) → LeakyReLU
Conv2D(64, 128, 4, 2, 1) → BN2D(128) → LeakyReLU Conv2DT(256, 128, 4, 1, 0) → BN2D(128) → LeakyReLU
Conv2D(128, 256, 4, 2, 1) → BN2D(256) → LeakyReLU Conv2DT(128, 64, 4, 1, 0) → BN2D(64) → LeakyReLU
Conv2D(256, k, 4, 2, 1) → BN2D(k) → LeakyReLU Conv2DT(64, 32, 4, 1, 0) → BN2D(32) → LeakyReLU
LSTM(k, k) Conv2DT(32, 3, 4, 1, 0) → Sigmoid

15

Published as a conference paper at ICLR 2023

Table 6: Hyperparameter details.
Dataset b k h #epochs λrec λpred λeig ks ϵ

Sprites 32 40 40 800 15 1 1 8 0.5
MUG 16 40 100 1000 20 1 1 5 0.5
TIMIT 30 165 - 400 15 3 1 15 0

TIMIT. We design a neural network related to DSVAE architecture, but we use a uni-directional
LSTM module instead of a bi-directional layer. The encoder LSTM input dimension is 201 which
is the spectrogram features dimension and its output dimension is k. The decoder LSTM input
dimension is k and its output dimension is 201. The hyperparameter values are detailed in Tab. 6.

B.3.2 KOOPMAN LAYER

The Koopman layer in our architecture is responsible for calculating the Koopman matrix C, and
it is associated with the accompanying losses Lrec,Lpred,Leig. It may happen that the latent codes
provided to the Koopman module are very similar, leading to numerically unstable computations. To
alleviate this issue, we consider two possibilities. One, use blur filter on the image before inserting it
to the encoder (used for the Sprites datasets). Two, add small random uniform noise sampled from
[0, 1] to the latent code Z, i.e., Z + 0.005N , where N denotes the noise (used on TIMIT). Both
options yield more diverse latent encodings, which in turn, stabilize the computation of C and the
training procedure. Finally, we note that our spectral penalty terms Lstat and Ldyn which compose
Leig are stable for a large regime of hyperparameter ranges.

B.3.3 ADDITIONAL DYNAMIC LOSS OPTIONS

The proposed form of Ldyn in Eq. 7 constrains the dynamic factor modulus to an ϵ-ball to promote
separation between the static factors located on the point 1 + ı0 and the dynamic factors. However,
there are settings for which Ldyn may be not optimal. For instance, a dataset may contain measure-
preserving dynamic factors, e.g., as in the motion of a pendulum. Another example includes growing
dynamic factors, e.g., as in a ball moving from the center of the frame towards the boundaries of
the frame. If one has additional knowledge regarding the underlying dynamics, one may adapt Ldyn
accordingly. We consider the following options:

1. Set ϵ = 1 while adding the dynamic loss term to Leig. In this case, Ldyn penalizes dynamic
factors that are inside a δ-ball around the point 1 + 0ı. This option addresses measure-
preserving dynamic oscillations in the data.

2. Set ϵ = 1 + η, η > 0 while adding the dynamic loss term to Leig. In this case, Ldyn

penalizes dynamic factors that are inside a δ-ball around the point 1 + 0ı. This option
addresses growing dynamic factors.

B.4 DISENTANGLEMENT PROCESS USING MULTIFACTOR DISENTANGLING KOOPMAN
AUTOENCODERS

In what follows, we detail the process of extracting the multifactor latent representation of a sample,
and in addition, we will demonstrate a general swap of a factor between two arbitrary samples. We
let X ∈ Rb×t×m be our input batch and x ∈ Rm be a single sample that we want to calculate its
multifactor disentangled latent representation. The disentanglement process of x into its multiple
latent factors representations using our model contains the following steps:

1. We insert X into the model encoder and get the encoder output Z ∈ Rb×t×k.

2. We compute the Koopman matrix C for the batch X using the Koopman layer as described
in the main text.

3. We compute the eigendecomposition of C to get the eigenvectors matrix V ∈ Ck×k. In
addition, we calculate U = V −1. Now we calculate z̄T := zTV for every z ∈ Rk. z̄ stores
the coefficients in the Koopman space and they are the disentangled latent representation in
our method. Notice that zT = zTV U = z̄TU

