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Abstract: Dealing with sparse rewards is a long-standing challenge in reinforce-
ment learning (RL). Hindsight Experience Replay (HER) addresses this problem
by reusing failed trajectories for one goal as successful trajectories for another.
This allows for both a minimum density of reward and for generalization across
multiple goals. However, this strategy is known to result in a biased value function,
as the update rule underestimates the likelihood of bad outcomes in a stochastic
environment. We propose an asymptotically unbiased importance-sampling-based
algorithm to address this problem without sacrificing performance on deterministic
environments. We show its effectiveness on a range of robotic systems, including
challenging high dimensional stochastic environments.

Keywords: Reinforcement Learning, Multi-goal reinforcement learning

1 Introduction

In recent years, model-free reinforcement learning (RL) has become a popular approach in robotics.
In particular, these methods stand out in their ability to learn near-optimal policies in high-dimensional
spaces [1, 2, 3]. One popular extension of RL, multi-goal RL, allows trained robots to generalize
to new tasks by conditioning on a goal parameter that determines the reward function. However,
RL algorithms often struggle with tasks that involve sparse rewards, as these environments can
require a very large amount of exploration to discover good solutions. Hindsight Experience Replay
(HER) offers a solution to the sparse reward problem for multi-goal reinforcement learning [4].

Figure 1: Q-values learned with HER
(left), and Q-learning (right). A robot
must navigate from the white circle to
the black circle while avoiding obsta-
cles (black squares) and risky areas (yel-
low triangle, 75% chance of stopping
the robot). The value function ranges
from 1 (bright green) to 0 (bright red).

HER treats failed attempts to reach one goal as successful at-
tempts to reach another goal. This significantly reduces the
difficulty of the exploration problem, because it guarantees a
minimum density of reward and ensures that every trajectory
receives useful feedback on how to reach some goal, even when
the reward signal is sparse. However, these benefits come with
a trade-off. While HER is unbiased in deterministic environ-
ments, it is known to be asymptotically biased in stochastic
environments [5, 6]. This is because HER suffers from a sur-
vivorship bias. Since failed trajectories to one goal are treated
as successful trajectories to another, it follows that HER only
ever sees successful trajectories. If a random event can prevent
the robot from reaching a desired goal g, then HER will only
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sample g as a goal when the event did not occur, leading it to
significantly overestimate the likelihood of success and underestimate the likelihood of dangerous
events. Practically, this manifests as a tendency for HER to want to “run red lights” and take risks.

We present a concrete toy example of this problem in Figure 1, using tabular Q-learning. As we can
see, HER values the direct path to the goal and the square en route to the dangerous square much
higher than that path’s correct Q-value because it undersestimates the risk. HER learns to take the
shorter, more dangerous path and achieves a lower success rate with lower reward than Q-learning.

As suggested in both [5] and [6], we derive an approach that allows us to use HER for sampling
goals without suffering from these bias problems. We do this by separating the goal used for the
reward function (gr) from the goal that is passed to the policy (gπ). The value function is conditioned
on both goals, but only the reward goal is sampled using HER. This allows us to efficiently learn a
successor representation over future achieved goals that we can use for importance sampling. We
show that reweighting HER’s mean squared Bellman error using this successor representation yields
an unbiased estimate of the error. We call this method Unbiased Sampling for Hindsight Experience
Replay (USHER). We demonstrate this approach on an array of stochastic environments, and find that
it counteracts the bias shown by HER without compromising HER’s sample efficiency or stability.

