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ABSTRACT

The problem of packing smaller objects within a larger one has long been of inter-
est. In this work, we employ an encoder-decoder architecture, parameterized by
neural networks, for circle packing. Our solution consists of an encoder that takes
the index of a circle as input and outputs a point, which is then transformed by a
constraint block into a valid center within the outer shape. A perturbation block
perturbs this center while ensuring it remains within the corresponding radius,
and the decoder estimates the circle’s index based on the perturbed center. The
functionality of the perturbation block is akin to adding noise to the latent space
variables in variational autoencoders (VAEs); however, it differs significantly in
both the method and purpose of perturbation injection, as we inject perturbation
to push the centers of the circles sufficiently apart. Additionally, unlike typical
VAEs, our architecture incorporates a constraint block to ensure that the circles do
not breach the boundary of the outer shape. We design the constraint block to pack
both congruent and non-congruent circles within arbitrary shapes, implementing
a scheduled injection of perturbation from a beta distribution in the perturbation
block to gradually push the centers apart. We compare our approach to established
methods, including disciplined convex-concave programming (DCCP) and other
packing techniques, demonstrating competitive performance in terms of packing
density—the fraction of the outer object’s area covered by the circles. Our method
outperforms the DCCP-based solution in the non-congruent case and approaches
the best-known packing densities. To our knowledge, this is the first work to
present solutions for packing circles within arbitrary shapes.

1 INTRODUCTION

Packing problems are commonly encountered in various domains of study. These problems involve
packing smaller objects into a larger one to achieve objectives such as maximizing packing density.
The circle packing problem, a specific instance of packing problems, focuses on packing circles
within a larger shape. This non-convex problem arises in various applications Zhang et al. (2013),
such as packing circular objects in a box Castillo et al. (2008), and in fields including nanotech-
nology, telecommunications Cover & Thomas (2006), the oil and automobile industries Wang et al.
(2002), forestry Hifi & M’Hallah (2009), and social distancing Bortolete et al. (2022). These prob-
lems are straightforward to state but difficult to solve, even approximately. For instance, Kepler’s
conjecture, which concerns sphere packing in three-dimensional Euclidean space, was proved only
recently Hales et al. (2015).

In this paper, we focus on developing a method to find sub-optimal solutions to packing problems.
The work in Jose et al. (2024) focused on packing circles of equal radii, i.e., congruent circles, within
a large circle using an autoencoder architecture. In this work, we extend the method to pack circles
of varying radii, i.e., non-congruent circles, into arbitrary shapes. Let the outer shape be centered
at the origin of a Cartesian coordinate system, with the distance to its boundary at angle θ from the
horizontal axis denoted by b(θ), for θ ∈ [0, 2π]. Within this outer shape, we aim to pack N ≥ 1
circles, indexed by i ∈ N = {1, 2, . . . , N}, with radii ri by finding the centers ci for all i ∈ N .
This packing must satisfy two constraints: (1) no circle should extend outside the outer shape, and

∗The code associated with this work can be accessed here: https://github.com/oddjoobs/
ICLR_CirclePacking
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(2) the overlap between any two circles must be zero or below a certain threshold. That is, we are
interested in solving the following optimization problem.

minimize
ci∈R2

O =
∑

1≤i<j≤N

overlap(ϵij), (1a)

subject to ||ci + ri

(
cos(ψ)
sin(ψ)

)
∥2 ≤ b(θ), ∀ψ, θ ∈ [0, 2π], ∀i ∈ N , (1b)

ri + rj − ||ci − cj∥2 ≤ ϵij , ∀i, j ∈ N , i ̸= j, (1c)

where equation 1b ensures that no circle extends outside the outer shape, and equation 1c ensures that
the overlap between any two circles is either zero or below a specified threshold. If the outer shape
is a larger circle centered at the origin with radius R, i.e., b(θ) = R for all θ ∈ [0, 2π], equation 1b
specializes to ||ci||2 + ri ≤ R, ∀i ∈ N . Similarly, if the outer shape is a regular polygon, where
angle to a vertex from the origin is zero, the distance b(θ) from the origin to the nearest edge of a
regular polygon inscribed in a circle with circumradius R and n sides, as a function of the angle
θ, is given by b(θ) = R cos (π/n) / cos (θ mod (2π/n)− π/n), where θ is the angle from the
center of the polygon, π/n is half the central angle between two adjacent vertices, and θ mod 2πn
represents the angular position relative to the nearest vertex.

