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Abstract

While foundation models have shown promise across a variety of fields, as-
tronomy lacks a unified framework for joint modeling across its highly diverse
data modalities. In this paper, we present AION-1, the first family of large-
scale multimodal foundation models for astronomy. AION-1 integrates a large
number of heterogeneous data types using a two-stage architecture: modality-
specific tokenization followed by transformer-based masked modeling of cross-
modal token sequences. Trained on over 200M astronomical objects, AION-1
demonstrates strong performance across regression, classification, generation,
and object retrieval tasks. Beyond astronomy, AION-1 provides a scalable
blueprint for multimodal scientific foundation models that can seamlessly in-
tegrate heterogeneous combinations of real-world observations. Our model re-
lease is entirely open source, including the dataset, training script, and weights:
https://github.com/PolymathicAI/AION.

1 Introduction

Foundation models have transformed natural language processing and computer vision [[1} 20, [18].
However, they have not been fully explored in scientific domains where data are often complex and
heterogeneous, combining multiple instruments, measurement protocols, and noise sources unique to
real-world experiments. As a result, many scientific analyses employ bespoke models that treat each
modality in isolation or rely on strict - often hand-crafted - schemas for cross-modal data fusion.

Within the broader scientific landscape, astronomy provides a particularly compelling testbed for
the development of multimodal scientific foundation models owing to both the volume of publicly
available data and its extraordinary diversity of measurements. Indeed, recent works have begun to
explore multi-modal foundation models in astronomy [48], 143} 180} I50]; however, these approaches
have been limited to single physical phenomena and relied primarily on contrastive objectives,
which face fundamental limitations including generalization to arbitrary modalities and difficulty in
capturing information beyond the mutual information between modalities.
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Figure 1: AION-1 integrates 39 different data modalities — multiband images, optical spectra, and
various properties and measurements — into a single model usable for a wide range of downstream
applications. It implements a two-step process: first, bespoke tokenization strategies that homoge-
nize the diverse scientific data, followed by multimodal masked modeling that learns how different
observations relate, inducing a deep understanding of the underlying physical objects. Astronomers
can then leverage AION-1’s rich astrophysical understanding for a variety of downstream tasks.
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In this paper, we introduce AION-1 (Astronomlcal Omni-modal Network), the first large-scale
multimodal foundation model for astronomy designed to handle arbitrary numbers of modalities
across multiple physical phenomena. AION-1 unifies imaging, spectroscopy, photometry, and other
object-level measurements from major ground- and space-based observatories into a single model
for galaxies, stars, and quasars. By bridging these disparate data types, AION-1 addresses a key
challenge in scientific machine learning: the integration of multiple heterogeneous datasets spanning
different instruments, measurement protocols, noise sources, and physical phenomena into a single,
unified framework.

At the heart of AION-1 lies a two-step approach: Universal Tokenization of Diverse Data, where
we homogenize real-world scientific observations with discrete quantization across different data
types, instruments, and observatories, followed by Multimodal Masked Modeling, where we train a
single transformer encoder-decoder with a masked-token objective over all modalities simultaneously.
Once trained, we demonstrate emergent behaviors in the AION-1 models that reflect the potential for
multimodal scientific foundation models to capture non-trivial physical insights from raw data alone:

* Emergent Physical Understanding. AION-1 can solve non-trivial scientific tasks using
only a simple linear head on top of its learned representations.

¢ Superior Performance in the Low-Data Regime. AION-1 achieves competitive results on
downstream tasks even with orders of magnitude less data than its supervised counterparts.

* Flexible Data Fusion. AION-1 can use arbitrary combinations of observations, enabling
seamless data fusion on downstream tasks as well as cross-modal conditional generation.

* Physical Structure of the Latent Space: AION-1’s embedding space organizes objects
along physically meaningful directions, enabling powerful retrieval of rare observations that
surpasses current state-of-the-art retrieval methods in astronomy.

Beyond astronomy, the data tokenization strategies, masked modeling, and cross-modal generation
strategies introduced address key challenges in real-world scientific data: namely, heterogeneity,

noise, and instrument-specific idiosyncrasies. Moreover, by focusing on purely observational data,
our approach is applicable in any data-rich field, even when strong physical models are not available.

1.1 Contributions

In summary, we present the following contributions:



* We introduce AION-1, a family of token-based multimodal scientific foundation models
ranging in size from 300M to 3.1B parameters. AION-1 is designed for arbitrary combina-
tions of highly heterogeneous scientific observations.

* We develop bespoke tokenization methods to homogenize a wide variety of astronomical
data into a single coherent corpus. These innovations address the heterogeneity, noise, and
instrument-specific peculiarities that challenge standard scientific modeling.

* We demonstrate that AION-1 achieves competitive to state-of-the-art performance on a
broad range of scientific tasks with even simple probing, while significantly outperforming
supervised baselines in low-data regimes, rendering the model highly usable by downstream
researchers even without dedicated finetuning.

By tackling the challenges of data heterogeneity, noise, and diverse instrumentation, AION-1 offers a
promising paradigm for future multimodal foundation models beyond astronomy, setting the stage
for a new era of large-scale, cross-domain scientific exploration.

2 Related Work

Multimodal foundation models have become a cornerstone of modern self-supervised learning
[0 20, (18, 136 16, 160]]. Indeed, recent advances like GPT-4V [1]], Claude 3 [6], and LLaVA [36]
have achieved human-level performance in visual reasoning, while models like Imagen [52] and
Stable Diffusion [60] have enabled high-quality image generation from text. However, these models
primarily rely on language to bridge modalities, which is often unavailable for scientific data.
Recent work on early-fusion models, such as Chameleon [65]], 4M [44], or PercieverlO [27], have
demonstrated promising alternatives by learning mappings between modalities.

While these methodological advances in foundation models have transformed many fields, astronomy
presents unique challenges, including heterogenous instruments, measurement protocols, and noise.
As such, astronomy-specific efforts have emerged. For example, supervised pre-trained models like
Zoobot [68] have leveraged 100M human annotations for galaxy morphology prediction obtained
through extensive citizen science campaigns. Large-scale, self-supervised approaches trained on
single-modal data have also emerged, including transformer-based models for Gaia stellar data [34],
APOGEE spectra [32] and astronomical images [56] and contrastive approaches for astronomical
images [25162,161]). Finally, recent multimodal contrastive approaches have been introduced, starting
with galaxy image-spectra pairs in [48] and followed by galaxy images and text [43] and time-series
and photometry [80} 50

Relative to these methods, AION-1 represents a significant advance in both scale and scope: it is
the first effort to train multimodal models to billion-parameter scales and the first attempt to unify
arbitrary modalites or different object types; in this case, 39 modalities across 200 million unique
measurements spanning galaxies, stars, and quasars.

3 Universal Tokenization of Diverse Data

Tokenization in AION-1 transforms heterogeneous data into a unified, transformer-compatible
representation. Astronomical datasets present two key challenges: the variety of data types (2D
images, 1D spectra, scalar values) and the diversity of sources within each type (different telescopes,
resolutions, and instrument formats). We address this through modality-specific tokenizers that
provide intra-modality standardization; each modality uses a dedicated tokenizer capable of handling
multiple instruments, ensuring aligned representations within each data type. Moreover, the need to
train multiple tokenizers for a modality with multiple survey inputs is removed. We provide the full
details of the tokenizers in and the list of tokenized modalities AION-1 understands in

Append

Multiband imaging data. Galaxy images vary widely in resolution (physical pixel size), channel
number, wavelength range, noise properties, and brightness across surveys. AION’s image tokenizer
addresses this diversity through a flexible channel-embedding scheme - adapted from [40] - that
accommodates variable channel counts and embeds provenance information (e.g., originating tele-
scope) for each channel. Built on a ResNet backbone adapted from [77] and using Finite-Scale



Quantization (FSQ) [42], our tokenizer enables a single model to ingest imaging data from multiple
diverse observational pipelines.

The tokenizer is trained using an inverse-variance-weighted Gaussian negative log-likelihood (NLL)
that leverages our prior knowledge of the noise properties in each image, as reported by the data-
generation pipelines. The NLL is given by:

1 1
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where x; is the input image, and ¥; is the diagonal noise covariance of that image provided by the
imaging pipeline, which accounts for background noise and shot noise from bright sources.

Spectroscopic Data. A single spectrum measures the wavelength dependent variation of light
typically coming from a single object. Measurements from different spectrographs vary in amplitude,
wavelength range, and resolution. AION’s spectrum tokenizer normalizes and resamples spectra onto
a shared latent wavelength grid, enabling joint processing of disparate instruments and objects, e.g.
galaxies, stars, and quasars. Built on ConvNeXt V2 [[74] with Look-up Free Quantization (LFQ) [79],
it incorporates survey-specific noise variance through the same loss function used for images.

Tabular/Scalar Data. Scientific data often involve scalar measurements—both direct (e.g., size,
flux) and derived (e.g., redshift). Instead of continuous embeddings [22], which struggle with large
or variable dynamic ranges, AION-1 tokenizes scalars using uniform binning in their cumulative
distribution functions (CDFs). This homogenizes the scalar distributions and minimizes quantization
errors in the most important regions.

Segmentation and Property Maps. Beyond photometric images, other spatially resolved scalar
fields (e.g., segmentation maps, physical property maps) are also of interest in galaxy astronomy. We
thus include a tokenizer for normalized maps in [0, 1], based on a convolutional architecture with
FSQ quantization [42] and trained on grayscale galaxy images and segmentation maps.

Bounding Ellipses. We also include bounding ellipse catalogs for object localization. Each ellipse
in these catalogs is characterized by a quintuple (spatial coordinates, ellipticity, radius), tokenized by
mapping coordinates to the nearest pixel and quantizing elliptical attributes. Since object counts vary,
we linearize these entries into a sequence [12], sorted by distance from the image center, providing a
consistent reference and reducing ambiguities.

4 Multimodal Masked Modeling

AION-1 builds on recent early fusion multimodal models [65, 27 21]]. In particular, it adopts the
scalable multimodal masked modeling scheme proposed in 4M [44] 7] to learn from heterogeneous
data (e.g., spectra, images, scalars) by randomly masking tokenized inputs across all available
modalities and reconstructing the masked content.

Concretely, let X = {x1,...,xs} be token sequences for M modalities available for a training
example. During training, two disjoint subsets of X are drawn: x°Ps (observed) and x'st (target).
Because these two subsets are sampled across the entire token pool, the model learns both intra- and
cross-modal relationships in each training instance.

The loss for the model is then given by:

N
Laa(0) = = log pp(xe"" | x¢™), ©)
t=1

where pg (- | x°P%)

token budget.

is the categorical distribution over the predicted vocabulary, and NN is the output

4.1 Architecture

We adopt a Transformer-based encoder-decoder framework suitable for the multi-modal masked
prediction (see Figure[I)). Beyond a standard encoder-decoder architecture, we emphasize below



the modality specific embedding scheme needed at the input of both the encoder and decoder to
implement our objective.

