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Abstract

We consider deep deterministic policy gradient (DDPG) in the context of reinforcement
learning with sparse rewards. To enhance exploration, we introduce a search procedure, ϵt-
greedy, which generates exploratory options for exploring less-visited states. We prove that
search using ϵt-greedy has polynomial sample complexity under mild MDP assumptions.
To more efficiently use the information provided by rewarded transitions, we develop a new
dual experience replay buffer framework, GDRB, and implement longest n-step returns.
The resulting algorithm, ETGL-DDPG, integrates all three techniques: ϵt-greedy, GDRB,
and Longest n-step, into DDPG. We evaluate ETGL-DDPG on standard benchmarks and
demonstrate that it outperforms DDPG, as well as other state-of-the-art methods, across
all tested sparse-reward continuous environments. Ablation studies further highlight how
each strategy individually enhances the performance of DDPG in this setting.

1 Introduction

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) is one of the representative algorithms
for reinforcement learning (RL) (Sutton & Barto, 2018), alongside other prominent approaches (Haarnoja
et al., 2018; Fujimoto et al., 2018; Andrychowicz et al., 2017). In recent years, DDPG has served as the
backbone algorithm for introducing novel ideas in robotics and RL Barth-Maron et al. (2018); Pan et al.
(2020); Liu et al. (2023); Wang et al. (2023); Tiapkin et al. (2024). While DDPG demonstrates strong
performance in continuous control tasks with dense reward signals (Duan et al., 2016; Kiran et al., 2021),
its effectiveness diminishes significantly in sparse-reward settings where rewards are only observed upon
reaching the goal (Matheron et al., 2019; Luck et al., 2019).

In sparse-reward environments where success depends on reaching a goal state, DDPG’s deficiency can be
explained from three perspectives. The first one is its lack of directional exploration. Like other off-policy RL
algorithms, DDPG employs a behavior policy for exploring the environment. The standard choices are either
an ϵ-greedy behavior policy that samples a random action with probability ϵ (e.g., 0.1), or the main policy
with artificial noise. As argued in (Dabney et al., 2020), these one-step noise augmented greedy strategies are
ineffective for exploring large sparse-reward state spaces due to the lack of temporal abstraction. To improve
ϵ-greedy, Dabney et al. (2020) propose a temporally extended ϵz-greedy policy that expands exploration
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Figure 1: (a): ϵt-greedy exploration strategy. The agent creates a tree from the current state st with ϵ
probability. Otherwise, it uses its policy to determine the next action at ∼ π. The tree uses a hash function
ϕ to estimate the visit counts to states. If the newly added node sx to the tree is located in an unvisited
area n(ϕ(sx)) = 0, the path from the root to that node is returned as option O. The tree helps in avoiding
obstacles, discovering unexplored areas, and staying away from highly-visited regions (middle red area). (b):
GDRB and the longest n-step return for Q-value updates. τ1 reaches the goal (a successful episode), and
τ2 is truncated by time limit (an unsuccessful episode). The first buffer Dβ stores both trajectories but De

only stores successful trajectories. The target Q-value for state st is shown for both trajectories below the
figure. In successful episodes, the target Q-value is the episode return. sT represents the last state in each
episode, which is the goal state indicated by a star in τ1.

into multiple steps, controlled by a distribution z. ϵz-greedy represents an advancement from the option
framework for reinforcement learning (Sutton et al., 1999). Theoretically, an option O is defined as a tuple
O = ⟨I, π, β⟩, where I is the set of states where an option can begin, π is the option policy that determines
which actions to take while executing the option, and β is the termination condition. In ϵz-greedy, each
option repeats a primitive action for a specific number of time steps which is sampled from a distribution
z (e.g., a uniform distribution). The option can begin at any state with probability ϵ and terminates
whenever their length reaches a limit that is decided by z. While ϵz-greedy improves over ϵ-greedy, it is also
directionless: for exploratory action, the agent does not use any information from its experience for more
informed exploration.

The second drawback of DDPG is its uniform treatment of zero and non-zero rewards in the replay buffer.
For most off-policy RL algorithms, a replay buffer is used to store and sample transitions of the agent’s
interactions with the environment. By default, DDPG uses a uniform sampling strategy that assigns an
equal probability of being chosen to all transitions in the buffer. In sparse-reward environments, uniform
sampling therefore rarely chooses rewarded transitions. In general, RL algorithms can be improved by
prioritizing transitions based on the associated rewards or TD error (Schaul et al., 2015). For problems with
well-defined goals, a replay buffer can be further enhanced to exploit the strong correlation of rewards and
goals. The third weakness of DDPG is its slow information propagation when updating its learning policy.
Since only the last transition in a successful episode (i.e., goal reached) gets rewarded, in standard DDPG,
the agent must achieve the goal many times to make sure that the reward is eventually propagated backward
to early states. It is known that one way to achieve this is to provide intermediate rewards with reward
shaping methods (Laud, 2004). However, effective reward shaping is usually problem-specific and does not
generalize to a wide range of tasks.

In this paper, we enhance DDPG (Lillicrap et al., 2015) to address all three aforementioned problems. We
choose DDPG over SAC, as SAC’s maximum entropy framework already provides advanced exploration,
and combining it with our components would introduce extra complexity, making it harder to isolate and
analyze our contributions. Our first contribution is ϵt-greedy, a new temporally version of ϵ-greedy that
utilizes a light-weight search procedure, similar to Laud (2004), to enable more directional exploration based
on the agent’s previous experience data. We show that similar to ϵz-greedy, ϵt-greedy has polynomial sample
complexity in related parameters of the MDP. Our second contribution is a new goal-conditioned dual replay
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buffer (GDRB), that uses two replay buffers along with an adaptive sampling strategy to differentiate goal-
reached and goal-not-reached experience data. These two buffers differ in retention policy, size, and the
transitions they store. Our third enhancement is to replace the one-step update in DDPG with the longest
n-step return for all transitions in an episode. Figure 1 illustrates the innovations of ETGL-DDPG. In Section
4, we evaluate the performance of ETGL-DDPG through extensive experiments on 2D and 3D continuous
control benchmarks. As the proposed strategies are orthogonal, we show that each of the three strategies
individually improves the performance of DDPG via a thorough ablation study. Furthermore, ETGL-DDPG
outperforms current state-of-the-art methods across all tested environments.

2 Background

We consider a Markov decision process (MDP) defined by the tuple (S, A, T , r, γ, ρ). S is the set of states, A
is the set of actions, T (s′|s, a) is the transition distribution, r : S×A×S → R is the reward function, γ ∈ [0, 1]
is the discount factor, and ρ(s0, sg) is the distribution from which initial and goal states are sampled for each
episode. Every episode starts with sampling a new pair of initial and goal states. At each time-step t, the
agent chooses an action using its policy and considering the current state and the goal state at = π(st, sg)
resulting in reward rt = (st, at, sg). The next state is sampled from T (.|st, at). The episode ends when either
the goal state or the maximum number of steps T is reached. The return is the discounted sum of future
rewards Rt =

∑T
i=t γi−tri. The Q-function and value function associated with the agent’s policy are defined

as Qπ(st, at, sg) = E[Rt|st, at, sg] and V π(st, sg) = maxaQπ(st, at, sg). The agent’s objective is to learn an
optimal policy π∗ that maximizes the expected return Es0 [R0|s0, sg].

