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Abstract

We introduce Grade School Math with Distract-001
ing Context (GSM-DC1), a synthetic bench-002
mark to evaluate Large Language Models’003
(LLMs) reasoning robustness against systemat-004
ically controlled irrelevant context (IC). GSM-005
DC constructs symbolic reasoning graphs with006
precise distractor injections, enabling rigor-007
ous, reproducible evaluation. Our experiments008
demonstrate that LLMs are significantly sen-009
sitive to IC, affecting both reasoning path se-010
lection and arithmetic accuracy. Addition-011
ally, training models with strong distractors012
improves performance in both in-distribution013
and out-of-distribution scenarios. We further014
propose a stepwise tree search guided by a pro-015
cess reward model, which notably enhances016
robustness in out-of-distribution conditions.017

1 Introduction018

Recent advances in Large Language Models019

(LLMs) have demonstrated reasoning capabilities020

across diverse tasks, notably in solving mathemati-021

cal problems (Cobbe et al., 2021; Lewkowycz et al.,022

2022; Zhou et al., 2022; Yao et al., 2023a). Despite023

these advancements, LLMs are found to be less024

robust in reasoning (Berglund et al., 2024; Huang025

et al., 2024; Xu et al., 2024). For example, the026

Flanker Task (Eriksen and Eriksen, 1974) in cog-027

nitive psychology shows that humans’ responses028

become slower and less accurate with increased dis-029

tractors. Shi et al. (2023a) first revealed that LLMs030

similarly suffer performance degradation when ir-031

relevant context is introduced, observing notable032

reductions in accuracy even with just a single dis-033

tractor sentence added to math problems from the034

GSM8K dataset (Cobbe et al., 2021).035

However, previous work has not systematically036

explored the mechanisms underlying this sensi-037

tivity. Shi et al. (2023a) employed only a single038

1The code of our dataset and experiment can be viewed at
https://anonymous.4open.science/r/GSM-DC-88CC/

distractor, limited experiments to short reasoning 039

chains, and omitted supervised fine-tuning and out- 040

of-distribution (OOD) evaluations. Several impor- 041

tant questions thus remain: How does varying the 042

amount of IC affect robustness? Can robust reason- 043

ing be enhanced through supervised fine-tuning? 044

How does the intensity of IC during training im- 045

pact model performance in both in-distribution and 046

OOD scenarios? Additionally, how can the above 047

questions be qualitatively evaluated? 048

To address these gaps, we introduce GSM-DC, 049

a synthetic benchmark designed to enable precise 050

control over both reasoning complexity and distrac- 051

tor structure. Problems in GSM-DC are represented 052

as symbolic dependency graphs, where nodes cor- 053

respond to intermediate quantities and edges repre- 054

sent symbolic operations. This structure facilitates: 055

1) the explicit injection of irrelevant context via 056

off-path nodes and edges without affecting correct 057

solutions; 2) adjustment of reasoning complexity 058

by varying graph depth and structure; and 3) au- 059

tomatic evaluation of model outputs by aligning 060

predictions with the correct reasoning path. 061

Our dataset construction pipeline (Figure 1) in- 062

volves generating symbolic dependency graphs, in- 063

jecting distractors after determining the solution 064

path, and transforming these into human-readable 065

math word problems and solutions. We partition 066

our dataset based on different problem complexi- 067

ties and distractor intensities, conduct various con- 068

trolled experiments, and use automatic stepwise 069

metrics measuring arithmetic correctness and dis- 070

traction robustness. Our controlled experiments 071

yield three main findings. First, model accuracy 072

steadily decreases as distractor intensity rises. Sec- 073

ond, continued pretraining substantially enhances 074

reasoning robustness. Third, incorporating strong 075

IC during training significantly boosts model re- 076

silience, showing superior performance across var- 077

ious distractor intensities in out-of-domain testing. 078

To improve the model’s robustness against IC, 079
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Figure 1: Overview of the GSM-DC framework: both generation and evaluation pipeline. The dataset construction
process (orange) involves three key steps: (1) Dependency Graph Construction builds a symbolic DAG with a
defined solution path via topological sort, (2) Irrelevant Context Injection adds controllable distractor nodes to
increase reasoning complexity, and (3) Natural Language Realization converts the symbolic graph into a human-
readable word problem and finds the solution following the solution path. The resulting instance is evaluated using
a Stepwise Solution Evaluator that computes Step Accuracy, Path Accuracy, and Extraction Answer Accuracy.