Concretely, each modality ¢ € {1,..., M} has its own token embedding Embed;(-), a learnable
modality embedding m;, and positional embedding p; for token position ¢. Then, for an observed
token from modality ¢, x}, the full embedding is given by

eﬁe“) = Embed;(z!) + m; + p;. 3)

In the decoder, we feed information on the farget we are querying tokens for, without providing their

value:
e = m,; + py, )

omitting any direct lexical embedding Embed; (z¢).

In our implementation we use a different modality embedding m; for each modality and each source
to identify the unique combination of data type and associated provenance metadata. In other words,
two astronomical images from two different instruments will have two different modality embeddings
even though they are both images. This is to provide the model with important provenance information
which implicitly encodes aspects of data quality and resolution of the observations.

4.2 Modality Masking Strategy

A key consideration is to select which tokens become inputs (observed) vs. outputs (predicted) for each
modality during training. We find that the dirichlet sampling from the original 4M implementation is
ineficient when dealing with modalities that vary widely in length, and therefrore results in a high
frequency of mostly empty batches. Therefore, we follow a simplified approach:

Input Token Budget We select a global input token budget B. To populate the budget, we randomly
pick one modality, and then uniformly randomly select a number of tokens for inclusion from that
modality. We then fill the remaining budget by uniformly sampling tokens from the other modalities.

Output Token Budget. For the remaining unselected tokens, we choose the number of tokens to
predict for each modality by sampling from a Beta distribution skewed toward zero, which draws
down the number of output tokens per sample, aligning with the eventual distribution of output tokens
under a cosine schedule iterative sampling (e.g., in MaskGIT-style), ensuring that inference-time
usage patterns are well covered during training. Similar to the input, one modality is chosen to drawn
an unconstrained number of tokens first, and the rest are filled by uniform random draws from the
remaining modalities.

5 AION-1 Family of Models

Dataset. AION-1 is pretrained on the publicly available data from the Multimodal Universe
(hereafter MMU) [66]], a large-scale dataset of ML-ready, multimodal astronomical data. We use
five surveys: Hyper Suprime-Camera (HSC) [5] and Legacy Imaging Survey [16] for galaxy images;
DESI [3] and SDSS [[76]] for high-resolution spectra and cosmic distances on galaxies and stars; and
Gaia [[13]] for low-resolution spectra and precise photometric and astrometric measurements for stars
in the Milky Way. We refer the reader to for full details on the pretraining data. The
relative contribution of each survey is illustrated in [Figure 2a

AION-1’s pretraining emphasizes learning relationships between diverse observations of the same
astronomical objects. Unlike 4M [44], which requires all modalities simultaneously, we use pairwise
associations across surveys, which accommodates uneven associations.

Training. We train three model versions - Base (300M), Large (800M), and XLarge (3B) - using
the AdamW [37] optimizer (8; = 0.9, 52 = 0.95, weight decay 0.05) for 205k steps with a global
batch size of 8096. We use a linear warmup and cosine decay schedule, with a peak learning rate of
2 x 1074 shows how model size and data mixture (including or excluding Gaia) impact
the evaluation loss.
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Figure 2: Left: Illustration of the diverse data types used in pretraining. By pairing observations
from different instruments along with object metadata, the model gains multimodal understanding.
The small overlapping sample sizes—common in astrophysics—are a key motivation for AION-1.
Right: AION-1 test losses on Legacy Survey [[16] for various model sizes and dataset selection. It is
interesting to note the change of losses across all model sizes when Gaia[13] - the only dataset that
includes only stars (no galaxies) - is added.

6 Out-of-the-Box Capabilities

AION-1 enables a variety of generative tasks out-of-the-box, from data imputation to cross-survey
translation. By representing the joint distribution over all modalities, AION-1 can draw conditional
samples of any modality given partial observations, producing physically consistent reconstructions.

We provide details on using AION-1 as a generative model in

Cross-Modal Generation AION-1 can
conditionally generate high-dimensional
modalities using the ROAR framework [44]. 1 H | i .
This enables scientific analyses like cross- | L“,j " u‘
survey translation or super-resolution. Here, it W ‘
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line centers, widths, and amplitudes within
narrow posterior uncertainty bands, enabling
detailed abundance analysis from widely Figure 3: Super-resolution: AION-1 can generate
available low-resolution data. This capability high-resolution posterior spectra samples (blue) con-
is valuable given the significantly greater cost ditioned on low-resolution spectra input (red), closely
of performing high-resolution measurements matching the ground-truth high-resolution measure-
like DESI and the much broader availability —ments (black) in line location, width, and amplitude.
of low-resolution data like Gaia.

Wavelength (A)

Scalar Posterior Estimation AION-1 can also directly estimate any scalar value z that is natively
quantized during pretraining, allowing AION-1 to infer posterior distributions p(z|context). We
demonstrate this capability on redshift, a key measure of cosmic distance. displays posterior
samples for a representative galaxy under three increasingly informative contexts: (1) Legacy Survey
photometry only, (2) Legacy Survey photometry and multi-band imaging, and (3) high-resolution
DESI spectra. The posterior clearly contracts as more information is provided.

7 Evaluation with Downstream Scientific Workflows

AION-1 can produce physically meaningful, modality-agnostic embeddings out of the box, avoiding
bespoke supervised pipelines. Because foundation models carry a pretraining prior, we use AION-1 as
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Figure 4: Redshift Posterior Estimation. Posterior samples for a single Legacy Survey galaxy under
three conditioning scenarios: (left) broadband photometry only, (middle) photometry + imaging, and
(right) full spectrum. The posterior contracts as richer information is provided.

a frozen feature extractor and perform lightweight task calibration: fit a small head on a representative
calibration set (matching the downstream selection function) and calibrate outputs. At inference, we
freeze the encoder and discard the decoder; given tokenized inputs, the encoder outputs a contextual
sequence Z = {z;}._,, z; € R%, which we compress to an object vector e € R? via mean pooling
(e = 7", 2:) or learned attentive pooling (e = softmax(QK' /v/d)V), with Q, K, V trainable.
Multi-modality is native: concatenate tokens from any subset of modalities and pass the union through
the frozen encoder—no extra fusion is required. This workflow preserves AION-1’s representational
power while letting researchers inject scientifically relevant priors.

7.1 Physical Property Estimation

Physical properties are used to describe fundamental aspects of astronomical objects, like the stellar
mass of galaxies or temperature of stars. These are often derived using expensive, high-resolution
measurements. As such, a common task in astronomy is to bypass this step and estimate these
physical properties from low-resolution measurements directly with machine-learning models.

Galaxy Properties We predict five
galaxy properties (redshift, z; stellar
mass, M,; age, t,qe; star-formation ~ AION-1-B

Z M, tage logZnmet sSFR

rate, SFR; metallicity, Zwe). We  Ph 075 072 035 041 0.38

cross-match the SED-fit properties Ph+Im 093 0.89 045 0.49 0.64

from PROVABGS [24] with the Ph+Im+Sp 1.00 096 0.53 0.61 0.72

{g,7r,i,2} Legacy Survey imaging  AION-1-L

and DESI spectroscopy, yielding Ph 0.76 0.73 036 0.41 0.39
Ph+Im 094 0.89 045 0.50 0.64

roughly 120,000 galaxies. We con-

sider three input combinations: pho- Ph+Im+Sp 1.0 0.96 053 0.62 0.73

tometry, photometry + imaging, and AION-1-XL

photometry + imaging + spectra, and Ph 0.79° 076 = 0.31 0.38 0.48
. . Ph+Im 094 0.89 045 0.49 0.64

perform attentive pooling from the  p, 7 o, 099 095 053 062 0.73

AION-1 embeddings as described
above. We then fit a lightweight, two-  AstroCLIP [48]

layer multilayer perceptron (hidden Im” 078 0.73 029 0.36 0.42
size = 256) using a random 80/20 P 0.99°090 0.52 0.60 0.70
DINOv2 [47] 057 055 0.17 0.28 0.25

split, to map the input to the target pa-
rameters. We quantify performance  Supervised

with B> = 1 — (3.(y; — XGBoost (Ph) 071  0.69 0.30 0.30 0.38

0:)2 )2 _ ConvNeXt (Im) 0.86 0.82 045 0.49 0.64
. , Where are

950/ (2 (95 = 5) ) Yi Conv+Att (Sp)  1.00 085 043 0.62 0.68

the ground-truth values, g; the pre-
dicted values, and ¢y the mean of
the ground-truth sample. We include
three supervised baselines informed
by the literature: XGBoost on pho-
tometry, a ConvNeXt on imaging [66], and a CNN + attention network on spectra [41]. We also
include results using the same MLP layer on embeddings produced by two self-supervised baselines,
AstroCLIP [48] and DINOv2 [47)]

Table 1: R? (1) for galaxy property estimation. Inputs
are photometry (Ph), photometry + imaging (Ph+1Im), and
photometry + imaging + spectra (Ph+Im+Sp).

Note that AstroCLIP and DINOv2 can only ingest 3-channel imaging, so these are ran using correctly
normalized {g, r, z} Legacy Survey images while AION-1 is ran using the full {g, r, ¢, z} channels.



Teg logg [Fe/H] Vmic Stellar Properties We also predict stellar
AION-1-B parameters (Is; temperature, log g; sur-
P 094 0.95 0.58 0.86 face gravity, vpic; microturbulent veloc-
Ph+Plx+RA/Dec 094 095 0.70 0.87 ity, [Fe/H]; metallicity, [X/Fe]; elemen-
Sp+Plx 0.99  0.98 0.94 0.89 tal abundances). We cross-match Gaia
AION-1-L DR3 data with DESI spectra and the asso-
e 030 000 0% O clacddeed popers om 51 ek
Sp+PlLx 099  0.98 0.94 0.89 ing 240,090 stars. We consider three input
combinations: photometry, photometry +
092 0.94 0.56 0.85 parallax + sky position, and DESI spectra
Ph+PIx+RA/Dec  0.93  0.95 0.68 0.87 with parallax. We use the same adapta-
Sp+Plx 098 0.98 0.92 0.89 tion head and training strategy as above
Supervised and report R2. We also include two su-
XGBoost (Ph) 094  0.95 0.59 0.87 pervised baselines from the literature: XG-
ConvNeXt (Sp)  0.99  0.98 0.95 0.89 Boost on photometry [34] and ConvNeXt
on raw spectra. Results are presented in
Table 2: R? (1) for stellar-label prediction. Inputs are [Table 2l
Gaia photometry (Ph), low-resolution Gaia XP spectra
(XP), parallax (Plx), celestial coordinates (RA/Dec), and
high-resolution DESI spectra (Sp).