2.1 Deep Deterministic Policy Gradient (DDPG)

To ease presentation, we adopt our notation with explicit reference to the goal state for both the critic and
the actor networks in DDPG. DDPG maintains an actor µ(s, sg) and a critic Q(s, a, sg). The agent explores
the environment through a stochastic policy a ∼ µ(s, sg) + w, where w is a noise sampled from a normal
distribution or an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930). To update both actor and
critic, transition tuples are sampled from a replay buffer to perform a mini-batch gradient descent. The
critic is updated by a loss L,

L = E[Q(st, at, sg)− yt]2 (1)

where yt = rt+γQ′(st+1, µ′(st+1, sg), sg). Q′ and µ′ are the target critic and actor, respectively; their weights
are soft-updated to the current weights of the main critic and actor, respectively. The actor is updated by
the deterministic policy gradient algorithm (Silver et al., 2014) to maximize the estimated Q-values of the
critic using loss −Es[Q(s, µ(s, sg), sg)].

2.2 Locality-Sensitive Hashing

Our approach discretizes the state space with a hash function ϕ : S→M, that maps states to buckets in M.
When we encounter a state s, we increment the visit count for ϕ(s). We use n(ϕ(s)) as the visit counts of all
states that map to the same bucket ϕ(s). Clearly, the granularity of the discretization significantly impacts
our exploration method. The goal for the granularity is that “distant” states are in separate buckets while
“similar” states are grouped into one.

We use Locality-Sensitive Hashing (LSH) as our hashing function, a popular class of hash functions for
querying nearest neighbors based on a similarity metric (Bloom, 1970). SimHash (Charikar, 2002) is a
computationally efficient LSH method that calculates similarity based on angular distance. SimHash retrieves
a binary code of state s ∈ S as

ϕ(s) = sgn(Af(s)) ∈ {−1, 1}k, (2)
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where f : S → RD is a preprocessing function and A is a k × D matrix with i.i.d. entries drawn from a
standard Gaussian distribution N (0, 1). The parameter k determines the granularity of the hash: larger
values result in fewer collisions, thereby enhancing the ability to distinguish between different states.

3 The ETGL-DDPG Method

In this section, we describe three strategies in ETGL-DDPG for improving DDPG in sparse-reward tasks.
The full pseudocode for ETGL-DDPG is presented in Supplementary Algorithm 3.

3.1 ϵt-Greedy: Exploration With Search

In principle, exploration should be highest at the beginning of training, as discovering rewarded transitions
during early steps is essential for escaping local optima (Matheron et al., 2019). Motivated by the success
of the fast exploration algorithms RRT (LaValle, 1998) and ϵz-greedy (Dabney et al., 2020), we introduce
ϵt-greedy, which combines ϵ-greedy with a tree search procedure. Like ϵ-greedy, ϵt-greedy selects a greedy
action with probability 1 − ϵ, and an exploratory action with probability ϵ. However, instead of exploring
uniformly at random, the exploratory action in ϵt-greedy is the first step of an option generated via a search
with time budget N .

To execute the search process, the agent requires access to the environment’s transition function T of
the corresponding MDP. This is used to generate new nodes within the search tree. However, since our
exploration strategy is built on DDPG, the model-free algorithm, the transition function T is not known.
Instead, the agent utilizes its replay buffer to advance the search. We briefly discuss the impact of having
access to T on the exploration process in Supplementary Material A.4. We also assume that the agent has
a SimHash function ϕ, which discretizes the large continuous environment. For each state s, n(ϕ(s)) serves
as an estimate of the number of visits to a neighbourhood of s throughout the entire learning process.

The replay buffer contains transitions observed during training. It can be used as a transition model for
observed transitions and an approximate one for transitions similar to those already seen. For simplicity, we
identify each bucket with its hash code ϕ(s). We use a buffer BM which stores observed transitions based
on the hash of their states ϕ(s). If the agent makes a transition (st, at, rt, st+1) in the environment, the
transition is stored in bucket b = ϕ(st). All transitions are assigned to their buckets upon being added to
the replay buffer. As training may take a long time, we limit the number of transitions in each bucket, and
randomly replace one of the old transitions in a full bucket with the new transition.

The function next_state_from_replay_buffer in Algorithm 1 shows how new nodes can be added to the
search: assuming we are at node sx, we randomly select a transition (s′, a, r, s′′) in bucket ϕ(sx) and create
a new child sx′ for sx by using following approximation:

T (sx, a) ≈ T (s′, a) (3)

Algorithm 1 explains how the search generates an exploratory option. Initially, at state s, we create a list
of frontier nodes consisting of only the root node s. If bucket of state s in BM is empty: bϕ(s) = ∅, there
is no transition to approximate T (s, a). In this case, ϵt-greedy as in ϵ-greedy generates a random action at
s. Otherwise, when bϕ(s) ̸= ∅, ϵt-greedy conducts a tree search iteratively, with a maximum of N iterations.
At each iteration, a node sx is sampled uniformly from the frontier nodes, and a child for sx, noted as sx′ , is
generated using next_state_from_replay_buffer function. If n(ϕ(sx′)) = 0, we terminate and return the
action sequence from the root to sx′ ; otherwise, we repeat this process until we have added N nodes to the
tree. We then return the action sequence from the root to a least-visited node smin:

smin = min
s ∈ frontier nodes

n(ϕ(s)) (4)

To justify this exploration method, we adopt the conditions outlined in Liu & Brunskill (2018) to validate
the sample efficiency of ϵt-greedy. We begin by introducing the relevant terms and then present the main
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theorem. Detailed definitions and proofs are provided in Appendix A.1. The key idea is to define a measure
that captures the concept of visiting all state-action pairs, as outlined in Definition 1.
Definition 1 (Covering Length). The covering length (Even-Dar & Mansour, 2004) represents the mini-
mum number of steps an agent must take in an MDP, starting from any state-action pair (s, a) ∈ S ×A, to
visit all state-action pairs at least once with a probability of at least 0.5. We define the covering length only
for discrete MDPs; for continuous MDPs, we consider a discretization of the state-action space S ×A.

Our objective is to find a near-optimal policy, as defined in Definition 2.
Definition 2 (ϵ-optimal Policy). A policy π is called ϵ-optimal if it satisfies V π∗(s)− V π(s) ≤ ϵ, for all
s ∈ S, where ϵ > 0.

Next, we define the concept of sample efficiency, which is captured through the notion of polynomial sample
complexity in Definition 3.
Definition 3 (PAC-MDP Algorithm). Given a state space S, action space A, suboptimality error ϵ > 0
(from Definition 2) and 0 < δ < 1, an algorithm A is called PAC-MDP (Kakade, 2003), if the number
of time steps required to find a ϵ-optimal policy is less than some polynomial in the relevant quantities
(|S|, |A|, 1

ϵ , 1
1−γ , 1

δ ) with probability at least 1− δ.

For simplicity, when we say an algorithm A has polynomial sample complexity, we imply that A is PAC-
MDP. The work by Liu & Brunskill (2018) establishes polynomial sample complexity for a uniformly random
exploration by bounding the covering length defined in Definition 1. Using this, and considering a limited
tree budget N , we show that ϵt-greedy is PAC-MDP. Let’s denote the search tree by X , and the distribution
over the generated options in X as PX . The following Theorem provides a lower bound on option sampling
in tree X under certain condition.
Theorem 1 (Worst-Case Sampling). Given a tree X with N nodes (s1 to sN ), for any ω ∈ ΩX , the
sampling probability satisfies:

PX [ω] ≥ 1
N !(maxi∈[N ] |ϕ(si)|)N−1 ≥

1
Θ(|S||A|) (5)

, if N ≤ log(|S||A|)
log log(|S||A|) . Here, S and A represent the state space and action space, respectively.

