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Abstract
Learning reward-agnostic representations is an
emerging paradigm in reinforcement learning.
These representations can be leveraged for several
purposes ranging from reward shaping to option
discovery. Nevertheless, in order to learn such
representations, existing methods often rely on
assuming uniform access to the state space. With-
out such a privilege, the agent’s coverage of the
environment can be limited which hurts the qual-
ity of the learned representations. In this work,
we introduce a method that explicitly couples rep-
resentation learning with exploration when the
agent is not provided with a uniform prior over
the state space. Our method learns representa-
tions that constantly drive exploration while the
data generated by the agent’s exploratory behav-
ior drives the learning of better representations.
We empirically validate our approach in goal-
achieving tasks, demonstrating that the learned
representation captures the dynamics of the envi-
ronment, leads to more accurate value estimation,
and to faster credit assignment, both when used
for control and for reward shaping. Finally, the ex-
ploratory policy that emerges from our approach
proves to be successful at continuous navigation
tasks with sparse rewards.

1. Introduction
Representation learning has been at the core of many re-
cent machine learning advances (c.f. Bengio et al., 2013).
With the advent of deep reinforcement learning (RL) (Mnih
et al., 2015), representation learning has also become one of
the main topics of interest in RL. For example, in the goal-
conditioned hierarchical setting (Vezhnevets et al., 2017;
Nachum et al., 2019a), one learns a representation which
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Figure 1. The representation is trained to encode the area that the
agent has learned to cover. Skills are continuously trained on the
representation to discover new areas where novel data is collected
to refine the representation, progressively extending its coverage.
Inpsired by Machado (2019).

maps state observations to an abstract space, the represen-
tation space, in which the higher-level policy defines the
desired behavior of the lower-level policy. Distance in the
representation space can then be used to reward and guide
the lower-level policy towards specific goal states. Represen-
tation learning was also shown to be crucial in environments
with rich observations and complex dynamics (e.g., Belle-
mare et al., 2020). This has motivated recent works about
learning representations that capture controllable or contin-
gent features (Bengio et al., 2017; Choi et al., 2019), on top
of which one can potentially learn latent models in the per-
spective of planning (Hafner et al., 2019b; Nasiriany et al.,
2019; Schrittwieser et al., 2020) and control (Watter et al.,
2015; Banijamali et al., 2018; Hafner et al., 2019a).

In this work, we are interested in the reward-agnostic setting
in which an RL agent first interacts with the environment to
build a representation φ of the state space S without relying
on any task-specific reward signal. This representation can
later be used to solve tasks posed in the environment in the
form of reward functions. In this setting, the agent can learn
about the environment dynamics and its structure.
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Moreover, we are specifically interested in a family of rep-
resentation learning approaches based on contrastive losses
that require the ability to uniformly sample pairs of similar
and dissimilar data-points from the available data. This
sampling is trivial in vision and text settings as one has a
direct access to the whole image dataset or text corpus. This
is not as trivial in the RL setting given that the agent has to
learn to explore the state space to be able to access arbitrary
states.

An illustrative example of this class of approaches is the
recently proposed stochastic approximation of the Laplacian
representation (Wu et al., 2019). By framing the graph draw-
ing objective as a contrastive pair sampling-based loss, it
generalizes spectral representations beyond the tabular case
while helping to overcome potentially prohibitive eigen-
decompositions. However, it assumes access to a uniform
sampling prior over S . Practically, this translates in the abil-
ity to reset the agent to a uniformly random starting state in
the environment, which artificially alleviates the exploration
problem. As we will show later, the uniformity of that distri-
bution is crucial for the quality of the learned representation.
Thus, in the absence of the uniform prior privilege, one must
handle the exploration along with the representation learn-
ing in order to preserve the representational quality. In this
work, we propose a representation learning framework that
conciliate similar contrastive approaches with exploration
in the reward-agnostic setting.

In practice, the representation is trained on data collected
with a uniformly random policy µ (random walk trajec-
tories). Without a uniform access to the state space, the
collected data would only cover a limited area around the
accessible starting states (coverage area scales as

√
n with

n steps long trajectories). To achieve a better data collec-
tion, we propose to tie the representation learning problem
to that of learning a covering strategy. Our approach as
illustrated in Figure 1 is inspired by the cyclic option dis-
covery framework proposed by Machado (2019) which has
also motivated several recent option discovery approaches
(Machado et al., 2017; 2018; Jinnai et al., 2020). Our work
is an attempt to put such framework at the service of repre-
sentation learning.

Briefly, our method consists in learning a skill-based cov-
ering strategy along with the representation learning. The
representation is used to train directional skills to cover the
explored area, while the skills are used to discover yet un-
seen parts of the state space providing novel data to refine
and extend the representation. We also propose to augment
the representation learning objective with a term reflecting
the dynamics allowed by the skills; a trained skill brings its
initiation and termination areas closer in terms of dynamics.
In effect, beyond encouraging exploration, this augmenta-
tion enforces the representation’s dynamics-awareness, by

improving how the representation induced metric captures
distances along the environment dynamics.