AION-1-XL.
Ph

In addition to these supervised baselines,
we also compare performance to a state-
of-the-art self-supervised baseline [34].
Specifically, we predict APOGEE-derived
stellar parameters from Gaia XP spectral coefficients using cross-matched APOGEE-derived stellar
parameters with Gaia, producing roughly 10,000 pairs. We feed only the first 32 BP coefficients and
first 32 RP coefficients to AION-1 due to the fact that [34] has a context length of 64, and report
results below. Note that [34] has been explicitly pretrained on this task, while AION-1 has never seen
this task before; nonetheless, AION-1 outperforms.

Model Ter (K) logg (dex) [Fe/H] (dex)
AION-B 94.6 0.206 0.115
Leung, et al. [34] 99.1 0.229 0.143

Table 3: Performance on APOGEE stellar property predictions from Gaia XP coefficients (|),
as measured by standard deviation of residuals. K is temperature units in Kelvin, and dex represents
scatter on a logarithmic scale.

7.2 Learning from Semantic Human Labels

While some aspects of astronomical objects can be described by physical properties, in many cases
they exhibit complex features that are not captured by physical models. We explore leveraging
AION-1 to identify such features in galaxy images, given a limited set of human annotations.

Galaxy Morphology Classification. We consider Model Accuracy (%)
here the problem of classifying galaxy images into

ten distinct morphology classes (e.g. spiral arms, AION-1-B 84.0
merging galaxies) defined by Galaxy Zoo 10 [GZ10; :%8%%;14 ggg
69, 33]]. We cross-match GZ10 with Legacy Survey i

images, yielding 8,000 galaxies. We produce embed- DINOv2 [47] 71.4
dings from AION-1 using mean pooling as described EfficientNet 80.0
above, and train a 2-layer MLP to classify galaxies ZooBot [69] 89.6

from these embeddings. We present classification
accuracy in We see strong performance Table 4: Galaxy Morphology Classification
against a dedicated supervised convolutional model Accuracy (1) on Galaxy Zoo 10. AION-1,
[64] trained from scratch, and competitive perfor- DINOv2 [47], and ZooBot [69]] use an MLP
mance against a state-of-the-art model trained on two head on frozen embeddings; EfficientNet-B3
orders of magnitude more labeled data [[70] that we [64] is trained end-to-end from scratch.
adapt for this task with an MLP head on its frozen

embeddings. We also demonstrate that AION-1 can

be used to transfer learn from Legacy Survey morphologies to HSC morphologies insubsection H.4]
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Figure 5: Galaxy structure segmentation. Left: Examples of galaxy image segmentation produced
from the AION-1 embeddings with a lightweight convolutional neural network compared with the
ground-truth true volunteer labels. Right: Mean IoU (1) on the held-out test set.

Semantic Segmentation of Galaxy Structures. We also consider image segmentation based on
human annotation of prominent galaxy structures obtained through the Galaxy Zoo 3D citizen science
campaign [38]] which we cross-match with Legacy Survey, yielding 2,800 galaxies. We train a simple
convolutional upsampling head based on on top of mean-pooled AION-1 embeddings to predict
the segmentation maps. Training is performed using an 80/20 split. We compare our results to
a simple fully convolutional U-Net baseline following architecture choices from [71]]. We report
Intersection over Union (IoU) between ground truth and crowd-annotated structural components. We
also include in a closely related task consisting in detecting regions of star formation
in galaxy images.

7.3 Performance in Low-Data Regime

Galaxy Property Regression Morphology Classification Stellar Property Regression
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Figure 6: Model performance vs downstream task training set size. We regress (a) galaxy physical
properties from images, (b) classify galaxy morphology, and (¢) regress stellar properties from spectra.
Supervised baselines are trained from scratch on the raw input data while AION-1 are results obtained
by probing frozen encoder embeddings.

In astronomy, many key classes come with only a handful of reliable labels. As a result, approaches
that perform well in low-data regimes are particularly valuable. To that end, we rerun the property
prediction and morphology classification cases described above but artificially limit the training set
size while keeping the test set fixed at 20%. For each experiment we retrain the lightweight MLP
adapter as well as a corresponding supervised baseline. We note that AION-1’s performance relative
to supervised baselines is more impressive in the low data regime, where it matches or surpasses
supervised models that require an order of magnitude more training data.



Query Similarity Search Results
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Figure 7: Galaxy Image Retrieval for three astronomical classes of decreasing prevalence; spirals,
mergers and strong lenses. Left: Example candidates for a given query image. Right: The nDCG@10
score for each of the classes averaged over all queries in the given dataset.

7.4 Similarity-Based Retrieval

Modern astronomical surveys gather immense volumes of data, however scientists often aim to
identify a small set of rare phenomena that have outsized importance for understanding the Universe.
For example, strong gravitational lenses are of particular interest in astronomy, as they provide
unique constraints on dark matter and the expansion of the universe [54]]. Despite their significance,
these objects are notoriously hard to find, appearing in only a fraction of galaxies (~ 0.1% for strong
lenses), and thus lack large, annotated training sets for supervised methods.

AION-1 can address this challenge by searching for rare objects directly in the model’s latent space.
To illustrate this, we perform rare object retrieval for three types of rare objects; spirals and mergers
from Galaxy Zoo DECaLS (25,000 and 700 out of 171,000 galaxies) [69] and strong lens candidates
in the HSC footprint (700 out of 758,000 galaxies) [29]], both of which we cross-match with the
Legacy Survey data. For all cases, we embed all images in a shared latent space using the mean
pooling strategy above, and then for all query objects, we use cosine similarity to rank all possible
candidates and compute an nDCG@ 10 score (Appendix [H.I)), which we then average over the full
query set; we provide full details of these datasets in the appendix. Figure[7] shows that AION-1
performs well on both Galaxy Zoo DECaLS objects like spirals (which make up 26% of the sample)
and mergers (2%) [69] as well as strong gravitational lens candidates in the HSC footprint, which have
just 0.1% occurrence: Appendix [H.3). We compare AION-1’s performance to leading self-supervised
astronomy models [48, [62], as well as DINOv2 [47], all ran on the same dataset. We introduce
strategies to further improve performance in Appendix

8 Discussion & Conclusion

AION-1 summarises heterogeneous astronomical observations in a single early-fusion backbone,
yielding strong zero-shot performance and linear-probe accuracy that rivals (or in sparse-label regimes
exceeds) task-specific models. By tokenising images, spectra and catalogues into a common sequence
and training with masked-prediction objectives, the model learns cross-modal representations that
support flexible data fusion, generative translation (e.g. sampling high-resolution spectra from low-
resolution inputs) and efficient retrieval of rare phenomena, all without fine-tuning. These capabilities
foreshadow a shift from bespoke, modality-specific pipelines toward reusable foundation models that
streamline discovery and improve reproducibility across surveys.

Limitations and outlook. AION-1 inherits survey selection biases, lacks explicit temporal reasoning
and remains computationally intensive to train, but none of these obstacles are fundamental. Continual
pre-training on forthcoming facilities, time-aware tokenisers and advances in sparsity or distillation
can broaden coverage and democratise use. More ambitiously, coupling physics-aware objectives
could steer representations toward physically consistent manifolds while accelerating the curation of
high-value labels. Even in its current form, AION-1 demonstrates that omnimodal foundation models
are both feasible and transformative, providing a scalable template for cross-domain scientific Al
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9.1 Data

9.1.1 Legacy Survey

The Legacy Surveys consist of three individual and complementary projects: the Dark Energy
Camera Legacy Survey (DECaLS; Proposal ID #2014B-0404; PIs: David Schlegel and Arjun Dey),
the Beijing-Arizona Sky Survey (BASS; NOAO Prop. ID #2015A-0801; PIs: Zhou Xu and Xiaohui
Fan), and the Mayall z-band Legacy Survey (MzLS; Prop. ID #2016A-0453; PI: Arjun Dey).
DECaLS, BASS and MzLS together include data obtained, respectively, at the Blanco telescope,
Cerro Tololo Inter-American Observatory, NSF’s NOIRLab; the Bok telescope, Steward Observatory,
University of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NOIRLab. Pipeline
processing and analyses of the data were supported by NOIRLab and the Lawrence Berkeley National
Laboratory (LBNL). The Legacy Surveys project is honored to be permitted to conduct astronomical
research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham
Nation.

NOIRLab is operated by the Association of Universities for Research in Astronomy (AURA) under a
cooperative agreement with the National Science Foundation. LBNL is managed by the Regents of
the University of California under contract to the U.S. Department of Energy.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the
Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the U.S.
Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education
of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education
Funding Council for England, the National Center for Supercomputing Applications at the University
of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of
Chicago, Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell
Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos
e Projetos, Fundacao Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos, Fundacao
Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao,
the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National Laboratory, the University of California at
Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales
y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil
Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich,
Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut
de Ciencies de I’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig Maximilians Universitat Munchen and the associated Excellence
Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, the
Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National
Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.

BASS is a key project of the Telescope Access Program (TAP), which has been funded by the
National Astronomical Observatories of China, the Chinese Academy of Sciences (the Strategic
Priority Research Program “The Emergence of Cosmological Structures” Grant # XDB09000000),
and the Special Fund for Astronomy from the Ministry of Finance. The BASS is also supported by the
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External Cooperation Program of Chinese Academy of Sciences (Grant # 114A11KYSB20160057),
and Chinese National Natural Science Foundation (Grant # 12120101003, # 11433005).

The Legacy Survey team makes use of data products from the Near-Earth Object Wide-field Infrared
Survey Explorer NEOWISE), which is a project of the Jet Propulsion Laboratory/California Institute
of Technology. NEOWISE is funded by the National Aeronautics and Space Administration.

The Legacy Surveys imaging of the DESI footprint is supported by the Director, Office of Science,
Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-ACO02-
05CH1123, by the National Energy Research Scientific Computing Center, a DOE Office of Science
User Facility under the same contract; and by the U.S. National Science Foundation, Division of
Astronomical Sciences under Contract No. AST-0950945 to NOAO.

9.1.2 Hyper Suprime-Cam

The Hyper Suprime-Cam (HSC) collaboration includes the astronomical communities of Japan
and Taiwan, and Princeton University. The HSC instrumentation and software were developed by
the National Astronomical Observatory of Japan (NAOJ), the Kavli Institute for the Physics and
Mathematics of the Universe (Kavli IPMU), the University of Tokyo, the High Energy Accelerator
Research Organization (KEK), the Academia Sinica Institute for Astronomy and Astrophysics
in Taiwan (ASIAA), and Princeton University. Funding was contributed by the FIRST program
from Japanese Cabinet Office, the Ministry of Education, Culture, Sports, Science and Technology
(MEXT), the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology
Agency (JST), the Toray Science Foundation, NAOJ, Kavli IPMU, KEK, ASIAA, and Princeton
University.

