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ABSTRACT

How do language models (LMs) represent characters’ beliefs, especially when
those beliefs may differ from reality? This question lies at the heart of under-
standing the Theory of Mind (ToM) capabilities of LMs. We analyze LMs’ ability
to reason about characters’ beliefs using causal mediation and abstraction. We
construct a dataset, CausalToM, consisting of simple stories where two characters
independently change the state of two objects, potentially unaware of each other’s
actions. Our investigation uncovers a pervasive algorithmic pattern that we call a
lookback mechanism, which enables the LM to recall important information when
it becomes necessary. The LM binds each character-object-state triple together
by co-locating their reference information, represented as Ordering IDs (OlIs),
in low-rank subspaces of the state token’s residual stream. When asked about a
character’s beliefs regarding the state of an object, the binding lookback retrieves
the correct state OI and then the answer lookback retrieves the corresponding state
token. When we introduce text specifying that one character is (not) visible to
the other, we find that the LM first generates a visibility ID encoding the relation
between the observing and the observed character OIs. In a visibility lookback,
this ID is used to retrieve information about the observed character and update
the observing character’s beliefs. Our work provides insights into belief tracking
mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.

1 INTRODUCTION

Theory of Mind (ToM), the ability to infer others’ mental states, is an essential aspect of social
and collective intelligence (Premack & Woodruff, 1978; Riedl et al., 2021). Recent studies have
established that LMs can solve some tasks requiring ToM reasoning (Street et al., 2024; Strachan et al.,
2024a; Kosinski, 2024), while others have highlighted shortcomings (Ullman, 2023; Sclar et al., 2025;
Shapira et al., 2024, inter alia). Previous studies primarily rely on behavioral evaluations, which do
not shed light on the internal mechanisms by which LMs encode and manipulate representations of
mental states to solve (or fail to solve) such tasks (Hu et al., 2025; Gweon et al., 2023).

In this work, we examine how LMs internally represent and track beliefs of characters, a core
aspect of ToM (Dennett, 1981; Wimmer & Perner, 1983). A classic example is the Sally-Anne test
(Baron-Cohen et al., 1985), which evaluates ToM in humans by assessing whether individuals can
track conflicting beliefs: Sally’s belief, which diverges from reality because of missing information,
and Anne’s belief, which is updated based on new observations. Our goal is to determine whether
LMs learn a systematic solution to such tasks or rely on superficial statistical association.

We construct CausalToM, a dataset of simple stories involving two characters, each interacting with
an object to change its state, with the possibility of observing one another. We then analyze the
internal mechanisms that enable Llama-3-70B-Instruct and Llama-3.1-405B-Instruct (Grattafiori
et al., 2024) to reason about and answer questions regarding the characters’ beliefs about the state of
each object (for a sample story, see Section 3 and for the full prompt refer to Appendix A).

Our findings provide strong evidence for a systematic solution to belief tracking. We discover that
LMs use a pervasive computation, which we refer to as the lookback mechanism, for belief tracking.
This mechanism enables the model to recall important information at a later stage. In a lookback, two
copies of a single piece of information are transferred to two distinct tokens. This allows attention
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heads at the latter token to look back at the earlier one when
needed and retrieve vital information stored there, rather
than transferring it directly (see Fig. 1).

We identify three key lookback mechanisms that collectively
perform belief tracking: 1) Binding lookback (Fig. 3(i)):
First, the LM assigns ordering IDs (Ols; Dai et al. 2024) that
encode whether a character, object, or state token appears
first or second. Then, the character and object Ols are copied
to the corresponding state token and the final token residual
stream. Later, when the LM needs to answer a question
about a character’s beliefs, it uses this information to retrieve
the answer state Ol. 2) Answer lookback (Fig. 3(ii)): Uses
the answer state OI from the binding lookback to retrieve
the answer state token value. 3) Visibility lookback (Fig. 7):
When a visibility condition between characters is mentioned,
the model employs additional reference information called
the visibility ID to retrieve information about the observed
character, augmenting the observing character’s awareness.

Overall, this work not only advances our understanding of

Lookback
Token

Recalled
Token

Source
Token

Figure 1: The lookback mechanism
performs conditional reasoning; The
source token contains reference in-
formation that is copied into two in-
stances, creating a pointer and an ad-
dress. Next to the address in the resid-

the internal computations in LMs that enable ToM but also
uncovers a pervasive mechanism that plays a foundational
role for in-context reasoning.

ual stream is a payload. When neces-
sary, the model retrieves the payload
by dereferencing the pointer. Solid
lines represent information flow, while
the dotted line indicates the attention
“looking back” from pointer to address.

2 THE LOOKBACK MECHANISM

Our investigation uncovers a recurring pattern of computation that we call the lookback mechanism.'

In lookback, a source reference is copied (via attention) into an address copy in the residual stream
of a recalled token and a pointer copy in the residual stream of a lookback token that occurs later in
the text. The LM places the address alongside a payload of the recalled token’s residual stream that
can be brought forward to the lookback token if necessary. Fig. 1 shows a generic lookback.

That is, the LM can use attention to dereference the pointer and retrieve the payload present in the
residual stream of the recalled token (which might contain aggregated information from previous
tokens), bringing it to the residual stream of the lookback token. Specifically, the pointer at the
lookback token forms an attention query vector, while the address at the recalled token forms a key
vector. The pointer and address are not necessarily exact copies of the source reference, but they
do have a high dot product after being transformed by a query or key attention matrix, respectively.
Hence, a QK-circuit (Elhage et al., 2021) is established, forming a bridge from the lookback token to
the recalled token. The LM uses this bridge to move the payload that contains information needed to
complete the subtask through the OV-circuit.

To develop an intuition for why an LM would learn to implement lookback mechanisms, consider
that during training, LMs process text in sequence with no foreknowledge of what might come next.
Instead of trying to resolve every possible future question about the current context, it would be
useful to place addresses alongside payloads that might be useful to remember in the future when
performing a variety of downstream tasks. In our setting, the LM constructs a representation of a
story without any certainty about the questions it may later be asked about that story, so the LM
localizes pivotal information in the residual stream of certain tokens, which later become payloads
and addresses. When the question text is reached, pointers are constructed that reference this crucial
story information and dereference it to find an answer to the question.

1Although this mechanism may resemble induction heads (Elhage et al., 2021; Olsson et al., 2022), it
differs fundamentally. In induction heads, information from a previous token occurrence is passed only to the
subsequent token, without being duplicated to its next occurrence. In contrast, the lookback mechanism copies
the same information not only to the location where the vital information resides but also to the target location
that needs to retrieve that information.
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Figure 2: Tracing information flow of crucial input tokens using causal mediation analysis.

3 EXPERIMENTAL SETUP: DATASET, MODELS, AND METHODS

Dataset Existing datasets for evaluating ToM capabilities of LMs are designed for behavioral
testing and lack counterfactual pairs needed for causal analysis (Kim & Sundar, 2012). To address this
problem, we construct CausalToM, a structured dataset of simple stories, where each story involves
two characters, each interacting with a distinct object causing the object to take a unique state. For
example: “Characterl and Character2 are working in a busy restaurant.