we propose a stepwise beam search algorithm080

guided by a Process Reward Model (PRM), which081

scores partial reasoning paths based on their align-082

ment with valid solution trajectories. This approach083

further improves robustness by up to 6.29% in out-084

of-domain conditions, highlighting reinforcement085

learning’s potential to strengthen robustness against086

irrelevant context in model reasoning.087

2 Related Work088

Reasoning with Irrelevant Context LLMs of-089

ten struggle to reason accurately in the presence090

of irrelevant context (IC). Prior work has explored091

this vulnerability by introducing distractors into092

math problems. For example, GSM-IC (Shi et al.,093

2023a) appends irrelevant sentences to arithmetic094

questions but lacks control over distractor struc-095

ture or complexity. GSMIR (Jiang et al., 2024)096

and MPN (Song and Tavanapong, 2024) use hand-097

crafted prompting strategies to mitigate the effects098

of textual noise. Anantheswaran et al. (2024) gen-099

erate adversarial math problems by adding irrel-100

evant variables, showing significant performance101

drops and partial robustness gains through fine-102

tuning. However, their hand-crafted distractors risk103

introducing bias and lack structural control. Other104

studies, such as Wu et al. (2024), show that seman-105

tically similar but irrelevant documents can impair106

LLM performance in retrieval settings. While these 107

works expose LLMs’ sensitivity to IC, they provide 108

limited control over distractor properties. In con- 109

trast, GSM-DC injects distractors into symbolic rea- 110

soning graphs, enabling stepwise evaluation. We 111

further show that a reward-guided beam search im- 112

proves robustness beyond standard fine-tuning. 113

Understanding LLM Reasoning LLM reason- 114

ing has received growing attention, leading to 115

diverse efforts to improve performance on com- 116

plex tasks. Recently, synthetic benchmarks such 117

as GSM-∞ (Zhou et al., 2025) and iGSM (Ye 118

et al., 2024) explored LLM reasoning under long- 119

context and complex distractors. Unlike GSM-∞ 120

and iGSM, our GSM-DC explicitly controls irrele- 121

vant distractors within symbolic DAGs to system- 122

atically quantify the effects of irrelevant context. 123

Hao et al. (2024) introduced AutoRace and the 124

LLM Reasoners library to standardize reasoning 125

evaluation. CoT prompting and in-context learn- 126

ing have been shown to enhance logical reasoning 127

(Bertolazzi et al., 2024), while other work high- 128

lights limitations in handling strict deductions (Li 129

et al., 2024). Recent methods such as ReAct (Yao 130

et al., 2023c), Tree-of-Thoughts (Yao et al., 2023b), 131

and self-consistency decoding (Wang et al., 2023) 132

guide intermediate steps to improve solution qual- 133

ity. Beyond final-answer supervision, Process Re- 134
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ward Models (PRMs) (Uesato et al., 2022; Light-135