This paper makes use of software developed for the Large Synoptic Survey Telescope. We thank the
LSST Project for making their code available as free software at http://dm.lsst.org

The Pan-STARRSI1 Surveys (PS1) have been made possible through contributions of the Institute
for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society
and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max
Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham
University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center
for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National
Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and
Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division
of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-
1238877, the University of Maryland, and Eotvos Lorand University (ELTE) and the Los Alamos
National Laboratory.

9.1.3 Dark Energy Spectroscopic Instrument

This research used data obtained with the Dark Energy Spectroscopic Instrument (DESI). DESI
construction and operations is managed by the Lawrence Berkeley National Laboratory. This material
is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
High-Energy Physics, under Contract No. DE-AC02-05CH11231, and by the National Energy
Research Scientific Computing Center, a DOE Office of Science User Facility under the same
contract. Additional support for DESI was provided by the U.S. National Science Foundation
(NSF), Division of Astronomical Sciences under Contract No. AST-0950945 to the NSF’s National
Optical-Infrared Astronomy Research Laboratory; the Science and Technology Facilities Council
of the United Kingdom; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation;
the French Alternative Energies and Atomic Energy Commission (CEA); the National Council of
Science and Technology of Mexico (CONACYT); the Ministry of Science and Innovation of Spain
(MICINN), and by the DESI Member Institutions: www.desi.lbl.gov/collaborating-institutions. The
DESI collaboration is honored to be permitted to conduct scientific research on Iolkam Du’ag (Kitt
Peak), a mountain with particular significance to the Tohono O’odham Nation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the U.S. National Science Foundation, the U.S. Department of Energy,
or any of the listed funding agencies.
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9.1.4 Sloan Digital Sky Survey

Funding for the Sloan Digital Sky Survey V has been provided by the Alfred P. Sloan Foundation,
the Heising-Simons Foundation, the National Science Foundation, and the Participating Institutions.
SDSS acknowledges support and resources from the Center for High-Performance Computing at
the University of Utah. SDSS telescopes are located at Apache Point Observatory, funded by the
Astrophysical Research Consortium and operated by New Mexico State University, and at Las
Campanas Observatory, operated by the Carnegie Institution for Science. The SDSS web site is
www.sdss.org.

SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of
the SDSS Collaboration, including Caltech, The Carnegie Institution for Science, Chilean National
Time Allocation Committee (CNTAC) ratified researchers, The Flatiron Institute, the Gotham Partici-
pation Group, Harvard University, Heidelberg University, The Johns Hopkins University, L’Ecole
polytechnique fédérale de Lausanne (EPFL), Leibniz-Institut fiir Astrophysik Potsdam (AIP), Max-
Planck-Institut fiir Astronomie (MPIA Heidelberg), Max-Planck-Institut fiir Extraterrestrische Physik
(MPE), Nanjing University, National Astronomical Observatories of China (NAOC), New Mexico
State University, The Ohio State University, Pennsylvania State University, Smithsonian Astrophysi-
cal Observatory, Space Telescope Science Institute (STScI), the Stellar Astrophysics Participation
Group, Universidad Nacional Auténoma de México, University of Arizona, University of Colorado
Boulder, University of Illinois at Urbana-Champaign, University of Toronto, University of Utah,
University of Virginia, Yale University, and Yunnan University.

9.1.5 Gaia

This work has made use of data from the European Space Agency (ESA) mission Gaia (https:
//www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consor-
tium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the
DPAC has been provided by national institutions, in particular the institutions participating in the
Gaia Multilateral Agreement. The Gaia data are open and free to use, provided credit is given to
‘ESA/Gaia/DPAC’. If you use Gaia DR3 data in your research, please acknowledge it as above.
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. Experiments compute resources
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10.

11.

12.

13.

14.

15.

16.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report in appendix the compute required to train our models, including
margin for experimentation.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: impact limited to astronomical sciences.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification:
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Code included in supplementary material is documented.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A
Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:
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A Details on Pretraining Data

Below, we provide a brief overview of the details and data types from each survey, but refer the
reader to [66]] or the original source dataset paper for more exhaustive descriptions. We note that the
per-survey magnitude/quality thresholds, footprint choices, Gaia XP availability, and our reciprocal
cross-match together define the effective selection function of the pre-training corpus; this shapes
which morphologies, redshifts, environments, and S/N regimes might be emphasized in AION-1’s
embeddings.

A.1 Legacy Surveys

The DESI Legacy Imaging Surveys combine three wide-field programs on the Blanco, Mayall, and
Bok telescopes, delivering uniform {g, 7,4, 2} imaging over ~20 000deg?—roughly half the sky. The
galaxies are imaged at a pixel scale of 0.262 arcsec. MMU provides 160 x 160 pixel postage stamp
cut-outs centered on galaxies from the Data Release 10 [16], which we crop to 96 x96 images; we use
only objects in the Southern Galactic Cap, and retain objects with mag_z < 21 that pass the MMU
quality cuts, corresponding to roughly 122 million galaxies.

Modalities Each object is packaged as: (1) calibrated {g, r, 7, z} integrated fluxes and their inverse-
variance estimates, (2) mid-IR fluxes W1-W4 from WISE, (3) Milky-Way reddening E(B—V"), and
(4) basic shape/size descriptors—the ellipticity components (e, e) and circularised half-light radius
Reg—derived from the Legacy tractor model fits.

A.2 Hyper Suprime-Cam (HSC)

The Hyper Suprime—Cam Subaru Strategic Program delivers deep, high-resolution {g, 7,1, 2, y}
imaging over ~1200 deg?. We use only the wide subset from PDR3 [5]. From the co—added calexp
frames, MMU extracts 160 x 160-pixel cut-outs at a pixel scale of 0.162 arcsec centered on catalog
sources, which we crop to 96 x 96, as with the Legacy Survey images. Objects are kept when they
satisfy: mag_i < 22.5; at least three visits in every band (“full-depth full-colour”); and the standard
HSC quality flags remove bright-star contamination, edge artefacts, saturation and unreliable cmodel
photometry. The resulting sample contains roughly 2.5 million galaxies.

Modalities Each object is packaged as: (1) calibrated {g, r, 4, z, y } integrated fluxes and their inverse-
variance estimates, (2) PSF-homogenised forced photometry in each band with extinction corrections,
and (3) the moment-based SDSS shape tensor components (11, Y12, ¥22) computed by the HSC
pipeline.

A.3 Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey (SDSS) [4] has obtained medium-resolution (R~ 2 000) optical spectra
for millions of objects. We use the aggregated public optical spectra from the Legacy, SEGUE-1/2,
BOSS and eBOSS program covering 3 650-10400A with resolutions of R = A/AN = 1,500 at
3,800A and R = 9,000 at 9,000A. We keep only primary, science—target spectra from plates flagged
PLATEQUALITY="'good'. This yields ~4 million galaxies and stars.

Modalities. Each object is packaged as: (1) the optical spectrum, its inverse-variance estimates, and
its wavelength and (2) the pipeline redshift.

A.4 Dark Energy Spectroscopic Instrument (DESI)

The Dark Energy Spectroscopic Instrument [[15] survey is collecting spectra for ~40 million galaxies
and quasars; MMU presently ingests the Early Data Release (EDR, 1% of the full survey) [14]]. Each
spectrum spans 3 600-9 800A on a fixed 7,081-pixel grid at resolutions of R = 2000 at 3, 600A and
R = 5,500 at 9,000A and is distributed with flux, wavelength and inverse-variance arrays. We
select spectra from the SV3 “one-percent” survey where SV_PRIMARY is true, 0BJTYPE="TGT’ and
COADD_FIBERSTATUS=O0, giving roughly 1 million galaxies, stars, and quasars.

3We note that the SDSS and BOSS instruments have different fiber aperture sizes, but in the present work we
include them in the same dataset.
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Modalities. Each object is packaged as: (1) the optical spectrum, its inverse-variance estimates, and
its wavelength and (2) the pipeline redshift.

A.5 Gaia

Gaia DR3 [13] provides low-resolution prism spectra from its blue (BP) and red (RP) photometers for
220 million Milky-Way sources in addition to precise astrometry and broad-band photometry. MMU
stores each BP/RP spectrum as the 110 Gauss—Hermite coefficients released by the mission (55 BP
+ 55 RP), which can be resampled onto an 1 101-pixel wavelength grid via GaiaXPy. We include
all DR3 objects that have a mean BP/RP spectrum, retaining the full set of associated photometric,
astrometric and stellar-parameter metadata.

Modalities. Each object is packaged as: (1) The 110 BP/RP spectral coefficients, (2) four-parameter
astrometry (sky coordinates and parallax), and (3) mean fluxes in the Gﬂ BP and RP bands.

A.6 Cross-matching strategy

For each pair of surveys we perform a nearest-neighbour match within a 1 arcsec radius on the sky
and keep only reciprocal matches. Every resulting match is materialised as its own dataset. Each
object in these datasets therefore aggregates all modalities from both parent surveys so that a single
file read yields a fully fused, multi-survey view of the same astrophysical object. During AION-1
pre-training we draw samples both from the individual survey datasets and from these cross-matched
sets, as detailed in the next sections. We note that this procedure may preferentially retain bright,
isolated, well-centered sources and may de-emphasize blended or offset systems, introducing a further
selection effect on the joint training distribution (see subsec:limitations).

B Details on AION-1 Models

We provide in[Table 5|a description of the different configurations used for our suite of models.

Table 5: Model size variants: Following the choice of 4M model, we adopt the conventional T5
model sizes and naming schemes [49].

Model Encoder Blocks Decoder Blocks Model Dim  Num Heads Total Params
AION-1-B 12 12 768 12 300M
AION-1-L 24 24 1024 16 800M
AION-1-XL 24 24 2048 32 3B

Pretraining Details. We adopt an input budget of 256 tokens, and output budget of 128 tokens for
all our models during pretraining. All models are trained with bfloat16 mixed precision, and model
distribution under PyTorch’s Fully Sharded Data Parallel (FSDP) ZeRO-2 strategy. To achieve a
batch size of 8192 in all cases, we train AION-1-B using 64 H100 GPUs for 1.5 days, AION-1-L
using 100 H100 GPUs for 2.5 days, and 288 H100 GPUs for 3.5 days.

