PACKNETS: A VARIATIONAL AUTOENCODER-LIKE APPROACH FOR PACKING CIRCLES IN ANY SHAPE*

Anonymous authors

Paper under double-blind review

ABSTRACT

The problem of packing smaller objects within a larger one has long been of interest. In this work, we employ an encoder-decoder architecture, parameterized by neural networks, for circle packing. Our solution consists of an encoder that takes the index of a circle as input and outputs a point, which is then transformed by a constraint block into a valid center within the outer shape. A perturbation block perturbs this center while ensuring it remains within the corresponding radius, and the decoder estimates the circle's index based on the perturbed center. The functionality of the perturbation block is akin to adding noise to the latent space variables in variational autoencoders (VAEs); however, it differs significantly in both the method and purpose of perturbation injection, as we inject perturbation to push the centers of the circles sufficiently apart. Additionally, unlike typical VAEs, our architecture incorporates a constraint block to ensure that the circles do not breach the boundary of the outer shape. We design the constraint block to pack both congruent and non-congruent circles within arbitrary shapes, implementing a scheduled injection of perturbation from a beta distribution in the perturbation block to gradually push the centers apart. We compare our approach to established methods, including disciplined convex-concave programming (DCCP) and other packing techniques, demonstrating competitive performance in terms of packing density—the fraction of the outer object's area covered by the circles. Our method outperforms the DCCP-based solution in the non-congruent case and approaches the best-known packing densities. To our knowledge, this is the first work to present solutions for packing circles within arbitrary shapes.

031 032 033

034

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

1 INTRODUCTION

Packing problems are commonly encountered in various domains of study. These problems involve packing smaller objects into a larger one to achieve objectives such as maximizing packing density. 037 The circle packing problem, a specific instance of packing problems, focuses on packing circles 038 within a larger shape. This non-convex problem arises in various applications Zhang et al. (2013), such as packing circular objects in a box Castillo et al. (2008), and in fields including nanotechnology, telecommunications Cover & Thomas (2006), the oil and automobile industries Wang et al. 040 (2002), forestry Hifi & M'Hallah (2009), and social distancing Bortolete et al. (2022). These prob-041 lems are straightforward to state but difficult to solve, even approximately. For instance, Kepler's 042 conjecture, which concerns sphere packing in three-dimensional Euclidean space, was proved only 043 recently Hales et al. (2015). 044

In this paper, we focus on developing a method to find sub-optimal solutions to packing problems. The work in Jose et al. (2024) focused on packing circles of equal radii, i.e., congruent circles, within a large circle using an autoencoder architecture. In this work, we extend the method to pack circles of varying radii, i.e., non-congruent circles, into arbitrary shapes. Let the outer shape be centered at the origin of a Cartesian coordinate system, with the distance to its boundary at angle θ from the horizontal axis denoted by $b(\theta)$, for $\theta \in [0, 2\pi]$. Within this outer shape, we aim to pack $N \ge 1$ circles, indexed by $i \in \mathcal{N} = \{1, 2, \dots, N\}$, with radii r_i by finding the centers c_i for all $i \in \mathcal{N}$. This packing must satisfy two constraints: (1) no circle should extend outside the outer shape, and

^{*}The code associated with this work can be accessed here: https://github.com/oddjoobs/ ICLR_CirclePacking

(2) the overlap between any two circles must be zero or below a certain threshold. That is, we are interested in solving the following optimization problem.

$$\underset{\mathbf{c}_i \in \mathbb{R}^2}{\text{minimize}} \qquad O = \sum_{1 \le i < j \le N} \operatorname{overlap}(\epsilon_{ij}), \qquad (1)$$

subject to

060 061 062

059

$$r_i + r_j - \|\mathbf{c}_i - \mathbf{c}_j\|_2 \le \epsilon_{ij}, \ \forall i, j \in \mathcal{N}, i \ne j,$$
(1c)