We empirically show our agent’s ability to progressively ex-
plore the state space and steadily extend the representation
domain. We show that even without a non-uniform prior
over the state space our representation leads to better value
predictions than the Laplacian representation and recovers
the representational quality that a uniform prior would pro-
vide. We also evaluate our representation in shaping rewards
for goal-achieving tasks and show that it outperforms ex-
isting techniques, confirming its higher ability in capturing
dynamics. Finally, the skills learned in our framework also
prove to be competitive as they were, among the evaluated
methods, the only ones successful at a hard continuous nav-
igation task with sparse rewards.

2. Preliminaries

2.1. Task-agnostic Reinforcement Learning

We describe a task-agnostic RL environment as a
task-agnostic Markov decision process (MDP) M =
(S,A, P, γ, d0) where S is state space, A the action space,
P : S × A → ∆(S) is transition dynamics defining the
next state distribution given current state and taken action,
γ ∈ [0, 1) is the discount factor, and d0 the initial state
distribution. A policy π : S → ∆(A) maps states s ∈ S to
distributions over actions.

Any knowledge acquired from task-agnostic interactions
with the environment (e.g. in the form of a representation or
a policy) can then be leveraged for specific tasks. For a given
task, the associated reward function R : S → R combined
with the task-agnostic MDP define the task objective as
finding the optimal policy maximizing the expected return
Eπ,d0

[∑
t γ

tR(st, at)
]

starting from the state s0 ∼ d0 and
acting according to at ∼ π(·|st).

2.2. Unsupervised Representation Learning

Contrastive losses are at the core of the recent notable ad-
vances in representation learning (Bachman et al., 2019; He
et al., 2020; Chen et al., 2020; Grill et al., 2020). They are
well-suited to the generic unsupervised learning paradigm.
These losses are usually comprised of an attractive term
and a repulsive one, where the former guarantees similar
samples to have close representations while the later spreads
significantly different samples’ representations far apart. In
temporal settings, they are used to learn slow features that
preserve temporal coherence (Wiskott & Sejnowski, 2002)
which makes them relevant to RL as well (Wu et al., 2019;
Li et al., 2021).
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Wu et al. (2019) showed the competitive representational
capacity of the Laplacian representation (Lap-rep) when
provided with a uniform prior over S. Note that their pro-
posed objective is also a contrastive loss whose repulsive
term was derived from the orthonormality constraint of the
Laplacian eigenfunctions. In our framework, the represen-
tation would be continuously used to learn a progressive
exploration strategy. In such scenario, the orthonormality
constraint could make the online representation learning
highly non-stationary, and thus hurt the continual explo-
ration.1 For this reason, we adopt a more generic repulsive
term in favor of more stability. More precisely, we will
consider the following objective where the repulsive term is
a smoother version of the one proposed by Li et al. (2021):

Lcont(φ) = E(u∼dµ,v∼Pµ(·|u)
[
‖φ(u)− φ(v)‖22

]
+

β Eu∼dµ,v∼dµ [exp(−‖φ(u)− φ(v)‖2)] , (1)

with φ : S → Rd, µ the uniformly random policy, dµ the
corresponding stationary distribution over the state space S
(uniform prior) and β a hyperparameter.

3. Exploration-driven Representation
Learning

In RL, exploration is deeply coupled to the problem of
representation learning because it defines the data distribu-
tion used during learning. In the task-agnostic setting, this
distribution is usually required to be uniform as in the objec-
tive (1). Unless the agent can teleport to any state – which
would actually alleviate the exploration problem –, it is not
trivial to collect uniformly distributed samples. Indeed, a
random walk from a given initial state would generally take
relatively long times (the mixing time) to visit a finite vol-
ume of the state space. Therefore, the induced visitation
distribution can be quite concentrated around the start state
distribution when solely relying on random walks.

The non-uniform prior setting. To study the problem
described above, we define a setting where the environment
has a fixed predefined state s0 to which it resets with a
probability preset every K steps. With a uniformly random
behavior policy, this setting is equivalent to a initial state
distribution dnµ that is concentrated around s0 and whose
density decays exponentially away from it. We will refer to
this setting as the non-uniform prior setting, as opposed to
the uniform prior setting where the agent has access to the
uniform state distribution dµ.

In this section, we present our representation learning frame-
work in which we propose a method that leverages the rep-

1In general, even along a smooth update of the Laplacian, main-
taining the orthonormality of the eigenvectors could considerably
change all of them.

resentation to learn a skill-based covering strategy which
in turn provides better data collection to train the repre-
sentation. We first describe the exploratory component,
focusing on the choice of its design and its training. Then,
we introduce an augmentation of the representation learning
objective that improves exploration and enforces the repre-
sentation’s dynamics-awareness. We conclude this section
by synthesizing the proposed algorithm in the non-uniform
prior setting.

3.1. Representation-based Covering Policy

To achieve better exploration of the environment, we adopt a
hierarchical RL agent to leverage the exploratory efficiency
of temporally-extended actions or skills (Sutton et al., 1999;
Nachum et al., 2019b). Concretely, the agent acts according
to a bi-level policy (πhi, πlow). The high-level policy πhi :
S → ∆(Ω) defines, at each state s, a distribution over a set
Ω of unit vectors in the representation space (Ω = {δ | δ ∈
Rd, ‖δ‖2=1}). The low-level policy πlow : S ×Ω→ ∆(A)
encodes fixed length skills that are expected to travel in the
representation space along the directions instructed by πhi.
In short, given a sampled direction πhi(·|s) ∼ δ ∈ Ω, the
low-level policy executes the directional skill πlow(·|s, δ) for
a fixed number of steps c before a new direction is sampled.