16

Published as a conference paper at ICLR 2023

4. We identify the indices that correspond to each latent factor. It may be that several indices
represent one factor. We use the identification method of subspaces described in B.5 to
extract the indices set. Let Ik be some latent factor index set. Then, the latent representation
of factor Ik for the input x is z̄[Ik]. For instance, Ik can be the hair color factor. If we want
to take a group of factors, we can aggregate a few factors together I = Is ∪ It ∪ Ih ∪ Ip,
where Is = skin indices, It = top indices, Ih = hair indices, Ip = pants indices. In practice
I encodes a character identity on the Sprites dataset.

To conclude, these four steps describe the process of disentangling arbitrary factors in our setup. To
demonstrate a swap, let us assume we use the Sprites dataset. Let x1, x2 be two samples in X and let
us assume we want to swap their hair and skin attributes. We will use steps 1, 2 and 3 to extract x1, x2

multifactor latent representation z̄1, z̄2. Then, using Step 4, we will identify and extract IK = Is∪ Ih,
were Ih = hair indices and Is = skin indices. Now, we want to swap the latent representations of the
hair and skin factors between the sample. To do so, we simply preform z̄1[IK] = z̄2[IK] and vice
versa z̄2[IK] = z̄1[IK] in parallel.

To get back to the pixel space, we need to repeat our steps backward. First we need to compute
the new zi after the swap. We will do it using the V matrix we calculated in step 3. We compute
z̃T1 = z̄T1 V, z̃

T
2 = z̄T2 V . Finally, we can insert Re(z̃1),Re(z̃2) as inputs to the model decoder and get

the desired swapped new samples x̃1, x̃2. Last note, if z is some input for the model decoder then z
must be real-valued, however, z is typically complex-valued since V,U ∈ Ck×k. Thus, we keep the
real part of z, and we eliminate its imaginary component.

In what follows, we show that Re(zTV U) = zT , and thus feeding the real part to the decoder as
mentioned above is well justified. Moreover, a similar proof holds for swapped latent vectors, i.e.,
Im(z̃) = 0. Finally, we validated that standard numerical packages such as Numpy and pyTorch
satisfy this property up to machine precision.
Theorem 1. If C ∈ Rk×k is full rank, then Re(zTV U) = zT for any z ∈ Rk, where V is the matrix
of eigenvectors of C, and U = V −1.

Proof. It follows that

zTV U =

k∑
j=1

⟨z, vj⟩uj ,

where vj is the j-th column of V , and uj is the j-row of U . To prove that Im(zTV U) = 0, it is
sufficient to show that if v1 and v2 are complex conjugate pair of vectors from V , i.e., vi1 = vi2 , then
⟨z, v1⟩u1 is the complex conjugate of ⟨z, v2⟩u2. First, we have that

a1 = ⟨z, v1⟩ =
k∑
i

z[i]v1[i] =

k∑
i

z[i]v2[i] = ⟨z, v2⟩ = a2 ,

where the third equality holds since v1 = v2, and the last equality holds since z is real-valued.
The proof is complete if we show that u1 = u2, since then we have ⟨z, v1⟩u1 = ⟨z, v2⟩u2. To
verify that complex conjugate column pairs transform to complex conjugate row pairs, we assume
w.l.o.g that the matrix V can be organized such that nearby columns are complex conjugates, i.e.,
v1 = v2, v3 = v4, and so on. Let P be the permutation matrix that exchanges the columns of V to
their complex conjugates, i.e., it switches the i-th column with the (i+ 1)-th column, where i is odd.
Then V P = V . It follows that

(V P)
−1

= PTV −1 = PTU = U ,

namely, the i-th row is the complex conjugate of the (i+ 1)-th row, where i is an odd number.

B.5 IDENTIFICATION OF SUBSPACES

There are two scenarios in which we need to identify semantic Koopman subspaces in the eigenvectors
of the Koopman matrix C:

1. separate between static and dynamic information (two factor separation).
2. identify individual factors, e.g., hair color in sprites (multifactor separation).