C Details on Tokenizers

C.1 Multi-Survey Image Tokenizer
C.1.1 Preprocessing

Each input from an imaging survey provides (i) a per-band flux map x, (ii) a pixel-wise inverse
variance map 3, and (iii) a per-pixel mask m for a given source. Our tokenizer ingests heterogeneous
measurements drawn from both HSC (five filters {g,r, i, z, y}) and the Legacy Survey SGC (LS;
four filters {g, r, 4, z}). The two pipelines vary in central wavelength, pixel scale, zero-point, and
noise. Therefore, we treat all bands from the surveys as distinct from eachother; i.e. g from Legacy

*@ is the mission’s very broad “white-light” band measured by the astrometric field CCDs.
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Survey is treated as a different band than g from HSC. We stack all distinct bands into a single fixed
set of 9 channels (5 from HSC and 4 from LS), assigning a specific index to each channel. Next,
we map every image into a 9-channel tensor, filling the subset of channels corresponding to that
image’s bands with flux values and setting any unused channels to zero; a binary mask m,. € {0, 1}¢
tracks which bands are zeroed out. The result of this process is that all images drawn have the same
dimension, and can be stacked into a single, heterogenous batch, while maintaining survey-specific
provenance information. We then normalize the zero-points between surveys by rescaling HSC to
the Legacy Survey zero-point of 22.5 mag via s = 10(4P=22:5)/2.5 and multiply by the ratio of pixel
scales. While these steps are not strictly necessary - as the bands are already separated above - we
find that it helps with training stability. Finally, we apply an arcsinh normalization to the images to
account for their high dynamic range, which we invert before computing the autoencoding loss. We
find that adequate range compression is crucial for training stability.

C.1.2 Architecture and quantization.

Subsampled Linear Projection Given a batch of images, x € REXCXHXW (batch by channels by
height by width), we project it to a higher-dimensional space of size dimyy; ~ 6C using

%X = a(m,.) (S(W + b)7

with learnable W € R¢*dimous and b € Rdimout, The scale factor a(m) keeps the feature norm
invariant to missing channels. The projection is inverted after decoding. We introduce the subsampled
linear projection to expand each image into a higher-dimensional embedding that disentangles
survey-specific channel information while preserving feature norms even when some bands are
missing.

Autoencoder Once subsampled, we feed the output of the subsampled linear projection, which is
now a 54-dimensional image, into a ResNet-based autoencoder. Specifically, we use the MagViT
architecture adapted from [77], in which we remove transformer blocks. The encoder therefore
consists of 2 downsampling ResNet blocks, which reduce the dimensionality of the input image
by a factor of 16, resulting in a laten space that is 24 x 24 x 512; this is compressed to d = 4
dimensions before being fed to the quantizer. The output of the quantizer is then projected back to
512 dimensions, before being upsampled in the decoder. In total, the ResNet-based autoencoder has
roughly 50M learnable parameters.

. . Image Tokenizer Reconstruction Error
Quantizer At the bottleneck of the tokenizer, 0.00950
we quantize features into a discrete set of codes. 0.00925
We experiment with multiple approaches, but
empirically, we find that Finite Scale Quantiza-
tion [FSQ; 42] yields the best performance in
terms of reconstruction fidelity and training sta-
bility. Further, to explore the trade-off between 0.00825 1
reconstruction loss and codebook utilization, we 0.00800 -
vary the codebook size from smaller (e.g., 24) to 0.00775 -
larger (e.g., 2'*) - following the recommended . T . . . .

. . 4 6 8 10 12 14

configurations in the FSQ paper - and observe FSQ Quantizer Size (log 2)
that a size of 2'2 offers a desirable balance: the
reconstruction loss plateaus with larger code- Figure 8: Tokenizer Codebook Scaling: We
books, while code usage remains sufficiently present the image tokenizer reconstruction error
high to avoid underfitting with smaller code- (MSE) as a function of FSQ quantizer size. We
books; see[Figure §|for reference. Consequently, choose 2'2 as our ultimate codebook size for im-
our final configuration employs FSQ with code- ages, as it reconstruction loss appears to plateau
book levels of n; = {8,5,5,5}, equating to a around this point.
rough size of 2!2 codes.

0.00900 -

0.00875
m
2]
S 0.00850

C.1.3 Loss Function and Per-band
Weighting

The tokenizer is trained using an inverse-variance-weighted Gaussian negative log-likelihood (NLL)
that leverages our prior knowledge of the noise properties in each image, as reported by the data-
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Figure 9: Image Tokenizer Performance: Reconstruction quality of the image tokenizer on three
representative Legacy Survey images. The columns show, left to right, the original image, the

reconstruction from the tokens, the reconstruction from the Legacy Survey tractor, the r-band residual
for the tokenizer, and the r-band residual for the tractor.

generation pipelines. The NLL is given by:

1 _1
LNLL = Z 3 | 37 2m; (x; — Decg(Ency(x;))) ||§ 5)

K2

where x; is the input image, 3J; is the diagonal noise covariance provided by the imaging pipeline,
accounting for background and shot noise from bright sources, and m; is the survey pipeline mask
which removes masked pixels in the image.

C.1.4 Training Details

We train with the image tokenizer using the Adam [30] optimizer with a learning rate of 5 x 10~ on
batches of 256 images, sampling LS:HSC at a 20:1 ratio to reflect the relative size of the two datasets.
The learning rate is warmed up over 1k steps before being decayed for 400k steps using a cosine decay.
Training converges in ~5 days on 4 x NVIDIA H100 GPUs, yielding a final reconstruction score of
L = 0.00775. We show some representative samples of the tokenizer’s reconstruction quality in
Figure 9] and include reconstructions from the Legacy Survey pipeline tractor for comparison.

C.2 Multi-Survey Spectrum Tokenizer
C.2.1 Preprocessing

Each input spectrum provides (i) observed-frame flux density per unit wavelength (), (ii) inverse
standard deviation istd()\), and (iii) a per-pixel mask m(\). Our tokenizer ingests heterogeneous
measurements drawn from both DESI and SDSS. For each survey, we compute a robust median flux f
(ignoring masked pixels), use a log;, range compression, and quantize it with a 1-D scalar tokenizer
(codebook size = 1024). We then normalize f and istd by f and stack them into a 2-channel array.
The array is linearly interpolated onto a fixed latent grid of 8704 points covering 3500-10462.4A at

0.8A spacing; this common grid is then shared between SDSS and DESI, and removes survey-specific
wavelength/dispersion differences.
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Figure 10: Spectrum Tokenizer Performance: Reconstruction quality of the spectrum tokenizer
on two representative DESI EDR spectra. Top panels show the normalized flux as a function of
wavelength, with original input (black) and reconstructed output (red) overlaid. Bottom panels show
the residuals in units of the input uncertainty (o).

C.2.2 Architecture & Quantization

Autoencoder The stacked spectrum flux and inverse standard deviation x € RB*2x8704 js encoded

by a 4-stage ConvNeXt-V2 backbone [75]], consisting of an initial downsampling stack composed of
a4 x 4 convolution and LayerNorm, followed by three downsampling stacks of 2 x 2 convolutions
and LayerNorms. Each of the four downsampling stacks is followed by multiple ConvNeXt V2
processing blocks. This compresses the spectrum into a 273 x 512 latent space, which is then further
downsampled to 10 dimension before being fed to the quantizer; this dimensionality is chosen to
conform to the 2'° codebook size used by the quantizer. Like with the image, these steps are inverted
during the decoding part of the autoencoder.

Quantizer We use a Look-up-Free Quantizer [LFQ; 78] with an embedding dimension of ten
(equating to a codebook size of 1024 codes) to convert the latent sequence into discrete codes.
Contrary to the images, we find here here that LFQ quantization slightly outperforms FSQ for the
spectrum.

C.2.3 Losses

For each spectrum we project the decoder output back to its native wavelength grid and apply three
losses:

1. Flux likelihood. Gaussian NLL weighted by inverse variance w(\), identical to Eq. ().

2. Mask accuracy. Binary cross-entropy between the predicted reliability map m(\) and the
ground-truth mask m(\).

3. Commitment. LFQ commitment loss with weight 3, = 0.25.

C.2.4 Training Details

We train with using the AdamW optimizer with a constant 10~* learning rate, a 0.1 weight decay
penalty, and a global batch size of 128. Training for 215 k steps (~24 hours on 4 x NVIDIA H100)
yields a token reconstruction R? = 0.994 and a mean mask AUC of 0.92. Reconstruction quality on

two representative spectra from DESI are shown in

C.3 Scalar Tokenizer
While the scalar values could be quantized directly, equal width binning directly in the data space

would lead to an uneven probability mass assignment and potentially imbalance training. Therefore,
we map every scalar value to a unit normal Gaussian before quantization. To that end, we first need
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to tabulate the empirical cumulative distribution function F, on the training selﬂ Once tabulated, we
map a scalar value x; to a standard normal variate via

where ®~! is the inverse CDF of A/(0,1). Because z ~ A(0, 1), equal-width binning in z-space
allocates the same probability mass to every bin, automatically adapting to long tails or sharp peaks
in the original distribution. Each Gaussianised scalar z; is quantised independently with an FSQ
codebook of K = 1024 centroids. Centroids are fixed a priori: we place them at the K equally
spaced quantiles of the standard normal, i.e. ¢, = <I>_1((k — %) /K ) No parameters are learned and
no loss is required. To recover an approximate scalar value z; from its token c;,

With K = 1024 bins the median absolute reconstruction error is below typical measurement un-
certainties, ensuring that tokenisation fidelity is sufficient for downstream tasks while keeping the
representation compact and parameter-free. Note that for some of the scalars with large dynamic
ranges, we also apply a log;, or arcsinh transform before CDF mapping and tokenization. We apply
the scalar tokenizer to the following scalars from each survey:

* Legacy Survey: {g,r,i,z} fluxes, WISE W1-W4 fluxes, E(B — V') extinction, ellipticity
components (e1, e2), circularized half-light radius Res.

* HSC: {g,r, i, z,y} fluxes, shape tensor components.
» SDSS & DESI: pipeline-reported redshift (z).
* Gaia: 110 BP/RP coefficients, parallax, sky coordinates (ra, dec), G, BP, RP fluxes.

C.4 Scalar Field Tokenizer

In addition to images, we included an additional tokenizer specialized for scalar maps with values in
[0, 1]. This tokenizer is particularly adapted to handle segmentation maps, but could also be used to
generate any property map scaled between 0 and 1, such as Star Formation Rate maps derived from
Integral Field Spectroscopy.

C.4.1 Data & Preprocessing

The scalar field tokenizer was trained to autoencode a mixture of 5 categories of normalized single-
channel images derived from Legacy Survey photometry: RGB cutouts converted to grayscale;
individual red, green, and blue channels from the RGB cutouts; and an ‘object mask’ indicating the
silhouettes of sources detected in each cutout. The object mask is generated from the Tractor model
photometry included in the Legacy Survey data release. The Tractor classifies each detected source as
one of 5 morphological types and fits a corresponding elliptical surface brightness model to the light
emitted by the source. After fitting, parameters can be extracted from the surface brightness profile to
define a centered ellipse enclosing 50% of the total emission from a given source. We generate an
object mask for each cutout by painting such ellipses onto a null background for all sources detected
in the cutout. The ellipses are filled with a constant value selected from {0.2,0.4,0.6,0.8, 1.0} which
corresponds to the morphological type.