Now, we describe the intrinsic rewards used to train these
policies. πhi and πlow.

Low-level Policy. πlow is simply trained to follow direc-
tions defined by πhi in the representation space. For a given
δ ∈ Ω ⊂ Rd, the corresponding skill πlow(·|s, δ) is trained
to maximize the intrinsic reward function:

rδ(s, s′) =
δ>(φ(s′)− φ(s))

‖φ(s′)− φ(s)‖
= cos(δ, φ(s′)− φ(s))

(2)
where (s, s′) is an observed state transition and φ the rep-
resentation being learned. We use the cosine similarity to
ensure we only reward the agent for steps in the instructed
direction δ, regardless of their magnitude.

High-level Policy. The high-level policy is expected to
guide the covering strategy. It should do so by sampling the
skills of the most promising directions in terms of explo-
ration, fostering new discoveries while avoiding to spend
more time than needed in previously explored areas. For
this purpose, we design a reward function defined over a
sequence of L= dK/ce consecutive skills. Let {shi

k }Lk=1 be
the sequence of states where their directions were sampled
δk ∼ πhi(·|shi

k ). Since the representation is trained to cap-
ture the dynamics, the travelled distance in the representa-
tion space is a good proxy of how far the choices made by πhi
eventually brought the agent in the environment. Therefore,
for a given high-level trajectory τ hi = (shi

1 , s
hi
2 , ..., s

hi
L, s

hi
f ),
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with shi
f the final state reached by the last skill, the high-level

policy is trained to maximize the following quantity:

∀k ∈ {1, ..., L}, Rhi(shi
k , δk) = ‖φ(shi

1 )− φ(shi
f )‖, (3)

where δk ∼ πhi(·|shi
k ) is the direction sampled at shi

k . This
term looks at reaching shi

f as the result of a sequential collab-
oration of L skills and rewards them equally. It only values
how far this sequence of skills brought the agent.

These policy training choices are closely related to how
the representation is trained as well. Indeed, the desired
exploratory behavior emerges from a closed-loop interaction
between the policy and the representation while training. In
the following section, we describe how the representation
benefits in its turn from the skill-based exploration policy.

3.2. Augmented Representation Learning Objective

In practice, representation is trained on batches of ran-
dom walk trajectories collected over the area that the agent
learned to cover with (πhi, πlow). Let Dµ be a batch of such
trajectories. As the agent tends to uniformly extend its cover-
ing, the objective (1) can be approximated by the following
batch-specific loss:

L̃cont(φ;Dµ) = E(u,v)∼Dµ
[
‖φ(u)− φ(v)‖22

]
+ β Eu∼Dµ,v∼Dµ [exp(−‖φ(u)− φ(v)‖2)] . (4)

While the directional skills are trained on the area covered
by φ, this representation is continuously refined to integrate
the environment dynamics knowledge captured in these
skills. By construction, a skill extends the area reachable in
a single (macro-)decision. In terms of dynamics, it brings
its start state slow

i and terminal state slow
f – and their re-

spective neighbourhoods – closer. This property can be
enforced into the representation space by simply minimiz-
ing ‖φ(slow

i ) − φ(slow
f )‖. However, to preserve the local

representation structure and avoid representation collapse,
we instead minimize a contracting term along the skills
trajectories:

B(φ;Ds) = E τδ∼Ds
τδ=(s0,...,sc)

[
c−1∑
k=0

‖φ(sk)− φ(sk+1)‖

]
,

(5)
where Ds is a set of collected skills trajectories. Recall that
for any skill trajectory τδ = (s0, ..., sc) ∈ Ds, δ denotes its
direction, such as we have sk+1 ∼ πlow(·|sk, δ) for every
k ∈ {0, ..., c− 1}.

Closed-loop training fuels exploration. Combined with
the choice of the high-level policy reward (3), this represen-
tation contracting term (5) induces a progressive exploration
mechanism. In effect, πhi would be more often sampling

skills that travel further, i.e. with larger Rhi (3). The more
a skill is sampled, the less rewarding it becomes due the
minimization of B(φ) (5). This will increase the probability
of sampling the remaining potentially under-sampled skills,
fostering more opportunities to explore less visited parts of
the state space. In short, the interplay between the policy
and the representation dynamically fights what can be con-
sidered as accumulated boredom along over-sampled skills
trajectories which increases the agent curiosity and urge it
to explore.

Finally, the proposed objective to train the representation φ
consists in the objective (4) augmented with the boredom
term (5), and can be written as

Lrep(φ;Ds,Dµ) = L̃cont(φ;Dµ) + β′B(φ;Ds) (6)

with β′ a hyperparameter controlling the strength of bore-
dom term.

3.3. Representation Learning in the non-uniform Prior
setting

The proposed approach consists in a simultaneously training
of the representation φ and the hierarchical agent (πlow, πhi).
The idea is to progressively extend the explored area while
maintaining the previously collected knowledge. To do so,
in the non-uniform prior setting, the agent switches with
some probability prw between following a uniformly ran-
dom policy µ and executing the hierarchical policy (skills).
The latter helps reach further areas, more efficiently, where
data collected by random walks would be used to train the
representation φ. Along their training, the skills would
progressively extend to reach newly discovered areas, ad-
vancing the exploration frontier. Algorithm 1 describes the
proposed approach in the non-uniform prior setting.