To prove Theorem 1, we examine the construction of the “hardest option”, ω̂ ∈ ΩX , which has the lowest
sampling probability in the tree X . Since PX is an unknown distribution, we cannot directly exploit it.
Instead, we construct a worst-case scenario to approximate the minimum option sampling probability. Now,
we present the following Theorem on the sample complexity of ϵt-greedy.
Theorem 2 (ϵt-greedy Sample Efficiency). Given a state space S, action space A, and a set of op-
tions ΩX generated by ϵt-greedy for each tree X , if PX [ω] ≥ 1

Θ(|S||A|) , ϵt-greedy achieves polynomial sample
complexity or i.e. is PAC-MDP.

Theorem 1 asserts that the sampling bound condition from Theorem 2 is satisfied when N ≤ log(|S||A|)
log log(|S||A|) .

Theorem 2 establishes the necessary lower bound on the sampling probability of an option ω ∈ ΩX for any
given exploration tree X , ensuring that the ϵt-greedy strategy is PAC-MDP under this criterion.

3.2 GDRB: Goal-conditioned Dual Replay Buffer

The experience replay buffer is an indispensable part of deep off-policy RL algorithms. It is common to
use only one buffer to store all transitions and use FIFO as the retention policy, with the most recent data
replacing the oldest data (Mnih et al., 2013). As an alternative, in the reservoir sampling (Vitter, 1985)
retention policy, each transition in the buffer has an equal chance of being overwritten. This maintains
coverage of some older data over training. RS-DRB (Zhang et al., 2019) uses two replay buffers, one for
exploitation and the other for exploration. The transitions made by the agent’s policy are stored in the
exploitation buffer, and the random exploratory transitions are stored in the exploration buffer. For the
retention policy, the exploration buffer uses reservoir sampling, while the exploitation buffer uses FIFO.
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Algorithm 1 Generating exploratory option with tree search
1: function generate_option(state s, hash function ϕ, budget N)
2: frontier_nodes ← {}
3: Initialize root using s: root ← TreeNode(s)
4: frontier_nodes ← frontier_nodes ∪ {root};
5: smin ← root
6: i← 0
7: while i < N do
8: sx ∼ UniformRandom(frontier_nodes)
9: sx′ = next_state_from_buffer(sx)

10: if n(ϕ(sx′ ))=1 then ▷ For a state to be in the replay buffer, it must have been visited at least once.
11: Extract option o by actions root to sx′

12: return o
13: end if
14: if n(ϕ(sx′ )) < n(ϕ(smin)) then
15: smin=sx′

16: end if
17: i← i + 1
18: end while
19: Extract option o by actions root to smin
20: return o
21: end function
22:
23: function next_state_from_buffer(sx, frontier_nodes)
24: (s′, a, r, s′′) ∼ UnifromRandom(ϕ(sx))
25: sx′ ← s′′

26: sx.add_child(sx′ )
27: frontier_nodes ← frontier_nodes ∪ {sx′ }
28: return sx′

29: end function

Inspired by this dual replay buffer framework, we propose a Goal-conditioned Double Replay Buffer (GDRB).
The first buffer Dβ stores all transitions during training, and the second buffer De stores the transitions
that belong to successful episodes (i.e., goal reached). Dβ uses reservoir sampling, and De uses FIFO.
Since Dβ needs to cover transitions from the entire training process, it is larger than De. We balance the
number of samples taken from the two buffers with an adaptive sampling ratio. Specifically, in a training
process of E episodes, at current episode i, the sampling ratios τe and τβ for De and Dβ are set as follows:
τe = i

E , τβ = 1 − τe. To select C mini-batches, max(⌊τβ ∗ C⌋ , 1) mini-batches are chosen from Dβ and the
rest from De. Later stages of training still sample from Dβ to not forget previously acquired knowledge, as
we assume the policy is more likely to reach the goal as the training progresses. In case that De is empty,
since there are no successful episodes yet, we draw all mini-batches from Dβ .

3.3 Using Longest n-step Return

In standard DDPG, Q-values are updated using one-step TD. In goal-reaching tasks with sparse rewards,
only one rewarded transition per successful episode is added to the replay buffer. The agent needs rewards
provided by these transitions to update its policy toward reaching the goal. With few rewarded transitions,
the agent should exploit a successful path to the goal many times so the reward is propagated backward
quickly. Multi-step updates can accelerate this process by looking ahead several steps, resulting in more
rewarded transitions in the replay buffer (Meng et al., 2021; Hessel et al., 2018). For example, Meng et al.
(2021) utilize n-step updates in DDPG with n ranging from 1 to 8. In our design, to share the reward from
the last step of a successful episode for all transitions in the episode, we use longest n-step return (Mnih
et al., 2016), shown in Equation 6.
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Figure 2: The environments used in our experiments.

Q(st, at) =


∑T −t

k=0 γkrt+k, sT is a goal state

∑T −t−1
k=0 γkrt+k + γT −tQ(sT , aT ), otherwise

(6)

Here, sT is the last state in the episode. Using the longest n-step return for each transition from a successful
episode, the reward is immediately propagated to all Q-value updates. In unsuccessful episodes, using the
longest n-step return reduces the overestimation bias in Q-values (Thrun & Schwartz, 1993). Meng et al.
(2021) empirically show that using multi-step updates can improve the performance of DDPG on robotic
tasks mostly by reducing overestimation bias — they demonstrate that the larger the number of steps, the
lower the estimated target Q-value and overestimation bias.

4 Experiments

In this section, we show the details of how ETGL-DDPG improves DDPG for sparse-reward tasks using its
three strategies. We use experiments to answer the following questions: 1) Can ETGL-DDPG outperform
state-of-the-art methods in goal-reaching tasks with sparse rewards? 2) How does each of these three in-
novations impact the performance of DDPG? 3) Can ϵt-greedy explore more efficiently than ϵz-greedy and
other common exploration strategies?

We consider two types of tasks: navigation and manipulation. We use three sparse-reward continuous
environments for navigation. The first environment is a 2D maze called Wall-maze (Trott et al., 2019),
where a reward of -1 is given at each step, and a reward of 10 is given if the goal is reached. The start
and goal states for each episode are randomly selected from the blue and green regions, respectively, as
shown in Figure 2a. The agent’s action (dx,dy) determines the amount of movement along both axes. The
environment contains a gradient cliff feature (Lehman et al., 2018), where the fastest way to reach the goal
results in a deadlock close to the goal. Our second and third 3D environments are U-maze (Figure 2b) and
Point-push (Figure 2c) (Kanagawa, 2021), designed using the MuJoCo physics engine (Todorov et al., 2012).
In both environments, a robot (orange ball) seeks to reach the goal (red region). In Point-push, the robot
must additionally push aside the two movable red blocks that obstruct the path to the goal. A small negative
reward of -0.001 is given at each step unless the goal is reached, where the reward is 1. In each episode, the
robot starts near the same position with slight random variations, but the goal region remains fixed.

We also employ three manipulation tasks: window-open, soccer, and button-press (Figures 2d, e, and f) (Yu
et al., 2020). In window-open, the goal is to push the window open; in soccer, the goal is to kick the ball
into the goal; and in button-press, the aim is to press the top-down button. Each episode begins with the
robot’s gripper in a randomized starting position, while the positions of other objects remain constant. The
original versions of these tasks employ a uniquely shaped reward function for each task. However, these
versions offer limited challenges for exploration, as standard baselines, such as SAC, demonstrate strong
performance (Yu et al., 2020). We modified the original reward function to be sparse, transforming these
tasks into challenging exploration problems.

The maximum number of steps per episode is set to 100 for Wall-maze and 500 for all other environments.
Across all methods, the neural network architecture consists of 3 hidden layers with 128 units each, using
ReLU activation functions. For standard baselines, we utilize the implementations from OpenAI Gym
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Figure 3: The success rates across all environments, averaged over 5 runs with different random seeds.
Shaded areas represent one standard deviation. We trained all methods for 6 million frames in the navigation
environments and 2 million frames in the manipulation environments, with success rates reported at every
105-step checkpoint. A moving average with a window size of 10 is applied to all methods for better
readability.