17

Published as a conference paper at ICLR 2023

Table 7: Accuracy measures of factorial swap experiments, see Tab. 1.
Test action skin top pants hair

hair swap 11.35%± 0.65% 17.40%± 0.79% 17.07%± 0.77% 36.29%± 0.88% 90.20%± 0.52%
skin swap 11.35%± 0.65% 72.72%± 0.68% 17.23%± 0.89% 31.22%± 0.84% 16.92%± 0.77%

Two factor separation. To distinguish between time-invariant and time-varying factors, we sort
the eigenvalues based on their distance from the complex value 1 + ı0. Then, the subspace of static
features Istat is defined as the eigenvalues’ indices of the first ks elements in the sorted array. Then,
the dynamic features subspace Idyn holds the remaining indices, i.e., Idyn = I \ Istat, where I is the
set of all indices, and S1 \ S2 generates the set difference of the sets S1 and S2.

Multifactor separation. The identification of individual features such as the hair color or skin
color in Sprites is less straightforward, unfortunately. Essentially, the key difficulty lies in that the
Koopman matrix may encode an individual factor using a subspace whose dimension is unknown
a priori. In addition, the subspace related to e.g., hair color may depend on the particular batch
sample. For instance, we observed cases where the hair color subspace was of dimension 1, 2 and
3 for three different batches. Nevertheless, manual inspection of Istat typically reveals the role of
the eigenfunctions, and it can be achieved efficiently as ks ≤ 15 in our experiments. Still, we opt
for an automatic approach, and thus we propose the following simple procedure. We consider the
power set of Istat, denoted by Istat. Let J be an element of Istat, then we swap the content of
the batch with respect to J , and check the accuracy of the factor in question (e.g., hair color) using
the pre-trained classifier. The subspace J which corresponds to a single factor change is the one for
which the accuracy of the factor decreases the most with respect to the original samples. In practice,
we noticed that often the subspace of a factor is composed of subsequent eigenvectors in the sorting
described for the two factor separation. Thus, many subsets J of the power set Istat can be ignored.
We leave further exploration of this aspect for future work.

B.6 SPEAKER VERIFICATION EXPERIMENT DETAILS

The speaker verification task in Sec. 5.3 is performed as follows. We use the test set of TIMIT which
contains 24 unique speakers, with eight different sentences per speaker. In total there are 192 audio
samples. We compute the latent representation Z for this data, and its Koopman matrix C. Using the
eigendecomposition of C, we identify the static and dynamic subspaces Istat and Idyn. We denote
by Zstat, Zdyn the latent codes obtained when projecting Z to Istat, Idyn, respectively. Formally,
this is computed via Zstat = Z · Φ−1[:, Istat] · Φ[Istat], and similarly for the dynamic features.
To perform the speaker verification task we calculate the identity representation code for the batch
given by

Ẑstat =
1

t

t∑
j=1

Zstat[:, j, :] , Ẑdyn =
1

t

t∑
j=1

Zstat[:, j, :] , Ẑdyn, Ẑdyn ∈ R192×165 .

The EER calculations are performed separately for Ẑstat and Ẑdyn for all of their 1922 = 18336
pair combinations.

C ADDITIONAL RESULTS

C.1 MEAN AND STANDARD DEVIATION MEASURES

We report the mean and standard deviation measures computed over 300 runs for the results reported
in Tab. 1, 2, 3 in the main text. The results are detailed in Tab. 7, 8. The low standard deviation
highlights the robustness of our method to various seed numbers, and the overall stability of our
trained models.