man et al., 2024; Zheng et al., 2024; Kumar et al.,136

2024; Hosseini et al., 2024) evaluate partial rea-137

soning paths to promote more robust, interpretable,138

and aligned multi-step reasoning. Finally, Shi et al.139

(2023b) showed that few-shot abduction boosts gen-140

eralization with minimal supervision.141

3 The GSM-DC Dataset142

To systematically investigate how LLMs reason un-143

der irrelevant context (IC), we require a framework144

that satisfies three desiderata: 1) fine-grained ma-145

nipulation of IC, 2) precise control over reasoning146

difficulty, and 3) automatic evaluation of reasoning147

robustness. Existing datasets (§2) like GSM-IC148

are manually built and rely on free-form outputs,149

lacking structural constraints and making stepwise150

evaluation impractical without manual checks.151

We propose the Grade School Math with Dis-152

tracting Context (GSM-DC) benchmark—a con-153

trolled framework for systematically evaluating154

LLMs’ reasoning under irrelevant context that155

meets the above criteria. Each math word problem156

in GSM-DC is represented as a directed acyclic157

graph (DAG), which allows us to 1) explicitly con-158

trol irrelevant context by injecting distracting nodes159

and edges, 2) explicitly control reasoning difficulty160

by adjusting the graph size, and 3) automatically161

compute stepwise reasoning correctness by compar-162

ing model predictions to the ground-truth reasoning163

path. As illustrated in Figure 1, we construct the164

GSM-DC dataset in three steps:165

1) Dependency Graph Construction (§3.1): To166

represent a math word problem, we build a sym-167

bolic dependency graph G to capture the direct,168

implicit, and instance-level dependencies in the169

problem. We then identify a single correct reason-170

ing path P from the graph G via topological sort.171

172 2) Irrelevant Context Injection (§3.2): We turn173

all nodes outside the reasoning path P into dis-174

tractors, producing an augmented graph G′. This175

allows us to explicitly control the problem com-176

plexity (e.g., number of reasoning steps) and the177

intensity of irrelevant context (e.g., via the number178

and connectivity of distractor nodes).179

3) Natural Language Realization (§3.3): We180

then convert the augmented graph G′ into a human-181

understandable math word problem M by mapping182

each node to a real-world entity and rendering each183

edge into a statement. The ground-truth solution S184

is then derived from the original reasoning path P .185

As a result, each problem in the GSM-DC is 186

represented as (G′, M, P , S). This structured rep- 187

resentation enables automatic stepwise evaluation 188

(§3.4) of LLMs’ reasoning chain via the ground- 189

truth path P . In the following, we will introduce 190

the dataset construction pipeline in detail. 191

3.1 Dependency Graph Construction 192

Many grade-school math or logical reasoning prob- 193

lems involve quantities that are interrelated in var- 194

ious ways. These dependencies typically fall into 195

three categories: 1) Direct dependencies, where 196

one quantity is computed directly from another 197

(e.g., if R denotes the radius of a circle and T its 198

diameter, then T = 2×R); 2) Instance dependen- 199

cies, one entity is automatically reliant on another 200

without explicitly stating that reliance. (e.g., “Each 201

shelf holds M books, and there are N shelves”) and 202

3) Implicit dependencies, requiring aggregation or 203

inference over multiple quantities (e.g., grouping 204

cats and dogs as animals). 205

To model these interrelations, we use the di- 206

rected acyclic graph (DAG), denoted as G, where 207

each node denotes a quantity (e.g., Bob’s pens) 208

and each edge represents the dependency between 209

quantities (e.g., Alice has one more pen than Bob). 210

We name G as the dependency graph. We use DAG 211

because the acyclicity ensures that no quantity de- 212

pends on itself, allowing a valid solution path P to 213

be recovered via topological sort. 214

This structured graph-based representation 215

forms the foundation for controlling reasoning 216

complexity and enables injection of irrelevant con- 217

text without affecting the original solution path P . 218

Given inputs—reasoning steps rs, maximum edges 219

E and distractor count m—we generate a DAG by 220

sampling nodes and edges, then extract the solution 221

path P of length rs via topological sort, and finally 222

inject m controllable distractors (§3.2). 223

3.2 Irrelevant Context Injection 224

To create a problem with irrelevant information, 225

we augment the dependency graph by injecting dis- 226

tractor nodes while preserving the original solution 227

path. As illustrated in Figure 2 and described in Al- 228

gorithm 1, we start with a clean dependency graph 229

G and its solution path P . Unused nodes, which 230

are not part of P , are selected and connected to ex- 231

isting nodes through forward-only edges, resulting 232

in a new graph G′ that remains acyclic. 233

Problem difficulty is primarily controlled by the 234

number of reasoning steps rs. To limit the prob- 235
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Algorithm 1 INJECTDISTRACTORS (Figure 2)
Require: Directed acyclic graph G, solution path P
Ensure: Augmented graph G′ with P preserved
1: G′ ← G ▷ work on a copy
2: R← UNUSEDPARAMETERS(G′,P)
3: whileR ̸= ∅ do
4: Sample batch B ⊆ R with |B| = m
5: for all χ ∈ B do
6: R← R \ {χ}; n← NEWNODE(χ)
7: ADDNODE(G′, n) ▷ n is now a distractor
8: if ISUNIQUETARGET(χ) then
9: LABELINDEPENDENT(n) ▷ n has no parents