 $\|\mathbf{c}_{i} + r_{i} \begin{pmatrix} \cos(\psi) \\ \sin(\psi) \end{pmatrix}\|_{2} \le b(\theta), \ \forall \psi, \theta \in [0, 2\pi], \ \forall i \in \mathcal{N},$

a)

(1b)

063 where equation 1b ensures that no circle extends outside the outer shape, and equation 1c ensures that 064 the overlap between any two circles is either zero or below a specified threshold. If the outer shape 065 is a larger circle centered at the origin with radius R, i.e., $b(\theta) = R$ for all $\theta \in [0, 2\pi]$, equation 1b 066 specializes to $||\mathbf{c}_i||_2 + r_i \leq R, \forall i \in \mathcal{N}$. Similarly, if the outer shape is a regular polygon, where angle to a vertex from the origin is zero, the distance $b(\theta)$ from the origin to the nearest edge of a 067 regular polygon inscribed in a circle with circumradius R and n sides, as a function of the angle 068 θ , is given by $b(\theta) = R \cos(\pi/n) / \cos(\theta \mod (2\pi/n) - \pi/n)$, where θ is the angle from the 069 center of the polygon, π/n is half the central angle between two adjacent vertices, and $\theta \mod 2\pi n$ represents the angular position relative to the nearest vertex. 071

Our contribution is the development of a solution utilizing an encoder-decoder approach, akin to Jose et al. (2024), but with significant modifications. This approach aims to determine the coordinates of the centers of smaller circles within an outer shape while minimizing overlap. Unlike Jose et al. (2024), we implement several architectural modifications and extend our focus to packing noncongruent circles within various outer shapes. The outer shapes considered include circles, regular polygons (such as squares and regular pentagons), and arbitrary shapes.

The circle packing problem, defined by the no-overlap condition, has been extensively studied using various techniques, including non-linear programming, stochastic search, heuristics, and neural gas 079 methods Jose et al. (2024). Non-linear programming approaches, such as the stochastic item descent method He et al. (2020) and the formulation by Graham et al. (1998), focus on maximizing pairwise 081 distances between points within a unit circle. Stochastic search methods, proposed by Akiyama et al. (2003), involve initially scattering points and adjusting their positions until they settle without 083 overlapping. This method has been further refined in Graham et al. (1998) and applied to packing 084 circles in squares, as seen in Boll et al. (2004) and Szabó et al. (2007). Heuristic algorithms, which 085 can be classified into construction and optimization methods, have also been explored Huang & Ye (2011); fu Zhang & sheng Deng (2005); Grosso et al. (2010); Zeng et al. (2016). Construction 087 algorithms place circles incrementally, while optimization algorithms refine an initial solution. Ad-088 ditionally, the neural gas method Pospíchal (2015) uses clustering of random points to determine 089 circle centers.

090 091

092

2 PROPOSED ENCODER-DECODER APPROACH

- 093 The architecture for packing equal-sized circles into a larger circle in Jose et al. (2024) consists 094 of an encoder, normalization layer, perturbation layer, and decoder, where encoder and decoder 095 layers are parameterized by neural networks. We adopt a similar architecture for packing circles 096 within arbitrary shapes but introduce the following modifications: the encoder neural network is significantly reduced in size, and batch normalization layers are added, along with Tanh activations 098 to ensure that the output points lie within a unit square. The normalization layer is replaced by a new 099 constraint block consisting of learnable parameters, which provides greater freedom for the circle 100 center to move within the outer shape while satisfying the constraint equation 1b. The perturbation 101 layer now uses a beta distribution to introduce noise, where we initially perturb the center by small amounts and gradually increase the perturbation as the packing process progresses. Additionally, 102 the number of perturbations is increased. Finally, the decoder is expanded, and batch normalization 103 is added. 104
- 105

107

106 2.1 MODEL ARCHITECTURE

In this subsection, we describe each block in detail, and a block diagram is presented in Fig. 1.

Figure 1: A block diagram showing various blocks in the proposed approach for packing circles within arbitrary shapes.