Our contribution is the development of a solution utilizing an encoder-decoder approach, akin to Jose
et al. (2024), but with significant modifications. This approach aims to determine the coordinates
of the centers of smaller circles within an outer shape while minimizing overlap. Unlike Jose et al.
(2024), we implement several architectural modifications and extend our focus to packing non-
congruent circles within various outer shapes. The outer shapes considered include circles, regular
polygons (such as squares and regular pentagons), and arbitrary shapes.

The circle packing problem, defined by the no-overlap condition, has been extensively studied using
various techniques, including non-linear programming, stochastic search, heuristics, and neural gas
methods Jose et al. (2024). Non-linear programming approaches, such as the stochastic item descent
method He et al. (2020) and the formulation by Graham et al. (1998), focus on maximizing pairwise
distances between points within a unit circle. Stochastic search methods, proposed by Akiyama
et al. (2003), involve initially scattering points and adjusting their positions until they settle without
overlapping. This method has been further refined in Graham et al. (1998) and applied to packing
circles in squares, as seen in Boll et al. (2004) and Szabó et al. (2007). Heuristic algorithms, which
can be classified into construction and optimization methods, have also been explored Huang &
Ye (2011); fu Zhang & sheng Deng (2005); Grosso et al. (2010); Zeng et al. (2016). Construction
algorithms place circles incrementally, while optimization algorithms refine an initial solution. Ad-
ditionally, the neural gas method Pospı́chal (2015) uses clustering of random points to determine
circle centers.

2 PROPOSED ENCODER-DECODER APPROACH

The architecture for packing equal-sized circles into a larger circle in Jose et al. (2024) consists
of an encoder, normalization layer, perturbation layer, and decoder, where encoder and decoder
layers are parameterized by neural networks. We adopt a similar architecture for packing circles
within arbitrary shapes but introduce the following modifications: the encoder neural network is
significantly reduced in size, and batch normalization layers are added, along with Tanh activations
to ensure that the output points lie within a unit square. The normalization layer is replaced by a new
constraint block consisting of learnable parameters, which provides greater freedom for the circle
center to move within the outer shape while satisfying the constraint equation 1b. The perturbation
layer now uses a beta distribution to introduce noise, where we initially perturb the center by small
amounts and gradually increase the perturbation as the packing process progresses. Additionally,
the number of perturbations is increased. Finally, the decoder is expanded, and batch normalization
is added.

2.1 MODEL ARCHITECTURE

In this subsection, we describe each block in detail, and a block diagram is presented in Fig. 1.
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Figure 1: A block diagram showing various blocks in the proposed approach for packing circles
within arbitrary shapes.

Encoder
Block

Constraint
Block

Perturbation
Block

Decoder
Block

1
0
0

0

⋯

0.91
0.04
0.03

0.01

⋯

Figure 2: An illustration of typical outputs of different blocks in packing circles within arbitrary
shapes.

Encoder Block The encoder, fΘ, parameterized by a neural network Θ, takes as input a one-
hot indicator vector ei ∈ {0, 1}N , where the ith element is one and the remaining elements are
zeros, representing the ith circle to be packed, for i ∈ N . It outputs a vector si, i.e., si = fΘ(ei),
which is then transformed by the constraint block into the center ci for Circle i ∈ N . The encoder is
composed of two linear layers, a batch normalization layer, and layers with Leaky ReLU activations,
while the final layer uses the Tanh activation function to output a vector si ∈ [−1, 1]2, ensuring that
si lies within the unit square, centered at the origin, as shown in Fig. 2.

