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Abstract

The construction of large datasets for deep learning has raised concerns regarding
unauthorized use of online data, leading to increased interest in protecting data from
third-parties who want to use it for training. The Convolution-based Unlearnable
DAtaset (CUDA) method aims to make data unlearnable by applying class-wise
blurs to every image in the dataset so that neural networks learn relations between
blur kernels and labels, as opposed to informative features for classifying clean
data. In this work, we evaluate whether CUDA data remains unlearnable after
image sharpening and frequency filtering, finding that this combination of simple
transforms improves the utility of CUDA data for training. In particular, we observe
a substantial increase in test accuracy over adversarial training for models trained
with CUDA unlearnable data from CIFAR-10, CIFAR-100, and ImageNet-100. In
training models to high accuracy using unlearnable data, we underscore the need
for ongoing refinement in data poisoning techniques to ensure data privacy. Our
method opens new avenues for enhancing the robustness of unlearnable datasets by
highlighting that simple methods such as sharpening and frequency filtering are
capable of breaking convolution-based unlearnable datasets. 1

CLEAN DATA CUDA DATA
CUDA DATA WITH

AT RSK+FF (OURS)

CIFAR-10 94.34 23.25 44.40 78.53
CIFAR-100 74.41 17.33 34.34 53.33
IMAGENET-100 81.76 2.68 38.68 43.08

Table 1: Compared to common defenses like Adversarial Training (AT), our method applied
to CUDA data can train a RN-18 to higher test accuracy on CIFAR-10, CIFAR-100, and
ImageNet-100. Our method uses Random Sharpening Kernels and Frequency Filtering (RSK+FF) to
alter poisoned CUDA images during training. On CIFAR-10, CIFAR-100, and ImageNet-100, we
achieve 55%, 36%, and 40% improvements, respectively, over training with CUDA data.

1 Introduction

Widespread data scraping has raised concerns about privacy and securing important data away from
malicious actors. Desai and Johnson [5] mention the need and goal to scale to training on hundreds
of millions of images, which is a daunting task without the ability to scrape the web. Additionally,
the usage of private data may inadvertently lead to the susceptibility of inference attacks [12]. While

1Our code is available at https://github.com/aseriesof-tubes/RSK
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Figure 1: Sharpening and Frequency Filtering of a CIFAR-10 Image. We analyze the effect
of standard and random sharpening kernels, both with a center value of 2.5. We find that the
randomized sharpening kernel, denoted RSK, ensures images of the same class are sharpened
differently. After sharpening, we decompose the image into spatial frequencies using DCT and filter
out high frequencies (see Section 3.2).

the intentions of scrapers may not be malicious in nature, concerns of privacy remain. Poisoning can
be used as a countermeasure against web scraping, which negatively affects the performance of a
model that is trained on said dataset [1]. Another kind of poisoning attack, backdoor poisoning [2],
poses a threat to learning systems by causing targeted misclassifications.

To prevent the unauthorized scraping of data on the web, unlearnable datasets have been introduced
as a way to render images unusable. Unlearnable dataset methods seek to find out the best way to
imperceptibly modify a training dataset so that a deep neural network (DNN) trained on the resulting
data exhibits the largest generalization gap. The idea is that if data can be rendered useless, third
parties are disincentivized from using the modified data.

Two types of unlearnable datasets exist: bounded and unbounded. Bounded methods [9, 6, 16, 17]
attempt to make the perturbation as imperceptible to humans, while unbounded methods [14, 19]
are more easily perceptible. Both types of unlearnable datasets face challenges. Existing works that
explore bounded unlearnable methods have shown that Adversarial Training (AT) [9, 6, 21] and JPEG
compression [11, 4] can increase the learnability of unlearnable data.

We propose a method for learning from unbounded unlearnable datasets like the Convolution-based
Unlearnable DAtaset (CUDA). As bounded methods show weakness whether it be by AT or other
transforms, Sadasivan et al. [14] argue that unbounded unlearnable methods are valid because 1) they
do not obscure the semantics of the dataset, and 2) their class-wise blurring makes the model learn
the relationship between the class-wise filters and their corresponding labels.