(Dhariwal et al., 2017), and for other baselines, we rely on their publicly available implementations. After
testing various configurations, we found that ϵt-greedy and ϵz-greedy perform best with budgets of N =
40 and N = 15, respectively, across these environments. Additional details about the environments and
experimental setup are provided in Appendix A.5.

4.1 Overall Performance of ETGL-DDPG

We evaluate the performance of ETGL-DDPG compared to state-of-the-art methods. We compare with
SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018), DDPG, and DOIE (Lobel et al., 2022). DOIE
demonstrates state-of-the-art performance in challenging sparse-reward continuous control problems by dras-
tically improving the exploration. While both DOIE and ϵt-greedy use a similarity measure between new and
observed states, DOIE applies this to compute an optimistic value function rather than solely guiding the
agent to unexplored areas. The results are shown in Figure 3. In the navigation environments, ETGL-DDPG
and DOIE demonstrate superior performance compared to other methods, with ETGL-DDPG achieving a
success rate of 1 faster than DOIE. Notably, Wall-maze presents a more challenging task among navigation
environments, where only ETGL-DDPG and DOIE are able to achieve a success rate above zero. In manip-
ulation tasks, the press-button poses the hardest challenge as none of the methods achieve a success rate of
1. ETGL-DDPG still outperforms all other approaches, while DOIE underperforms compared to SAC, indi-

8



Published in Transactions on Machine Learning Research (05/2025)

0 100 200 300 400 500 600

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
environment coverage

(a) Wall-maze

0 100 200 300 400 500 600

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
environment coverage

(b) U-maze

0 100 200 300 400 500 600

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
environment coverage

(c) Point-push

DDPG + z-greedy DDPG DDPG + t-greedy DDPG + intrinsic motivation DOIE

Figure 4: The environment coverage for exploration strategies in navigation environments. On the graph,
the y-axis indicates the portion of the environment that has been covered, and the checkpoints occur every
104 steps shown on the x-axis. The results are given for the average of 10 runs with random seeds. The
shaded region represents one standard deviation.

cating its limitations in adapting to high dimensional environments. Regarding training time, we observed
that ETGL-DDPG requires approximately 1.5 times the training time of DDPG. This extended training
duration can be attributed to two main components: ϵt-greedy and the longest n-step return. Among these,
ϵt-greedy has a greater effect, as each step necessitates a local search.

4.2 Environment Coverage through Exploration

We now examine how effective ϵt-greedy is in covering the environment. To do so, we discretize the navigation
environments into small cells. A cell is considered visited if the agent encounters a sufficient number of
distinct states within it, and the overall environment coverage is quantified as the fraction of visited cells.
Figure 4 presents a comparison of environment coverage across different exploration strategies. All strategies
except DOIE, which uses Radial Basis Function Deep Q-Network (RBFDQN) (Asadi et al., 2021), use
DDPG as their underlying algorithm. RBFDQN is an enhanced DQN variant that incorporates Radial
Basis Functions (RBF) to achieve more accurate Q-value approximations in continuous environments. In
Wall-maze, ϵt-greedy achieves 80% coverage, whereas DOIE reaches 60%. ϵz-greedy covers approximately
half of the environment, whereas the remaining methods manage to explore only around 30%. In U-maze,
all strategies are successful, covering 80% or more of the environment. Even so, ϵz-greedy reaches full
coverage faster than other methods. In Point-push, none of the methods can fully cover the environment
and ultimately achieve nearly the same coverage. The tree budget N serves as an upper bound on the option
length in ϵt-greedy, analogous to its role in ϵz-greedy when using a uniform distribution z(n) = 1n≤N /N . We
evaluate environment coverage under varying values of N in Section A.7, where results indicate that ϵt-greedy
achieves improved coverage as N increases. In contrast, ϵz-greedy does not exhibit a consistent improvement
in coverage and, in some cases, experiences a decline. This highlights the advantages of directed exploration
over undirected approaches. Finally, we present the distribution of final states reached in the episodes to
illustrate the order in which the agent visits different regions of the environment (see Appendix A.8).

In ϵz-greedy, various distributions can be used to select options based on their length. Although a uniform
distribution is a straightforward choice, alternative distributions such as the zeta distribution z(n) ∝ n−µ

(where µ controls the decay rate) can also be employed. Empirical results by (Dabney et al., 2020) show
that the zeta distribution slightly outperforms the uniform distribution, and moreover, produces a pattern
akin to Lévy flights observed in certain ecological foraging models (Baronchelli & Radicchi, 2013). Figure 5
shows the distribution of option lengths generated by ϵt-greedy during training across all environments,
revealing two main observations: (1) moderate-length options have the highest probability of being selected,
and (2) probabilities decay as option length increases. While this decay pattern resembles that of the zeta
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Figure 5: The distribution of options chosen in training. The x-axis represents the length of the options
and the y-axis indicates the probability of each length, calculated based on how often each length is chosen
across all options.
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Figure 6: The ablation study for two-component combinations in navigation environments. The success rates
are averaged over 5 runs with different random seeds and the shaded areas represent one standard deviation.

distribution (where length 1 is most likely), ϵt-greedy instead favors moderate lengths. Note that Although
options longer than 12 do occur, their frequency is extremely low and thus not visible in Figure 5.

4.3 Effectiveness of Each New Component in ETGL-DDPG

We evaluated the performance of ETGL-DDPG, and now we assess the impact of each component on
DDPG separately. Figure 7 presents the results for all environments. ϵt-greedy demonstrates the most
improvement across all environments and is the only method that enhances the performance of DDPG in
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the Wall-maze, highlighting the critical role of our exploration strategy. GDRB shows a positive impact on
DDPG performance in all environments, except for soccer, where DDPG alone outperforms all baselines.
Additionally, we replaced reservoir sampling with FIFO as the retention policy in GDRB and observed
similar results. The longest n-step return has a positive effect only in U-maze and press-button tasks,
while it negatively impacts performance in soccer and Point-push. We attribute this to the inherently high
variance of multi-step updates. A comparison of Figures 3 and 7 across all environments shows that ETGL-
DDPG consistently outperforms the use of each component individually, supporting the effectiveness of their
combination.

To conclude the analysis of each component, we conduct three additional experiments in this section. First,
we perform an ablation study by considering all possible two-component combinations, where the omitted
component in each combination is replaced with its DDPG counterpart. The results, shown in Figure 6
for the navigation environments, indicate that all combinations outperform DDPG in every environment
except Wall-maze, where the agent fails to achieve a non-zero success rate without ϵ-greedy exploration.
Moreover, in Point-push, omitting the longest n-step return while following the original DDPG strategy
causes a noticeable decline in success rates during the later stages of training.

Second, we compare the longest n-step return with the method proposed by Meng et al. (2021), who exper-
imented with n ranging from 1 to 8 and tested both the minimum of the n-step returns and their average.
In their experiments, MMDDPG, which computes the average return over 1 to 8 steps (avg8-step), outper-
forms other variants in robotic tasks. Here, we replace the longest n-step return in ETGL-DDPG with the
avg8-step return to evaluate its effectiveness in reward propagation. The results, presented in Appendix A.2,
show that both methods perform similarly across most environments, except in Wall-maze, where the longest
n-step return outperforms the avg8-step approach. Notably, the avg8-step method converges more rapidly,
likely due to the stabilizing effect of averaging multiple updates.