Figure 2: An illustration of typical outputs of different blocks in packing circles within arbitrary shapes.

Encoder Block The encoder, f_{Θ} , parameterized by a neural network Θ , takes as input a onehot indicator vector $\mathbf{e}_i \in \{0, 1\}^N$, where the *i*th element is one and the remaining elements are zeros, representing the *i*th circle to be packed, for $i \in \mathcal{N}$. It outputs a vector \mathbf{s}_i , i.e., $\mathbf{s}_i = f_{\Theta}(\mathbf{e}_i)$, which is then transformed by the constraint block into the center \mathbf{c}_i for Circle $i \in \mathcal{N}$. The encoder is composed of two linear layers, a batch normalization layer, and layers with Leaky ReLU activations, while the final layer uses the Tanh activation function to output a vector $\mathbf{s}_i \in [-1, 1]^2$, ensuring that \mathbf{s}_i lies within the unit square, centered at the origin, as shown in Fig. 2.

136 137 138

144

116

117 118 119

120

121

127

128 129 130

131 132

133

134

135

Constraint Block This block transforms \mathbf{s}_i to a feasible \mathbf{c}_i as follows. First, we normalize \mathbf{s}_i by dividing by its 2-norm, resulting in $\mathbf{s}'_i = \mathbf{s}_i / ||\mathbf{s}_i||$, which means that \mathbf{s}'_i lies within a unit circle centered at the origin. Now, we transform \mathbf{s}'_i to lie anywhere within the outer shape. For this, we allow \mathbf{s}'_i to be rotated as $\mathbf{s}''_i = \mathbf{R}(\lambda_i)\mathbf{s}'_i$, where the rotation matrix $\mathbf{R}(\lambda_i)$ is defined as $\mathbf{R}(\lambda_i) = \begin{pmatrix} \cos(\lambda_i) & -\sin(\lambda_i) \end{pmatrix}$, where λ_i is the parameter to be learned during the packing pro-

 $\mathbf{R}(\lambda_i) = \begin{pmatrix} \cos(\lambda_i) & -\sin(\lambda_i) \\ \sin(\lambda_i) & \cos(\lambda_i) \end{pmatrix}, \text{ where } \lambda_i \text{ is the parameter to be learned during the packing pro-$

cess. Along the direction of \mathbf{s}_i'' (say $\angle \mathbf{s}_i'' = \phi$), let $l_i(\phi)$ be the maximum $\|\mathbf{c}_i\|$ that ensures equation 1b is satisfied. Now the new rotated point \mathbf{s}_i'' is multiplied by $l_i(\phi)$ and δ_i , where δ_i is a learnable parameter value lying between [0, 1]. By varying δ_i , the center can be shifted along the line with length $[0, l_i(\phi)]$, along angle ϕ . This final vector obtained is interpreted as the center of Circle *i*, \mathbf{c}_i . Thus, this layer allows for rotating and scaling each point of the encoder output such that the centers stay inside the outer shape. In this, the learnable parameters are $\lambda_i \in [0, 2\pi]$ and $\delta_i \in [0, 1]$, which are enforced by normalizing a vector and by using Sigmoid functions, respectively.

We now describe how we obtain $l_i(\phi)$, which indicates how far we can extend in the direction of 152 ϕ without crossing the boundary of the outer shape. For simpler outer shapes, such as a circle, we 153 have $l_i(\phi) = R - r_i$. In general, there may not be a closed-form expression for $l_i(\phi)$. In such cases, 154 one can utilize a lookup table containing a finite number of points. However, if the angle ϕ does not 155 appear in the lookup table, it becomes unclear how to proceed. In this work, we employ a radial basis 156 function network to estimate $l_i(\phi)$ for any given ϕ . This network is trained on pairs of $(\phi, l_i(\phi))$ that 157 we obtain as follows: We select an arbitrary angle θ (see Fig. 3) and draw a line at this angle that 158 intersects the boundary of the outer shape. At this intersection point, we draw a tangent and then a 159 perpendicular to the tangent, tracing it for a length of r_i within the shape. The length of the resultant point gives us $l_i(\phi)$, and the angle is ϕ . We repeat the above process to obtain a sufficient number of 160 θ values and train the resultant data to obtain a radial basis function network model that maps ϕ to 161 $l_i(\phi)$. The current method expects the curve $\{l_i(\phi) \mid \forall \phi \in [0, 2\pi]\}$ should not self-intersect.