2 Definitions

We define a multi-goal Markov Decision Process (MDP) as a seven-tuple: state space S Ď Rn, action
space A Ď Rm, discount factor γ P r0, 1s, transition probability distribution P ps1 | s, aq (with density
function fps1 | s, aq) for ps, a, s1q P S ˆAˆ S, goal space G Ď Rl, goal function ϕ : S Ñ G, and
reward function R : S ˆGÑ R. A goal g “ ϕpsq P G is a vector of goal-relevant features of state
s P S. Goal function ϕ is defined a priori, depending on the task. A typical example of ϕpsq is a
low-dimensional vector that preserves only the entries of state-vector s that are relevant to the goal.
For instance, a mobile robot is tasked with moving to a particular location and arriving there at zero
velocity. The state space of the robot would include velocities and orientations of each wheel, along
with several other attributes that are needed to control the robot. The goal function would take the
full high-dimensional state of the robot and return only its location and velocity. Therefore, each goal
point corresponds to a subspace of the state space in this example. A special case is when G “ S
and g “ ϕpsq,@s P S. Note that the immediate reward function Rps, gq depends on a selected goal
g P G. Every selection of g P G produces a valid single-goal MDP. We denote by π a deterministic
goal-conditioned policy, with πps, gq P A for s P S, g P G, and define Q˚ps, a, gq to be the unique
optimal Q-value of action a P A in state s P S, given selected goal g P G.

In the proposed algorithm and analysis, a policy π can be evaluated according to a goal that is not
necessarily the same goal used by the policy for selecting actions. Therefore, we use gπ to refer to
goals that are passed to policies, and gr to denote goals that are used to evaluate policies. Using these
notations, the Bellman equation is re-written as

Qπps, a, gr, gπq “ Es1rRps1, grq ` γQπps1, πps1, gπq, gr, gπq | s, as.

Intuitively, this means “The expected cumulative discounted sum of rewards Rps1, grq, when using
policy πps1, gπq”. The reason for this separation is that it allows us to more easily separate the
problem of predicting future rewards from the problem of directing the policy. This makes it much
easier to find an analytic expression for HER’s bias. In particular, it lets us learn an expression for
future goal occupancy that is conditioned only on gπ and not gr, which will allow us to correct
for the bias induced by hindsight sampling. Observe that when gr “ gπ, this definition reduces
to the Bellman equation for standard multi-goal RL. For standard Q-learning, πps1, gπq would be
argmaxa1 Qps1, a1, gπ, gπq, where both the policy and reward goals are set to gπ .

HER. HER is a modification of the experience replay method employed by many deep RL algo-
rithms [1, 4, 7, 8, 9]. Policy goal gπ is sampled before each trajectory begins, and is not changed
while generating the trajectory. After generating a trajectory, HER stores the entire trajectory in the
replay buffer. When sampling transitions ps, gπ, a, s1q from the buffer, HER retains the original goal
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gπ used in the policy that generated the trajectory, i.e., gr Ð gπ, with probability 1
k`1 , where k is

a natural number (usually 4 or 8). The rest of the time, it replaces the original goal with ϕpstq, i.e.,
gr Ð ϕpstq, where st is a randomly sampled state from the future trajectory that starts at s. Goals
that are selected from the future trajectory are referred to as “hindsight goals”. HER then updates the
Q-value and policy networks with ps, gπ, a, s1, Rps1, grqq.

3 Related Work

Over the last few years, several methods have attempted to address the hindsight bias induced by
HER. ARCHER attempts to decrease HER’s hindsight bias by multiplying the loss on hindsight goals
and non-hindsight goals by different weights, effectively upweighting the importance of hindsight
goals [10]. MHER extends HER to a multi-step RL and proposes a bias/variance tradeoff for that
setting [11]. A rigorous mathematical approach to HER’s hindsight bias is taken in [5], by showing
that HER is unbiased in deterministic environments, and that one of HER’s key benefits is ensuring
a minimum density of feedback from the reward function, even in high-dimensional spaces where
the reward density would normally be extremely low. This reward-density problem is addressed
by deriving a family of algorithms (called the δ-family, e.g. δ-DQN, δ-PPO), which guarantees a
minimum reward density while still being unbiased. These methods do not use HER and have higher
variance. The authors of [5] also state that the problem of formulating an unbiased form of HER is
still open, and call for additional research into the problem.