C.4.2 Architecture & Quantization

Autoencoder We base our architecture on VQ-VAE [67]; the encoder is comprised of a stack of 3
convolutional downsampling layers followed by 2 residual blocks, and this arrangement is mirrored
in the decoder (with upsampling transpose convolutions replacing the downsampling convolutions).
The downsampling convolutions have kernel size 4, stride 2, padding 1, and 128 / 256 / 512 kernels,
respectively. Each residual block consists of a sequence of 2 convolutional layers separated by a batch
norm layer, where the convolutions have kernel size 3 / 1, stride 1, and padding 1 / O, respectively.
All layers are ReLU-activated.

>We estimate F, with a fixed-size reservoir (N ~ 10° samples) maintained online during data streaming.
Reservoir sampling (Algorithm R) produces an unbiased CDF while keeping memory O (N ), independent of the
full catalog size.
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Quantizer We use a Finite Scale Quantizer [42] to quantize 4-dimensional codes with ngi, =
{8,5,5,5} discrete levels available in the respective dimensions, yielding a codebook size of 1000.

C.4.3 Training Details

This tokenizer was optimized under a mean squared error objective using the AdamW optimizer with
the weight decay parameter set to 0.01. The model was trained with batch size 256 for 114,000 steps
at a base learning rate of 10~%. The base learning rate was modified by a linear warmup phase in the
first 1,000 steps and a cosine decay over the final 72,000 steps. The model weights were updated as
an exponential moving average of previous values with a decay parameter of 0.9999. Under these
conditions, the loss converged to Lysg =~ 0.0017.

D Details on Generative Capabilities

AION-1 is a generative model: once pretrained, it represents the joint distribution of all 39 tokenised
modalities. At inference time we can therefore draw posterior samples of any modality in the training
set by passing the appropriate query tokens and iteratively resampling them conditioned on the visible
context. To generate these posteriors, we perform the following steps.

First, we pass the query modality through its appropriate tokenizer, producing a set of input tokens

x"=(z1,...,2y,). These are passed to the AION-1 encoder, while the decoder receives a sequence
of query tokens x% = (zn, +1,...,2N) Whose values are to be inferred. At test-time we need
samples from
po(x [x") = T pol; |x"). @)
jeQ

where Q indexes the query positions and py is the categorical distribution produced by the frozen
decoder. To perform this sampling, we follow the ROAR generation scheme introduced in 4M [44]:
at each iteration ¢ we

1. Draw a fresh random permutation m; : Q; — Q; of the still-unknown query indices Q;;

2. Reveal the first p; = [r?|Q;|] positions of this permutation,

S = {m(1),...,m(pe) };
3. Sample those tokens once from the model,

x;t) ~ pe(' ‘ X th__ll)\st)’ jeS

4. Promote them to inputs: x™ < x™" U {xg-t)} jes, and update Q; 11 = Q; \ Sy

With a decay factor r € [0, 1) the number of unresolved tokens drops exponentially, so the full sample
is generated in 7' = O(log | Q|) decoder calls. After sampling is complete, every query token is routed
back through its modality-specific tokenizer to recover the original data representation. Repeating

the entire ROAR loop M times with a non-zero sampling temperature 7 > 0 yields M i.i.d. draws
{1} M from the conditional distribution in

Importantly, we note that these draws are plausibility samples from the decoder’s categorical outputs
under an iterative reveal schedule; they are not guaranteed to be well-calibrated joint posteriors
for sequences of tokens longer than a single token. We discuss this limitation in further detail in
subsec:limitations.

E Details on Galaxy and Stellar Parameter Inference

Data (Galaxy Parameter Inference). For inferring galaxy parameters, we use the data from
the PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) [24]], which provides derived
physical properties from galaxy photometry and spectroscopy using a Bayesian Spectral Energy
Density (SED) physical model. In particular, we extract:

* z: Redshift of the galaxy
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* Zmet: Metallicity

* M.,: Stellar mass

* tage: Stellar population age

» SFR: Star formation rate
We cross-match these galaxies with the Legacy Survey [[16]] imaging and photometry in the southern
hemisphere and DESI spectroscopy [2]. Then, we apply several quality cuts to ensure reliable
parameter estimates. In particular, we remove any objects with M, < 0 as well as objects with any

unphysical photometric magnitudes (m < 0). After these cuts, we arrive at a relatively clean sample
of ~ 100, 000 galaxies suitable for testing and validating our inference pipeline.

To accommodate the large dynamic range in certain parameters, we take the logarithm of both Z,c¢
and M. We also convert SFR into the specific star formation rate (sSFR), given by

SFR
M.’

sSFR = log (®)

which is often more insightful for characterizing the relative growth of stellar mass in the galaxy.

Data (Stellar Parameter Inference). The Gaia dataset that we train AION-1 on is a subset of
the available data in Gaia DR3. We cross-match this subset with DESI to produce the sample for
which we evaluate stellar parameter inference. The training set and validation sets consist of the
cross-matched stars belonging to the training and validation healpixes during pretraining to ensure
that the validation is performed on stars that AION-1 has not seen during pretraining.

While the MMU dataset for DESI provides stellar spectra, we turn to the catalog of [80] (hereafter
724) for stellar parameters. Z24 uses a data-driven method with regularization from physical models
to provides estimates for basic stellar parameters like 7o, log g, and [Fe/H], as well as for various
abundances [X/Fe] from DESI spectra.

Models. We perform parameter inference by training linear models on top of AION-1 embeddings.
Given some data inputs, we first tokenize them, then extract the corresponding embeddings from the
pretrained and frozen AION-1 encoder. We experiment with both mean-pooling and cross-attention
to compress the sequence dimension of the embeddings before applying a linear projection layer to
the channel dimension to produce estimates for each quantity of interest.

Data Fusion. We train all downstream models on various input combinations as a demonstration of
data fusion. In particular, for galaxies we train downstream models on galaxy photometry, galaxy
photometry and imaging, and galaxy photometry, imaging and spectroscopy. For stars: we train
downstream models on stellar photometry, stellar photometry and low resolution spectroscopy, and
low resolution spectroscopy and parallax.

Supervised Baselines In the following section we detail the dedicated, supervised baselines used
for galaxy and stellar property prediction.

We train two baseline models for stellar property prediction:

* ConvNeXt Regressor on Raw Spectra. This model uses multiple stacks of alternating
ConvNeXt [[74]] processing blocks and downsampling blocks—identical in architecture to
the encoder used for AION-1 spectrum tokenization—followed by attention pooling and a
final linear projection. It is trained directly on the raw, pixel-level stellar spectra and noise
estimates.

* XGBoost on Token Representations. We train an XGBoost regressor on the mean-pooled
tokens produced by the AION-1 spectrum tokenizer. Because these tokens are already
a compressed, high-level representation of the spectra, the XGBoost model’s task is, in
principle, simpler than that of the ConvNeXt regressor, which must simultaneously learn to
extract features and perform the final prediction.

For galaxy property prediction, we train three different baseline models:
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* XGBoost on Photometry. We train an XGBoost regressor directly on the photometric
measurements of galaxies (e.g., magnitudes or fluxes in various bands).

* ConvNeXt-Tiny on Images. As a second baseline, we adopt the ConvNeXt-tiny architecture
trained on galaxy images. This approach matches the baseline provided in the Multi-Modal
Universe (MMU) framework.

* Convolutional + Attention Network on Spectra. Inspired by the method of [41] and
used as a baseline in [48]], we train a network that combines convolutional layers with
attention-based pooling on the galaxy spectra.

Self-Supervised Baselines. We also use a number of state-of-the-art self-supervised baselines from
the literature. For galaxies, we use the following models:

* AstroCLIP [48§]], a previous state-of-the-art multimodal foundation model for galaxies;
we follow the authors’ recommended protocol, extracting frozen embeddings from the
CLIP image encoder and training a lightweight MLP ontop of the embeddings. Note that
AstroCLIP was trained on Legacy Survey {g,r, z} cut-outs only, so in our setting it has
access to one fewer band (7) than AION-1.

* DINOV2 [47] represents a widely used vision model; we feed RGB-converted {g,r, 2z}
images to the ViT-g/14 backbone and again attach the same MLP probe.

For stars, we compare performance against a current state-of-the-art baseline from [34], who de-
veloped a Transformer-based foundation model for stellar data. More specifically, the task is to
predict APOGEE-derived stellar parameters - namely Teg, log g, and [Fe/H] - from Gaia XP spectral
coefficients. We use the same data as [34], and cross-match APOGEE-derived stellar parameters with
the MMU Gaia data, producing a set of roughly ~ 10,000 APOGEE parameter-Gaia XP spectral
pairs. We feed as input to both AION-1 and the [34] model only the first 32 BP coefficients and first
32 RP coefficients due to the fact that the [34] model only has a context length of 64; we artificially
handicap AION - which does not have this restriction - in order to perform a fair comparison. We note
here that [34] has been explicitly given APOGEE-derived stellar parameters and Gaia XP coefficients
during its pretraining stage, and so this task is one that it has effectively been trained for. On the
other hand, the pretraining dataset for AION-B does not contain APOGEE data, nor any other stellar
parameters; we simply train a simple linear projection layer with cross-attention pooling on 5000
paired examples, and leave the weights of the AION model itself frozen.

Performance and Scaling. We present below an extended set of results on stellar and galaxy
parameter inference.

In[Figure 12| we show the performance of AION-1-B, AION-1-L, and AION-1-XL, as well of the two
baselines, on the prediction of individual properties as a function of training set size. We find that in
general, AION-1 outperforms the baselines across the board, with the XGBoost baseline typically
being slightly worse and the ConvNet baseline being significantly worse, especially in the low-data
regime where only 100 training samples are available. However, while the ConvNet baseline performs
very poorly with few samples, its performance improves with training set size up until the full training
sample of ~ 50,000 examples, at which point it performs essentially identically to—and in some
cases better than—AION-1-B/L/XL and the XGB baseline. It is possible that the regression task is
not particularly difficult, and thus model performance saturates early; with AION-1-B performing
essentially the same as AION-1-L, we find that scaling up to a large model provides little benefit for
this task.

shows that overall, independent of input modalities, cross-attention pooling (solid lines)
significantly outperforms mean-pooling (dashed lines).