Lastly, we compare GDRB with Hindsight Experience Replay (HER) Andrychowicz et al. (2017), a method
for sparse-reward tasks that increases feedback to the agent by treating certain states in unsuccessful episodes
as imaginary goals. By assigning rewards to these artificially generated goals, HER can leverage unsuccessful
episodes more effectively. Figure 8 in Appendix A.3 compares the impact of GDRB and HER on DDPG
in navigation environments. In Wall-maze, HER enables the agent to learn from previously unsuccessful
trajectories, allowing it to achieve success rates above zero. In the other two environments, both GDRB
and HER exhibit similar performance, although HER converges more quickly due to its reward-reshaping
mechanism, which provides stronger guidance in the initial stages of training.

5 Related Work

Intrinsic Motivation. Intrinsic motivation methods (Burda et al., 2018; Pathak et al., 2017; Ostrovski
et al., 2017; Tang et al., 2017) provide a reward bonus for unexplored areas of the state space, enabling
the agent to receive more feedback in sparse-reward scenarios. However, since a transition can receive
varying rewards at different time steps, these methods make the reward function non-stationary, violating
the Markov assumption of MDPs. They are also sensitive to hyperparameters, requiring extensive tuning for
each environment (Schäfer et al., 2021). Decoupled RL algorithms (Schäfer et al., 2021; Badia et al., 2019)
address this issue by training separate policies for exploration and exploitation, where the exploitation policy
optimizes sparse rewards while leveraging data collected by the exploration policy. Although this resolves
the non-stationarity issue, it doubles the computational cost. ϵt-greedy is similar to Tang et al. (2017) in
identifying less-explored states using the SimHash function. However, unlike intrinsic motivation methods,
ϵt-greedy does not modify the reward function. Instead, it directs the agent toward less-explored states,
preserving the stationarity of the reward function while avoiding the need for additional computation.

Other Exploration Techniques. There are also other strategies to improve exploration without using
reward bonuses. Colas et al. (2018) use a policy search process to generate diverse data to improve training
of DDPG. Liu et al. (2018) introduce a competition-based exploration method where two agents (A and
B) compete with each other. Agent A is penalized for visiting states visited by B, while B is rewarded for
visiting states discovered by A. Plappert et al. (2018) directly inject noise into the policy’s parameter space
instead of the action space. Eysenbach et al. (2019) build a graph using states in the replay buffer, allowing
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Figure 7: Analyzing the individual impact of three components on DDPG: ϵt-greedy, GDRB, and longest
n-step return.

the agent to navigate distant regions of the environment by applying Dijkstra’s algorithm. ϵt-greedy shares
similarities with Eysenbach et al. (2019) in constructing a tree structure within the state space. However,
while Eysenbach et al. (2019) builds a single global graph to connect the start state to the goal state, ϵt-
greedy generates local trees dynamically, focusing on accessing less-explored areas. Ecoffet et al. (2021)
introduce Go-Explore which separates exploration and policy optimization into two distinct phases. During
the exploration phase, the algorithm systematically explores the environment by maintaining an archive of
visited states along with their corresponding trajectories. In the robustification phase, these trajectories are
leveraged to train a robust policy using standard reinforcement learning methods, such as PPO. However, a
key limitation of Go-Explore is its reliance on resetting trajectories to return to previously visited states, a
feature that is often unavailable in many real-world scenarios. Lobel et al. (2022) present Deep Optimistic
Initialization for Exploration (DOIE), which improves exploration in continuous control tasks by maintaining
optimism in state-action value estimates. Lobel et al. (2023) demonstrate that DOIE can estimate visit
counts by averaging samples from the Rademacher distribution instead of using density models. Dey et al.
(2024) present COIN, a continual optimistic initialization strategy that extends DOIE to stochastic and non-
stationary environments. Chakraborty et al. (2023) leverage heavy-tailed action distributions to enhance
exploration in continuous control tasks. Wang et al. (2022) propose a framework in which learned high-
level policies select among a set of pre-designed low-level base controllers, allowing the agent to decompose
complex long-horizon tasks into simpler control primitives. Dawood et al. (2023) use model predictive control
(MPC), where a learned high-level policy proposes goals or waypoints, and MPC is used to generate low-level
actions that guide the agent toward those goals.
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Experience Replay Buffer. Rather than uniformly sampling from the buffer, Prioritized Experience
Replay (PER) (Schaul et al., 2015) prioritizes transitions in the buffer based on reward, recency, or TD
error at the expense of O(log N) per sample, where N is the buffer size. CER (Zhang & Sutton, 2017)
includes the last transition from the buffer to each sampled batch with O(1) complexity. Zhang et al. (2022)
learn a conservative value regularizer only from the observed transitions in the replay buffer to improve the
sample efficiency of DQN. Pan et al. (2022) theoretically show why PER has a better convergence rate than
uniform sampling policy when minimizing mean squared error. Furthermore, Pan et al. (2022) identify two
limitations of PER: outdated priorities and insufficient coverage of the state space. Kompella et al. (2023)
propose Stratified Sampling from Event Tables (SSET), a method that partitions the experience replay buffer
into distinct Event Tables. Each Event Table captures significant subsequences of optimal behavior, allowing
for more targeted sampling during training. GDRB aligns conceptually with SSET if achieving a goal is
defined as the sole event. However, SSET employs FIFO for inserting new data into its buffers, whereas
GDRB uses reservoir sampling for its success-event buffer. Moreover, in SSET, the sampling ratios between
buffers are fixed, while GDRB dynamically adjusts these ratios over time to favor the smaller buffer.

Reward Propagation. Reward shaping (Laud, 2004; Hu et al., 2020) creates artificial intermediate rewards
to facilitate reward propagation. However, designing appropriate intermediate rewards is hard and often
problem-specific. Trott et al. (2019) address this issue by introducing self-balancing reward shaping in
the context of on-policy learning. Their approach defines the local optimum as the closest visited state to
the goal and calculates the reward for each state based on its distance from the local optimum and the
goal. By dynamically adjusting the local optimum, the agent is guided toward the optimal behavior. To
extract more information from an unsuccessful episode, Andrychowicz et al. (2017) introduce imaginary
goals. An imaginary goal for state s is a state that is encountered later in the episode. Learning to
achieve these imaginary goals helps the agent understand the structure of the environment. Memarian
et al. propose Self-Supervised Online Reward Shaping (SORS), a method that alternates between ranking
trajectories using sparse rewards and training a classifier to infer a dense reward function from these rankings.
The inferred dense rewards are then utilized to update the agent’s policy. Devidze et al. (2024) present a
reward informativeness criterion that adaptively constructs interpretable reward functions based on the
agent’s current policy. Wilcox et al. (2022) propose a Monte Carlo Augmented Actor-Critic (MCA2C)
framework that integrates Monte Carlo returns from suboptimal demonstration trajectories into the critic
update to improve value estimation in sparse-reward settings. By combining temporal-difference targets with
demonstration-based Monte Carlo returns, the method provides more informative learning signals during
early training, enabling the agent to better propagate sparse rewards. Barth-Maron et al. (2018) propose
D4PG by utilizing distributional critic updates, n-step returns, and distributed training across multiple
agents, which leads to improvements in wall-clock training time and data efficiency.