To complete an order, Characterl grabs an opaque and fills
it with . Then Character2 grabs another opaque and
fills it with .”  We then ask the LM to reason about one of the characters’

beliefs regarding the state of an object: “What does Characterl believe

contains?” We analyze the LM’s ability to track characters’ beliefs in two distinct settings. (1)
No Visibility, where both characters are unaware of each other’s actions, and (2) Explicit Visibility,
where explicit information about whether a character can/cannot observe the other’s actions is
provided, e.g., “Bob can observe Carla’s actions. Carla cannot observe
Bob’s actions.” We also provide general task instructions (e.g., answer unknown when a
character is unaware); refer to Appendices A & B for the full prompt and additional dataset details.
All subsequent experiments are conducted on 80 samples that the model answers correctly. We also
demonstrate generalization of the mechanism to BigToM dataset (Gandhi et al., 2024) in Appendix K.

Models Our experiments analyze Llama-3-70B-Instruct and Llama-3.1-405B-Instruct models in
FP16 and INTS8 precision, respectively, using NNsight (Fiotto-Kaufman et al., 2025). Results for
Llama-3.1-405B-Instruct can be found in Appendix L. Both models demonstrate strong behavioral
performance in the no-visibility and explicit-visibility settings. We do not examine smaller models,
as they are unable to coherently solve the CausalToM task.

Causal Mediation Analysis Our goal is to develop a mechanistic understanding of how LMs
reason about characters’ beliefs and answer related questions (Saphra & Wiegreffe, 2024). A key
method for conducting causal analysis is interchange interventions (Vig et al., 2020; Geiger et al.,
2020; Finlayson et al., 2021), in which the LM is run on paired examples: an original input o and a
counterfactual input c, and certain internal activations in the LM run on the original input are replaced
with those computed from the counterfactual, a process also known as activation patching. We begin
our analysis by tracing information flow from key input tokens to the final output, by performing
interchange interventions on the residual vectors. Specifically, we construct an intervention dataset
where o contains a question about the belief of a character not mentioned in the story, while the
story in c includes the same queried character, as shown in Fig. 2. The expected outcome of this
intervention is a change in the final output of o from unknown to a state token, such as . We
conduct similar interchange interventions for object and state tokens (refer to Appendix C for details).

Figure 2 presents the aggregated results of this experiment for the key input tokens Characterl,

, and . The cells are color-coded to indicate the interchange intervention accuracy
(ITA; Geiger et al., 2022). Even at this coarse level of Causal Mediation Analysis (Mueller et al.,
2024; Vig et al., 2020; Meng et al., 2022), several significant insights emerge: 1) Information from
the correct state token ( ) flows directly from its residual stream to that of the final token in later
layers, consistent with prior findings (Lieberum et al., 2023; Prakash et al., 2024); 2) Information
associated with the query character and the query object is retrieved from their earlier occurrences
and passed to the final token before being replaced by the correct state token.
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Figure 3: Belief Tracking with no visibility between characters. We hypothesize that the LM
tracks beliefs using two lookback mechanisms. First, in (i) Binding lookback, LM binds together
each character-object-state triple in the state token residual stream. When asked about a specific
character-object pair, the LM looks back to the corresponding Ols to retrieve the correct state OI.
Second, in (ii) Answer lookback, LM dereferences that state OI (used as a pointer) to retrieve the
token value of the correct state. Colors indicate information type, shapes indicate role of information
in lookback (see Fig. 1), e.g., state Ol is a payload (A) in (i) and a pointer-address (©) in (ii).

Desiderata Based Patching via Causal Abstraction The causal mediation experiments provide a
coarse-grained analysis of where information flows, but do not identify what information is being
transferred. In a transformer, the first layer represents the input and the last layer represents the
output, but we wish to know: what is represented in the middle? We analyze the internal mechanism
using Causal Abstraction (Geiger et al., 2021; 2024); First, we hypothesize a high-level causal model
of the computational steps from input to output (Sec. 4), and then align its variables with the LM’s
internal activations (Sec. 5). We test the alignment through targeted interchange interventions on
causal variables in the hypothesized model and hidden activations in the LM. If the LM produces the
same output as the causal model under these aligned interventions, it provides evidence supporting
the hypothesized causal model. We quantify this effect using interchange intervention accuracy (11A;
Geiger et al., 2022), which measures the proportion of cases where the intervened causal model and
intervened LM agree. See Appendix D for more details.

In addition to measuring IIA on entire residual stream vectors, we also intervene on localized
subspaces to further isolate causal variables. To identify the subspace of a specific variable, we
employ Desiderata-based Component Masking (De Cao et al., 2020; Davies et al., 2023; Prakash
et al., 2024). This method learns a sparse binary mask over the activation space that maximizes the
logit of the hypothesized causal model output. We train a mask to select singular vectors of the
activation space that encode a high-level variable (see Appendix F for details). Our experiments in
Sec. 5 report both interventions on the full residual stream and on the identified subspaces.

4 HYPOTHESIZED HIGH-LEVEL CAUSAL MODEL OF BELIEF TRACKING

Here we start with an overview of our hypothesized causal model of belief-tracking when characters
are not aware of each other’s actions. The causal model is an algorithmic process that has variables
with structural roles that do not refer to the details of a transformer architecture. Appendix E presents
the full pseudocode of the causal model. In Section 5, we will present experiments to verify that the
causal model’s variables align with representations in the transformer.

Belief tracking begins when the causal model assigns ordering IDs (Ols; ©, ©, ©) to each character,
object, and state token, marking their order of appearance. For instance, in the example in Fig. 3,
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Bob is assigned first character OI (@), and Car1a is assigned the second character OI(@). Then it
uses these Ols in two lookback mechanisms:

(i) Binding lookback. The causal model creates address copies of each character OI (©) and object
OI (©) that are bound to the state OI (Binding Payload, A), creating a character—object—state triple.
When a question is asked about a character and object, the causal model creates pointer copies of that
character and object OlIs (Binding Pointers ©, ©) and dereferences them to retrieve the state OI.

(ii) Answer lookback. The causal model creates an address copy of the state OI (Answer Address

) that is bound to the state token (Answer Payload, A). Through the binding lookback, a pointer
copy of this OI (O) is created. The causal model dereferences the pointer to retrieves the correct state
token payload as the final output.

5 VERIFYING THE HYPOTHESIZED CAUSAL MODEL OF BELIEF TRACKING

We test our hypothesized causal model by localizing its variables within the transformer’s neural
representations. Specifically, we localize the addresses, pointers, and payloads of the (i) binding
lookback and (ii) answer lookbacks within the LM’s internal activations. In Fig. 3, we show a trace
of the causal model run on an input overlayed onto a schematic of a transformer architecture. This
visualizes the alignment between variables in the causal model and locations in the LM residual
stream that the experiments in the remaining of this paper will support. In the binding lookback, the
character and object OI addresses are realized in the residual stream of the state token. The pointer
copies are brought forward to the last token residual stream where they are dereferenced via attention
to bring forward the correct state OI payload. In the answer lookback, the address copy of the state
Ol is in the state token residual stream while the pointer copy is in the last token residual stream.