Figure 3: In this work, we need $l_i(\phi)$, which is the maximum distance from the center of Circle *i* along the direction ϕ such that if the circle is centered at that point, it does not breach the boundary in any direction. To obtain pairs of $(\phi, l_i(\phi))$, we select an arbitrary angle θ and draw a line at this angle that intersects the boundary of the outer shape at point Q. At this intersection point, we draw a tangent and then a perpendicular to the tangent, tracing it for a length of r_i within the shape (i.e., line segment QM). The length of the resultant point M gives us $l_i(\phi)$, and the angle is ϕ .

Perturbation Block We perturb the center \mathbf{c}_i by adding a random vector \mathbf{w} , ensuring that $\|\mathbf{c}_i - \mathbf{w}\|_2 \le r_i$ for all $i \in \mathcal{N}$. To generate \mathbf{w} , we first sample two independent scalars from the uniform distribution over [0, 1], stack them as a vector, and normalize it to obtain the unit vector \mathbf{u}_i . This provides a random direction. Next, we sample a scalar ρ from the Beta distribution Beta (α, β) , and scale it by r_i . Since the Beta distribution's support is [0, 1], ρr_i ensures the perturbation magnitude lies within $[0, r_i]$. Finally, we set $\mathbf{w} = \mathbf{u}_i \rho r_i$, ensuring that the perturbation remains within the desired radius. The output of the perturbation block is $\mathbf{n}_i = \mathbf{c}_i + \mathbf{w}$.

191 We do not use fixed values for α and β ; instead, we change them according to a schedule as the 192 packing process progresses. This approach ensures that initially, we sample points closer to the center, allowing the circles to gradually push away. In later stages, when the circles are no longer 193 in close proximity, we aim to sample points farther from the center. The rationale is that sampling 194 points from regions where circles intersect increases the difficulty for the decoder, making accurate 195 predictions harder. To counter this, the encoder pushes the circles apart, thereby reducing the loss 196 and improving packing efficiency. Additionally, sampling more points per circle can accelerate the 197 model's learning process. This scheduling is explained in a later section when detailing the training process. 199

The functionality of this block is akin to adding noise to the latent space variables in variational autoencoders; hence, we refer to this work as a variational autoencoder-like approach. However, it differs in both the method and purpose of perturbation injection, as we inject perturbation to sufficiently separate the centers of the circles. Additionally, unlike typical VAEs, our architecture incorporates a constraint block to ensure that the circles do not breach the boundary of the outer shape.

- 211
- 212 213

2.2 Loss Function and Training Process

The parameters of the encoder, Θ , parameters of the constraint block, λ_i and δ_i , and the decoder, Φ , are optimized to minimize $(1/N) \sum_{i=1}^{N} \mathbb{E}_{\mathbf{W}} \left[\mathbb{I}_{\hat{i} \neq i} \right]$, where \mathbb{I} is an indicator variable that equals

Figure 4: An illustration of packing for N = 45 circles, each of radius $r_i = 0.13204959425$ for all $i \in \mathcal{N}$, within an outer circle of unit radius. The numbers within a circle represent the index of the circle. The output of the encoder and constraint layer corresponds to the center of the *i*th circle plotted (center not shown). The point of the same color as the circle boundaries near the *i*th circle is a perturbed center of the circle. The decoder takes these perturbed points as inputs and outputs an index, \hat{i} , which is referred to as "guess \hat{i} ".