Bias-Corrected HER (BHER) attempts to account for hindsight bias by analytically calculating
importance-sampling hindsight goals [12]. Unfortunately, we believe that this derivation is incorrect.
The proof in BHER relies on the assumption that the probability of a transition is independent of
the goal (fps1 | s, a, gq “ fps1 | s, aq). This assumption does not hold for HER, because it samples
the goal from the future trajectory of s, which depends on s1. Both our work and [5] give concrete
counterexamples to this assumption. The following derivation provides an unbiased solution that
does not rely on this flawed assumption.

4 Derivation

Bias in HER. We derive the formula of the bias introduced by HER in estimating the Q-value function
in the following. Let s, a, and s1 be random variables representing a state, action, and subsequent
state in a given trajectory generated by policy π with goal gπ. Let T be the number of time-steps
remaining in the sub-trajectory that starts at s. Let Qπ

HERps, a, gr, gπq be the solution to the Bellman
equation obtained using HER’s sampling process of reward goal gr (Sec. 2). This sampling process
takes into account both gπ and T . Furthermore, gr is selected from the sub-trajectory that starts at
s with probability k

k`1 . Therefore, the probability fps1 | s, a, gr, gπ, T q of the next state s1 after
knowing gπ, gr and T is generally not the same as fps1 | s, aq, which is what HER uses empirically
to estimate Qπ

HERps, a, gr, gπq. The following proposition quantifies this bias ratio.

Proposition 1. Suppose gπ is fixed at the start of the trajectory, and gr is sampled using HER. Then
for any s1, s, a, gr, gπ, T ,fps1 | s, a, gr, gπ, T q “

fpgr|s1,πps1,gπq,gπ,T´1q

fpgr|s,a,gπ,T q
fps1 | s, aq.

Proof: Appendix (A.5). This identity presents an interesting corollary.

Corollary. Suppose Qπ
HERps, a, gπ, gπq satisfies the Bellman equation and the distribution of future

achieved goals is absolutely continuous with respect to the goal space for all s, a, gπ , and πps, gπq “
argmaxa1 Qπ

HERps, a
1, gπ, gπq. Then Qπ

HERps, a, gπ, gπq “ Q˚ps, a, gπq, where Q˚ is the optimal
goal-conditioned Q-function.

Proof: Appendix (A.6). While this establishes that the target value for Qπ
HER is unbiased when

gr “ gπ , the function approximator for Qπ
HER may still be biased, because values other than gr “ gπ

may influence it through the training of the network. Thus, it is possible that the learned Qπ
HER value

may remain biased until unacceptably large amounts of data are gathered. Additionally, since the
density of data is discontinuous, Qπ

HER may be discontinuous and difficult to approximate with a
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neural network. The rest of this section is devoted to developing an importance sampling method that
is guaranteed to be asymptotically unbiased over the entire domain of Q.

Unbiased HER. To estimate Qπps, a, gr, gπq, the solution to the unbiased Bellman equation, we use
in this work the following expression,

Qπps, a, gr, gπq “ Es1rMps1, s, a, gr, gπ, T q
`

Rps1, grq ` γQπps1, πps1, gπq, gr, gπq
˘

| s, a, gr, gπ, T s,

where Mps1, s, a, gr, gπ, T q is a weight that cancels the bias ratio given in Proposition 1. Conditioning
the expected value over s1 on gr, gπ , and T frees us from the constraint that s1 needs to be independent
of gr, gπ , and T . This would allow us to select gr from the future trajectory of s, as HER does. Note
that conditioning on T , the number of steps left in the trajectory, is necessary because the distribution
of goals selected by HER is not time-independent.