Each of the following experiments localizes the presence of specific ordering IDs (OIs) and verifies
their roles as hypothesized by our causal model. We do this by targeted interchange intervention
experiments on the causal model and the LM. We copy hidden states between identical tokens (for
example, replacing the representation of “:” in one context with the representation of *“:” in another
context, as in Fig. 4). When this intervention causes the LM’s have the same output as the causal
model under an interchange intervention on OI variables, we have evidence that the OI is carrying out
the hypothesized role. Each experiment reports the effects of n = 80 different cases with the same
structure, and the effect is measured at every layer.

Because the last step of the causal model is easiest to understand, we proceed through the experiments
in reverse order, beginning with an experiment to verify the final “answer lookback™ stage. After
this instructive starting point, we work backward to verify the earlier steps of the model. Additional
results can be found in Appendix G and H.

5.1 STEP II: ANSWER LOOKBACK — RETRIEVING THE CORRECT STATE

Localizing the Answer Payload We first verify the presence of the correct Answer Payload A
at the deepest layer representation of final token “:”. To do so, we run an interchange intervention
experiment shown in Fig. 4a in which the counterfactual example c swaps the order of the characters
and objects of the original example o and also replaces the state (drinks) tokens with new values. If
the Answer Payload is correctly localized, swapping it should cause the answer of the counterfactual
(e.g., tea) to replace the answer of the original example (e.g., ). The gray line in Fig. 4b shows
that this output change is observed in every one of n = 80 cases, both when intervening on the
full residual stream and on the identified subspace. However, not at every layer: the information is
only present after layer 56, indicating that before this stage, the transformer has not yet retrieved the
correct answer payload into the residual stream. That is consistent with our hypothesis that at early
steps, the OI has not yet been dereferenced. At an earlier stage, we expect to see an Answer Pointer.

Localizing the Pointer Information To identify the Answer Pointer © before it is dereferenced to
bring the payload (state token value), we examine the representations of ““:” at layers earlier than 56.
Our causal model provides the hypothesis: if the Answer Pointer is present, then patching the pointer
from the counterfactual run into the original run should redirect the LM to attend to the location
of the correct counterfactual state and fetch its payload. For example, in Fig. 4a the counterfactual
pointer references the first presented state. When we patch it into the original story, we expect the
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(a) Intervention Input Example (b) Layer-wise Intervention Results
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Figure 4: Answer Lookback Pointer and Payload: The causal model predicts that if we alter the
“Answer Payload A” of the original to instead take the value of the counterfactual answer payload, the
output should change from to tea; the gray curve in the line plot shows this does occur when
patching residual vectors at the “:” token beyond layer 56, providing evidence that the answer payload
resides in those states. On the other hand the causal model predicts that taking the counterfactual
“Answer Pointer ©” would change the original run output from to —a new output that
matches neither the original nor the counterfactual!—and we do see this surprising effect, again when

patching layers between 34 and 52, providing strong evidence that the answer pointer is encoded at
those layers. These results suggest the Answer Lookback occurs between layers 52 and 56.

model’s answer to change to rather than . The colored line in Fig. 4b confirms that this
effect is consistently observed when patching any layer between 34 — 52 (both when patching the
full residual stream and the identified subspace), supporting our hypothesis that these layers encode
the Answer Pointer information at the final token, rather than directly transferring token values.

5.2 STEPI: BINDING LOOKBACK — LINKING CHARACTERS, OBJECTS, AND STATES

Localizing the Address and Payload In this experiment, we verify the presence of the address
copies of the character and object OIs as well as the payload (state OI) at the state token residual
stream (recalled token, Fig. 3). As illustrated in Fig. 5(a), we construct an intervention dataset where
each example consists of an original input o with an answer that is not unknown and a counterfactual
input ¢ where the character, object, and state token values are identical, except the ordering of the
two story sentences is swapped while the question remains unchanged. The expected LM’s output
predicted by our hypothesized causal model is the other state token in the original example, e.g.,

That is because patching the address and payload values at each state token, without changing the
pointer, makes the LM dereference the other state token. As a result, the model’s output should flip to
the other state token in the original input.

(a) Intervention Input Example (b) Layer-wise Intervention Results
_N/Carla and Bob are working in a busy restaurant. To complete >\l-0 “ .
£| an order, Carla grabs an opaque and fills it with o §08 A —ZulkljreSIdual
& ; 5 0. ubspace
g Then l?.ob grabs another opaque : and fills 1‘; with 3 ; dimension < 14
g| Question: What does Carla believe the contains? <06 [
2 .
O| Answer: =] | B |
(Bob and Carla are working in a busy restaurant. To completp ‘E 0.4 :
E an order, Bob grabs an opaque and fills it with 5 2 |
®| Then Carla grabs another opaque and fills it with . 3] 0.2 | L
O| Question: What does Carla believe the contains? = 0.0 ] e
A g .
nswer J 0 10 20 30 40 50 60 70
Intervention: Binding Payloads and Addresses (A, ©, ©) Layers
Causal Model Output:

Figure 5: Binding lookback Address and Payload: The causal model predicts that swapping
addresses (character and object Ols; © and ©) and payloads (state Ols; A) should cause the binding
lookback mechanism to attend to the alternate state token and retrieve its state OI. This retrieved state
Ol is then dereferenced by the answer lookback, producing the corresponding token as the output (e.g.,

instead of ). The LM’s behavior matches this prediction when we perform interchange
interventions on the state token across layers 33—38. These findings support our hypothesis that both
address and payload information are encoded in the residual stream of state tokens.

We perform the interchange intervention experiment layer-by-layer, where we replace the residual
stream vector (or the identified subspace) of the first state token in the original run with that of the
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(a) Intervention Input Example (b) Layer-wise Intervention Results
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Figure 6: Source Reference Information of Binding lookback: The causal model predicts that
swapping the source reference information (character and object Ols; ©, ©), while freezing the
addresses and payloads of the binding lookback, should cause the binding lookback mechanism to
attend to the alternate state token and retrieve its state OI, which would generate alternate state token
as the final output via the answer lookback (e.g., instead of ). The LM’s behavior matches
this prediction when we perform interchange interventions at the character and object tokens across
layers 20-34. These results support our hypothesis that source reference information is encoded in
the residual stream of character and object tokens.

second state token in the counterfactual run and vice versa for the other state token. It is important to
note that if the intervention targets state token values instead of their Ols, it should not produce the
expected output. (This happens in the earlier layers.) As shown in Fig. 5, the strongest alignment
occurs between layers 33 and 38, supporting our hypothesis that the state token’s residual stream
contains both the address (character and object Ols) and the payload information (state OI).

Localizing the Source Reference Information Next, we localize the source reference information,
i.e., character and object Ols at their respective token residual stream. As illustrated in Fig. 6,
we conduct an intervention experiment with a dataset where the counterfactual example, ¢, swaps
the order of the characters and objects as well as replaces the state tokens with entirely new ones
while keeping the question the same as in 0. Under this setup, an interchange intervention on the
hypothesized causal model that targets the source reference should propagate changes through both
the address and the pointer, leaving the final output unchanged. However, if we instead freeze the
state token residual stream, which carries both the payload and the address, the causal model produces
the alternate state token (e.g., in Fig. 6), as the pointer refers to the other state’s address.

In the LM, we interchange the residual streams of the character and object tokens layer-by-layer,
while keeping the residual stream of the state token fixed. As shown in Fig. 6, this experiment reveals
alignment between layers 20 and 34, indicating that source reference is encoded in the residual
streams of the character and object tokens within this layer range. Additional results are provided in
Appendix G, where Fig. 13 shows that freezing the residual stream of the state token is necessary for
this alignment to emerge. These findings support our hypothesis that source reference is present in
the character and object tokens and is subsequently transferred to the recalled and lookback tokens.