C.2 DATA GENERATION

We present qualitative results of our model’s unconditional generation capabilities. To this end, we
randomly sample static and dynamic features by producing a new latent code based on a random

18

Published as a conference paper at ICLR 2023

Table 8: Disentanglement metrics on Sprites and MUG, see Tabs. 2 3.
Method Acc↑ IS↑ H(y|x)↓ H(y)↑
Sprites 100%± 0% 8.999± 2.3e−6 1.6e−7± 2.2e−7 2.197± 0

MUG 77.45%± 0.62% 5.569± 0.026 0.052± 0.004 1.769± 0

sampling in the convex hull of two randomly chosen samples from the batch. That is, for every
sample in the batch we generate random coefficients {αj ∈ [0, 1]} which form a partition of unity∑

j∈J αj = 1, where J denotes the sample indices, and |J | = b = 2 is the number of samples in the
combination. Then, we swap the static or dynamic features of the source (src) sample using the convex
combination, Z̄[src, :, Istat] =

∑
j∈J αjZ̄[j, :, Istat], Z̄[src, :, Idyn] =

∑
j∈J αjZ̄[j, :, Idyn],

respectively. The reconstruction of the latent codes for which static or dynamic factors are swapped
are shown on the right panels in Figs. 6, 7, 13, 14 respectively. Our results on both Sprites and MUG
datasets demonstrate a non-trivial generation of factors while preserving the dynamic/static factors
shown on the left panels.

C.3 TWO FACTORS AND MULTIFACTOR SWAPS

We present several qualitative results of two factor swapping between static and dynamic factors of
two given samples. In Figs. 8 and 9, each odd indexed row i ∈ {1, 3, 5, 7} shows the source sequence
on the left and the target sequence to the right. Even indexed rows j ∈ {2, 4, 6, 8} represent the
reconstructed samples after the swap where on the left we show the static swap, and on the right the
dynamic swap. Notably, all examples show clean swaps while preserving non-swapped features.

Additionally, we extend the result in Fig. 2 to show an example in which we swap all multifactor
combinations. Specifically, we show in Fig. 12 several multifactor swap from the source sequence
(top row) to the target sequence (bottom row). The text to the left of every sequence in between
denotes the swapped factor(s). For instance, the second row with the text p shows how the pants color
of the target is swapped to the source character. Similarly, the row with the text s+t+h is related to
the swap of the skin, top, and hair colors.

Figure 6: Unconditional generation of Sprite characters. The left panel shows the source sequences,
and the right panel demonstrates the sampled characters where time-varying features are preserved.

19

Published as a conference paper at ICLR 2023

Figure 7: Unconditional generation for the MUG dataset. The left panel shows the source sequences,
and the right panel demonstrates the sampled identities where time-varying features are preserved.

C.4 STATIC INCREMENTAL SWAP ON MUG

Similarly to Fig. 4 in the main text, we now show an incremental swap example on the MUG dataset
where the static features are swapped gradually, see Fig. 10. The multifactor subspaces used in this
experiment are of sizes |I1| = 1, |I2| = 2, |I3| = 5 where I1 ⊂ I2 ⊂ I3 ⊂ Istat. We observe a
non-trivial gradual change from the source sequence (top row) to the target sequence (bottom row).
In each incremental step, more static features are changing towards the target samples. Specifically,
the skin color, hair color and density, ears structure, nose structure, chicks structure, chicks texture,
lips and more other physical characteristics change gradually to better match the physical appearance
of the target. Additionally, we observe that the source expression of the source is not altered during
the transformation, highlighting the disentanglement capabilities of our approach.

Figure 8: Several static and dynamic swap results on the Sprites dataset.

20

Published as a conference paper at ICLR 2023

Figure 9: Several static and dynamic swap results on the MUG dataset.

C.5 KOOPMAN MATRIX SPECTRUM ABLATION STUDY

We would like to explore the impact of our spectral loss on the spectrum and the eigenvalues scattering
of the Koopman matrix C. To this end, we train four different models: full model with Leig, KAE +
Lstat, KAE + Ldyn, and baseline KAE without Leig. We show in Fig. 11 the obtained spectra for
the various models, where eigenvalues associated with static factors are marked in blue, and the
dynamic components are highlighted in red. Our model shows a clear separation between the static
and dynamic factors, allowing to easily disentangle the data in practice. In contrast, the models KAE
and Lstat yield spectra in which the static and dynamic components are very close to each other,
leading to challenging disentanglement. Finally, the model Ldyn shows separation in its spectrum,
however, some of the static factors drift away from the eigenvalue 1.