Proposition 1 is useful for understanding what situations may cause HER to be biased, but un-
fortunately we cannot directly use it for importance sampling. Weighting samples by setting
Mps1, s, a, gr, gπ, T q as fpgr|s,a,gπ,T q

fpgr|s1,πps1,gπq,gπ,T´1q
would require fpgr | s

1, πps1, gπq, gπ, T ´ 1q to
always be greater than 0, which is not necessarily true. To solve this, we sample a mixture of
hindsight goals and goals drawn uniformly from the goal space G. Of the goals where gr ‰ gπ, a
fraction α of our goals will be drawn uniformly from the goal space, and the remaining 1´ α will be
drawn from the trajectory that follows s. This results in the following identity,

Proposition 2. Let W ps1, s, a, gr, gπ, T q “
fpgr|s,a,gπ,T q

αfpgr|s,a,gπ,T q`p1´αqfpgr|s1,πps1,gπq,gπ,T´1q
. Let α be a

real value in the range p0, 1s. Then for any s1, s, a, gr, gπ ,

fps1 | s, aq “W ps1, s, a, gr, gπ, T q
`

αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q
˘

Furthermore, for any function F of state s1,

Es1rF ps1q | s, as “ αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

`p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gπ, gr, T s. (1)

Proof: Appendix (A.7). We can now derive an unbiased variant of HER by applying Proposition 2 to
Bellman equation.

Corollary. Suppose π is a deterministic policy, gr is sampled from the previously mentioned mix of
hindsight and uniform random goals, and gπ . Then for any s1, s, a, gr, gπ, T ,

Qps, a, gr, gπq “ αEs1rW ps1, s, a, gr, gπ, T q
`

Rps1, grq ` γQps1, πps1, gπq, gr, gπq
˘

| s, as

`p1´ αqEs1rW ps1, s, a, gr, gπ, T q
`

Rps1, grq ` γQps1, πps1, gπq, gr, gπq
˘

| s, a, gπ, gr, T s (2)

This corollary provides us with a simple method of estimating Qps, a, gr, gπq using HER. A similar
unbiased expression can be derived for estimating the gradient of the Bellman error with respect to
the weights of a Q-function network, instead of estimating Qps, a, gr, gπq directly from samples.

Learning the future goal distribution. In order to use the proposed unbiased estimator of
the Q-function with policy and reward goals, we need to compute weight W defined in Propo-
sition 2. This can be achieved by learning future goal distributions fpgr | s, a, gπ, T q and
fpgr | s

1, πps1, gπq, gπ, T ´1q, which both correspond to the conditional probability that a given goal
gr will be selected as a hindsight goal by HER. A technique for learning such long-term distributions,
introduced in [5], consists in training a network fθ, with parameters θ, to approximate the density of
future goals fpgr | s, aq. The following estimator for the gradient is used in [5], sampling ps, a, s1q

from transitions, and fixing gr at the start of each trajectory,

∇θ

`

Es,ar´fθps, a, ϕpsqqs ` Es,a,s1,gr rfθps, a, grqpfθps, a, grq ´ γmaxa1ftargetps
1, a1, grqs

˘

,

wherein ftarget is a copy of fθ that is updated separately. This method has however a significantly
higher variance than HER [5]. We examine here the source of this variance, and explain how
separating the policy and reward goals allows us to avoid this variance problem. One issue with this
method that can contribute to variance is that the gradient is separated into two parts: one in which
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the goal comes from the state (ϕpsq), and one in which the goal is sampled at the start of the trajectory
(gr). This is a problem, because the gradient at the state-derived goals is strictly negative, while the
gradient at the sampled goals is usually positive. In our experiments, this led to a pattern where the
value at the state-derived goals would diverge unboundedly, until a goal was sampled sufficiently
close to make the value function crash back down to zero, and then the process would repeat again.
In other words, it is not guaranteed that fθ converges a fixed point for every finite set of trajectories.