Localizing the Pointer Information Finally, we localize the pointer copies of the character and
object Ols to their corresponding tokens in the question and to the final token. See Appendices G & H
for details of the experiments and results.

In summary, belief tracking begins in layers 20-34, where character and object Ols are encoded in
their respective token representations. These Ols are transferred to the corresponding state tokens
in layers 33—-38. When a question is asked, pointer copies of the relevant character and object Ols
are moved to the final token by layer 34, where they are dereferenced to retrieve the correct state OI.
At the final token, this state Ol is represented across layers 34-52, and between layers 5256, it is
dereferenced to fetch the answer from the correct state token, producing the final output.

6 IMPACT OF VISIBILITY CONDITIONS ON BELIEF TRACKING MECHANISM

So far, we have demonstrated how the LM uses ordering IDs and two lookback mechanisms to track
the beliefs of characters that cannot observe each other. Now, we explore how the LM updates the
beliefs of characters when one character (observing) can observe the actions of the other (observed).
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Figure 7: Visibility Lookback When one (observing) character can see another (observed) character,
the LM assigns a visibility ID (O) to the visibility sentence where this relation is defined. An address
copy of this visibility ID remains in the visibility sentence’s residual stream. A pointer copy of
the visibility ID is transferred to the subsequent tokens’ residual stream. The LM dereferences this
pointer through a QK-circuit, bringing forward the payload ( A ), when processing subsequent tokens.
Based on initial evidence, this payload contains the observed character’s OI(©). See Appendix I for
details. This mechanism allows the model to incorporate the observed character’s knowledge into the
observing character’s belief state, enabling more complex belief reasoning.

Hypothesized Visibility Lookback Mechanism We hypothesize that the LM uses an additional
lookback mechanism, which we call the Visibility Lookback, to integrate information about the
observed character when it is explicitly stated that one character can see another’s action. As
illustrated in Fig. 7, we hypothesize that the LM first generates a Visibility ID (©) at the residual
stream of the visibility sentence, serving as the source reference information. The address copy of
the visibility ID remains in the residual stream of the visibility sentence, while its pointer copy gets
transferred to the residual stream of the subsequent tokens (lookback tokens). Then LM forms a
QK-circuit at the lookback tokens and dereferences the visibility ID pointer to retrieve the payload.

Although our two-character setting is unable to discern the exact semantics of the payload in the
visibility lookback, our observations are consistent with the payload encoding the observed character’s
OL Our initial observations suggest another lookback where the story sentence associated with the
observed character serves as the source reference, and its payload encodes information about the
observed character. The observed character’s OI appears to be retrieved by the lookback tokens of the
Visibility lookback, with causal effects on the queried character’s awareness (see App. I for details).

6.1 VERIFYING THE HYPOTHESIZED VISIBILITY LOOKBACK

Localizing the Source Reference In this experiment, we localize the Visibility ID (0), i.e., the
source reference of the Visibility lookback. We conduct an interchange intervention experiment where
the counterfactual is a different story in which the characters’ visibility is flipped from unobserved
to observed (Fig. 8), and we look for an output change from “unknown” to the answer that would
be observed. We intervene on the representation of all the visibility sentence tokens. As shown in
Fig. 8 (blue — line), causal effects appear between layers 10 and 23, indicating that the visibility ID
remains encoded in the visibility sentence until layer 23, after which it is moved into address and
pointer copies that must be connected by dereference to have an effect. This pattern supports our
hypothesis that the LM generates a reference to the Visibility ID.

Localizing the Payload Next, we localize the payload ( A ) information using the same counter-
factual dataset. However, instead of intervening on the recalled tokens, we intervene on the lookback
tokens, specifically the question and answer tokens. As in the previous experiment, we replace the
residual vectors of these tokens in the original run with those from the counterfactual run. As shown
in Fig. 8 (red — line), alignment occurs after layer 31, indicating that the information causing the
queried character’s awareness is present in the lookback tokens after this layer.

Localizing Address and Pointer The previous two experiments indicate the absence of both the
source and payload information between layers 24 and 31. We hypothesize that this lack of signal is
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(a) Intervention Input Example (b) Layer-wise Intervention Results
Carla and Bob are working in a busy restaurant. To complete an >‘1-0’ Visibility
E order, Carla grabs an opaque and fills it with . Then Bob § condition
% grabs another opaque and fills it with . Bob cannot a 0.8 Question
g observe Carla’s actions. Carla can observe Bob’s actions. é) Visibility
2/ Question: What does Carla believe the contains? 0.6 == condition
o = = +Question
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Karen and Max are porking in a busy restayrant. To complete an
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g observe Karen’s acfkions. Karen cannot obsServe Max’s actions. = 0.0
uestion: What do€s Karen believe the contains? VU
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Intervention 1: Source (), Causal Model OQutput:
Intervention 2: Payload (M), Causal Model Output:
Intervention 3: Address & Pointer (©), Causal Model Output:

Figure 8: Visibility Lookback: We conduct three interchange intervention experiments to support
the Visibility Lookback hypothesis: (1) Source Alignment: We align the source reference (O) by
intervening on the visibility sentence, replacing it with its representation from a counterfactual run
where the visibility sentence causes the queried character to become aware of the queried object’s
contents. We observe that source reference information aligns between layers 10 and 23, after which
it splits into separate address and pointer components. (2) Payload Alignment: To align the payload (
A), we intervene on all subsequent tokens and observe alignment only after layer 31. (3) Address and
Pointer Alignment: When intervening on both the address and pointer information (©), we observe
alignment across a broader range of layers, particularly between layers 24 and 31, because of the
enhanced alignment between the address and pointer copies at the recalled and lookback tokens.

due to a mismatch between the address and pointer information that frustrates a lookback dereference.
Specifically, when intervening only on the recalled token after layer 25, the pointer is not updated,
whereas intervening only on the lookback tokens leaves the address unaltered, a mismatch in either
case. To test this hypothesis, we conduct another intervention using the same counterfactual dataset,
but this time, we intervene on the residual vectors of both the recalled and lookback tokens, i.e., the
visibility sentence, as well as the question and answer tokens. As shown in Fig. 8 (green — line),
alignment occurs after layer 10 and remains stable, providing evidence that a lookback now occurs
between layers 24 and 31. This intervention replaces both the address and pointer copies of the
visibility IDs, enabling the LM to form a QK-circuit and resolve the visibility lookback.

7 RELATED WORK

Theory of mind in LMs Theory of mind in LMs has been widely benchmarked (Le et al., 2019;
Shapira et al., 2023; Wu et al., 2023; Kim et al., 2023; Xu et al., 2024; Jin et al., 2024; Chan et al.,
2024; Strachan et al., 2024b). However, these benchmarks lack adequate counterfactuals for the
binding manipulations we need, so we made CausalToM (Section B).

Entity tracking in LMs Entity tracking and variable binding have emerged as research targets in
mechanistic interpretability (Li et al., 2021; Davies et al., 2023; Feng & Steinhardt, 2023; Kim &
Schuster, 2023; Prakash et al., 2024; Feng et al., 2024; Dai et al., 2024; Wu et al., 2025). Our work
builds on their empirical insights.