6 Conclusions and Future Work

We have introduced the ETGL-DDPG algorithm with three orthogonal components that improve the per-
formance of DDPG for sparse-reward goal-conditioned environments. ϵt-greedy is a temporally-extended
version of ϵ-greedy using options generated by search. We prove that ϵt-greedy achieves a polynomial sample
complexity under specific MDP structural assumptions. GDRB employs an extra buffer to separate success-
ful episodes. The longest n-step return bootstraps from the Q-value of the final state in unsuccessful episodes
and becomes a Monte Carlo update in successful episodes. ETGL-DDPG uses these components with DDPG
and outperforms state-of-the-art methods, at the expense of about 1.5x wall-clock time w.r.t DDPG. The
current limitation of our work is that we approximate visit counts through static hashing. For image-based
problems such as real-world navigation, the future direction is to leverage dynamic hashing techniques such as
normalizing flows (Papamakarios et al., 2021) as these tasks demand more intricate representation learning.
Additionally, ϵt-greedy and GDRB are designed for deterministic domains and would require adaptation for
stochastic environments. Extending these components to stochastic domains represents another promising
direction for future research.
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A Appendix

A.1 ϵt-greedy Sample Efficiency : Proofs

In this section, we first provide an overview of the proof, presenting the key ideas at a high level. Then, we
present the detailed formal proof of Theorem 1 and Theorem 2.

Proof Overview. We aim to show that the ϵt-greedy algorithm falls into the PAC-MDP category. Accord-
ing to Liu & Brunskill (2018), an algorithm A is PAC-MDP if the covering time induced by A is polynomially
bounded. In Liu & Brunskill (2018), the authors further demonstrate that bounding the covering time re-
quires bounding both the Laplacian eigenvalues and the stationary distribution over the states induced by
the random walk policy. This is presented as Proposition A.1. According to Theorem 2, two conditions are
satisfied: N ≤ Θ(|S||A|) and a lower bound on the probability of the sampled option, PX ≥ 1

Θ(|S||A|) . These
two conditions are necessary and are met by our problem setting and the exploration algorithm (Algorithm
1). To prove that PX ≥ 1

Θ(|S||A|) , we construct a worst-case tree structure X , where we aim to identify the
option induced by the tree X with the lowest probability, referred to informally as the “hardest option". We
then show that this lower bound satisfies the condition specified in Theorem 1.

We now proceed with the proof of Theorem 1, as demonstrated below.
Theorem 1 (Worst-Case Sampling). Given a tree X with N nodes (s1 to sN ), for any ω ∈ ΩX , the
sampling probability satisfies:

PX [ω] ≥ 1
N !(maxi∈[N ] |ϕ(si)|)N−1 ≥

1
Θ(|S||A|) (7)

where N ≤ log(|S||A|)
log log(|S||A|) Here, S and A represent the state space and action space, respectively.

Proof. As outlined in the proof overview, we need to construct an option with the lowest sampling probability.
Given a tree X , we define Xi (for 1 ≤ i ≤ N) as the tree constructed up to the i-th time step. At each
step Xi, we track the tuple of added states, denoted by SX

i , the uniformly sampled state sx from SX
i , and

the state with the fewest visits, smin. The notation sx and smin follows Algorithm 1. Without loss of
generality, we assume that each next state sx′ in line 9 of Algorithm 1 satisfies n(ϕ(sx′)) ̸= 0. Specifically,
we consider a worst-case tree X fully populated with states from s1 to sN . Therefore, at time step N ,
SX

N = (s1, s2, . . . , sN ), and we have the following relation:

n(ϕ(s1)) ≥ n(ϕ(s2)) ≥ n(ϕ(s3)) · · · ≥ n(ϕ(sN )). (8)

Equation 8 provides a decreasing sequence of visitations for newly added nodes in tree X , emphasizing line
15 of Algorithm 1, which causes the state smin to change over N iterations. We assume a specific structure
for each ϕ(si), where for all i ∈ [N ], at each bucket ϕ(si), there exists only one state denoted by si+1, such
that n(ϕ(si+1)) ≤ n(ϕ(si)). Additionally, we assume that at each time step in Xt, the newly added node
connects only to the most recently added node in the tree. The two key stochastic events are summarized
as follows:

• E1: The event in which nodes are sampled in Line 24 from buckets satisfying the increasing sequence
above.

• E2: The event in which nodes are selected in Line 8.

We now define the probability of interest, which we aim to bound:

P[option returned from sroot to sN |E1 and E2]. (9)
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We expand this probability as follows:

P[option returned from sroot to sN | E1 and E2] =
N∏

i=2
P[(State si added to tree X ) ∧ (si = smin) ∧ (sx = si−1 in Line 8)]

=
N∏

i=2

1
(i− 1)|ϕ(si−1)|

= 1
(N − 1)! ×

1
|ϕ(s1)||ϕ(s2)| . . . |ϕ(sN )|

>
1

N ! ×
1

(maxi∈[N ] |ϕ(si)|)N−1

>
1

|S||A|
.

To prove the final inequality, note that N ≤ log(|S||A|)
log log(|S||A|) . Since the size of the sets S and A is large

and N is sub-logarithmic in |S||A|, i.e., N ≪ log(|S||A|), we can say N ≤ log(|S||A|)
log(N) . Let us denote

log(maxi∈[N ] |ϕ(si)|) as a constant c0.

Now by the series of following inequalities we prove that 1
N ! ×

1
(maxi∈[N] |ϕ(si)|)N−1 > 1

|S||A| .

N ≤ log(|S||A|)
log(N) ⇒ N log(N) ≤ log(|S||A|) (10)

⇒ N log(N) + (N − 1)c0 −N ≤ log(|S||A|) (since |S||A| ≫ N, c0) (11)
⇒ log(N !) + (N − 1)c0 ≤ log(|S||A|) (Based on the Moivre–Stirling approximation) (12)
⇒ log(N !) + (N − 1)c0 ≤ log(|S||A|) (13)

⇒ log(N !) + log
(

(max
i∈[N ]

|ϕ(si)|)N−1
)
≤ log(|S||A|) (14)

⇒ log
(

N ! · (max
i∈[N ]

|ϕ(si)|)N−1
)
≤ log(|S||A|) (15)

⇒ 1
N ! · (maxi∈[N ] |ϕ(si)|)N−1 ≥

1
|S||A|

(16)

Now we provide the main proof which demonstrates polynomial sample complexity under certain criteria.
Theorem 2 (ϵt-greedy Sample Efficiency). Given a state space S, action space A, and a set of op-
tions ΩX generated by ϵt-greedy for each tree X , if PX [ω] ≥ 1

Θ(|S||A|) , ϵt-greedy achieves polynomial sample
complexity or i.e. is PAC-MDP.

Proof. First note that if PX [ω] ≥ 1
Θ(|S||A|) then based on Theorem 1 we need to have N ≤ log(|S||A|)

log log(|S||A|) , and
this implies that N ≤ Θ(|S||A|). Based on the paper by (Liu & Brunskill, 2018), and the analysis of the
covering length when following a random policy, we have the following preposition:

Preposition A.1 (Liu & Brunskill (2018)). : For any irreducable MDP M, we define PπRW
as a transition

matrix induced by random walk policy πRW over M and L(PπRW
) is denoted as the Laplacian of this transition

matrix. Suppose λ is the smallest non-zero eigenvalue of L and Ψ(s) is the stationary distribution over states
which is induced by random walk policy, then Q-learning with random walk exploration is a PAC RL algorithm
if: 1

λ , 1
mins Ψ(s) are Poly(|S||A|).
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Note that Preposition A.1 is not limited to an MDP with primitive actions. Therefore, we can broaden
its scope by incorporating options into this proposition and demonstrate that both 1

λ and 1
mins Ψ(s) can be

polynomially bounded in terms of MDP parameters—in this case, states and actions in our approach.