One way to avoid this problem would be to have a fixed, non-zero chance that ϕpsq “ gr, so that
fθ always converges to a fixed point given any set of training trajectories. We use HER to achieve
this outcome. This is possible, unlike in [5], because we can use the importance sampling method
derived above to sample a mixture of HER goals and goals independent of the state. Since HER draws
from the future states of s, observe that fpgr | s, a, gπ, T q is in fact a successor representation [13],
using an average-reward formulation (because the probability of selecting any of the next T states is
uniform). Observe that we can define this probability as

fpgr | s, a, gπ, T q “ Es1r
1

T
δpgr ´ ϕps1qq ` p1´

1

T
qfpgr | s

1, πps1, gπq, gπ, T ´ 1q | s, as,

wherein δ is Dirac delta function. This results in the loss gradient:

∇θ

´

Es,a,gr,gπ,T r´
2

T
fθps, a, ϕpsq, gπ, T q ` Es1rLps, a, s1, gr, gπ, T q | s, ass

¯

, (3)

Lps, a, s1, gr, gπ, T q fi fθps, a, gr, gπ, T q
`

fθps, a, gr, gπ, T q ´ γftargetps
1, πps1, gπq, gr, gπ, T ´ 1q

˘

.
While fθ may not be a true probability density (because it may not integrate to 1), this does not matter
for our purposes, as this factor will divide out when we calculate W . Finally, we inject the formula in
Equation 3 into Equation 1, while replacing F with fθ, to derive the following unbiased loss gradient,

∇θL “ ∇θEr´
2

T
fθps, a, ϕpsq, gπ, T q ` αEs1rW ps, a, s1, gr, gπ, T qLps, a, s

1, gr, gπ, T q | s, as

` p1´ αqErW ps, a, s1, gr, gπ, T qLps, a, s
1, gr, gπ, T q | s, a, gr, gπ, T ss. (4)

Note that the values of α we use for learning Qθ (Equation 2) and goal distribution densities fθ
(Equation 4) can be different. For discrete environments, we can learn the future distribution of the
goal state using simple tabular methods, such as tabular successor representations.

5 Algorithm and Implementation
USHER may be implemented atop DDPG [7], SAC [8], TD3 [9], or any other continuous RL
algorithm, as it only changes the loss function for training the goal-conditioned Q-value network. In
our experiments, we use SAC as a base. USHER calculates the loss as follows: It samples a batch of
transitions ps, a, s1, gπ, T q from the replay buffer, along with two sets of goals: gr, which is drawn
from the future distribution of s, and g1

r, which is drawn uniformly from the goal space G. For each
set of goals, we calculate two values of W , WαQ

and Wαf
. We omit the full training loop here, as it

is identical to standard HER except for the loss computation. To minimize the variance induced by
importance sampling, we clip WαQ

and W 1
αQ

to the range r 1
1`c , 1` cs, where c is a hyperparameter.

This allows us to make a bias/variance trade-off between hindsight bias and the variance induced
by importance sampling. We find that performance is best for c « 0.3, and that the bias induced
by clipping is negligible for c ą 1.0 for most environments. We approximate W using fθ for all
experiments. In order to reduce the total number of neural network evaluations, we made Qθ and fθ
two heads of a two-headed neural network. Although this choice conditions the value function on T ,
the expected gradient for the policy remains the same.

6 Experiments

6.1 Discrete environment

We first demonstrate our method in the discrete case described in the introduc-
tion in Figure 1 because it is analytically tractable and allows us to verify that
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Algorithm 1 Update Rule for USHER

Input: Replay Buffer B, Two-headed Critic Network with weights θ, Actor Network with weights
w, Weighting Factor αQ for Q , Weighting Factor αf for f , Goal Space G, Goal Function ϕ;
Sample batch of tuples ps, a, s1, gπ, T q from B;
critic_loss = 0; actor_loss = 0
Define W ps, a, s1, gπ, gr, T, αq “

fθpgr|s,a,gπ,T q

αfθpgr|s,a,gπ,T q`p1´αqftargetpgr|s1,πps1,gπq,gπ,T´1q
;

for each sampled tuple ps, a, s1, gπ, T q P B do
With probability k

k`1 : gr “Sample from future trajectory of s; Else: gr “ gπ
target_q “ Rpϕps1q, grq `Qtargetps