Mechanistic interpretability of theory of mind Few studies explored the underlying mechanisms
of ToM of LM (Zhu et al., 2024; Bortoletto et al., 2024; Herrmann & Levinstein, 2024). Those studies
use probing (Alain, 2016; Belinkov, 2022) to identify internal representations of beliefs and steering
(Rimsky et al., 2023; Li et al., 2024) to control LMs by manipulating their activations. However, the
mechanisms of ToM in LMs remain a mystery.

8 CONCLUSION

Through a series of interchange intervention experiments, we have mapped the end-to-end underlying
mechanism responsible for the processing of partial knowledge and false beliefs in a set of simple
stories. We are surprised by the pervasive appearance of a single recurring computational pattern: the
lookback, which resembles a pointer dereference inside a transformer. The LMs use a combination
of several lookbacks to reason about nontrivial belief states. Our improved understanding of these
fundamental computations gives us optimism that it may be possible to fully reveal the algorithms
underlying not only the theory of mind, but also other capabilities in LMs.
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A FULL PROMPT

No Visibility

Instruction: 1. Track the belief of each character as described
in the story. 2. A character’s belief is formed only when they
perform an action themselves or can observe the action taking place.
3. A character does not have any beliefs about the container and

its contents which they cannot observe. 4. To answer the question,
predict only what is inside the queried container, strictly based
on the belief of the character, mentioned in the question. 5. If
the queried character has no belief about the container in question,
then predict ‘unknown’. 6. Do not predict container or character
as the final output.
Story: Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opadque and fills it with
beer. Then Carla grabs another opaque and fills it with
coffee.
Question: What does Bob believe the contains?
Answer:

. 7
Instruction: 1. Track the belief of each character as described
in the story. 2. A character’s belief is formed only when they

perform an action themselves or can observe the action taking place.
3. A character does not have any beliefs about the container and

its contents which they cannot observe. 4. To answer the question,
predict only what is inside the queried container, strictly based
on the belief of the character, mentioned in the question. 5. If
the queried character has no belief about the container in question,
then predict ‘unknown’. 6. Do not predict container or character
as the final output.
Story: Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opadque and fills it with
beer. Then Carla grabs another opaque and fills it with
coffee. Bob can observe Carla’s actions. Carla cannot observe
Bob’s actions.
Question: What does Bob believe the contains?
Answer:

\ J

B THE CAUSALTOM DATASET

We needed to construct a new dataset because we required a task that models could reliably solve.
In contrast, most existing ToM datasets remain challenging for LMs. Additionally, we needed a
dataset in which each sample is paired with multiple counterfactuals, enabling causal computations
and the extraction of the underlying mechanism. The only dataset that met both criteria was BigToM,
which we used in our study. However, even BigToM was insufficient for investigating the full range
of factors influencing the mechanism, such as the relationship between a character and their object.
Furthermore, we needed to simplify the task to allow for additional counterfactuals. To test the effect
of a specific element, we required the ability to modify only that element without altering the rest of
the story or creating an incoherent scenario. For example, consider a story where a flood occurs, and
opening a gate releases the water. In the counterfactual scenario where the gate remains closed, the
story’s continuation becomes unintelligible, since the flood could not have been released.

To address this, we developed CausalToM, which features simple stories accompanied by a range
of counterfactuals. Key features include: (1) two characters, objects, and states, (2) the ability to
modify each of them independently, and (3) control over whether characters witness each other’s
actions. The dataset comprises four templates, one without visibility statements and three with
explicit visibility statements. Each template supports four types of questions (e.g., “CharacterX asked
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about ObjectY”). We used lists of 103 characters, 21 objects, and 23 states. For our interchange
intervention experiments, we randomly sampled 80 pairs of original and counterfactual stories.

C CAUSAL MEDIATION ANALYSIS

=/ Bob and Carla are working in a busy restaurant. To

£ complete an order, Bob grabs an opaque and

€ fills it with . |Then Carla grabs another opaque
g and fills it wit .

3 Question: What does |Bob believe the contains?

Answer:

/David and Carla are dprking in a busy restaurant. To
_|complete an order, David grabs an opaque and
£/ fills it with . Then Carla grabs another opaque
& and fills it with .

e Question: What does Bob believe the contains?

\Answer:

Causal Model Output:

Figure 9: Causal Mediation Analysis: The original example produces the output unknown because
Bob is not mentioned in the story, leaving the model without any information about his beliefs.
However, when the residual stream vectors corresponding to Bob from the counterfactual run are
patched into the original run, the model acquires the necessary information about that character and
consequently updates its output to beer.

In addition to the experiment shown in Fig.9, we conduct similar experiments for the object and
state tokens by replacing them in the story with random tokens, which alters the original example’s
final output. However, patching the residual stream vectors of these tokens from the counterfactual
run restores the relevant information, enabling the model to predict the causal model output. The
results of these experiments are collectively presented in Fig.2, with separate heatmaps shown in
Fig. 10, 11, 12.
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Figure 10: Information flow of character input tokens using causal mediation analysis.
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Figure 11: Information flow of object input tokens using causal mediation analysis.
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Figure 12: Information flow of state input tokens using causal mediation analysis.

D DESIDERATE BASED PATCHING VIA CAUSAL ABSTRACTION

Causal Models and Interventions A deterministic causal model M has variables that take on
values. Each variable has a mechanism that determines the value of the variable based on the values of
parent variables. Variables without parents, denoted X, can be thought of as inputs that determine the
setting of all other variables, denoted M (x). A hard intervention A < a overrides the mechanisms
of variable A, fixing it to a constant value a.

Interchange Interventions We perform interchange interventions (Vig et al., 2020; Geiger et al.,
2020) where a variable (or set of features) A is fixed to be the value it would take on if the LM were
processing counterfactual input c. We write A < Get(M(c), A) where Get(M(c), A) is the value
of variable A when M processes input c. In experiments, we will feed a original input o to a model
under an interchange intervention M 4. get(A(c),A))(0)-

Featurizing Hidden Vectors The dimensions of hidden vectors are not an ideal unit of analysis
(Smolensky, 1986), and so it is typical to featurize a hidden vector using some invertible function,
e.g., an orthogonal matrix, to project a hidden vector into a new variable space with more inter-
pretable dimensions called “features”(Mueller et al., 2024). A feature intervention Fy, < f edits the
mechanism of a hidden vector h to fix the value of features F'y, to f.

Alignment The LM is a low-level causal model L where variables are dimensions of hidden vectors
and the hypothesis about LM structure is a high-level causal model H. An alignment 11 assigns each
high-level variable A to features of a hidden vector F{., e.g., orthogonal directions in the activation
space of h. To evaluate an alignment, we perform intervention experiments to evaluate whether
high-level interventions on the variables in A have the same effect as interventions on the aligned
features in L.