10: continue
11: end if
12: Choose parent set P ∈ {I, C} with prob q
13: ADDEDGESFORWARD(G′, n,P, ρ)
14: LABELCOMPUTED(n)
15: end for
16: end while
17: return (G′, P )

lem complexity across instances, we constrain the236

input DAG G to have at most E edges. Given237

such a fixed-scale graph and its solution path P ,238

we inject m distractor nodes (none of which lie239

on P) to produce the augmented graph G′ (Al-240

gorithm 1). Importantly, because the total graph241

scale is bounded by E, longer reasoning steps oc-242

cupy more of the graph structure, leaving fewer243

nodes and edges available for distractor injection.244

We vary m ∈ [mmin,mmax] to define three dis-245

tractor intensity levels (e.g., for rs = 2, light246

uses m ∈ [0,2], medium m ∈ [3,4], hard m ≥247

5). To ensure equal-sized noise levels, we com-248

pute the empirical CDF of distractor levels zi as249

F̂z(t) = 1
M

∑M
i=1 I(zi ≤ t) and select m = τk250

with F̂z(τk) = k
N for k ∼ Uniform{1, . . . ,N}.251

You can see the full details are in Appendix B.252
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The number of each Arts Campus's T&T Superm-
arket equals 3. The number of each Engineering C-
ampus's T&T Supermarket equals 4. The number of 
each Science Park's Zion Market equals 1 more t-
han each Arts Campus's T&T Supermarket. The 
number of ea-ch Arts Campus's Seafood Supermark-
et equals the sum of each Science Park's Zion Mark-
et, Arts Campus's T&T Supermarket and each Arts 
Campus's Meat Market. The number of each Arts 
Campus's Meat Market equals 4 times as much as 
each Science Park's Zion Market. 
How many Meat Market does Arts Campus have?

Ground-Truth Solution

Math Word Problem

Define Arts Campus's T&T Supermarket as 𝛼; so 𝑎 =
3 . Define Science Park's Zion Market as 𝑒; so 𝑒 = 𝑎
+1 = 3 + 1 = 4. Define Arts Campus's Meat Market 
as 𝑒; so r = 𝑒 × 4 = 4 × 4 = 1.

Arts Campus's 
T&T Supermarket

Science Park's 
Zion Market 

Arts Campus's 
Meat Market

Figure 2: Distractor construction in GSM-DC. After
generating a DAG, we retain only the original topologi-
cal path used in the solution (A → B → C). Distractor
nodes are constructed by adding forward edges from so-
lution nodes to unused parameters, preserving acyclicity.
Since we control which unused parameters are included
and their dependencies, D is the sum of A, B and C; E
becomes an independent variable; F is excluded entirely.

3.3 Natural Language Realization 253

Once the dependency graph G is constructed and 254

augmented as G′, we instantiate it into natural lan- 255

guage. Each node is mapped to an entity (e.g., “Arts 256

Campus’s T&T Supermarket”) from the hierarchi- 257

cal entity vocabulary of the GSM8K dataset, and 258

each edge is rendered using a templated relational 259

statement (e.g., “the number of Zion Markets is 1 260

more than the number of T&T Supermarkets”)2. 261

These templates capture the underlying dependen- 262

cies while maintaining simple, readable language. 263

To form the math problem M, we concatenate 264

natural-language realizations of edges along the 265

solution path, ending with a question about the 266

final node. Distractors are rendered as unrelated 267

sentences and shuffled with relevant content. 268

Alongside the natural language (NL) problem 269

M, we generate its corresponding NL solution S 270

based on the ground-truth reasoning path P . The 271

solution S sequentially defines variables for each 272

node along the path P and applies the dependencies. 273

An example of the NL problem is given in Figure 3. 274

The number of each Arts Campus' T&T Supermarket equals 3. 
The number of each Engineering Campus' T&T Supermarket equals 4. 
The number of each Science Park's Zion Market equals 1 more than 
each Arts Campus' T&T Supermarket. The number of each Arts 
Campus' Seafood Supermarket equals the sum of each Science Park's 
Zion Market, Arts Campus' T&T Supermarket and each Arts Campus' 
Meat Market. The number of each Arts Campus' Meat Market 
equals 4 times as much as each Science Park's Zion Market. 
How many Meat Market does Arts Campus have?