1 if $\hat{i} \neq i$ and 0 otherwise, and \hat{i} is the index of the location of the maximum value of $\hat{\mathbf{e}}_i$, i.e., $\hat{i} = \arg \max \hat{\mathbf{e}}_i$. This approach yields a circle packing solution that avoids overlaps whenever possible and minimizes their extent in cases where overlaps are unavoidable. In this work, we use the average cross-entropy loss between \mathbf{e}_i and $\hat{\mathbf{e}}_i$ for $i \in \mathcal{N}$ as a proxy for $(1/N) \sum_{i=1}^N \mathbb{E}_{\mathbf{W}} \left[\mathbb{I}_{\hat{i} \neq i} \right]$ and minimize it using standard techniques employed to train an autoencoder.

246 For training, as mentioned, we create a scheduler to control the noise injection in a systematic 247 manner. Our scheduler works as follows: we begin with arbitrary values for α and β , such that $\alpha < \beta$. For our case, we initially set $\alpha = 2$ and $\beta = 8$, which results in a probability mass closer 248 to zero, implying that the center is perturbed only slightly, keeping it near the original position. We 249 train the network with these values for a specified number of epochs while monitoring the empirical 250 packing density. If the packing density stagnates, meaning it does not increase over several epochs 251 (based on a patience hyperparameter), we adjust the parameters as follows: $\alpha \leftarrow \alpha + 0.28$ and 252 $\beta \leftarrow \beta - 0.46$. This adjustment shifts the probability mass away from zero, allowing for larger 253 perturbations. We continue this process until β reaches 2, at which point we stop modifying it, 254 while α can keep increasing (in our case, we cap it at 16). The rate at which the beta distribution is modified, as well as the conditions for stagnation, are additional hyperparameters that can be 256 fine-tuned to achieve better packing results. 257

258 259

260

216 217

218

219

220

222

224

225

226

227

228

229

230 231 232

233

234

235

236

237

238 239 240

241

242

243

244

245

3 RESULTS

To evaluate the performance of our approach, we consider the following packings: congruent circles in a circle, square, and pentagon, as well as non-congruent circles in a circle, square, and an arbitrary shape. The outer circle is assumed to have a radius of 1 unit, the outer square a side length of 1 unit, and the outer regular pentagon a circumradius of 1 unit. For concreteness, we define the arbitrary shape by $b(\theta) = 1 + \cos^2(\theta)$ for $\theta \in [0, 2\pi]$.

This work focuses on determining the centers of the circles, given the radii of the smaller circles to be packed. Except for the case where the outer shape is arbitrary, the radii of the circles that can be packed without overlap are obtained from Packomania (2024). Specifically, the circles are indexed from smallest to largest, i.e., the circle with index 1 has the smallest radius, and the circle with index N has the largest radius. In the case of congruent circles, the radius of each circle is $r_i = r_N$,

(b) $N = 30, r_i = 0.1613$ for all $i \in \mathcal{N}$. Achieved

(d) $N = 40, r_i = \sqrt{i \times 0.141698} / \sqrt{40}$ for $i \in$ \mathcal{N} . Achieved packing density 0.84014.

(f) $N = 40, r_i = \sqrt{i \times 0.1156615} / \sqrt{40}$ for $i \in$ \mathcal{N} . Achieved packing density 0.82037.

(h) $N = 30, r_i = \sqrt{i \times 0.132892} / \sqrt{30}$ for $i \in$ \mathcal{N} . Achieved packing density 0.818345.