Let’s begin by examining the upper-bound for 1
mins Ψ(s) . Suppose we are at exploration tree X . Without

a loss of generality, we consider that capacity of tree X is full, and we have N states. In this tree, let’s
designate sroot as the state assigned as the root of the tree during the exploration phase. Now, consider
another random state (excluding sroot) within this tree structure, denoted as srand. We acknowledge that,
when considering the entire state space, there can be multiple options constructed from sroot to srand. Each
tree X provides one of these options. Ψ(s) is defined over all states, and ω is the option with a limited size
because of the constrained tree budget.

we can calculate the upper-bound for 1
mins Ψ(s) as follows:

Ψ(srand) =
∑

ω∈ΩX

PX [ω]Ψ(sroot)⇒ Ψ(srand) ≥ P[ω]Ψ(sroot),

1
Ψ(srand) ≤

1
P[ω]

1
Ψ(sroot)

⇒ 1
Ψ(srand) ≤

Θ(|S||A|)
Ψ(sroot)

(17)

Since srand can represent any of the states encountered in the tree, we can regard it as the state assigned
the least probability in the stationary distribution. Therefore, we have:

1
Ψ(srand) ≤

Θ(|S||A|)
Ψ(sroot)

⇒ 1
mins Ψ(s) ≤

Θ(|S||A|)
Ψ(sroot)

(18)

So, 1
mins Ψ(s) is polynomially bounded. Now, we need to demonstrate that 1

λ is also polynomially bounded.
To bound λ, we first need to recall the definition of the Cheeger constant, h. Drawing from graph theory,
if we denote V (G) and E(G) as the set of vertices and edges of an undirected graph G, respectively, and
considering the subset of vertices denoted by Vs, we can define σVs as follows:

σVs := {(n1, n2) ∈ E(G) : n1 ∈ Vs, n2 ∈ V (G) \ Vs} (19)

So, σVs can be regarded as a collection of all edges going from Vs to the vertex set outside of Vs. In the
above definition, (n1, n2) is considered as a graph edge. Now, we can define a Cheeger constant:

h(G) := min{ |σVs|
|Vs|

: Vs ⊆ V (G), 0 < Vs ≤
1
2 |V (G)|} (20)

We are aware that h ≥ λ ≥ h2

2 , and by polynomially bounding h, we can ensure that λ is also bounded. In
a related work (Liu & Brunskill, 2018), an alternative variation of the Cheeger constant is utilized, which is
based on the flow F induced by the stationary distribution Ψ of a random walk on the graph. Suppose for
nodes n1, n2 and subset of nodes N1 in the graph, we have:

F (n1, n2) = Ψ(n1)P (n1, n2), (21)

F (σN1) =
∑

n1∈N1,n2 /∈N1

F (n1, n2), (22)

F (N1) =
∑

n1∈N1

Ψ(n1) (23)

Building upon the aforementioned definition, the Cheeger constant is defined as:
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h := inf
N1

F (σN1)
min{F (N1), F (N̄1)}

(24)

Suppose Nrand = {sroot}; we will now demonstrate that 1
h can be polynomially bounded :

h = inf
N1

F (σN1)
min{F (N1), F (N̄1)}

≥ F (σNrand)
min{F (Nrand), F (Nrand)}

≥
∑

s̸=sroot
Ψ(sroot)PπRW

(sroot, s)
Ψ(sroot)

,

=
∑

s ̸=Sroot

PπRW
(sroot, s) ≥ PX [ω]⇒ 1

h
≤ Θ(|S||A|)

We demonstrate that both terms stated in Preposition A.1 are polynomially bounded, and thus, the proof
is complete.

Algorithm 2 Generating exploratory option with tree search using a perfect model
1: function generate_option(state s, hash function ϕ, budget N)
2: frontier_nodes ← {}
3: Initialize root using s: root ← TreeNode(s)
4: frontier_nodes ← frontier_nodes ∪ {root};
5: smin ← root
6: i← 0
7: while i < N do
8: sx ∼ UniformRandom(frontier_nodes)
9: sx′ = next_state_from_env(sx)

10: if ϕ(n(sx′ ))=0 then
11: Extract option o by actions root to sx′

12: return o
13: end if
14: if n(ϕ(sx′ )) < n(ϕ(smin)) then
15: smin=sx′

16: end if
17: i← i + 1
18: end while
19: Extract option o by actions root to smin
20: return o
21: end function
22:
23: function next_state_from_env(sx, frontier_nodes)
24: a ∼ UniformRandom(A(sx))
25: sx′ ← T (sx, a)
26: sx.add_child (sx′ )
27: frontier_nodes ← frontier_nodes ∪ {sx′ }
28: return sx′

29: end function

A.2 n-step Methods Comparison

In this section, we compare two update rules for Q-values in DDPG: the longest n-step return and the average
return over 1 to 8 steps (avg8-step). The results are shown in Figure 9. Both methods performed similarly
overall; however, in the Wall-maze environment, the longest n-step return outperformed the avg8-step ap-
proach. The avg8-step method converged more quickly in U-maze and Point-push due to the stabilizing
effect of averaging multiple updates.
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Figure 8: The comparison between two replay buffer strategies: GDRB and HER.
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Figure 9: The comparison between two update rules for Q-values: the longest n-step return and the average
return over 1 to 8 steps (avg8-step).

A.3 Comparison of GDRB and Hindsight Experience Replay (HER)

In this section, we compare two strategies for storing transitions in the replay buffer: GDRB and HER.
Figure 8 shows the results in the navigation environments. In Wall-maze, HER achieves success rates above
zero during the early stages of training; however, it fails to maintain any success in later stages. This
observation is consistent with the results reported by Trott et al. (2019) in the same environment. In the
other two environments, both methods exhibit comparable performance, but HER discovers paths to the
goal more quickly, as it leverages reward shaping in unsuccessful episodes to provide additional information
about the structure of the environment.

A.4 Exploration with a Perfect Model

Since the DDPG algorithm is model-free, we utilize the replay buffer to construct the tree for ϵt-greedy.
However, ϵt-greedy can also take advantage of a perfect model when available. The pseudocode for option
generation using a perfect model is provided in Algorithm 2. The key difference from Algorithm 1 is the
use of the next_state_from_env function instead of next_state_from_replay_buffer to generate child
nodes. In this case, an action is uniformly sampled from the action space, and the environment’s transition
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function T is directly used to determine the next state (line 25). Figure 10 compares the performance of
ETGL-DDPG in navigation environments using a perfect model versus a replay buffer. The results show a
clear advantage when using a perfect model, as the agent reaches a success rate of 1 more quickly and with
less deviation.
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Figure 10: Comparison of ETGL-DDPG performance in navigation environments using a perfect model vs.
replay buffer.

A.5 Implementation Details and Experimental Hyperparameters

Here, we describe the implementation details and hyperparameters for all methods used in this paper. All
experiments were run on a system with 5 vCPU on a cluster of Intel Xeon E5-2650 v4 2.2GHz CPUs and one
2080Ti GPU. Table 2 displays the details for environments. Tables 1, 4, and 3 showcase the hyperparameters
utilized in ETGL-DDPG and the baselines.

Table 1: Implementation details for ETGL-DDPG.

Hyperparameter wall-maze U-maze Point-push window-open soccer button-press
batch size 128 512

number of updates per episode 20 200
epsilon decay rate 0.9999988 0.9999992

exploration budget N 20 40 60
SimHash dimension k = 9 k = 16

soft target updates τ 10−2

discount factor γ 0.99
warmup period 2 ∗ 105 steps

exploration buffer size 106

exploitation buffer size 5 ∗ 104

actor learning rate 10−4

critic learning rate 10−3
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Table 2: Environment details.

environment S ∈ G ∈ A ∈ Max steps per episode
Wall-maze R2 R2 [−0.95, 0.95]2 100
U-maze R6 R2 [−1, 1] ∗ [−0.25, 0.25] 500
Point-push R11 R2 [−1, 1] ∗ [−0.25, 0.25] 500
window-open R39 R3 [−1, 1]4 500
soccer R39 R3 [−1, 1]4 500
button-press R39 R3 [−1, 1]4 500

Table 3: Implementation details for DOIE.