We demonstrate that it is possible to learn from CUDA datasets [14], despite their unbounded
perturbations. We achieve a high test accuracy by sharpening the images from the CUDA dataset using
our sharpening kernels followed by frequency filtering, achieving a 55%, 36%, and 40% improvement
over CUDA standard training for CIFAR-10, CIFAR-100, and ImageNet-100, respectively. Our
results suggest using random sharpening kernels should be a baseline against convolution-based
perturbations.

2 Related Work

Unlearnable dataset methods make small perturbations to the whole training dataset so that DNNs
trained on the modified data result in poor test accuracy [9, 6, 20]. Many types of perturbations have
been explored: error-minimizing noise [9, 17], error-maximizing noise [6], autoregressive noise [16],
low-frequency noise [15], and more. The modified datasets are typically constrained to “look like”
the original dataset by requiring that the difference between each original image and its modified
image has an ℓp norm bounded by some ϵ. For example, a number of works bound perturbations
using an ℓ∞-norm [9, 6, 17], whereas other works use an ℓ2 norm [20, 16]. This bound is also known
as an “imperceptibility constraint,” because it ensures that image modifications are not easily visible.

But there has been a growing movement allowing for unbounded perturbations [19, 14]. Unbounded
perturbations are naturally more effective at inducing a generalization gap in DNNs due, in part, to
the fact that perturbations are larger and the resulting images are noticeably modified. For example,
the One-Pixel Shortcut (OPS) dataset [19] sets a single pixel that induces the largest gap from the
mean pixel value of a class in a class-wise manner (all images of a class are modified in the same
way). The Convolution-Based Unlearnable DAtaset (CUDA) dataset [14] also contains unbounded
perturbations, where images are blurred class-wise. For example, on CIFAR-10, ten random blur
kernels are generated and used to blur training images. This causes trained networks to learn relations
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CUDA EM [9] TAP [6] AR [16] REM [17] OPS [19] R4 [15]

ℓ2 6.63 1.49 1.45 0.99 1.32 1.07 1.72
ℓ∞ 0.54 0.03 0.03 0.09 0.03 0.68 0.03

Table 2: Size of an average perturbation from different unlearnable datasets. For each training
image, we compute the norm of the difference between the modified image and the clean image. We
average over all training images in CIFAR-10. CUDA perturbations have an ℓ2-norm that is at least
3.8× larger than other datasets. OPS is the only other dataset containing unbounded perturbations.
We bold the largest norm and underline the second-largest norm.

Figure 2: Comparison of the same image from different unlearnable datasets. OPS [19] perturbs
by adding noise to a singular pixel. AR [16] generates perturbations using a sliding window approach.
R4 [15] is a grid-like additive perturbation. CUDA and OPS, being unbounded methods, exhibit a
noticeable perturbation, compared to AR and R4 which have perturbations bounded by an ℓp-norm.

between blur kernel and labels, i.e. a learning shortcut [7, 20] which is not informative at test-time.
Nevertheless, Wu et al. [19] and Sadasivan et al. [14] argue that as long as the semantic information in
an image is preserved, unbounded perturbations should be explored. After all, both works demonstrate
that unbounded perturbations are more resistant to adversarial training and augmentations. CUDA is
also effective against randomized smoothing [3], as well as Deconvolution-based adversarial training.
This observation aligns with the data in Table 2, which shows that the ℓp norms of CUDA and OPS
are substantially higher than their counterparts. Notably, CUDA exhibits a four to six-fold increase in
its ℓ2 norm compared to alternative methods.

The unbounded nature of CUDA, which causes a visible blur (see Figure 2), naturally makes it harder
for models to learn, as the data is further away from the original training distribution. Because it
remains unknown whether recovering the blur kernels from CUDA training data is feasible, CUDA
could appear like a reasonable approach to data security – a data owner could use the CUDA method
to protect their data from being trained on. However, in this work, we demonstrate that random
sharpening kernels and frequency filtering can make CUDA data learnable again.