4. Experiments
In this section, we investigate the behavior of the proposed
algorithm in two types of environments: gridworld environ-
ments with discrete state and action spaces, and a continuous
navigation environment (MuJoCo (Todorov et al., 2012)) for
continuous state and action spaces. Implementation details
of all the experiments in this section can be found in the
Appendix.

4.1. GridWorld

For gridworld environments, we evaluate on three differ-
ent domains: U-MAZE, T-MAZE and 4-ROOMS. These
environments, visualized in Figure 2, raise different explo-
rations challenges. U-MAZE is perhaps the simplest but the
most relevant environment to test the dynamics-awareness
of the learned representations; T-MAZE raises the challenge
of splitting the exploration focus at an intersection while
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Algorithm 1 Exploration-driven representation learning in
the non-uniform prior setting

1: Input: L, c, prw, N
2: for iteration = 1, 2, . . . do
3: Dµ = ∅, Ds = ∅
4: for batch = 1, 2, . . . , N do
5: Reset to s0 with probability preset.
6: p ∼ Unif ([0,1])
7: if p < prw then
8: Run the uniformly random policy µ to collect

L random walk trajectories {τ ′i}Li=1 of c steps
each.

9: Dµ ← Dµ ∪ {τ ′k}Lk=1

10: else
11: Run (πhi, πlow) to collect L consecutive skills’

trajectories {(τk, δk)}Lk=1 and their correspond-
ing directions

12: Ds ← Ds ∪ {(τk, δk)}Lk=1

13: end if
14: end for
15: Optimize the policies (πhi, πlow) using their intrinsic

objectives 3 and 2 (vanilla actor-critic update)
16: Optimize φ so as to minimize Lrep(φ;Ds,Dµ)
17: end for

maintaining exploration and coverage in both corridors; 4-
ROOMS is similar to U-MAZE, but may require learning
more controlled skills to efficiently move from one room to
another.

(a) U-Maze 30×30 (b) T-Maze 40×30 (c) 4-rooms 21×21

Figure 2. The gridworld domains with the fixed initial state s0
highlighted in red.

The states are one-hot encoded such that no positional infor-
mation is provided to the agent. For our method, we learn a
2D representation (d = 2), and define Ω as a set of 8 unit
vectors equally spaced on the unit sphere.

4.1.1. PROGRESSIVE REPRESENTATION LEARNING

Figure 3 shows the progression of the representations
throughout the training. The agent progressively explores
the environment starting from s0, builds the representation
by continuously integrating newly discovered parts.

U-MAZE. The agent starts from the bottom left corner
of the maze. Figure 3 shows how the representation pro-

gressively expands till reaching the first corner (R1 (a-e)).
During this phase the agent learns skills to travel further
away from s0 along the corridor. At this stage, the rest
of the environment is still not explored; note how its rep-
resentation falls back in the compressed cluster of unseen
states. The remaining exploration phase (R1 (f-j)) shows
not only the complete discovery of the corridor but also the
flattening of the full domain representation. This indicates
the representation’s success in capturing the dynamics, by
placing the last corner further from the starting corner than
the intermediate ones.

T-MAZE. The agent starts from the bottom left corner of the
maze. As in the U-Maze, it starts learning to travel along that
corridor (R2 (a-b)) until reaching the intersection. There,
the exploration focus is shared between both possible paths
whose representations are progressively disentangled (R2
(c-f)). Eventually, the agent fully explores both corridors
and finalizes their representations. Note that, the discovery
of one of the corridors did not hinder finishing the discovery
of the other.

4-ROOMS. The agents starts in the first room. It progres-
sively discovers and learns about the rooms. Once the do-
main is fully explored, and similarly to U-MAZE, the repre-
sentation straightens, reflecting the environment dynamics.

We have also conducted an ablation study to validate the
importance of the boredom term to the agent’s exploratory
behavior, and the dynamics-awareness of the representation
(see Appendix A).

4.1.2. EVALUATING THE LEARNED REPRESENTATION

We choose to compare our representation against the Lapla-
cian representation (Lap-rep) (Wu et al., 2019) since it is
a representative approach relying on the uniform prior as-
sumption which we are addressing in this work. First, to
appreciate the sensitivity of Lap-rep to the said prior, Lap-
rep was learned in the two different settings defined in Sec-
tion 3: (i) the uniform prior setting where the agent can be
set to any arbitrary state as in Wu et al. (2019), (ii) and then,
the non-uniform prior setting in which our representation
is learned (resetting to the fixed state s0 with probability
preset), which induces a concentrated episode’s starting
positions distribution around s0. We find Lap-Rep to be
extremely sensitive to this change, which is reflected in the
following experiments.

Linear Function Approximation. To evaluate the learned
representations, we first consider how well they can be used
as input features to linearly approximate a given task’s opti-
mal value function. To do so, we train an actor-critic agent
with a linear critic on top of the learned representations. In
Figure 4, we note a significant loss in the representational
power of the Laplacian method when the access to the state



Exploration-Driven Representation Learning in Reinforcement Learning

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(a) (b) (c) (d) (e) (f) (g)

Figure 3. The domains representations learned throughout the training. Top row (R1): U-MAZE. Middle row (R2): T-MAZE. Bottom row
(R3): 4-ROOMS. The colors reflect the distances in terms of the dynamics. They can be seen as quantities proportional to the length of the
shortest path from s0 (marked in red) to the represented state.

space is no more uniformly distributed. This figure shows
that our representation outperforms the Lap-rep learn with
the same initial state distribution, and succeeds in recovering
Lap-rep’s representational power when this one is learned
from the unrealistic uniform prior.