Constraint Block This block transforms si to a feasible ci as follows. First, we normalize si
by dividing by its 2-norm, resulting in s′i = si/∥si∥, which means that s′i lies within a unit cir-
cle centered at the origin. Now, we transform s′i to lie anywhere within the outer shape. For
this, we allow s′i to be rotated as s′′i = R(λi)s

′
i, where the rotation matrix R(λi) is defined as

R(λi) =

(
cos(λi) − sin(λi)
sin(λi) cos(λi)

)
, where λi is the parameter to be learned during the packing pro-

cess. Along the direction of s′′i (say ∠s′′i = ϕ), let li(ϕ) be the maximum ∥ci∥ that ensures equa-
tion 1b is satisfied. Now the new rotated point s′′i is multiplied by li(ϕ) and δi, where δi is a learnable
parameter value lying between [0, 1]. By varying δi, the center can be shifted along the line with
length [0, li(ϕ)], along angle ϕ. This final vector obtained is interpreted as the center of Circle i, ci.
Thus, this layer allows for rotating and scaling each point of the encoder output such that the centers
stay inside the outer shape. In this, the learnable parameters are λi ∈ [0, 2π] and δi ∈ [0, 1], which
are enforced by normalizing a vector and by using Sigmoid functions, respectively.

We now describe how we obtain li(ϕ), which indicates how far we can extend in the direction of
ϕ without crossing the boundary of the outer shape. For simpler outer shapes, such as a circle, we
have li(ϕ) = R− ri. In general, there may not be a closed-form expression for li(ϕ). In such cases,
one can utilize a lookup table containing a finite number of points. However, if the angle ϕ does not
appear in the lookup table, it becomes unclear how to proceed. In this work, we employ a radial basis
function network to estimate li(ϕ) for any given ϕ. This network is trained on pairs of (ϕ, li(ϕ)) that
we obtain as follows: We select an arbitrary angle θ (see Fig. 3) and draw a line at this angle that
intersects the boundary of the outer shape. At this intersection point, we draw a tangent and then a
perpendicular to the tangent, tracing it for a length of ri within the shape. The length of the resultant
point gives us li(ϕ), and the angle is ϕ. We repeat the above process to obtain a sufficient number of
θ values and train the resultant data to obtain a radial basis function network model that maps ϕ to
li(ϕ). The current method expects the curve {li(ϕ) | ∀ϕ ∈ [0, 2π]} should not self-intersect.
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Horizontal axis

Vertical axis

θ ϕ

Q
ri

l(ϕ)
M

Figure 3: In this work, we need li(ϕ), which is the maximum distance from the center of Circle i
along the direction ϕ such that if the circle is centered at that point, it does not breach the boundary
in any direction. To obtain pairs of (ϕ, li(ϕ)), we select an arbitrary angle θ and draw a line at this
angle that intersects the boundary of the outer shape at point Q. At this intersection point, we draw
a tangent and then a perpendicular to the tangent, tracing it for a length of ri within the shape (i.e.,
line segment QM ). The length of the resultant point M gives us li(ϕ), and the angle is ϕ.

Perturbation Block We perturb the center ci by adding a random vector w, ensuring that ∥ci −
w∥2 ≤ ri for all i ∈ N . To generate w, we first sample two independent scalars from the uniform
distribution over [0, 1], stack them as a vector, and normalize it to obtain the unit vector ui. This
provides a random direction. Next, we sample a scalar ρ from the Beta distribution Beta(α, β), and
scale it by ri. Since the Beta distribution’s support is [0, 1], ρri ensures the perturbation magnitude
lies within [0, ri]. Finally, we set w = uiρri, ensuring that the perturbation remains within the
desired radius. The output of the perturbation block is ni = ci +w.