Causal Abstraction We use interchange interventions to reveal whether the hypothesized causal
model H is an abstraction of an LM L. To simplify, assume both models share an input and output
space. The high-level model # is an abstraction of the low-level model £ under a given alignment
when each high-level interchange intervention and the aligned low-level intervention result in the same
output. For a high-level intervention on A aligned with low-level features Fy! with a counterfactual
input ¢ and original input b, we write

GetOutput(Lpa get(c(c),Fa)) (0) = GetOutput(H a«cet(#(c),4)) (0)) )]
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If the low-level interchange intervention on the LM produces the same output as the aligned high-level
intervention on the algorithm, this is a piece of evidence in favor of the hypothesis. This extends
naturally to multi-variable interventions (Geiger et al., 2024).

Graded Faithfulness Metric We construct counterfactual datasets for each causal variable where
an example consists of a base prompt and a counterfactual prompt . The counterfactual label is the
expected output of the algorithm after the high-level interchange intervention, i.e., the right-side of
Equation 1. The interchange intervention accuracy is the proportion of examples for which Equation 1
holds, i.e., the degree to which # faithfully abstracts L.

Aligning Features to Causal Variables In our experiments, we use Singular Vector Decomposition
(SVD) to featurize residual stream vectors, i.e., features are the orthogonal singular vectors. For
a given transformer layer and token location, we collect the residual stream vectors across a large
number of examples and compute the singular vectors. Given singular vector features F', of a hidden
vector h in the residual stream of the LM L, we select features to align with a causal variable A in
causal model H using Desiderata-based Component Masking (DCM) (De Cao et al., 2020; Davies
et al., 2023; Prakash et al., 2024). Given original input o and counterfactual input c, we train a mask
m < [0, 1]'Frl on the following objective

CE (GetLOgitS(CFm—moGet([,(c),Fh)) (b)), GetLogits (H 4+ Get(#(c),A)) (b))) 2
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E PSEUDOCODE FOR THE BELIEF TRACKING HIGH-LEVEL CAUSAL MODEL

Algorithm 2 High-level causal model for the no visibility

procedure BELIEFTRACKING(c1, 01, 81, C2, 02, 2, Gcs Qo)

1:
2 Ordering ID assignment
3 cgl,ogl,sgl + AssignOIs([cq, 01, 81],1)
4 91 091 9T < AssignOIs([ca, 02, 53], 2)
S:
6: Binding lookback mechanism
7 binding_address, + (copy(c??), copy(o{1))
8:  binding_address, < (copy(c$7), copy(0§7))
9:
10: g2 copy({er s 7o )
1 gd" + copy({o1 : 07, 02 : 097} [g0))
12: binding_pointer < (qCOI, qt?l)
13:
14: if binding_address; = binding_pointer then
15: binding_payload < copy(s97)
16: else if binding_address,, = binding_pointer then
17: binding_payload < copy(s$7)
18: end if
19:
20: Answer lookback mechanism
21: answer_pointer <— binding_payload
22:  answerl _address < sgl
23:  answer2 address < s§!
24: if answerl_address = answer_pointer then
25: answer_payload < s;
26: else if answer2_address = answer_pointer then
27: answer_payload <+ sg
28: end if
29: return answer_payload

30: end procedure

F DESIDERATA-BASED COMPONENT MASKING

While interchange interventions on residual vectors reveal where a causal variable might be encoded
in the LM’s internal activations, they do not localize the variable to specific subspaces. To address
this, we apply the Desiderata-based Component Masking technique (De Cao et al., 2020; Davies et al.,
2023; Prakash et al., 2024), which learns a sparse binary mask m over the singular vectors of the LM’s
internal activations. We first cache the internal activations from 500 samples at the token positions
specified in the main text for each experiment. Next, we apply Singular Value Decomposition to
compute the singular vectors as a matrix V € R?*5%0 where d is the dimensionality of the residual
stream. We then masked this matrix using a learnable binary vector m € [0, 1]¢ to choose a subset of
singular vectors

Vmasked =Vm (3)

The chosen subset of vectors is used to construct a projection matrix Wy,o; € Rx4,

T
Wproj = meLSk’E(i‘/nr,ask’ed (4)

Then, we perform subspace-level interchange interventions (rather than replacing the entire residual
vector) using the following equations:

hnew = projhc + (I - Wproj)ho (5)
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where h,, is the full residual stream of the original run, h. is the full residual stream of the counterfac-
tual run, and A, is the intervened vector where the chosen subspace of h,, is replaced with that of
he.

The core idea is to first remove the existing information from the subspace defined by the projec-
tion matrix and then insert the counterfactual information into that same subspace using the same
projection matrix.

In order to find the optimal subspace, we optimize m to maximize the agreement between the causal
model output and the LM’s output. To do so, we train the mask for each experiment on 80 examples
of the same counterfactual datasets specified in the main text and use another 80 samples as the
validation set. We use the following objective function, which maximizes the logit of the causal
model output token:

L= _logitcausaLmodeLoutput,under,intervention + A § m (6)

Where ) is a hyperparameter used to control the rank of the subspace and m is the learnable mask.
See Appendix D for details on how the causal model output under intervention are computed. We
trained m for one epoch with ADAM optimizer, on batches of size 4 and a learning rate of 0.01.
During training, the parameters of m are continuous and constrained to lie within the range [0, 1].
To enforce this constraint, we clamp their values after each gradient update. During evaluation, we
binarize the mask by rounding each parameter to the nearest integer, i.e., O or 1.

G ALIGNING CHARACTER AND OBJECT OIS

As mentioned in section 5.2, the source reference information, consisting of character and object OI,
is duplicated to form the address and pointer of the binding lookback. Here, we describe another
experiment to verify that the source information is copied to both the address and the pointer. More
specifically, we conduct the same interchange intervention experiment as described in Fig. 6, but
without freezing the residual vectors at the state tokens. Based on our hypothesis, this intervention
will not be able to change the state of the original run, since the intervention at the source information
will affect both address and pointer, hence making the model form the original QK-circuit.

5 Carla and Bob are working in a busy restaurant. To complete >\1~0 X
£ an order, Carla grabs an opaque and fills it with a §08 = Full residual
&
E Then Bob gryabs another opaque and fills it with o 8 : ziurgzﬁzﬁjensE)S
£ |Questiofy: /What does Carla beligve the contains? :E 0.6
2 B
© | Answer:
o - 204

_ | Bob andfa\/la are working in a Jusy restaurant. To complete g
£ | an orde¥, Bob grabs an opaque and fills it with 5 [ 02
g Then Carla grabs another opaque and fills it with é—’t : IJ_/V

Question: What does Carla believe the contains? - 0.0

|Answer: ) 0 10 20 30 40 50 60 70

Layers

Intervention: Binding Source (O, ©)
Causal Model Output:

Figure 13: Source Reference Information of Binding lookback: In this interchange intervention
experiment, the source information, i.e., the character and object OIDs (O, ©), is modified, while
the address and payload (O, ©, A) are recomputed based on the modified source. Since both the
address and pointer information are derived from the altered source, the binding lookback ultimately
retrieves the same original state token as the payload. As a result, we do not observe high intervention
accuracy.