While some theory can explain why CUDA is effective on data sampled from a Gaussian mixture
model [14], our findings on standard datasets like CIFAR-10, CIFAR-100, and ImageNet-100 (a
subset of the first 100 classes) demonstrate that classifiers trained on CUDA data can actually still
generalize. There have been previous works that attempt to counter unlearnable datasets. Notably,
Image Shortcut Squeezing (ISS) [11] uses Grayscale and JPEG transforms to counter low-frequency
and high-frequency perturbations, respectively. However, the use of JPEG is hard to reason about
because of the way JPEG removes information. The JPEG algorithm divides an image into 8x8
blocks then removes the high frequency information from each one independently. This means that it
not only removes high frequencies, but the high frequencies from low frequency patches of an image
- resulting in the removal of low frequency information as well. In addition to this, the precalculated
quantization matrices for the chrominance and luminance channels are specifically designed to keep
the image unchanged to the human eye. Thus, while JPEG compression may remove the harmful
perturbation, it is difficult to pinpoint where exactly in the frequency spectrum this occurred. Prior to
our work, it was also unknown whether JPEG compression could break2 CUDA, a fundamentally
different type of poison with relatively larger perturbations. In contrast, our method includes a
decomposition of an image into spatial frequencies, allowing us to determine where perturbations lie.

2Because the purpose of an unlearnable dataset is to make data useless for training, to “break” an unlearnable
dataset means to make the data useful again – to train a model to high test accuracy using the corrupted data.
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POISONED TRAINING DATA
TEST IMAGE PERTURBATION CUDA [14] OPS [19] AR [16] R4 [15]

xi + δyi
93.17 86.33 100 99.99

xi + δyi+1
6.38 0.86 0 0.25

xi + δU(0,K) 14.88 12.41 10.40 10.42

Table 3: Unlearnable datasets train models to learn perturbations. Using poisoned models from
four unlearnable datasets, we evaluate classification accuracy on a modified test set. Each of these
unlearnable datasets applies perturbations in a class-wise manner: δyi

refers to a perturbation for
class i (or generated by the ith process in the case of AR Poisoning). The test dataset is modified
in three ways: xi + δyi

refers to the perturbation matching the class of the test image, xi + δyi+1

refers to the perturbation not matching the test image, and xi + δU(0,K) refers to the perturbation
being random. Achieving high accuracy on images not seen during training only when the right
perturbation is present suggests that poisoned RN-18’s learn a class perturbation, as opposed to any
useful features from data.

3 Motivation

DNNs fail to generalize to the data because the perturbations are tied with the class labels [19, 14].
This phenomena is known as shortcut learning, where DNNs learn the simplest feature that correlates
well with labels. In this section, we empirically verify that DNNs in fact do learn shortcuts when
trained on unlearnable data.

3.1 Shortcut Learning

To isolate the effect of perturbations, we must ensure the model does not learn meaningful features
from the training dataset. All the unlearnable methods we analyze employ a class-wise poison,
creating a tie between perturbation and class label. Suppose K is the number of classes for a given
dataset, with δ ∈ ∆C being a perturbation. We denote the test image and test label as xi and
yi respectively. We then apply δ to xi in three different ways: perturbation matching test label,
perturbation not matching test label, and perturbation being random. We test the poisoned model
on these three sets of the test data and expect test accuracies of 100%, 0%, and 1/K%, respectively.
If the model learned a shortcut, the perturbation’s class should determine the predicted label. We
expect 100% when the perturbation matches the test label because the perturbation’s class is always
the correct class label. We expect 0% when the test label does not match the perturbation, because
the perturbation’s class is always incorrect. We expect 1/K% with K classes when the perturbation
is uniformly random, because the perturbation will only match the correct label 1/K% of the time on
average. Table 3 demonstrates that poisoned models indeed learn shortcuts where the presence of a
perturbation determines the model predictions.