C.6 COMPUTATIONAL RESOURCES COMPARISON

We compare our method in terms of network memory footprint and the amount of data used for
the Sprites dataset. We show in Tab. 9 the comparison of our method with respect to the other
methods. All other approaches use significantly more parameters than our method, which uses 2
million weights. In addition, S3VAE and C-DSVAE utilize additional information during training.
S3VAE exploits supervisory signals to an unknown extent as the details do not appear in the paper,
and the code is proprietary. C-DSVAE uses data augmentation of size sixteen times the train set, that
is, for content augmentation they generated eight times more train data, and the same amount for the
motion augmentation. In comparison, our method and DSVAE do not use any additional data on top
of the train set.

The time complexity analysis of our method is governed by the complexities of the encoder, decoder,
the Koopman layer and the loss function. The encoder and decoder can be chosen freely and are

source

X̃(I1)

X̃(I2)

X̃(I3)

target

Figure 10: An incremental swap result of the static features on the MUG dataset.

21

Published as a conference paper at ICLR 2023

im
ag

real real real real

Ours Lstat Ldyn KAE

Figure 11: The Koopman matrix spectrum of different models.

typically similar to prior work (Hsu et al., 2017; Li & Mandt, 2018; Zhu et al., 2020; Bai et al., 2021),
and thus we focus our analysis on the Koopman layer and the loss function. The dominant operation
in the Koopman layer in terms of complexity is the computation of the pseudo-inverse of Zp (please
see Section 3). Computing the pseudo-inverse of a matrix is implemented in high-level deep learning
frameworks such as pyTorch via SVD. The textbook complexity of SVD is O(min(mn2,m2n))
for an m × n matrix. In addition, computing the loss function involves eigendecomposition. The
theoretic complexity of eigendecomposition is equivalent to that of matrix multiplication, which in
our case is O(k2.376), where the Koopman operator is of size k × k. In comparison, the matrices
Zp for which we compute pseudo-inverse are of size b · t × k, and typically k < b · t. Thus, the
pseudo-inverse operation governs the complexity of the algorithm. The development of efficient
SVD algorithms for the GPU is an ongoing research topic in itself. As far as we know, there is some
parallelization in torch SVD computation, mainly affecting the decomposition of large matrices. The
Koopman matrices we use are typically small (e.g., 100× 100), and thus the effective computation
time is short.

Table 9: Computational resources comparison.
Method DSVAE R-WAE S3VAE C-DSVAE Ours

Type unsupervised (weakly) unsupervised self-supervised self-supervised unsupervised
Params 21M 121M 11M 11M 2M
Data - labels supervisory signals data augmentation (×16) -

22

Published as a conference paper at ICLR 2023

source

p

t

h

s

t+s

p+t

h+t

p+h

s+h

s+p

s+t+h

p+t+s

p+h+t

p+h+s

s+t+h+p

target

Figure 12: Multifactor swap of individual static factors and their combinations on the Sprites dataset.

23

Published as a conference paper at ICLR 2023

Figure 13: Unconditional generation of Sprite characters where the static factors are kept fixed, and
the dynamic features are randomly sampled.

Figure 14: Unconditional generation of MUG images where the static factors are kept fixed, and the
dynamic features are randomly sampled.

24

	Introduction
	Related Work
	Koopman Autoencoder Models
	Multifactor Disentangling Koopman Autoencoders
	Results
	Multifactor Disentanglement
	Two Factor Disentanglement of Image Data
	Two Factor Disentanglement of Audio Data
	Ablation Study

	Discussion
	Koopman Theory
	Experimental Setup: Architecture, Datasets, Hyperparameters, and More
	Datasets
	Disentanglement Metrics
	Architecture and Hyperparameters
	Encoder and Decoder
	Koopman Layer
	Additional Dynamic Loss Options

	Disentanglement Process using Multifactor Disentangling Koopman Autoencoders
	Identification of Subspaces
	Speaker Verification Experiment Details

	Additional Results
	Mean and Standard Deviation Measures
	Data Generation
	Two Factors and Multifactor Swaps
	Static incremental swap on MUG
	Koopman Matrix Spectrum Ablation Study
	Computational Resources Comparison