Control. We also compare the representations from the
perspective of control, by training a deep (i.e., non-linear)
actor-critic agent on top of each representation to solve a
goal-reaching task in the same environments as above. The
agent is only rewarded (r = 1) upon reaching the goal
state. Figure 5 shows that our representation consistently
outperforms the Laplacian representation, which confirms
the competitive quality of our representation.

4.2. Continuous Control

The second set of experiments, which focuses on continu-
ous state and action spaces, is conducted on the AntMaze
continuous control environment. AntMaze is essentially
a MuJoCo counterpart of U-MAZE where a four-legged
agent has to learn to control its joints to maneuver along a
U-shaped corridor.

To visualize the learned representation in this environment,
in Figure 6 we show a set of positional states (defined by a
grid over the state space) in both the environment domain
and their mapped representations. Similarly to U-MAZE,
the learned representation translates the dynamics of the

environments by pushing the end of the corridor (top left)
away from the initial state (bottom left), represented in red.

4.2.1. REWARD SHAPING WITH LEARNED
REPRESENTATION

Following Wu et al. (2019), to demonstrate the ability of
our learned representations to improve an RL agent’s per-
formance, we evaluate them in a goal-achieving task us-
ing reward shaping. We define a goal-achieving task by
defining a goal state g in the rewardless environment. This
goal is set at the upper end of the corridor. The objective
is to learn to control the agent and navigate to a state s
close enough to the goal (‖s − g‖2 ≤ ε). A sparse re-
ward rt = 1 [‖st+1 − g‖2 ≤ ε], would not provide enough
signal to properly guide the agent, and a dense L2 distance-
based reward would be deceptive since it does not take
the dynamics into account (the presence of a wall). For
this, we define reward functions based on distance in the
representations spaces (ours and Lap-rep’s), learned in the
non-uniform prior setting, to train a soft actor-critic (SAC)
agent (Haarnoja et al., 2018) to reach the goal (details pro-
vided in the Appendix). More specifically, we define the
dense reward as rdenset = −‖φ(st+1)− φ(g)‖. Following
previous work (Wu et al., 2019), we also compare against
the half-half mix of the dense reward and the sparse reward
rmixt = 0.5 · rdenset + 0.5 · 1 [‖st+1 − g‖2 ≤ ε].

Here, the Laplacian representation (Lap-rep) was learned
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Figure 4. Linear function approximation on top of learned representation. The Laplacian representation (Lap-rep) was learned in the
same non-uniform prior setting (non-µ) with d = 2 and d = 3 (no improvement was observed for higher values). The dashed line gives
the performance of Lap-rep in the uniform prior setting (µ). Our representation outperforms Lap-rep in non-µ setting, and succeeds
in recovering Lap-rep’s representational power when learned from the unrealistic uniform prior. The curves and the corresponding
confidence intervals are obtained from 5 different runs.
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Figure 5. Control performance (episode reward) in the fixed initial state setting (non-uniform prior). The curves and the corresponding
confidence intervals are obtained from 5 different runs.

Figure 6. Visualization of the learned representation on a grid of
positional states. Colors reflect the distance in the representation
space from the initial state highlighted in red. We can visually
appreciate how the U-shaped state domain is mapped to a flatter
manifold reflecting the presence of the wall: our method succeeds
capturing the dynamics of the continuous state space.

with uniform prior over the state space as in Wu et al. (2019).
In this challenging environment with continuous state and
actions spaces, Lap-rep fails at capturing the continuous
and smooth dynamics uniformly over S , which explains its
inability to consistently guide the agent to reach the goal on
the other end of the maze; note that if the shaping represen-
tation suffers from singularities even in a small but decisive

area on the way to the end of the maze, the agent won’t be
properly guided to it. This shows the brittleness of Lap-rep
in large continuous state spaces even with the uniform prior
privilege. As shown in Figure 7, our representation is effec-
tive in reward shaping, with both mix and dense variants,
which further confirms its benefits even in the challenging
non-uniform prior setting.

4.2.2. THE LEARNED SKILLS

We validate if our approach generates skills that are use-
ful to exploring the state space. Here, we compare these
skills against DCO, an hierarchical skill discovery method
(Jinnai et al., 2020). This skills’ training requires a pre-
trained Laplacian representation (which approximates the
Laplacian’s second eigenvector). Here, we train the required
representation, as well as the options, with data collected
from a uniform prior over the state space. For fairness, we
also train a DCO agent to learn 8 options. Low-level poli-
cies of both agents, ours and DCO’s, are then fixed and
used to train a discrete high-level policy to solve the goal-
reaching task presented above with only the sparse reward
rt = 1 [‖st+1 − g‖2 ≤ ε].
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Figure 7. Results of reward shaping using learned representations:
each curve and the corresponding confidence intervals are gathered
from 5 different runs and then exponentially smoothed (0.9) for
better visualization.