Hyperparameter wall-maze U-maze Point-push window-open soccer button-press
batch size 256

number of updates per episode 100
replay buffer size 5 ∗ 105

actor learning rate 10−4

critic learning rate 5 ∗ 10−3

discount factor γ 0.99
action scaling 0.01

environment scaling 0.1 for each dimension
knownness mapping type polynomial

Table 4: Implementation details for SAC, TD3, and DDPG.

Hyperparameter wall-maze U-maze Point-push window-open soccer button-press
batch size 128 512

update frequency per step 12 2
action noise ∼ N(0, 0.2) ∼ N(0, (0.3, 0.05)) ∼ N(0, (0.15))

warmup period 2 ∗ 105 steps
replay buffer size 106

learning rate 3 ∗ 10−4

soft target updates τ 5 ∗ 10−3

discount factor γ 0.99

A.6 ETGL-DDPG Algorithm

In this section, we introduce ETGL-DDPG, as detailed in Algorithm 3, which is organized into three primary
functions: train, run_episode, and update. The train function is called once at the start of the training
process. For each training episode, the run_episode function is invoked to perform a training episode within
the environment, followed by the update function to adjust the networks based on the experience gained
from the episode.

A.7 Analyzing the Impact of N on ϵt-greedy and ϵz-greedy Exploration

The tree budget N upper bounds the option length of ϵt-greedy due to the fact that the longest path
between nodes in the tree is shorter or equal to the number of nodes in the tree. This is analogous to the
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Table 5: Analysis of the impact of budget N on the environment coverage.

budget N
ϵz-greedy ϵt-greedy

Wall-maze U-maze Point-push Wall-maze U-maze Point-push

5 0.36 0.55 0.36 0.76 0.94 0.40
10 0.38 0.91 0.38 0.97 0.91 0.41
15 0.34 0.85 0.39 0.65 0.94 0.42
20 0.30 0.84 0.40 0.83 0.94 0.48
25 0.28 0.86 0.40 1 0.95 0.47
30 0.27 0.83 0.39 1 0.97 0.51
35 0.25 0.82 0.40 1 0.95 0.53
40 0.24 0.82 0.40 1 0.97 0.55
45 0.22 0.85 0.41 1 0.96 0.64
50 0.22 0.79 0.40 1 0.97 0.73

role of N in ϵz-greedy, where a uniform distribution z(n) = 1n≤N /N is used. To evaluate both methods,
we assess environment coverage under varying budget sizes, calculating the coverage after 1 million training
frames. Table 5 shows the results: ϵt-greedy consistently achieves greater coverage than ϵz-greedy across
all environments and budget sizes. Additionally, ϵt-greedy demonstrates improved coverage as the budget
increases. In contrast, increasing the budget for ϵz-greedy does not consistently improve coverage and
can even decrease it in some cases. This highlights the advantages of directed exploration over undirected
methods, particularly in complex environments with numerous obstacles, such as Wall-maze.

A.8 Terminal States Distribution

We analyze the order in which the agent visits different parts of the environment by examining the distribution
of the last states in the episodes. To make it more visually appealing and easy to interpret, we only sample
some of the episodes. The results for Wall-maze, U-maze, and Point-push can be found in Figures 11, 12,
and 13, respectively. In Wall-maze, only ϵt-greedy and DOIE can effectively navigate to different regions of
the environment and ultimately reach the goal area. Other methods often get trapped in one of the local
optima and are unable to reach the goal. The reason some methods, such as TD3, have fewer points is
that the agent spends a lot of time revisiting congested areas instead of exploring new ones. In U-maze,
most methods can explore the majority of the environment. However, during the final stages of training,
methods such as DDPG, SAC, and DDPG + intrinsic motivation have lower success rates and may end up in
locations other than the goal areas. In Point-push, ϵt-greedy, ϵz-greedy, and DOIE first visit the lower section
of the environment in the early stages. After that, they push aside the movable box and proceed to the
upper section to visit the goal area. For the other methods, the pattern is almost the same, with occasional
visits to the lower section. To further illustrate how the policy evolves during training and how closely it
approximates the optimal policy, we present the agent’s trajectories across episodes. For clarity, we sample
a few representative episodes from different stages of training. Figure 14 presents the results for U-maze and
Point-push. In both environments, the agent initially becomes trapped in suboptimal regions. As training
progresses, the policy gradually improves, and by the end, the agent consistently follows a trajectory that
closely approximates the shortest path to the goal.
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Algorithm 3 ETGL-DDPG
Randomly initialize critic network Q(s, a, g|θQ) and actor µ(s, g|θµ) with weights θQ and θµ

Initialize target networks Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

Initialize replay buffers Dβ , De, hash function ϕ, exploration budget N

function train(Q, µ, ϕ)
for episodes=1,M do

Receive initial observation state s1 and goal g
run_episode(s1, g)
update(success)

end for
end function

function run_episode(s, g)
success← false, l← 0
while t ≤ T and not(success) do

if l==0 then
if random()< ϵ then

Exploratory option w ← generate_option(s, ϕ, N)
Assign action : at ← w
l← length(w)

else
Greedy action : at ← µ(st, g|θµ)

end if
else

Assign action : at ← w
l← l − 1

end if
Execute action at and observe reward rt and next state st+1
if is_goal(st+1) then

success← true
end if

end while
end function

function update(success)

R =
{

rt success
0 o.w

bootstrap =
{

0 success
1 o.w

for i ∈ {t− 1, ..., tstart} do
R← ri + γR
if success then

store transition (si, g, ai, R, st, bootstrap) in Dβ , De

else
store transition (si, g, ai, R, st, bootstrap) in Dβ

end if
end for
Sample C random mini-batches of k transitions (sj , gj , aj , rj , sj+1, bootstrapj) by τβ and τe ratios

from Dβ and De

set yj = rj + bootstrapj ∗ γQ′(sj+1, gj , µ′(sj+1, gj |θµ′)|θQ′)
update critic by minimizing the loss: L = 1

k

∑
j(yj −Q(sj , gj , aj |θQ))

update the actor: ∇θµJ ≈ 1
k

∑
j ∇aQ(s, g, a|θQ)|s=sj ,g=gj ,a=µ(sj ,gj)∇θµµ(s, g|θµ)|sj

update the target networks: θQ′ ← τθQ + (1− τ)θQ′
, θµ′ ← τθµ + (1− τ)θµ′

end function
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Figure 11: The agent’s location at the end of episodes throughout the training in Wall-maze.

28



Published in Transactions on Machine Learning Research (05/2025)

0

100

200

300

400

500

(a) DDPG + ϵt-greedy

0

100

200

300

400

500

(b) DOIE

0

100

200

300

400

500

(c) DDPG + ϵz-greedy

0

100

200

300

400

500

(d) SAC

0

100

200

300

400

500

(e) DDPG + intrinsic motivation

0

100

200

300

400

500

(f) TD3

0

100

200

300

400

500

(g) DDPG

Figure 12: The agent’s location at the end of episodes throughout the training in U-maze.

29



Published in Transactions on Machine Learning Research (05/2025)

0

500

1000

1500

2000

(a) DDPG + ϵt-greedy

0

500

1000

1500

2000

(b) DOIE

0

500

1000

1500

2000

(c) DDPG + ϵz-greedy

0

500

1000

1500

2000

(d) SAC

0

500

1000

1500

2000

(e) DDPG + intrinsic motivation

0

500

1000

1500

2000

(f) TD3

0

500

1000

1500

2000

(g) DDPG

Figure 13: The agent’s location at the end of episodes throughout the training in Point-push.
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Figure 14: The agent’s policy during training, illustrated by the paths taken in each episode. Episodes are
sampled from different stages of training to show how the policy evolves over time.
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