We do not use fixed values for α and β; instead, we change them according to a schedule as the
packing process progresses. This approach ensures that initially, we sample points closer to the
center, allowing the circles to gradually push away. In later stages, when the circles are no longer
in close proximity, we aim to sample points farther from the center. The rationale is that sampling
points from regions where circles intersect increases the difficulty for the decoder, making accurate
predictions harder. To counter this, the encoder pushes the circles apart, thereby reducing the loss
and improving packing efficiency. Additionally, sampling more points per circle can accelerate the
model’s learning process. This scheduling is explained in a later section when detailing the training
process.

The functionality of this block is akin to adding noise to the latent space variables in variational
autoencoders; hence, we refer to this work as a variational autoencoder-like approach. However,
it differs in both the method and purpose of perturbation injection, as we inject perturbation to
sufficiently separate the centers of the circles. Additionally, unlike typical VAEs, our architecture
incorporates a constraint block to ensure that the circles do not breach the boundary of the outer
shape.

Decoder Block This block is composed of many linear layers, batch normalization layers, and
ReLU activation functions (except for the last layer, which uses Softmax). The perturbed point
ni = ci+w is passed to the decoder, gΦ, which makes a prediction about the index the point belongs
to. Specifically, it outputs a probability vector êi, indicating the likelihood that the perturbed point
was generated from ei.

2.2 LOSS FUNCTION AND TRAINING PROCESS

The parameters of the encoder, Θ, parameters of the constraint block, λi and δi, and the decoder,
Φ, are optimized to minimize (1/N)

∑N
i=1 EW

[
Iî ̸=i

]
, where I is an indicator variable that equals

4
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Figure 4: An illustration of packing for N = 45 circles, each of radius ri = 0.13204959425 for
all i ∈ N , within an outer circle of unit radius. The numbers within a circle represent the index of
the circle. The output of the encoder and constraint layer corresponds to the center of the ith circle
plotted (center not shown). The point of the same color as the circle boundaries near the ith circle is
a perturbed center of the circle. The decoder takes these perturbed points as inputs and outputs an
index, î, which is referred to as “guess î”.

1 if î ̸= i and 0 otherwise, and î is the index of the location of the maximum value of êi, i.e.,
î = argmax êi. This approach yields a circle packing solution that avoids overlaps whenever
possible and minimizes their extent in cases where overlaps are unavoidable. In this work, we use
the average cross-entropy loss between ei and êi for i ∈ N as a proxy for (1/N)

∑N
i=1 EW

[
Iî ̸=i

]
and minimize it using standard techniques employed to train an autoencoder.

For training, as mentioned, we create a scheduler to control the noise injection in a systematic
manner. Our scheduler works as follows: we begin with arbitrary values for α and β, such that
α < β. For our case, we initially set α = 2 and β = 8, which results in a probability mass closer
to zero, implying that the center is perturbed only slightly, keeping it near the original position. We
train the network with these values for a specified number of epochs while monitoring the empirical
packing density. If the packing density stagnates, meaning it does not increase over several epochs
(based on a patience hyperparameter), we adjust the parameters as follows: α ← α + 0.28 and
β ← β − 0.46. This adjustment shifts the probability mass away from zero, allowing for larger
perturbations. We continue this process until β reaches 2, at which point we stop modifying it,
while α can keep increasing (in our case, we cap it at 16). The rate at which the beta distribution
is modified, as well as the conditions for stagnation, are additional hyperparameters that can be
fine-tuned to achieve better packing results.

3 RESULTS

To evaluate the performance of our approach, we consider the following packings: congruent circles
in a circle, square, and pentagon, as well as non-congruent circles in a circle, square, and an arbitrary
shape. The outer circle is assumed to have a radius of 1 unit, the outer square a side length of 1 unit,
and the outer regular pentagon a circumradius of 1 unit. For concreteness, we define the arbitrary
shape by b(θ) = 1 + cos2(θ) for θ ∈ [0, 2π].

This work focuses on determining the centers of the circles, given the radii of the smaller circles to
be packed. Except for the case where the outer shape is arbitrary, the radii of the circles that can be
packed without overlap are obtained from Packomania (2024). Specifically, the circles are indexed
from smallest to largest, i.e., the circle with index 1 has the smallest radius, and the circle with index
N has the largest radius. In the case of congruent circles, the radius of each circle is ri = rN ,
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(a) N = 30, ri = 0.09167 for all i ∈ N .
Achieved packing density 0.79079.