3.2 Frequency Filtering via Discrete Cosine Transform

Figure 3: DCT can be used to remove exact frequency bands. DCT converts an image into a spatial
frequency representation of the same size. The coefficients represent increasing frequencies from
top-left (lowest) to bottom-right (highest). We retain the lowest X% of frequency coefficients by
masking out the remaining higher frequencies. Then, we apply the inverse DCT (IDCT) to transform
the modified frequency representation back into an image.
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]

Figure 4: Left: A standard sharpening kernel, using a center value of 5. Middle: A softer sharpening
kernel with a center value of 2.5. Right: A random sharpening kernel where values are sampled
independently from a normal distribution.

Liu et al. [11] demonstrate that JPEG compression effectively counters high-frequency perturbations,
while grayscale conversion mitigates low-frequency perturbations. Although their empirical results
support the efficacy of these methods, they do not delve into further analysis of how JPEG compression
alters the frequencies of poisoned images. The complexity of the JPEG algorithm, which involves
six discrete steps, makes it challenging to pinpoint which aspects contribute to the improvements in
robustness against adversarial attacks.

Instead, we use a frequency filtering (FF) method that uses the Discrete Cosine Transform (DCT), a
component of JPEG compression, to systematically remove high frequencies from images. Figure 3
visualizes our method. It involves applying DCT to input images, keeping increasing percentages
(10%, 20%, 30%...) of the DCT coefficients, and then performing an inverse DCT to reconstruct the
images. This process generates a series of images predominantly composed of lower frequency infor-
mation, with higher frequency components gradually introduced as a larger fraction of coefficients is
retained, resulting in images that go from blurry to sharp (refer to Figure 5).

4 Method and Experiments

We identified shortcut learning behavior using unlearnable datasets like OPS, AR, and Regions-4.
Now we discuss how we arrived at our method of learning from unlearnable datasets, and finally
verify empirically that our method breaks said shortcuts.

4.1 Settings

Datasets and Models. For our experiments, we train ResNet-18 [8], and three datasets: CIFAR-
10 [10], CIFAR-100 [10], and a 100-class subset of ImageNet [13], which we denote ImageNet-100.
ImageNet-100 contains 129,395 train samples and 5,000 test samples. We create CUDA datasets
for CIFAR-10, CIFAR-100, and ImageNet-100 using default settings from the original work: For
CIFAR-10 and CIFAR-100, we use blur parameter pb = 0.3 and kernel size of 3. For ImageNet-100,
we use pb = 0.06 and kernel size of 9. The percentage of poisoned data is 1.0, i.e. the whole dataset.

Training Hyperparameters. All classifiers are trained using cross-entropy loss. For both the
CIFAR-10 and CIFAR-100 datasets, we train models for 60 epochs using SGD with a learning rate
of 0.1, momentum of 0.9, and weight decay of 5× 10−4. We use a cosine annealing learning rate
scheduler. We use a batch size of 512 for both, and normalize using the mean and standard deviation
from each dataset. For data augmentations, we use random crops and random horizontal flips for
CIFAR-10. For CIFAR-100, we additionally apply random rotations.

For ImageNet-100, we train ResNet-18 for 100 epochs using SGD with momentum of 0.9, and weight
decay of 5× 10−5. We use a cyclic learning rate schedule which starts at 0.25, peaks to 0.5 at epoch
2, and decays to 0 by epoch 100 (i.e. one cycle). For data augmentations, we use random resized
crops and horizontal flips as data augmentations.