Ground-Truth Solution

Math Word Problem

Define Arts Campus's T&T Supermarket as 𝛼; so 𝑎 = 3 . Define 
Science Park's Zion Market as 𝑒; so 𝑒 = 𝑎 + 1 = 3 + 1 = 4. Define 
Arts Campus's Meat Market as 𝑒; so r = 𝑒	×	4 = 4	×	4 = 1.

Figure 3: The final reasoning problem constructed from
the example in Figure 2. Irrelevant contexts are in red3.

The generated natural language solution pro- 275

vides a templated Chain-of-Thought (CoT) reason- 276

ing trace, which can be parsed to automatically 277

evaluate the stepwise reasoning correctness. 278

3.4 Stepwise Solution Evaluator 279

After constructing GSM-DC, we build a stepwise 280

solution evaluator to automatically evaluate LLM- 281

generated solutions. For each problem and pre- 282

dicted solution, we report three binary scores; for 283

2We adopt the hierarchical entity vocabulary and templated
relational statements introduced in (Ye et al., 2024).

3We consider arithmetics mod 5 to avoid errors from com-
putation involving large numbers. LLMs can handle arithmetic
via external tools (Schick et al., 2023; Paranjape et al., 2023).
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each, a value of 1 is awarded only when the stated284

criterion is fully satisfied.285

• Step Accuracy (SAcc): Our symbolic parser286

reads the model’s chain-of-thought and executes287

every intermediate equation in topological order.288

SAcc = 1 iff all equations are arithmetically correct289

and each step references only symbols that have290

already been defined. This strict all-or-nothing291

formulation avoids inflating performance with par-292

tially correct derivations.293

• Path Accuracy (PAcc): To quantify distraction294

robustness we check whether the model confines295

its reasoning to the augmented dependency graph296

G′ after injecting irrelevant context. PAcc = 1 iff (i)297

no extraneous nodes appear and (ii) every required298

dependency is present—regardless of which arith-299

metic operator it applies. PAcc is a relaxation of300

SAcc as it only requires stepwise reasoning to be301

correct, but not the associated values themselves.302

• Extraction Answer Accuracy (EAcc): To303

capture final-answer correctness, EAcc = 1 iff304

the model’s extracted answer exactly matches the305

ground truth. We report EAcc only for prompting,306

but our focus remains on SAcc and PAcc.307

We evaluate these metrics over a large set of308

problems and report each as the percentage (%) of309

instances achieving a score of 1.310

4 Experiments311

4.1 Impact of Irrelevant Context312

To systematically analyze how irrelevant context313

(IC) affects LLM reasoning, we conduct controlled314

experiments by injecting varying numbers of irrele-315

vant context (m = 1–15) into math word problems316

M drawn from GSM-DC (§3). We evaluate per-317

formance across four levels of reasoning steps, de-318

noted rs ∈ {2, 3, 4, 5}, and sample 100 instances319

per condition to ensure statistical stability.320

We benchmark six models: Grok-3-Beta, GPT-321

4.1, GPT-4o-mini, LLaMA-3.3-70B, LLaMA-3.1-322

8B and LLaMA-3.2-1B. We employ a five-shot323

prompting strategy enhanced with a structured324

Background section (Appendix A.2) that explic-325

itly encodes relevant dependencies to guide reason-326

ing. Model performance is assessed using three327

metrics using Stepwise Solution Evaluator, SAcc,328

PAcc and EAcc, which together capture reasoning329

correctness, robustness to distractors, and output330

correctness (§3.4). This decomposition allows us to331

isolate the specific ways in which irrelevant context332

degrades model performance.333

Result I: LLMs’ reasoning performance de-
grades with increasing irrelevant context.