(b) N = 30, ri = 0.1613 for all i ∈ N . Achieved
packing density 0.76641.

(c) N = 30, ri = 0.141698 for all i ∈ N .
Achieved packing density 0.75439.

(d) N = 40, ri =
√
i× 0.141698/

√
40 for i ∈

N . Achieved packing density 0.84014.

(e) N = 30, ri =
√
i× 0.235654/

√
30 for i ∈

N . Achieved packing density 0.83877.
(f) N = 40, ri =

√
i× 0.1156615/

√
40 for i ∈

N . Achieved packing density 0.82037.

(g) N = 40, ri = 0.122413 for all i ∈ N .
Achieved packing density 0.76330.

(h) N = 30, ri =
√
i× 0.132892/

√
30 for i ∈

N . Achieved packing density 0.818345.

Figure 5: Illustrations of achieved packing configurations and the estimated packing density for
packing circles within circles and regular polygons.

while for non-congruent circles, ri =
√
i× rN/

√
N , for all i ∈ N , where rN is the radius of the

circle with index N and represents the largest radius. The rN values considered are mentioned in
the specific results. For arbitrary outer shapes, the radii of the inner circles are chosen randomly, as
detailed in the specific results.

We compare our results with the disciplined convex-concave programming (DCCP)-based results
from Shen et al. (2016) and the best-known results from Packomania (2024). Our performance
metric is packing density, defined as the fraction of the total area occupied by the packed circles.
For both the DCCP-based solution and our solution, we estimate the packing density using Monte
Carlo sampling, where a large number of points are randomly generated within the larger object.
The number of overlapping points is then computed to determine the packing density, similar to the
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(a) Initial packing density = 0.41464 (b) Final packing density = 0.6662

(c) Initial packing density = 0.41672 (d) Final packing density = 0.70794

Figure 6: An illustration of circles in a shape with boundary b(θ) = 1+cos2(θ) for θ ∈ [0, 2π] with
the number of circles N = 10. Four inner circles have a radius of 0.5, three have a radius of 0.4,
and one each has a radius of 0.3, 0.2, and 0.1. Fig. 6b shows the final packing corresponding to the
initial packing in Fig. 6a, and similarly, Fig. 6d corresponds to Fig. 6c.

approach in Jose et al. (2024). For the best-known case from Packomania (2024), we report the
packing density as provided, which we believe is theoretically computed.

In Fig. 4, we illustrate the packing for N = 45 circles, each with radius ri = 0.13204959425 for
all i ∈ N , within an outer circle of unit radius. From the figure, we observe that even when the
perturbed center, ci + w, is very close to the boundary of the inner circle, the decoder model is
able to correctly classify it as belonging to the correct circle with center ci, which was output by the
encoder.

In Fig. 5, we show the achieved packing configurations and the estimated packing density obtained
by the proposed encoder-decoder-based approach for packing circles within a circle, square, and
regular pentagon. The packing obtained is visually close to the best-known packing configurations
reported in Packomania (2024) under these settings. Additionally, the packing density achieved by
our approach is also close to the best-known packing densities reported in Packomania (2024).

In Fig. 6, we compare the initial and final packing of non-congruent circles within a shape defined
by the boundary b(θ) = 1+cos2(θ) for θ ∈ [0, 2π]. The initial packing is achieved using the default
initialization of neural network weights from PyTorch (2024). In the constraint block, the parameter
λi is initialized as described earlier, while δi follows a Gaussian random variable with mean −0.75
and variance 1. The figure illustrates that the proposed method ensures all circles remain within
the larger circle’s boundary and overlap minimally. Additionally, we observe an increase in packing
density compared to the initial configuration. In this case, there are no benchmark methods available
to compare the final packing density against.