4.2 Random Sharpening Kernels + Frequency Filtering

Sharpening Kernels. In computer vision, sharpening kernels enhance image edges by emphasizing
differences in adjacent pixel values. Figure 4 (left) shows a standard sharpening kernel. We find that
a softer kernel with a center value of 2.5 (Figure 4 middle) outperforms the standard kernel with
a center of 5. Applying this softer kernel to CUDA CIFAR-10 training data improves RN-18 test
accuracy from 23.25% to 26.72%, a 3.47% increase. Despite the CUDA training data being more
legible with the help of sharpening kernels, they alone cannot break the learned relationships between
class-wise blur filters from CUDA and ground truth labels. Thus, we resort to randomized sharpening
kernels.
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The Random Sharpening Kernel (RSK). We propose to use random sharpening kernels (RSK)
where we sample the center value from a normal distribution, then sample the neighboring values
using the mean from the sampled center value (see Figure 4 right). RSK samples its center value
from a normal distribution with a mean of 2.5. From the previous section with SSK, we have a test
accuracy of 26.72% on CIFAR-10. After applying the RSK to the CUDA training data, we observe
a 3.22% improvement to 29.94% test accuracy on CIFAR-10. In Table 4, we also include data for
CIFAR-100 and ImageNet-100. An example of an RSK is in Figure 4(c).

Frequency Filtering via DCT. Along with RSK, we consider FF (refer to Section 3.2) as a
transform. We test this method on CUDA, and CUDA preprocessed by SSK and RSK. Our results are
shown in Table 3. We observe that keeping the lowest 30 to 40% of frequencies is best for CIFAR-10
and CIFAR-100, while a smaller percentage of 5% is best for ImageNet-100. This difference is due
to ImageNet images being of larger size (224× 224). However, note that 5% of an ImageNet image’s
spatial frequencies is equivalent to 34% of the spatial frequencies in a CIFAR image. 3

Putting it all together. As seen in Table 4, FF and RSK do not perform well by themselves against
CUDA, but they excel when used together. After applying RSK with FF (30), we observe a test
accuracy jump from 29.94% to 78.53% on CIFAR-10, an improvement of 48.59% over relying on
RSK alone. We find that using an RSK with center 2.5 and FF with 30% of lowest frequencies kept is
the best way to learn from CUDA.

CIFAR-10 CIFAR-100 IMAGENET-100

CLEAN 94.34 74.41 81.76

CUDA 23.25 17.33 2.68
CUDA + SSK 26.48 23.82 5.04
CUDA + RSK 29.01 27.27 6.34
CUDA + FF 37.48 (10) 21.06 (30) 40.84 (5)

CUDA + SSK + FF 72.60 (30) 50.87 (30) 42.58 (5)
CUDA + RSK + FF 78.53 (30) 53.33 (40) 43.08 (5)

Table 4: A breakdown of the transforms we use against CUDA. It shows the test accuracies of the
different combinations of transforms we use (refer to Section 4.2 for a breakdown). The parentheses
next to results that use FF refers to the % of lowest frequencies kept. See Appendix A.1 for an
analysis on different percentages kept.

5 Conclusion

As protection against data scraping and copyright infringement, unlearnable datasets must be robust
against adversarial training and other attacks. We identified that shortcut learning is a technique used
by unlearnable datasets to fool DNNs. Based on the fact that CUDA is a class-wise blur, we designed
a random sharpening kernel that breaks the relationship between the filters and their corresponding
labels. We also used the intuition of JPEG compression being capable of removing perturbative
information, and designed a method to filter out specific frequencies using the Discrete Cosine
Transform. We found that we were able to boost test accuracy from CUDA-convolved CIFAR-10,
CIFAR-100, and ImageNet-100 by 55.25%, 36%, and 40.4%, respectively. From our results, we
find that unlearnable datasets can be exploited by simple image transformations, making them not as
unlearnable as once thought.

3The lowest 5% of spatial frequencies in an ImageNet image is represented by a 11× 11 DCT coefficients
matrix, which is 11

32
≈ 34 percent of a CIFAR image’s spatial frequencies.
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A Appendix

A.1 Analysis on Frequency Filtering

In this section, we analyze how datasets and different combinations of transforms behave under
multiple percentages of kept DCT frequencies.