Figure 5: Illustrations of achieved packing configurations and the estimated packing density for packing circles within circles and regular polygons.

while for non-congruent circles, $r_i = \sqrt{i \times r_N} / \sqrt{N}$, for all $i \in \mathcal{N}$, where r_N is the radius of the 315 circle with index N and represents the largest radius. The r_N values considered are mentioned in 316 the specific results. For arbitrary outer shapes, the radii of the inner circles are chosen randomly, as 317 detailed in the specific results. 318

319 We compare our results with the disciplined convex-concave programming (DCCP)-based results 320 from Shen et al. (2016) and the best-known results from Packomania (2024). Our performance 321 metric is packing density, defined as the fraction of the total area occupied by the packed circles. For both the DCCP-based solution and our solution, we estimate the packing density using Monte 322 Carlo sampling, where a large number of points are randomly generated within the larger object. 323 The number of overlapping points is then computed to determine the packing density, similar to the

Figure 6: An illustration of circles in a shape with boundary $b(\theta) = 1 + \cos^2(\theta)$ for $\theta \in [0, 2\pi]$ with the number of circles N = 10. Four inner circles have a radius of 0.5, three have a radius of 0.4, and one each has a radius of 0.3, 0.2, and 0.1. Fig. 6b shows the final packing corresponding to the initial packing in Fig. 6a, and similarly, Fig. 6d corresponds to Fig. 6c.

approach in Jose et al. (2024). For the best-known case from Packomania (2024), we report the
 packing density as provided, which we believe is theoretically computed.

In Fig. 4, we illustrate the packing for N = 45 circles, each with radius $r_i = 0.13204959425$ for all $i \in \mathcal{N}$, within an outer circle of unit radius. From the figure, we observe that even when the perturbed center, $\mathbf{c}_i + \mathbf{w}$, is very close to the boundary of the inner circle, the decoder model is able to correctly classify it as belonging to the correct circle with center \mathbf{c}_i , which was output by the encoder.

In Fig. 5, we show the achieved packing configurations and the estimated packing density obtained by the proposed encoder-decoder-based approach for packing circles within a circle, square, and regular pentagon. The packing obtained is visually close to the best-known packing configurations reported in Packomania (2024) under these settings. Additionally, the packing density achieved by our approach is also close to the best-known packing densities reported in Packomania (2024).

365 In Fig. 6, we compare the initial and final packing of non-congruent circles within a shape defined 366 by the boundary $b(\theta) = 1 + \cos^2(\theta)$ for $\theta \in [0, 2\pi]$. The initial packing is achieved using the default 367 initialization of neural network weights from PyTorch (2024). In the constraint block, the parameter 368 λ_i is initialized as described earlier, while δ_i follows a Gaussian random variable with mean -0.75369 and variance 1. The figure illustrates that the proposed method ensures all circles remain within the larger circle's boundary and overlap minimally. Additionally, we observe an increase in packing 370 density compared to the initial configuration. In this case, there are no benchmark methods available 371 to compare the final packing density against. 372

In Table 1, we present the packing densities obtained from a comparison of our approach, the DCCPbased solution from Shen et al. (2016), and the best-known packing configurations from Packomania
(2024). Our approach demonstrates comparable performance to DCCP, with both methods achieving
packing densities that are very close to the best-known configurations, regardless of whether we are
packing congruent or non-congruent circles. The packing density obtained by the proposed method
is greater than that of the DCCP-based method for the non-congruent case.

Table 1: Comparison of packing densities for packing inner circles. In the case where the inner circles are congruent, the radius of the inner circle with index i is $r_i = r_N$. For the non-congruent case, $r_i = \sqrt{i \times r_N} / \sqrt{N}$, where r_N is the radius of the circle with index N and represents the largest radius of the inner circle.