In Table 1, we present the packing densities obtained from a comparison of our approach, the DCCP-
based solution from Shen et al. (2016), and the best-known packing configurations from Packomania
(2024). Our approach demonstrates comparable performance to DCCP, with both methods achieving
packing densities that are very close to the best-known configurations, regardless of whether we are
packing congruent or non-congruent circles. The packing density obtained by the proposed method
is greater than that of the DCCP-based method for the non-congruent case.
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Table 1: Comparison of packing densities for packing inner circles. In the case where the inner
circles are congruent, the radius of the inner circle with index i is ri = rN . For the non-congruent
case, ri =

√
i× rN/

√
N , where rN is the radius of the circle with index N and represents the

largest radius of the inner circle.

Outer Shape,
Congruency
of Inner
Circles

N rN Packing Density

Our Ap-
proach

DCCP in
Shen et al.
(2016)

Best Known
Packomania
(2024)

Circle, Congruent 10 0.26225 0.6875 0.685184 0.68779
Circle, Congruent 20 0.195224 0.76205 0.7621 0.76224
Circle, Congruent 30 0.161349 0.76714 0.7714 5 0.78100
Circle, Congruent 40 0.140373 0.7781 0.7831 0.78818995
Square, Congruent 10 0.1482043 0.6897 0.685184 0.690035
Square, Congruent 20 0.111382 0.773 0.7419 0.779493
Square, Congruent 30 0.091671 0.7911 0.7800 0.792019
Square, Congruent 40 0.079186 0.7411 0.7879 0.787979
Pentagon, Congruent 10 0.230721 0.671889 0.697512 0.70336
Pentagon, Congruent 20 0.169279 0.74059 0.752128 0.75725
Pentagon, Congruent 30 0.141698 0.7710 0.78023 0.79589
Pentagon, Congruent 40 0.122413 0.7533 0.791434 0.79199
Circle, Non-Congruent 10 0.3808381 0.78691 0.76335 0.79770
Circle, Non-Congruent 20 0.2832029 0.82003 0.81261 0.842140
Circle, Non-Congruent 30 0.235654 0.83877 0.83257 0.86076
Circle, Non-Congruent 40 0.205996 0.84014 0.84137 0.86990
Square, Non-Congruent 10 0.216258 0.7688 0.766325 0.808086
Square, Non-Congruent 20 0.160535 0.8013 4 0.781968 0.850123
Square, Non-Congruent 30 0.1328929 0.818345 0.818335 0.8599747
Square, Non-Congruent 40 0.1156615 0.82037 0.83386 0.8615524

4 CONCLUSIONS AND FUTURE WORK

In this work, we employed an encoder-decoder architecture for packing circles within arbitrary
shapes. The architecture consisted of an encoder that took the index of a circle as input and output a
point, which was then transformed by a constraint block into a valid center within the outer shape. A
perturbation block perturbed this center while ensuring it remained within the corresponding radius,
and the decoder estimated the circle’s index based on the perturbed center. The constraint block was
designed to accommodate both congruent and non-congruent circles, implementing a scheduled
injection of perturbation from a beta distribution to gradually push the centers apart.

Our approach demonstrated competitive performance compared to established methods, including
DCCP and best-known configurations, in terms of packing density, which we computed by scatter-
ing points within the outer shape and counting the fraction that lay within the area covered by the
smaller circles. We illustrated that the method successfully packed circles within a unit circle, ac-
curately classifying perturbed centers close to the boundary. Visual results showed that the packing
configurations were similar to the best-known configurations for various shapes, achieving packing
densities that approached the best-known. Notably, the proposed method outperformed DCCP in
packing non-congruent circles, achieving higher packing densities. To our knowledge, this was the
first work to present solutions for packing circles within arbitrary shapes.

Future work will focus on extending the method to pack any inner shape, which makes enforcing
constraints difficult. This will require modifications to the constraint and perturbation blocks. Ad-
ditionally, the perturbation scheduler can be further optimized, and enhancements can be made to
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the initialization process. Increasing the complexity of the constraint and encoder layers will also be
explored to achieve better packing results.
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