The sparsity of the reward poses challenge on the quality
of the learned policies as no additional signal could guide
the agent towards the goal. The results, illustrated in Figure
8, indicate that even in the non-uniform prior setting, skills
trained by our method could quickly assist to complete the
task while the options learned with DCO could not. This
could suggest that DCO options, in order to succeed, require
a richer signal like the distance based dense reward used
by Jinnai et al. (2020).
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Figure 8. Skill Quality Experiment: each curve and the correspond-
ing confidence intervals are gathered from 5 independent runs and
then exponentially smoothed (0.9) for better visualization.

5. Related Work
The main contribution of our work is a representation learn-
ing framework for the reward-agnostic RL setting. The
potential of spectral representations in capturing functional
information about the environments, has motivated several
works (e.g., Mahadevan, 2005; Machado et al., 2017) to use
them in this context. These are powerful tools that proved
to scale beyond the tabular case (Machado et al., 2017) to
the continuous one (Wu et al., 2019; Jinnai et al., 2020).
While these previous works proved to learn useful repre-
sentations, they often overlook the challenging exploration
problem that emerges when collecting the representation
training data. In contrast, our framework explicitly couples

this challenge with the representation learning objective.

Our work draws inspiration from the self-supervised rep-
resentation learning literature, more specifically from the
idea of contrastive losses (Bromley et al., 1994; Chopra
et al., 2005). As mentioned in Section 2, these losses have,
conveniently enough, a nice interpretation in the RL setting.
Indeed, they correspond to the objective of learning slow fea-
tures (Bengio et al., 2013; Wiskott & Sejnowski, 2002) that
were recently proved to be relevant for exploration (Li et al.,
2021). In our work, we show how such a representation
objective can be augmented with skill-based knowledge to
penalize the agent’s boredom (Schmidhuber, 1991; Oudeyer
et al., 2007; Oudeyer & Kaplan, 2009) and encourage explo-
ration. The idea of using skills to foster curiosity has also
been investigated by Bougie & Ichise (2020). The same
proposed augmentation proves to be useful in enforcing the
representation’s dynamics awareness

For our method’s exploratory component, we adopted a hi-
erarchical policy. This has actually been the default setting
to model temporally extended strategies, termed options
or skills (Sutton et al., 1999). This work shares the same
motivation as in Vezhnevets et al. (2017) for training skills
to follow latent directions. Among the large body of work
on skill discovery, the eigenoptions framework proposed
by Machado et al. (2017) and the extensions that followed
such as (Machado et al., 2018; Jinnai et al., 2020) are prob-
ably closest to our skill training scheme. These eigenop-
tions also fit in the directional skills definition as they are
trained to travel along the directions defined by the Lapla-
cian eigenvectors in some given representation space (of
the state space dimensionality). To contrast, we propose
to train directional skills defined by arbitrarily diverse set
of directions in our learned representation space (of small
dimensionality).

6. Conclusion
In this work, we conciliate reward-agnostic representation
learning with exploration. Focusing on temporal contrast-
based methods, we tackle their need for a state space (S)
covering strategy and address it away from unrealistic as-
sumptions (uniform prior over S). Our approach leverages
the practical skills’ training that such representations allow,
and uses the learned skills to better cover the state space
and learn better representations. We validate our method
in tabular as well as continuous environments, and show
that even with a concentrated initial state distribution, the
induced progressive discovery of the environment provides
a suitable covering for the representation objective. The
learned representation proved to enjoy a comparable repre-
sentational power to the one acquired from a uniform prior.
Thus, with these results, we hope to bring such representa-
tions’ applicability one step closer to realistic RL contexts.
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A. Representation Objective Augmentation:
Ablation Study

A.1. Boredom augmentation helps exploration

In order to illustrate the importance of the proposed aug-
mentation – with the boredom term B – in the objective 6,
we conducted the same representation learning experiments
for the three gridworld domains in the non-uniform prior
setting, but this time with the non-augmented representation
learning objective (β′ = 0).

Figure 9 shows how the agent failed at exploring the whole
domain. In T-MAZE, it focused only on one corridor without
getting curious about the other one. Regarding U-MAZE
and 4-ROOMS, the agent stops exploring after discovering
the end of the first corridor and the second room respectively.
This is due to the lack of incentive to visit the yet unseen
states, as they are less rewarding for πhi (i.e. closer in the
representation space, hence smaller Rhi) than the furthest
explored state. The effect of the proposed augmentation
would compress the representation of the explored area,
say the first corridor in U-MAZE, which makes the rest
of the environment more appealing to explore for πhi (i.e.
relatively further in the representation space, hence larger
Rhi). This emphasizes the importance of the boredom term
in inducing the agent’s exploratory behavior.

(a) U-MAZE (b) T-MAZE (c) 4-ROOMS

Figure 9. Representations learned in the gridworld domains with
the non-augmented representation objective. Without the boredom
term augmentation, the agent fails to cover the state space (cf.
Figure 3), and settles for incomplete representations. Colors reflect
the distance in terms of the dynamics from the fixed initial state s0
shown in red.