1, πps1, gπq, gr, gπ, T ´ 1q; // Qtarget is a copy of Qθ

target_q1 “ Rpϕps1q, g1
rq `Qtargetps

1, πps1, gπq, g
1
r, gπ, T ´ 1q;

Wαf
“ p1´ αf qW ps, a, s

1, gπ, gr, T, αf q;W
1
αf
“ αfW ps, a, s

1, gπ, g
1
r, T, αf q

WαQ
“ p1´ αQqW ps, a, s

1, gπ, gr, T, αQq;W
1
αQ
“ αQW ps, a, s

1, gπ, g
1
r, T, αQq

critic_loss ´“ 2
T fθpϕps

1q | s, a, gπ, T q

critic_loss `“Wαf
pfθpgr | s, a, gπ, T q ´ ftargetpgr | s

1, πps1, gπq, gπ, T ´ 1qq2

critic_loss `“W 1
αf
pfθpg

1
r | s, a, gπ, T q ´ ftargetpg

1
r | s

1, πps1, gπq, gπ, T ´ 1qq2

critic_loss `“WαQ
pQθps, a, gr, gπ, T q ´ target_qq2

critic_loss `“W 1
αQ
pQθps, a, g

1
r, gπ, T q ´ target_q1q2

actor_loss ´“ Qθps, πwps, gπq, gr “ gπ, gπ, T q
end for
Backprop critic_loss and update θ
Backprop actor_loss and update w

USHER learns the correct value function. The environment used has a short, risky
path that has a high chance of disabling the robot, and a longer risk-free path.

Figure 2: Average reward and bias for HER, USHER,
and Q-learning on the long/short path environment.

The longer path has a higher expected reward,
but we find that HER mistakenly prefers the
riskier path. The value functions for USHER
and Q-learning both quickly converge to the ex-
pected value, while HER overestimates the ex-
pected reward.

6.2 4-Torus with Freeze

Figure 3: Success Rates (left) and Average Rewards
(right) for the 4-Torus with Freeze environment

N-Torus with Freeze (Fig 3) is a benchmark envi-
ronment introduced by Unbiased Methods that
demonstrates HER’s bias. Robots navigate a
torus with an N-dimensional surface to reach
a goal. There is also a "Freeze" action, which
causes the agent to jump to a random location
and then permanently freeze in place and not
move again. Further details can be found in [5]
or in the Appendix (A.1.2). HER learns to always take the freeze action and fails as a result, while
USHER learns a successful policy. DDPG and δ-DDPG are unbiased in this environment, but
DDPG struggles due to the difficulty of exploring in high dimensions, and δ-DDPG struggles with its
variance.

6.3 Car Environment with Random Noise

This environment (Fig 4) uses the "Simple Car" dynamics described in [14]. The robot must navigate
around walls while subject to Gaussian action noise [15]. HER performs well for low noise values,
but tends to overestimate values more as the noise level rises. USHER suffers significantly less from
high noise levels than HER.
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Figure 4: Success Rates (middle) and Bias (right) for the Stochastic Car environment

6.4 Red Light Environment

Figure 5: Success rates (left) and average reward (right) for the
Red Light Environment

Here, we expand on the example given
in the introduction, where HER learns
to run red lights because it underesti-
mates the likelihood of a crash. This
environment (Fig 5) uses the same car
dynamics as the short/long path en-
vironment, but change the map to be
two sections separated by an intersec-
tion and a traffic light. If the car is in the intersection while the traffic light is red, than there is a 75%
chance per unit time that the car will be in an accident and break. The green and yellow lights are
both safe, and the initial color of the light is random. We find that HER learns to run the red light and
immediately attempt to reach the goal, while USHER learns to wait for the red light to end. This
results in USHER achieving both higher success rates and higher rewards.