383	Outer Shape,	N	r_N	Packing Density		
384	Congruency				8 .	
385	of Inner					
386	Circles					
387				Our Ap-	DCCP in	Best Known
388				proach	Shen et al.	Packomania
389					(2016)	(2024)
390	Circle, Congruent	10	0.26225	0.6875	0.685184	0.68779
391	Circle, Congruent	20	0.195224	0.76205	0.7621	0.76224
392	Circle, Congruent	30	0.161349	0.76714	0.7714 5	0.78100
303	Circle, Congruent	40	0.140373	0.7781	0.7831	0.78818995
20/	Square, Congruent	10	0.1482043	0.6897	0.685184	0.690035
205	Square, Congruent	20	0.111382	0.773	0.7419	0.779493
390	Square, Congruent	30	0.091671	0.7911	0.7800	0.792019
390	Square, Congruent	40	0.079186	0.7411	0.7879	0.787979
397	Pentagon, Congruent	10	0.230721	0.671889	0.697512	0.70336
398	Pentagon, Congruent	20	0.169279	0.74059	0.752128	0.75725
399	Pentagon, Congruent	30	0.141698	0.7710	0.78023	0.79589
400	Pentagon, Congruent	40	0.122413	0.7533	0.791434	0.79199
401	Circle, Non-Congruent	10	0.3808381	0.78691	0.76335	0.79770
402	Circle, Non-Congruent	20	0.2832029	0.82003	0.81261	0.842140
403	Circle, Non-Congruent	30	0.235654	0.83877	0.83257	0.86076
404	Circle, Non-Congruent	40	0.205996	0.84014	0.84137	0.86990
405	Square, Non-Congruent	10	0.216258	0.7688	0.766325	0.808086
406	Square, Non-Congruent	20	0.160535	0.8013 4	0.781968	0.850123
407	Square, Non-Congruent	30	0.1328929	0.818345	0.818335	0.8599747
408	Square, Non-Congruent	40	0.1156615	0.82037	0.83386	0.8615524

CONCLUSIONS AND FUTURE WORK

In this work, we employed an encoder-decoder architecture for packing circles within arbitrary shapes. The architecture consisted of an encoder that took the index of a circle as input and output a point, which was then transformed by a constraint block into a valid center within the outer shape. A perturbation block perturbed this center while ensuring it remained within the corresponding radius, and the decoder estimated the circle's index based on the perturbed center. The constraint block was designed to accommodate both congruent and non-congruent circles, implementing a scheduled injection of perturbation from a beta distribution to gradually push the centers apart.

Our approach demonstrated competitive performance compared to established methods, including DCCP and best-known configurations, in terms of packing density, which we computed by scattering points within the outer shape and counting the fraction that lay within the area covered by the smaller circles. We illustrated that the method successfully packed circles within a unit circle, ac-curately classifying perturbed centers close to the boundary. Visual results showed that the packing configurations were similar to the best-known configurations for various shapes, achieving packing densities that approached the best-known. Notably, the proposed method outperformed DCCP in packing non-congruent circles, achieving higher packing densities. To our knowledge, this was the first work to present solutions for packing circles within arbitrary shapes.

Future work will focus on extending the method to pack any inner shape, which makes enforcing constraints difficult. This will require modifications to the constraint and perturbation blocks. Ad-ditionally, the perturbation scheduler can be further optimized, and enhancements can be made to the initialization process. Increasing the complexity of the constraint and encoder layers will also be
 explored to achieve better packing results.