A.2. Boredom augmentation enforces
dynamics-awareness

To verify the benefit of the boredom term beyond help-
ing exploration, we train the representation with the non-
augmented objective (β′ = 0) but this time in the uniform
prior setting, so that to marginalize the exploration prob-
lem. Figure 10 illustrates the learned representations in
the three gridworld domains. These representations have
failed to capture the dynamics. For example, in the case of
4-ROOMS, the distances from the first room to the fourth
and third rooms are comparable in the representation space,

which indicates that the representation does not take into
account the relative order in which the rooms should be
visited, when moving from the first room to the last. Sim-
ilarly, in U-MAZE, the end of the maze is closer to the
initial area than the second corner is. However, in order to
reach the former on must pass by the latter. This proves
that the boredom term is not only important for the desired
exploratory behavior (cf. Figure 9), but also enhances the
dynamics-awareness of our representation.

(a) U-Maze (b) T-Maze (c) 4-rooms

Figure 10. Representations learned when uniformly sampling over
the state space. Without the boredom term, the representation
objective does not provide a dynamics-awareness, Colors reflect
the distance in terms of the dynamics from the fixed initial state s0
shown in red.

B. Implementation details
B.1. GridWorld

For all the experiments, we defined the representation net-
work as an MLP of two hidden layers of size 128 and tanh
activations and a linear output layer of the size of repre-
sentation’s dimensionality d. The high-level and the low-
level policies are both MLPs of two hidden layers of size
128 with tanh activations and a logsoftmax output layer
of the size of their respective action spaces: the environ-
ment’s 4 actions for the low-level policy and 8 actions
for the high-level policy corresponding to the 8 directions
Ω = {(cos(2kπ/n), sin(2kπ/n)) | k ∈ {0, ..., 7}} that de-
fine diverse skills.

The policies were trained with vanilla A2C with MC returns
from the collected trajectories (Monte-Carlo estimates), i.e.
no bootstrapped values where used. The skills being of a
fixed size they could be trained without any reward discount
(γ = 1). The high-level and low-level policies were entropy-
regularized with the coefficients 0.3 and 0.1 respectively.

All of these networks were trained with RMSprop (Hinton
et al.) and a learning rate of 0.001. Environments specific
hyperparameters are provided below.

B.1.1. REPRESENTATION LEARNING

U-MAZE. Our representation is learned in the non-
uniform prior setting with preset=0.3, prw=0.4 and K=90
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(around the number of steps between s0 and the furthest
state in the maze). We learn a 2-dimensional representation
(d = 2) using the representation learning objective 6 with
β = 0.2 and β′ = 2. We fix the skills length to c = 30 steps
(so L = K/c = 3), and jointly train the representation φ
and the policies (πhi, πlow) by collecting, for each update, a
batch of N = 32 trajectories of length c to fill Ds and Drw

as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence
to the complete representation required around 500 epochs).

T-MAZE. Our representation is learned in the non-
uniform prior setting with preset=0.2, prw=0.4 and K=40
(around the number of steps between s0 and the furthest
state in the maze). We learn a 2-dimensional representation
(d = 2) using the representation learning objective 6 with
β = 0.2 and β′ = 2. We fix the skills’ length to c = 20
steps (so L = K/c = 2). and jointly train the representation
φ and the policies (πhi, πlow) by collecting, for each update,
a batch ofN = 48 trajectories of length c to fillDs andDrw

as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence
to the complete representation required around 350 epochs).

4-ROOMS. Our representation is learned in the non-
uniform prior setting with preset=0.25, prw=0.5 and
K=60 (around the number of steps between s0 and the
furthest state in the maze). We learn a 2-dimensional repre-
sentation (d = 2) using the representation learning objective
6 with β = 0.2 and β′ = 2. We fix the skills’ length to
c = 20 steps (so L = K/c = 3). and jointly train the rep-
resentation φ and the policies (πhi, πlow) by collecting, for
each update, a batch of N = 32 trajectories of length c to
fill Ds and Drw as described in Algorithm 1. We train them
for 700 epochs where each epoch corresponds to 10 updates
(convergence to the complete representation required around
350 epochs).

Note that to keep a clear distinction between the uniform
prior and the non-uniform prior settings, we do not allow
preset to be arbitrary small.

The Laplacian representation (Lap-rep) was trained in the
same environments’ settings described above, for both the
uniform and non-uniform prior settings (of course no policy
is trained here so prw = 1, and (s0, preset) are not relevant
for the uniform prior setting). We used the representation
learning objective and the associated hyperparameters pro-
posed by Wu et al. (2019). For the uniform prior setting,
our online data collection does not cause any discrepancy
compared to the offline scheme used in Wu et al. (2019).
Indeed, for a minibatch size large enough, the stochastic
minibatch based training of Lap-rep when using a uniform
prior is agnostic to the data collection sheme (offline vs on-
line) since in both cases the minibatches are sampled from

the exact same uniform distribution over the state space.

B.1.2. LINEAR FUNCTION APPROXIMATION AND
CONTROL

In the Linear Function Approximation (LFA) and control
experiments, we evaluate each pretrained representation
by training an actor-critic agent to solve a goal-achieving
task with a sparse reward (r = 1 upon reaching the goal).
The episode size was set to 100 steps for all the gridworld
domains.

For the LFA, the critic head is a linear function in the given
representation, while the actor is a MLP with two hidden lay-
ers of size 64 and tanh activations, a logsoftmax output layer
of size 4 (discrete gridworld actions) and the actor’s input
is the state one-hot code. For the control experiments, the
actor-critic agent is defined on top of the representation as a
MLP of two hidden layers of size 64 with tanh activations
that feed two output heads: a linear critic head and a logsoft-
max action head for the 4 actions. The agent is trained with
A2C with MC returns and a discount of gamma = 0.98, a
batchsize of 80 episodes, an entropy regularization with a
0.01 coefficient and Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 0.001.