F Details on Morphology Classification

Data. We construct the downstream sample by cross-matching the Galaxy Zoo 10 catalog [69, 33,
GZ10;] with the Legacy Survey DR10 imaging footprint, yielding ~ 8,000 galaxies with {g,,, z}
cutouts.
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z M* tage ZMet SFR
Mean Attention Mean Attention Mean Attention Mean Attention Mean Attention

AION-1-B
Ph 0.736 0.754 0.714 0.720 0.350 0.353 0.409 0.412 0.410 0.378
Ph+Im 0.910 0.934 0.857 0.886 0.394 0.445 0.453 0.490 0.611 0.637

Ph+Im+Sp  0.779 0.995 0.739 0.956 0.258 0.532 0.365 0.610 0.439 0.720
AION-1-L

Ph 0.659 0.761 0.630 0.734 0.268 0.357 0.302 0.411 0.228 0.387

Ph+Im 0.922 0.940 0.870 0.889 0.412 0.454 0.460 0.496 0.621 0.642

Ph+Im+Sp  0.800 0.995 0.760 0.955 0.276 0.534 0.375 0.620 0.461 0.727
AION-1-XL

Ph 0.679 0.792 0.647 0.757 0.266 0.314 0.318 0.379 0.240 0.475
Ph+Im 0.910 0.940 0.857 0.888 0.394 0.450 0.439 0.490 0.610 0.644
Ph+Im+Sp  0.795 0.992 0.759 0.947 0.273 0.534 0.374 0.621 0.454 0.731
Supervised Supervised Supervised Supervised Supervised
Ph! 0.708 0.692 0.301 0.301 0.377
Im? 0.864 0.821 0.445 0.489 0.638
sp? 0.998 0.852 0.433 0.621 0.675

Table 6: R? (1) for galaxy property estimation. Inputs to the model are: photometry (Ph),
photometry and imaging (Ph+1Im), and photometry, imaging, and spectra (Ph+Im+Sp). Mean implies
taking the average over AION-1 embeddings followed by a linear projection head, while Attention
implies training a cross-attention layer with a linear projection head on the full set of embeddings.
Supervised models are: 1XGBoost, 2ConvNext, Convolution + Attention Network. All models are
trained on ~ 100, 000 examples.
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Figure 11: Predictive performance as measured by standard deviation of residuals on a held-out
evaluation set of models with various input combinations on various physical properties of stars.
Lower is better. Each line represents a different model, with dashed lines indicating mean-pooled
linear probes and solid lines indicating cross-attention pooled linear probes. The color of the line
represents the inputs that the model is given. All embeddings are generated from the frozen, pretrained
encoder of Aion-1-L.
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Figure 12: Predictive performance of AION-1-B/L/XL, a convolutional baseline from raw spectra,
and an XGBoost baseline from spectrum tokens as a function of training set size for different stellar
properties. Performance is measured in terms of the standard deviation of the residuals, and thus
lower is better.

Models. For AION-1, we tokenize each cutout with the multi-survey image tokenizer, mean-pool
the resulting embeddingsﬂ and pass the 768-d mean vector to a two-layer MLP head (hidden size =
256, GELU, dropout = 0.1). The head is trained on 80% of the sample with class-stratified splits and
evaluated on the remaining 20%.

Baselines. We replicate this protocol with the DINOv2 baseline, replacing the tokenizer with the
ViT-g/14 backbone and applying the RGB normalization recommended by [47]. EfficientNet-B3 is
trained end-to-end from random initialization using the same splits and standard data augmentations.
Finally, we adapt ZooBot [69] by fine-tuning the penultimate layer on our 8, 000 samples; although
ZooBot was never exposed to GZ10 labels, it benefits from pre-training on ~ 300,000 images
covering the broader, harder GZ-5 decision tree, and thus acts as an approximate upper bound on
achievable accuracy.

Results. As Table[d]shows, AION-1-L tops all baselines except ZooBot, exceeding EfficientNet
by +7.2 pp and DINOv2 by +15.8 pp, while using only a lightweight MLP head. Moreover, it

SAlthough we experiment with attentive pooling in this setting, unlike with property estimation, we find that
attentive pooling does not provide any meaningful gain in accuracy.
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Figure 12: (continued)

reaches close to the ZooBot accuracy, only under-performing by —2.4 pp, despite seeing two orders
of magnitude fewer labeled galaxy images during its inference process.

G Details on Dense Predictions

In this section, we provide additional details on our dense fine-tuning experiments, which involve
predicting segmentation maps and detecting sets of objects from image inputs. While prior work by
[44117] classifies object detection as a sparse prediction task—treating it as an autoregressive sequence
generation problem—we refer to it as dense prediction in contrast to our scalar prediction tasks.
This distinction emphasizes the structured nature of segmentation and object detection compared to
simpler regression-based outputs.

G.1 Architecture

Semantic Segmentation. We implement a lightweight convolutional upsampler trained on top of
AION-1’s encoder representations. Our upsampler design is largely inspired by the mask decoder
from [Iﬂlﬂ but with a key modification: we do not include hypernetworks instantiated from additional
register tokens. Instead, we use a single convolutional layer to project the upsampled output to the
desired number of segmentation maps, simplifying the architecture while maintaining efficiency.

Clump Detection. For clump detection, we introduce no additional model parameters. Instead, we
finetune AION-1’s decoder to autoregressively generate linearized object tokens, following the same
tokenization scheme used in our pre-training catalog data. This approach enables the model to predict
structured object sequences without requiring task-specific modifications.

G.2 Galaxy Zoo 3D Segmentation

Galaxy Zoo 3D is a dataset derived from volunteer annotations of galaxies, originally presented
in [39] and collected through the Zooniverseﬂ citizen science platform. Each galaxy sample was

"https://github.com/facebookresearch/segment-anything/
$https://www.zooniverse.org/
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Figure 13: IoU scores for spiral arm and bar segmentation across different models, evaluated at
three fractions of the available training data 33% (937), 66% (1874), and 100% (2811).

annotated by 15 volunteers, who were asked to mark the galactic center, any stars in the frame, and to
draw bounding boxes around galactic bars and spiral arms.

For this study, we focus on the vote maps, which consist of four dense arrays containing pixel-wise
annotation counts (ranging from O to 15) indicating how many annotators included a given pixel in
their annotations. Segmenting bars and spiral arms is particularly challenging, which is why human
annotations are crucial for this task.

Following [71], we filter out samples that do not reach a confidence level of 0.2 and compare
our results to a model proposed in the same study, which we trained ourselves. The ground truth
segmentation is defined as the set of pixels that received any number of votes from annotators,
normalized by the maximum number of votes received per sample.

For our dense predictions, we finetune a small convolutional head on top of AION’s frozen encoding
module and optimize the trainable parameters using mean squared error (MSE).

We evaluate our model using the Intersection over Union (IoU) metric, reporting separate IoU scores
for spiral arms and bars rather than a combined mean IoU (mloU). The IoU is defined as:

M NM]

== , 9
M UM| ©

where M, M € [0, 1]#*W denote the predicted and ground truth segmentation masks, respectively.

We determine separate segmentation thresholds for spiral arms and bars using 20% of our validation
set. These thresholds are computed independently, as annotators tend to agree more consistently on
bar structures than on spiral arms. This approach ensures optimal segmentation performance for both
components.

G.3 Galaxy Zoo Clump Detection

We additionally investigate the Seq2Seq problem of autoregressively generating galaxy clumps [17].
Specifically, we finetune AION-1 to generate an ordered sequence of clumps — where the number of
clumps varies across different examples — by conditioning on Legacy Survey Images. To achieve this,
we use the catalog tokenizer used during pre-training, which encodes catalog objects into a structured
sequence of quintuples, each consisting of pixel coordinates, elliptical shapes, and radius. We then
finetune the model with a causal language modeling objective, conditioning on both the previously
generated clumps and the corresponding Legacy Survey images. This setup allows the model to learn
spatial and morphological dependencies among clumps, ultimately improving its ability to generate
realistic clump distributions for galaxy images. This dataset consists of 3727 cross-matched samples.

Some qualitative examples are shown in [Figure 14]
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Comparison of Predicted vs. Ground Truth Clumps

Predicted Clump
B Ground Truth Clump

Figure 14: Qualitative examples of ground truth and predicted clump objects in Legacy Survey.

H Details on Retrieval Evaluation

H.1 Evaluation Metric

For each query galaxy, we first produce an embedding using AION-1. We then generate embeddings
for all other galaxies in the search corpus. All embeddings are averaged together to produce a single
vector, x € R4, where d is the embedding dimension of the specific AION model used. Next, we
compute the cosine similarity between the query embedding, x4 and each candidate embedding xc,
as
T
_ —(qu Xe (10)
[xalf3 |l l3

The entire corpus (excluding the embedding) is then ranked in descending order of similarity. We
compute the normalized Discounted Cumulative Gain (nDCG) retrieved objects, where the relevance,
r; of each object, ¢, is determined by the criteria described in the sections below. Specifically, the
DCG at rank k is defined as:

Se(Xaq; Xe)

k
7‘1'_1

D = —_— 11

CGak ;logQ(i-i—l)’ an

The ideal DCG (IDCG) is computed by sorting the items by descending relevance. The normalized
DCG is then

DCGQk
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Figure 15: nDCG @10 as a Function of Aggregated Query Size. Overall, we find that mean-
pooling multiple queries of the same object type to form our query vector dramatically improves
model performance when searching for mergers and spirals, up to a query count of roughly 15. This
holds for all models.

In our experiments, we focus on k£ = 10 and report nDCG@10 as our evaluation metric.

H.2 Galaxy Zoo Object Labels

Data. We use the Galaxy Zoo DECaLS catalog [69]], which provides citizen-science morphological
classifications for a large set of galaxies observed in the Legacy Imaging Survey [16]]. We then
cross-match these classified objects with corresponding Legacy Survey South images. To ensure that
each galaxy has sufficiently reliable volunteer annotations, we discard any objects with fewer than
three total volunteer votes. This leaves ~ 171, 000 galaxies.

Within this filtered dataset, we focus on two morphological classes of interest: mergers and spirals.
We select high-confidence examples of these two classes by identifying galaxies for which more than
f = 0.9 of the volunteers have voted for the corresponding morphology (merger or spiral). These
high-confidence galaxies form our set of query objects in the retrieval experiments. In total, we have
726 merging galaxies and 24, 622 spiral galaxies.

For each object in the dataset, we define a relevance label based on the fraction f of volunteers who
voted for the same morphological class. Thus, an object whose volunteer vote distribution aligns
more strongly with merger or spiral morphology is assigned a higher relevance label than one whose
distribution is more ambiguous. This setup encourages the retrieval model to prioritize both the
correct morphological class and the degree of confidence in that classification.

Aggregated Query Results. In addition to evaluating single query objects, we investigate whether
aggregating multiple queries can improve retrieval performance. Specifically, instead of using a single
galaxy embedding as the query, we compute a single query embedding by averaging the embeddings
of multiple galaxies from the same morphological class (merger or spiral). The rationale is that
features indicative of the given morphology will be reinforced across several galaxy embeddings,
while idiosyncratic features unrelated to that morphology will be muted.

shows how the nDCG@10 score varies with the number of query embeddings being
averaged. We observe that performance systematically increases up to about 15 queries, after which
gains plateau. In particular, for merger queries, this approach more than doubles the nDCG@ 10
compared to single-query retrieval, while for spirals it boosts nDCG@ 10 by approximately 0.25.
Notably, even with aggregated queries, our best models still outperform the baseline method of [62],
underscoring the effectiveness of this aggregation strategy.
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LS—LS HSC—-HSC LS—HSC HSC-—LS

AION-1-B 0.012 0.018 0.004 0.016
AION-1-L 0.011 0.019 0.004 0.017
AION-1-XL 0.015 0.015 0.004 0.012
[62] 0.007 - - -

Table 7: nDCG @10 for Strong Lensing Retrieval. We evaluate retrieval performance on strong
gravitational lenses, measuring nDCG for galaxies retrieved via cosine similarity of AION-1’s average
token embeddings. Each column is labeled X — Y, X being the modality used to produce the query
embedding and Y the key embedding. For all four columns, we show the results for the three AION-1
variants (B, L, XL). Since the state-of-the-art self-supervised baseline only generates legacy survey
(LS) embeddings, we only show its results on the LS — LS task.