References

435

436

440

447 448

449

450

451

452

453

472

479

485

- Jin Akiyama, Rika Mochizuki, Nobuaki Mutoh, and Gisaku Nakamura. Maximin Distance for *n* Points in a Unit Square or a Unit Circle. In Jin Akiyama and Mikio Kano (eds.), *Discrete and Computational Geometry*, pp. 9–13, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
- David W. Boll, Jerry Donovan, Ronald L. Graham, and Boris D. Lubachevsky. Improving Dense Packings of Equal Disks in a Square. 2004.
- J. Bortolete, L. Bueno, Renan Brito Cano Butkeraites, Antonio Chaves, Gustavo Collaço, M. Magueta, Frederico José Ribeiro Pelogia, Luiz Leduino, T. Santos, T. Silva, Francisco Sobral, and Horacio Yanasse. A support tool for planning classrooms considering social distancing between students. *Computational and Applied Mathematics*, 41, 02 2022. doi: 10.1007/s40314-021-01718-w.
 - Ignacio Castillo, Frank J. Kampas, and János D. Pintér. Solving circle packing problems by global optimization: Numerical results and industrial applications. *European Journal of Operational Research*, 191(3):786–802, 2008. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor. 2007.01.054. URL https://www.sciencedirect.com/science/article/pii/ S0377221707004274.
- Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and Signal Processing)*. Wiley-Interscience, July 2006. ISBN 0471241954.
- 456
 457
 458
 456 De fu Zhang and An sheng Deng. An effective hybrid algorithm for the problem of packing circles into a larger containing circle. *Computers & Operations Research*, 32(8):1941–1951, 2005.
- R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R.J. Östergård. Dense packings of congruent circles in a circle. *Discrete Mathematics*, 181(1):139–154, 1998.
- Andrea Grosso, Abdur Jamali, Massimo Locatelli, and Fabio Schoen. Solving the problem of packing equal and unequal circles in a circular container. *Journal of Global Optimization*, 47:63–81, 05 2010.
- Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le Hoang,
 Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen,
 Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta,
 Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
 proof of the kepler conjecture, 2015. URL https://arxiv.org/abs/1501.02155.
- Kun He, Min Zhang, Jianrong Zhou, Yan Jin, and Chu min Li. Stochastic Item Descent Method for
 Large Scale Equal Circle Packing Problem, 2020.
- Mhand Hifi and Rym M'Hallah. A literature review on circle and sphere packing problems: Models and methodologies. *Advances in Operations Research*, 2009, 2009. ISSN 1687-9147. doi: 10.1155/2009/150624. Copyright: Copyright 2011 Elsevier B.V., All rights reserved.
- Wenqi Huang and Tao Ye. Global optimization method for finding dense packings of equal circles in a circle. *European Journal of Operational Research*, 210:474–481, 05 2011. doi: 10.1016/j. ejor.2010.11.020.
- Akshay Kiran Jose, Gangadhar Karevvanavar, and Rajshekhar V Bhat. An Encoder-Decoder Approach for Packing Circles. In *IEEE ISIT*, pp. 3047–3052, 2024. doi: 10.1109/ISIT57864.2024. 10619689.
- Packomania. Packomania: Circle packing and arrangements. http://www.packomania.
 com/, 2024. Accessed: 2024-10-02.
 - Jiří Pospíchal. Solving Circle Packing Problem by Neural Gas. 378:281–289, 06 2015.

- 486
 487
 488
 488
 488
 489
 480
 480
 480
 480
 480
 481
 481
 482
 483
 483
 484
 484
 484
 484
 485
 485
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 486
 487
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
- 490 Xinyue Shen, Steven Diamond, Yuantao Gu, and Stephen Boyd. Disciplined Convex-Concave Pro 491 gramming, 2016. URL https://arxiv.org/abs/1604.02639.
- 492 Péter Gábor Szabó, Mihály Cs. Markót, Tibor Csendes, Eckard Specht, Leocadio G. Casado, and
 493 Inmaculada García. New Approaches to Circle Packing in a Square With Program Codes. In
 494 *Optimization and its applications*, 2007.
- Huaiqing Wang, Wenqi Huang, Quan Zhang, and Dongming Xu. An improved algorithm for the packing of unequal circles within a larger containing circle. *European Journal of Operational Research*, 141(2):440–453, 2002. ISSN 0377-2217. doi: https://doi.org/10. 1016/S0377-2217(01)00241-7. URL https://www.sciencedirect.com/science/ article/pii/S0377221701002417.
- Zhizhong Zeng, Xinguo Yu, Kun He, Wenqi Huang, and Zhanghua Fu. Iterated tabu search and variable neighborhood descent for packing unequal circles into a circular container. *European Journal of Operational Research*, 250(2):615–627, 2016.
- Zhao Zhang, Weili Wu, Ling Ding, Qinghai Liu, and Lidong Wu. Packing Circles in Circles and Applications, pp. 2549–2584. Springer New York, New York, NY, 2013. ISBN 978-1-4419-7997-1. doi: 10.1007/978-1-4419-7997-1_75. URL https://doi.org/10.1007/ 978-1-4419-7997-1_75.