In section 5.2, we identified the source of the information but did not fully determine the locations of
each character and object OI. To address this, we now localize the character and object Ols separately
to gain a clearer understanding of the layers at which they appear in the residual streams of their
respective tokens, as shown in Fig.14 and Fig.15.
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= Bob and Carla are working in a busy restaurant. To complete >\1‘0 X
£ |an order, Bob grabs an opaque and fills it with 2 = Full residual
% Then Carla frabs another opaque and fills it with o EOB __ Subspace
T==' Questioyn: /What does Carla believe the contains? A dimension =< 29.0
8 |Answer J i 0.6 A
. \ 2
Carla ayd éﬁb are working in a biysy restaurant. To cdmplete = 0.4
E an ordgr, Carla grabs an opaque and fills it with 5 °>’ /
:En Then Bob grabs another opaque and fills it with . § 021 7
© |Question: What does Carla believe the contains? = 0.0 4
Answer: B
‘ / 0 10 20 30 40 50 60 70
Intervention: Character OI (O) Layers

Frozen: Object Ol, Binding and Answer Addresses+Payloads ©,0,A;0,4)
Causal Model Output:

Figure 14: Character OI: This interchange intervention experiment swaps the character OI (O),
while freezing the object OI as well as binding lookback address and payload (O, ©, ©). Swapping
the character Ols in the story tokens changes the queried character OI to the other one. Hence, the
final output changes from unknown to

= |Bob and Carla are working in a busy restaurant. To complete %1-0 X
£ an order, Bob grabs an opaque and fills it with 2 = Full residual
€ | Then Carlaj/grabs another opaque and fills it with 5 0.8 Subspace
E QuestioN: / What does Carla belipve the contains? : dimension = 58.0
S Answer ) = 0.6
g )
Carla apd are working in a busy restaurant{, ) To complete | ‘E‘ 0.4 ’
E an ordgr, Carla grabs an opaque and fillg )it with o > |
:Eﬂ Then Bob grabs an@er opaque and fills it with § 0.2 |
© |Question: What does Carla believe the contains? = 0.0 "
Bnswer: S0 10 20 30 40 50 60 70

Intervention: Binding Source (O, ©) Layers

Frozen: Binding and Answer Addresses+Payloads, Queried Character OID (O, ©, A; O, A)
Causal Model Output:

Figure 15: Object OI: This interchange intervention experiment swaps both the character and object
OIs (O, ©), while freezing the address and payload of binding lookback (O, ©, ©) as well as queried
character OI (O). Swapping both character and object Ols in the story tokens ensures that the queried
object gets the other OI. Hence, the final output changes from unknown to

H ALIGNING QUERY CHARACTER AND OBJECT OIS

In section 5.2, we localized the pointer information of binding lookback. However, we found that this
information is transferred to the lookback token (last token) through two intermediate tokens: the
queried character and the queried object. In this section, we separately localize the OIs of the queried
character and queried object, as shown in Fig. 16 and Fig. 17.

= |Bob and Carla are working in a busy restaurant. To complete 510 — Full residual
£ | an order, Bob grabs an opaque and fills it with 5 5] u idu
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-

Carla and Bob are working in a busy restaurant. To complete = 0.4
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© | Question: What does Carla believe the contains? = 0.0

(Bnswer: S 770 10 20 30 40 50 60 70

Intervention: Binding Pointer (O) Layers

Causal Model Output:

Figure 16: Query Character OI: This interchange intervention experiment alters the OI of the
queried character (O) to the other one. Hence, the final output changes from unknown to

I SPECULATED PAYLOAD IN VISIBILITY LOOKBACK

As mentioned in section 6, the payload of the Visibility lookback remains undetermined. In this
section, we attempt to disambiguate its semantics using the Attention Knockout technique introduced
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Figure 17: Query Object OI: This interchange intervention experiment alters the OI of the queried
object (©) to the other one. Hence, the final output changes from unknown to

in (Geva et al., 2023), which helps reveal the flow of crucial information. We apply this technique to
understand which previous tokens are vital for the formation of the payload information. Specifically,
we “knock out” all attention heads at all layers of the second visibility sentence, preventing them
from attending to one or more of the previous sentences. Then, we allow the attention heads to attend
to the knocked-out sentence one layer at a time.

If the LM is fetching vital information from the knocked-out sentence, the interchange intervention
accuracy (ITA) post-knockout will decrease. Therefore, a decrease in IIA will indicate which attention
heads, at which layers, are bringing in the vital information from the knocked-out sentence. If,
however, the model is not fetching any critical information from the knocked-out sentence, then
knocking it out should not affect the ITA.

Layer-wise IIA with Attention Knockouts

e
)

<o
=

<
~

—&— Second sent + First vis sent
First vis sent
—&— Second sent

Intervention Accuracy
o
[\8]

0 10 20 30 40 50 60 70 80
Layer Index

Figure 18: At the second visibility sentence, attention heads are restricted to retrieve information
from one of three prior contexts: (1) both the second story sentence and the first visibility sentence (—
line), (2) only the first visibility sentence (— line), or (3) only the second story sentence (— line).

To determine if any vital information is influencing the formation of the Visibility lookback payload,
we perform three knockout experiments: 1) Knockout attention heads from the second visibility
sentence to both the first visibility sentence and the second story sentence (which contains information
about the observed character), 2) Knockout attention heads from the second visibility sentence to
only the first visibility sentence, and 3) Knockout attention heads from the second visibility sentence
to the second story sentence. In each experiment, we measure the effect of the knockout using ITA.

Fig.18 shows the experimental results. Knocking out any of the previous sentences affects the model’s
ability to produce the correct output. The decrease in IIA in the early layers can be explained by the
restriction on the movement of character Ols. Specifically, the second visibility sentence mentions the
first and second characters, whose character OIs must be fetched before the model can perform any
further operations. Therefore, we believe the decrease in IIA until layer 15, when the character Ols
are formed (based on the results from Section G), can be attributed to the model being restricted from
fetching the character OlIs. However, the persistently low IIA even after this layer—especially when
both the second and first visibility sentences are involved—indicates that some vital information is
being fetched by the second visibility sentence, which is essential for forming the coherent Visibility
lookback payload. Thus, we speculate that the Visibility payload encodes information about the
observed character, specifically their character OI, which is later used to fetch the correct state OI.
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J CORRELATION ANALYSIS OF CAUSAL SUBSPACES AND ATTENTION HEADS

This section identifies the attention heads that align with the causal subspaces discovered in the
previous sections. Specifically, first we focus on attention heads whose query projections are aligned
with the subspaces—characterized by the relevant singular vectors—that contain the correct answer
state OI. To quantify this alignment between attention heads and causal subspaces, we use the
following computation.

Let Q € R%mXdmoer denote the query projection weight matrix for a given layer:

We normalize @) column-wise:

2 - Q:,j
@i =T

Let S € Rk represent the matrix of k singular vectors (i.e., the causal subspace basis). We
project the normalized query weights onto this subspace:

for each column j 7)

Qw=0Q- S ®)

We then reshape the resulting projection into per-head components. Assuming Qg, € R >k and
each attention head has dimensionality d},, we write:

QW = QW e R™F fori=1,..., npeas 9)

Finally, we compute the norm of each attention head’s projection:

head_norm; = HQk(lgd

fori=1,..., Nheads (10)
F

We compute the head_-norm for each attention head in every layer, which quantifies how strongly a
given head reads from the causal subspace present in the residual stream. The results are presented
in Fig. 19, and they align with our previous findings: attention heads in the later layers form the
QK-circuit by using pointer and address information to retrieve the payload during the Answer
lookback.