Kept DCT Frequency Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Clean 40.74 37.48 46.55 31.73 44.85 91.40 92.16 92.57 93.18 93.66
CUDA 37.48 36.83 21.09 20.36 20.20 17.51 20.35 21.37 21.95 21.04
SSK 45.26 71.06 72.60 58.09 49.22 45.07 41.61 38.12 30.19 26.48
RSK 46.55 73.72 78.64 68.10 60.35 53.86 48.60 41.23 35.95 29.01

Table 5: RSK is better than SSK. This table displays test accuracies of ResNet-18 trained on
CIFAR-10. CUDA refers to only CUDA convolved images. RSK refers to CUDA images convolved
with RSK, and SSK refers to CUDA images convolved with SSK. It is observed that RSK has better
performance than SSK on all frequency bands.

The baseline, clean CIFAR-10, performs as expected. As we allow the model to train on an increasing
amount of higher frequency bands to the model, the test accuracy improves as high frequency
components are useful for classification [18]. For the next three transforms, as seen in Table 5,
we can see a trend: they perform best when most of the high frequencies are masked out; in
other words, mostly blurry. This is interesting because from previous works, we know that high
frequency components help DNNs generalize better. However, Table 5 shows that high frequency
components can in fact “distract" the model from learning. We posit that sharpening kernels bring
back crucial information needed for DNNs to generalize, and removing high frequencies works as an
effective countermeasure to break the relation between the class-wise filters from CUDA and their
corresponding labels.

Figure 5: Image reconstruction using different percentages of frequencies kept. On the very
left, we retain the lowest 10% of DCT frequencies. We progressively preserve higher frequencies,
resulting in a series of blurry to clear images. These images are constructed using an image from the
clean dataset.

Kept DCT Frequency Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Clean 17.14 39.53 54.16 61.05 65.74 69.09 70.14 71.19 72.29 72.80
CUDA 13.50 21.04 21.06 13.76 12.74 11.03 11.47 13.00 12.65 15.35
SSK 19.10 40.54 50.87 50.57 47.12 44.30 39.88 29.85 24.44 23.82
RSK 19.90 42.47 52.58 53.33 52.84 49.55 46.08 35.44 29.23 27.27

Table 6: Test accuracies of ResNet-18 trained on CIFAR-100. We test our sharpening kernels, SSK
and RSK, with DCT filtering (FF) on different percentages of kept DCT frequencies. We find that
percentages of 30% to 40% work the best, similar to CIFAR-10.
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Kept DCT Frequency Percentage
5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CUDA 40.84 38.76 4.14 2.86 3.28 2.02 2.76 2.40 2.88 2.96 2.74
SSK 42.58 39.04 4.46 5.96 5.42 7.08 5.90 4.72 4.62 5.98 5.38
RSK 43.08 39.64 8.76 7.32 5.62 7.44 6.26 6.28 8.54 6.50 7.52

Table 7: Test accuracies of ResNet-18 trained on ImageNet-100. We test our sharpening kernels,
SSK and RSK, with DCT filtering (FF) on different percentages of kept DCT frequencies. We find
that a percentage of 5% works the best. The lowest 5% of spatial frequencies in ImageNet images is
represented by an 11 × 11 DCT coefficient matrix, which is 11

32 ≈ 34 percent of a CIFAR image’s
spatial frequencies - it matches up with the percentages where highest accuracies were achieved with
CIFAR-10 and CIFAR-100 (30% and 40% each).

CUDA[14] OPS[19] AR[16] R4[15]

Baseline 23.25 31.05 18.41 14.04
RSK + FF 78.53 (30) 87.03 (40) 67.23 (20) 23.17 (10)

Table 8: Test accuracies of ResNet-18 trained on different sets of unlearnable datasets on
CIFAR-10. We tested various unlearnable datasets against our best method, RSK + FF. We find that
it performs even better on OPS than CUDA, but performs poorly on Autoregressive Poisons and
Regions-4. The parentheses notes the lowest kept percentage of DCT frequencies, and we reported
the highest accuracy after testing from 10% to 100%.
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