6.5 Fetch Robot Environments

While the δ-Actor Critic succeeded at being unbiased, this came at the expense of performance in
deterministic environments, due to the method’s increased variance [5]. Our goal in this section
is to show that USHER does not suffer from this trade-off, and delivers performance competitive
with standard HER. To do this, we compare the performance of HER and USHER on several Fetch
Robot object manipulation tasks (Fig 6), as these were the tasks HER was originally designed for.
These three environments task a robot manipulating a robot arm to reach a point, push an object,
and slide an object to a point outside of the robot’s reach, respectively. USHER is able to match
HER’s performance on all of the tested environments (Fig 7). This suggests that the importance
sampling method does not significantly affect USHER’s variance or sample efficiency in deterministic
environments, where HER is known to be unbiased. It also significantly outperforms two other
unbiased methods, DDPG and δ-DDPG on FetchReach. Note that although BHER performs slightly
better than HER, it takes approximately 10x as long to train as HER, due to needing to evaluate the
policy for the entire trajectory for every sampled goal at training time.

Figure 6: FetchReach (left), FetchPush (middle), and FetchSlide (right) Environments

Figure 7: Success Rates for the FetchReach, FetchPush, and FetchSlide Environments
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6.6 Mobile Throwing Robot

We design a simulated robot arm on a mobile base, and task it with throwing a ball to a randomly
selected location (Fig 8). There is also a 50% chance of wind that can blow the ball off course.
USHER matches HER’s sample efficiency until the point where HER’s bias causes its performance
to suffer. USHER’s performance, by contrast, continues to grow steadily to a 75% success rate,
significantly better than HER’s 55%. Interestingly, we find that USHER actually underestimates its
reward here. This is likely because this environment is slightly non-Markovian, because the wind is
sampled at the beginning of each trajectory, and then remains fixed. USHER’s proof of unbiasedness,
however, assumes that the environment is Markovian. It is interesting to note that USHER still
performs well even when this property does not completely hold.

Figure 8: (Left to right) Visualization of the experiment, Success Rates, Rewards, and Bias for the Mobile
Robot Throwing experiment
6.7 Navigation on a physical mechanum robot

High Friction Zone

Goal

Safe Path

Figure 9: Simulated Mechanum Robot(left) and Physi-
cal Mechanum Robot(right)

Lastly, we train a mechanum robot to navigate
around obstacles to reach a goal and deploy it
on a physical robot (Fig 9). The terrain contains
a high friction zone that leads to the goal faster,
but unreliably. Transfer was done by rolling out
trajectories in simulation, and then deploying the
same sequence of actions on the physical robot
as an open-loop control. We find that USHER
outperforms HER. Both robots take the short
goal when it is open. When the path is blocked, HER repeatedly slams into the obstacle. By contrast,
USHER runs into the block once, and then turns to go around it if it is blocked. This leads USHER to
have a higher success rate. In simulation, HER’s success rate is approximately 50%, while USHER’s
is near 100%. Due to the difficulty of transfer, USHER’s performance drops on the physical robot,
but it still outperforms HER. HER succeeded on 4/10 goals, while USHER succeeds on 6/10. Both
methods succeed 100% of the time on the unblocked path environment.

7 Limitations
One limitation of this work is that we rely on the Markov assumption to derive our importance
sampling weights. This means that while we can correctly estimate the value function for stochastic
transitions, we cannot guarantee that the learned value is correct in environments with hidden
information. It is unclear whether this is actually an issue in practice, as USHER still outperforms
HER on the non-Markovian environments we tested (such as the Throwing Bot). Additionally,
USHER requires approximately 2.5 times as many neural net evaluations as HER does per batch
update. This was not an issue in our experiments, as the cost of simulation and policy evaluations
usually dominated the training time.

8 Conclusion
We derive an unbiased importance sampling method for HER, and show that it is able to effectively
counteract HER’s hindsight bias. We find that addressing this bias leads to higher success rates
and rewards in a range of stochastic environments. Furthermore, we introduce a mathematical
framework to justify our method which can be used to examine the situations where HER is likely to
experience significant bias. In future work, we hope to examine the finite-sample case, in order to
better understand whether HER introduces a bias there, and if so, how it could be corrected.
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