We perform a similar analysis to check which attention heads’ value projection matrix align with
the causal subspace that encodes the payload of the Answer lookback. Results are shown in Fig. 20,
indicating that attention heads at later layers primarily align with causal subspace containing the
answer token.

K BELIEF TRACKING MECHANISM IN BIGTOM BENCHMARK

This section presents preliminary evidence that the mechanisms outlined in Sections 5 and 6 generalize
to other benchmark datasets. Specifically, we demonstrate that Llama-3-70B-Instruct answers the
belief questions (true belief and false belief) in the BigToM dataset Gandhi et al. (2024) in a manner
similar to that observed for CausalToM: by first converting token values to their corresponding OIs
and then performing logical operations on them using lookbacks. However, as noted in Section 3,
BigToM—Ilike other benchmarks—Iacks the coherent structure necessary for causal analysis. As
a result, we were unable to replicate all experiments conducted on CausalToM. Thus, the results
reported here provide only preliminary evidence of a similar underlying mechanism.

To justify the presence of Ols, we conduct an interchange intervention experiment, similar to
the one described in Section H, aiming to localize the character OI at the character token in the
question sentence. We construct an original sample by replacing its question sentence with that of a
counterfactual sample, selected directly from the unaltered BigToM dataset. Consequently, when
processing the original sample, the model has no information about the queried character and, as
a result, produces unknown as the final output. However, if we replace the residual vector at the
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Figure 19: Alignment between the Answer lookback pointer causal subspace and the query projection
matrix in Llama-3-70B-Instruct.
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Figure 20: Alignment between the Answer lookback payload causal subspace and the value projection
matrix in Llama-3-70B-Instruct.

queried character token in the original sample with the corresponding vector from the counterfactual
sample (which contains the character OI), the model’s output changes from unknown to the state
token(s) associated with the queried object. This is because inserting the character OI at the queried
token provides the correct pointer information, aligning with the address information at the correct
state token(s), thereby enabling the model to form the appropriate QK-circuit and retrieve the state’s
OI. As shown in Fig. 21, we observe a high IIA between layers 9 — 28—similar to the pattern seen
in CausalToM—suggesting that the queried character token encodes the character Ol in its residual
vector within these layers.

Next, we investigate the Answer lookback mechanism in BigToM, focusing specifically on localizing
the pointer and payload information at the final token position. To localize the pointer information,
which encodes the correct state OI, we construct original and counterfactual samples by selecting two
completely different examples from the BigToM dataset, each with different ordered states as the
correct answer. For example, as illustrated in Fig.22, the counterfactual sample designates the first
state as the answer, , whereas the original sample designates the second state,

. We perform an intervention by swapping the residual vector at the last token position from the
counterfactual sample into the original run. The causal model outcome of this intervention is that the
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Figure 21: Query Character OI in BigToM: This interchange intervention experiment inserts
the first character’s Ol into the residual stream at the queried character token (O), resulting in the
movement of pointer information to the last token that aligns with the address information of binding
lookback mechanism. Consequently, the model is able to form the appropriate QK-circuit from the
last token to predict the correct state answer token(s) as the final output, instead of unknown.

model will output the alternative state token from the original sample, . As shown in Fig.22,
this alignment occurs between layers 33 and 51, similar to the layer range observed for the pointer
information in the Answer lookback of CausalToM.
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Figure 22: Answer Lookback Pointer in BigToM: This interchange intervention experiment
modifies the pointer information (©) of the Answer lookback, thereby altering the subsequent QK-
circuit to attend to the other state (e.g., ) instead of the original one (e.g., ). As
a result, the model retrieves the token value corresponding to the other state to answer the question.

Further, to localize the payload of the Answer lookback in BigToM, we perform an interchange
intervention experiment using the same original and counterfactual samples as mentioned in the
previous experiment, but with a different expected output—namely, the correct state from the
counterfactual sample instead of the other state from the original sample. As shown in Fig. 23,
alignment emerges after layer 59, consistent with the layer range observed for the Answer lookback
payload in CausalToM.

Finally, we investigate the impact of the visibility condition on the underlying mechanism and
find that, similar to CausalToM, the model uses the Visibility lookback to enhance the observing
character’s awareness based on the observed character’s actions. To localize the effect of the visibility
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Figure 23: Answer Lookback Payload in BigToM: This interchange intervention experiment
directly modifies the payload information (A) of the Answer lookback, which is fetched from the
corresponding state tokens and predicted as the next token(s). Thus, replacing its value in the original
run, e.g. , with that from the counterfactual run, e.g. , causes the model’s
next predicted tokens to correspond to the correct answer of the counterfactual sample.
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Figure 24: Visibility Lookback in BigToM: We perform three interchange interventions to establish
the presence of the Visibility ID, which serves as both address and pointer information. When
intervening at the source (©)—i.e., the visibility sentence—both the address and pointer are updated,
resulting in alignment across layers. Intervening only at the subsequent question tokens leads to
alignment only at later layers, after the model has already fetched the payload ( A ). However,
intervening at both the visibility and question sentences results in alignment across all layers, as the
address and pointer remain consistent throughout.

condition, we perform an interchange intervention in which the original and counterfactual samples
differ in belief type—that is, if the original sample involves a false belief, the counterfactual involves
a true belief, and vice versa. The expected output of this experiment is the other (incorrect) state of
the original sample. Following the methodology in Section 6, we conduct three types of interventions:
(1) only at the visibility condition sentence, (2) only at the subsequent question sentence, and (3) at
both the visibility condition and the question sentence. As shown in Fig. 24, intervening only at the
visibility sentence results in alignment at early layers, up to layer 17, while intervening only at the
subsequent question sentence leads to alignment after layer 26. Intervening on both the visibility and
question sentences results in alignment across all layers. These results align with those found in the
CausalToM setting shown in the Fig. 8.
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Previous experiments suggest that the underlying mechanisms responsible for answering belief
questions in BigToM are similar to those in CausalToM. However, we observed that the subspaces
encoding various types of information are not shared between the two settings. For example, although
the pointer information in the Answer lookback encodes the correct state’s OI in both cases, the
specific subspaces that represent this information at the final token position differ significantly. We
leave a deeper investigation of this phenomenon—shared semantics across distinct subspaces in
different distributions—for future work.

L. GENERALIZATION OF BELIEF TRACKING MECHANISM ON CAUSALTOM TO
LLAMA-3.1-405B-INSTRUCT

This section presents all the interchange intervention experiments described in the main text, con-
ducted using the same set of counterfactual examples on Llama-3.1-405B-Instruct, using NDIF
Fiotto-Kaufman et al. (2025). Each experiment was performed on 80 samples. Due to computational
constraints, subspace interchange intervention experiments were not conducted. The results indicate
that Llama-3.1-405B-Instruct employs the same underlying mechanism as Llama-3-70B-Instruct to
reason about belief and answer related questions. This suggests that the identified belief-tracking
mechanism generalizes to other models capable of reliably performing the task.
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Figure 25: Payload and address of Binding lookback
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Figure 26: Source Information of Binding lookback
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Figure 27: Source Reference Information of Binding lookback without freezing address and
payload
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Figure 28: Character OI
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Figure 29: Object OI

M THE USE OF LARGE LANGUAGE MODELS (LLMYS)

We used LLMs as a writing assistant to correct grammatical and typographical errors; beyond this,
they did not contribute to any stage of the research.
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