H.3 Strong Lens Finding

Data. For the strong lensing retrieval task, we start by filtering the cross-matched catalog of objects
within the Legacy Survey and HSC datasets to approximately reproduce the parent sample used in
the HSC strong lensing searches [29]. Specifically, we impose three additional cuts: (1) objects
with photometric redshifts between 0.2 and 1.2, (2) objects with an estimated stellar mass above
5 x 10'° M), and (3) objects with a star formation rate to stellar mass ratio less than 1 x 10719, In
order to identify the strong gravitational lenses within the resulting parent sample, we cross-match
with previous lens-finding catalogs [57, [73 58 28,159, (72} |29} 1111155} 153} 135,163\, 18, [104 194 1514 145 119}
20,23, 146]]. Most strong lensing catalogs offer a grade for each candidate. Since the criteria for this
grading varies between catalogs, we ignore these grades and instead assign a relevance score of 1.0
to all the strong lensing candidates found within each catalog. All other objects in our parent sample
are given a relevance score of 0.0. Even with the additional filtering, strong gravitational lenses make
up only 0.1% of our parent sample.

For each object in the parent sample, we have both the HSC and Legacy Survey observations. For
AION-1, we extract the embeddings by passing the tokenized observation through the frozen encoder.
We then average the output over the patch dimension. For the state-of-the-art baseline model [62], we
directly use the representation output by the model. Unlike AION-1, the baseline is trained solely for
legacy survey images. The resulting AION-1 embeddings have 768 dimensions for both modalities,
whereas the baseline model embeddings have 128 dimensions for the Legacy Survey modality.

Results. Since we have both HSC and Legacy Survey (LS) embeddings for our strong lens catalog,
we can perform two retrieval tasks within a modality: LS query with LS keys (LS — LS) and HSC
query with HSC keys HSC — HSC. We can also explore two retrieval tasks between modalities: LS
query with HSC keys (LS — HSC) and HSC query with LS keys (HSC — LS). The state-of-the-art
baseline only enables LS — LS. The nDCG @ 10 metrics for these tasks are reported in Table[7]

We find that we outperform the state-of-the-art on the LS — LS task for all three AION-1 model
sizes, with the largest model leading to the greatest performance improvement. Switching from the
LS — LS task to the HSC — HSC task leads to further gains in the retrieval metric, confirming
that AION-1 is successfully leveraging the higher-resolution information present in the HSC images.
For the cross-modality tasks we find mixed performance for AION-1. On the LS — HSC task
we get the worst retrieval performance of any modality combination, but on the HSC — LS task
we get equivalent retrieval performance to the HSC — HSC task. One possible cause is that our
retrieval depends on informative query embeddings. For example, in Appendix
we find that aggregating query embeddings leads to significant improvements in performance on
galaxy morphology retrieval. For strong lensing retrieval, the HSC embeddings are derived from
more informative (higher-resolution) observations than the LS embeddings. This leads to better
performance when we query with the more informative HSC embeddings over the LS embeddings.

The low overall n(DCG@ 10 score for all models and tasks reflects the inherent challenge in retrieving
strong-lensing images. The Einstein ring that characterizes a strong gravitational lens is often dim
compared to other features in the image, and strong lenses themselves are incredibly rare events.
Despite this challenge, the state-of-the-art model we outperform has already been used to identify
1192 new strong lensing candidates [61].

39



= True DESI spectrum
Sampled spectra

z=0.174

HSC Image 4000 5000 6000 7000 8000 9000 10000
Observed wavelength (A)

Figure 16: Out-of-distribution conditional generation. DESI spectra sampled from AION-1
(blue) conditioned on HSC images (insets), overlaid on the true DESI spectra (black). Even though
HSC-DESI pairs were never seen during pre-training, the model reproduces key spectral features,
demonstrating emergent transitive understanding.

H.4 Emergent Transfer Properties
H.4.1 Generative Transfer of Multimodal Understanding

Our training mixture contains many pairwise matches, e.g. HSC images <> SDSS spectra and SDSS
spectra <» DESI spectra. However, the model is never trained to on the DESI-HSC pairs, and so never
learns to produce HSC images from DESI spectra directly. Nevertheless, when we condition use
AION-1 to sample a DESI spectrum from an HSC image, the generated spectrum (blue) closely tracks
the ground-truth DESI spectrum (black); see Both a quiescent (red) galaxy and a star-
forming (blue) galaxy are reproduced with realistic absorption and emission features, demonstrating
that AION-1 has learned a transitive mapping across modalities. This is likely due to the fact that
AION-1 already understands the mapping between HSC and other spectroscopic (SDSS) or imaging
(Legacy Survey) surveys, as well as the mapping between those intermediate surveys and the final
target survey, DESI.

H.4.2 Survey-to-survey Transfer in Embedding Space

Beyond conditional generation, we ask whether AION-1’s frozen image encoder produces survey-
invariant representations that let us port knowledge from one telescope to another. Specifically,
we train a single linear classifier on Legacy Survey embeddings to predict the ten Galaxy Zoo-10
morphology classes. The encoder weights remain fixed; only the 10-way soft-max layer is optimized.
We then apply this exact head—without any fine-tuning—to embeddings of Hyper Suprime-Cam
(HSC) images. To create the evaluation set we cross-match the HSC wide catalog (see
with Galaxy Zoo-10 (GZ10) volunteer votes and explicitly remove any targets that overlap with the
Legacy Survey-GZ10 training set to prevent test leakage. The resulting sample contains ~1,000
galaxies. As reported in[Table 8] the zero-shot classifier attains 84 — 86% accuracy across all AION-1
scales, essentially matching its performance on the native Legacy Survey domain. This robustness
holds despite factor-of-~2 differences in depth, distinct filter sets ({g,, %, z,y} vs. {g,7, %, z}), and
a different pixel scale. The result underscores that AION-1 embeddings capture morphology in a way
that is largely agnostic to survey-specific imaging characteristics, enabling workflows that recycle
scarce labeled data from one survey to bootstrap science in another.
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Legacy Survey (Train) HSC (Eval.)

AION-1-B 83.95 84.15
AION-1-L 87.16 85.66
AION-1-XL 86.99 85.91

Table 8: Zero-shot morphology-classification accuracy (%). A classifier trained on Legacy Survey
images transfers directly to HSC, indicating that AION-1 produces survey-invariant representations.

I Details on Model Scaling

We evaluate how the model size impact its performances. The evaluation computes the categorical
cross-entropy on predicted token outputs given input tokens that are randomly selected among
every available modality. The overall evaluation loss is the weighted average of each modality loss.
[Figure 17| reports the overall evaluation loss and the image and spectrum losses for the legacy and
SDSS surveys respectively. The decrease we see in the overall evaluation loss for the legacy survey
indicates the model performs better when its size increases. However, the evaluation loss on SDSS
remains similar regardless the size of the model. When checking for modality specifically (second
row of [Figure 17), it appears the image evaluation loss decreases with the size of the model while the
spectrum evaluation loss stagnates. This indicates the amelioration observed while scaling the model
is largely due to better performances in predicting token images. This trend could be explained by the
fact that the complete dataset contains much more samples with images than with spectra (Figure 2a)).
There might not be enough spectrum data to observe improvement while scaling the model.
Additionally, we evaluate the impact of adding the GAIA dataset to the training set. GAIA contains
77M objects with spectrum data, thus should theoretically bring more information about this modality.
compares the evaluation losses for different model sizes trained on all surveys except
GAIA (Base Dataset i.e. Legacy survey + SDSS + DESI + HSW) and on all surveys including
GAIA (Base Dataset + GAIA). For both evaluations on Legacy and SDSS surveys the loss is higher
when training with Base Dataset + GAIA. Adding GAIA survey to the training dataset seems thus to
impacts negatively the performances of the model on the other surveys. It is the case for image and
even spectrum modality. The decreased performance on spectrum modality of SDSS survey, while
adding spectrum information from GAIA in the training dataset, could be explained by the fact that
GAIA spectrum is of much lower resolution than the one of SDSS.

J Full Modality Tokens
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Category Description Modality

Imaging (2) Legacy Survey imaging tok_image
HSC Wide imaging tok_image_hsc
Catalog (1) Legacy Survey catalog  catalog
Spectra (2) SDSS spectra tok_spectrum_sdss
DESI spectra tok_spectrum_desi
Gaia (4) Gaia BP spectrum tok_xp_bp

Gaia RP spectrum
Gaia parallax
Sky coordinates

tok_xp_rp
tok_parallax
tok_ra, tok_dec

Gaia Photometry (3)

Gaia G-band flux
Gaia BP-band flux
Gaia RP-band flux

tok_flux_g_gaia
tok_flux_bp_gaia
tok_flux_rp_gaia

Legacy Survey (9) g-band flux tok_flux_g
r-band flux tok_flux_r
i-band flux tok_flux_i
z-band flux tok_flux_z
WISE W1 flux tok_flux_w1
WISE W2 flux tok_flux_w2
WISE W3 flux tok_flux_w3
WISE W4 flux tok_flux_w4
E(B-V) extinction tok_ebv

Legacy Survey Shape (3)

Ellipticity component 1
Ellipticity component 2

tok_shape_el
tok_shape_e2

Effective radius tok_shape_r
HSC Photometry (5) g-band magnitude tok_mag_g
r-band magnitude tok_mag_r
i-band magnitude tok_mag_i
z-band magnitude tok_mag_z
y-band magnitude tok_mag_y
HSC Extinction (5) g-band extinction tok_a_g
r-band extinction tok_a_r
i-band extinction tok_a_i
z-band extinction tok_a_z
y-band extinction tok_a_y

HSC Shape (3) Shape component 11 tok_shapel 1
Shape component 22 tok_shape22
Shape component 12 tok_shapel2
Other (1) Redshift tok_z
Table 9: Complete list of modalities used in our multi-survey analysis. The modalities are grouped by
their source surveys and measurement types. Numbers in parentheses indicate the count of modalities
in each category.
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Figure 17: Evaluation losses for different model sizes on Legacy and SDSS surveys including image
and spectrum modality. Base dataset refers to the training on all surveys except GAIA, while Base
Dataset + GAIA are the models trained on all surveys described in [Figure 2a]
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