B.2. MuJoCo: AntMaze

In this navigation task, the environment is composed of
4 × 4 × 4 blocks defining a U-shaped corridor. The envi-
ronment’s action space is 8 dimensional. For the sake of
simplifying the RL training algorithm2, we mapped each di-
mension values interval to a discrete set of 5 values equally
spaced over the interval. We used the same architectures
for the representation and the policies as for the gridworld,
with the only difference that for the low-level policy, the
action head was adapted to the discretization of the action
space by having 8 logsoftmax output heads of size 5, one
for each action dimension and the corresponding 5 discrete
values. This choice makes the training algorithm simpler as
it allows using A2C here as well.

Our representation is learned in the non-uniform prior set-
ting with preset = 0.2, prw = 0.3 and K = 500. We learn
a 2-dimensional representation (d = 2) using the representa-
tion learning objective 6 with β = 0.2 and β′ = 5. We fixed
their length to c = 100 steps (so L = K/c = 5). and jointly
train the representation φ and the policies (πhi, πlow) by col-
lecting, for each update, a batch of N = 32 trajectories of
length c to fill Ds and Drw as described in Algorithm 1. We
train them for 1000 epochs where each epoch corresponds
to 10 updates (convergence to the complete representation
required around 650 epochs).

The policies were trained with the same A2C used in

2orthogonal to our contributions.
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gridworld domains and the same RMSprop hyperparam-
eters. The high-level and low-level policies were entropy-
regularized with the coefficients 0.15 and 0.1 respectively.

B.2.1. REWARD SHAPING

Regarding the Laplacian representation baseline, Lap-rep
was learned in the same non-uniform prior setting described
above, with the representation objective and its associated
hyperparameters proposed by Wu et al. (2019). In this set-
ting, the data collection and the representation training are
performed simultaneously in an online fashion. We have
also tested the offline representation training, replicating
the training scheme in Wu et al. (2019). Still in the non-
uniform prior setting, we collected 500000 training samples
(10 times more than in (Wu et al., 2019)) according to a
uniformly random policy, then we trained the representation
on the large dataset built this way. For all other hyperpa-
rameters, we used the same as provided in (Wu et al., 2019).
Both trainings ended up giving the same performance for
the reward shaping task.

Now, for the reward shaping, we train a Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) agent to reach a goal area
(neighbourhood around the goal position) with episodes of
size 1000 steps. We use the following hyperparameters:

• Discount γ = 0.99

• Entropy coefficient (temperature) α = 0.1

• Soft critic updates with smoothing constant τ = 0.005

• Replay buffer of size 5 · 106 (equal to the number of
training steps).

• Adam optimize with learning rate of 0.0001

As SAC is sensitive to the reward scale (Haarnoja
et al., 2018), we grid-searched this hyperparameter in
{10−5, 10−4, · · · , 1.0, 2.0}, and the best performing one
for our representation was 1.0, while for Lap-rep the SAC
agent didn’t succeed with any of these values to solve the
task.

B.2.2. SKILLS EVALUATION

To train the Deep Covering Options (DCO), we first col-
lect a dataset to estimate the second eigenvector and then
use the same dataset to train a policy – the option – using
DDPG (Lillicrap et al., 2015). Each DCO option is tied
to its own eigenvector estimate and its own dataset. Each
dataset is of size 500000 (10 times the size used in Jinnai
et al. (2020)). As suggested by the authors of DCO (Jinnai
et al., 2020), the remaining the hyperparameters to estimate
the eigenvectors and train their corresponding options were

taken from Wu et al. (2019). For fair comparison, we train
8 DCO options as well.

For the skills / options evaluation stage, we freeze the
learned low-level policies and train a high-level policy to use
the 8 skills as the only available actions to reach the goal g
on the other end of the AntMaze environment using a sparse
reward rt = 1 [‖st+1 − g‖2 ≤ ε] within a finite horizon of
1000 steps . Note that this tasks is quite challenging given
the type of reward and the length of episode especially in a
continuous state space. As our skills offer some flexibility
in their execution (can be started everywhere and run for
arbitrary number of steps), this episode length was decom-
posed to 5 skills of 200 steps each. The high-level policy
was trained with A2C with MC returns (no discount given
the finite horizon) a batch size of 8 episodes, and RMSprop
optimizer with a learning rate of 0.001.

C. The switching utility of the augmentation
term

Note that Ds may contain trajectories from skills that are
not yet duly trained (for example early in the training or in
a freshly discovered area). Since at that stage, these skills’
trajectories are close to random walks, their contribution in
the boredom term β′B(φ;Ds) is similar to the first attrac-
tive term which is based on random walks. This means that
a new skill trajectory initially contributes to the similarity
term (attractive term) in training the representation, thus
making the most out of the sampled skills’ trajectories while
these are still early in their training. This computationally
improves the representation learning for it uses all the rel-
evant trajectories to train the representation and not only
those collected from the uniformly random policy µ. The
more a skill is trained, the more structured its trajectories
become and the more they contribute to the intended ”bore-
dom” effect, that is encouraging exploration and dynamics
awareness (see Appendix A).