334

As shown in Figure 4, all six models exhibit a 335

clear degradation in reasoning accuracy as the num- 336

ber of irrelevant context increases. For instance, 337

at a fixed reasoning depth of rs=5, Grok-3-Beta’s 338

step accuracy drops from 43% with one irrelevant 339

context to just 19% under fifteen irrelevant context. 340

GPT-4.1 exhibits an even steeper decline at the 341

same depth, falling from 26% to 2%. 342

All three evaluation metrics—step accuracy 343

(SAcc), path accuracy (PAcc), and extraction ac- 344

curacy (EAcc)—exhibit similar downward trends 345

as irrelevant context increases. Extraction accu- 346

racy (EAcc) remains relatively high, because our 347

solution parser enforces a strict Chain-of-Thought 348

format (§3.4) that models learn to follow through 349

five-shot prompting. As a result, EAcc is less sen- 350

sitive to distraction compared to SAcc and PAcc, 351

which more directly assess reasoning fidelity and 352

resistance to irrelevant information. 353

Result II: Irrelevant context degrades accu-
racy more steeply at greater reasoning depths.

354

To analyze how irrelevant context (IC) interacts 355

with reasoning complexity, we study the error rate 356

E(m; rs) as a function of distractor count m and 357

reasoning depth rs. We find it roughly follows a 358

power-law trend: E(m; rs) ∝ mδ(rs), where δ(rs) 359

reflects a model’s IC sensitivity. As shown in Fig- 360

ure 4, error increases with m, and the degradation 361

steepens with deeper reasoning. 362

For instance, Grok-3-Beta’s exponent grows 363

from δ ≈ 0.11 at rs=2 to δ ≈ 0.49 at rs=5, 364

indicating greater vulnerability at deeper depths. 365

GPT-4.1 shows a similar slope but higher base- 366

line error, suggesting that reasoning depth governs 367

δ(rs), while model capacity sets the vertical inter- 368

cept—i.e., robustness under minimal distraction. 369

These findings highlight the need to jointly con- 370

sider reasoning complexity and IC sensitivity when 371

designing robust LLMs. 372

4.2 Training with Different Strategies 373

The results so far focus on inference-time behav- 374

ior: models are prompted to reason through irrele- 375

vant context (IC) without being explicitly trained 376

on it. However, since we do not have access to 377

the original training data of these models, it is un- 378

clear whether their observed robustness (or lack 379
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Figure 4: Step-wise accuracy under increasing irrelevant context (IC) for four models, evaluated across reasoning
steps rs ∈ {2,3,4,5}. We adopt a 5-shot prompting strategy with background information. Each curve corresponds
to a specific reasoning step: blue for rs = 2, green for rs = 3, orange for rs = 4, and red for rs = 5 .

thereof) stems from genuine generalization or inci-380

dental exposure to similar patterns during pretrain-381

ing. To disentangle this, we perform controlled382

experiments that explicitly expose models to vary-383

ing degrees of IC and reasoning complexity.384

First, we conduct controlled experiments on385

GSM-DC with varying reasoning steps. We first386

mimic the distribution in GSM-IC by training on387

examples with 2–7 reasoning steps, then evaluate388

on harder problems with up to 22 steps. As shown389

in Appendix C, performance drops sharply once the390

test depth exceeds the training horizon, suggesting391

that models fail to generalize if they trained with392

shallow reasoning samples.393

To address this, we expand the training set to394

include examples up to rs=15, ensuring exposure395

to both long reasoning chains and varying levels396

of irrelevant context. All finetuned models in this397

section are trained on this broader distribution and398

evaluated on both in-distribution (rs ≤ 15) and399

out-of-distribution (rs > 15) samples.400

Result III: Continued pretraining enhances
robustness even without access to IC samples.

401

Building on this controlled training setup, we402

investigate how different finetuning strategies af-403

fect reasoning robustness under irrelevant context.404

Specifically, we compare continued pretraining405

(full finetuning) and LoRA finetuning for reasoning406

robustness using a 30K-sample training set, which407

we select based on empirical scaling trends ana-408

lyzed in Appendix E. As shown in Figure 5, con-409
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Figure 5: Step accuracy of models trained with Non-IC
or IC data using LoRA or continued pretraining.

tinued pretraining confers strong robustness even 410

without IC supervision, substantially outperform- 411

ing LoRA on clean data. With IC training, the 412

gap narrows, but continued pretraining remains 413

consistently more robust across reasoning depths. 414

Based on this, we fixed continued pretraining 30K- 415

samples for all subsequent experiments. 416

4.3 Control of Training Data 417

Result IV: Training with Irrelevant Context
Improves Robustness Most Effectively.

418

As shown in Table 1, the model trained on IC 419

consistently achieves the highest SAcc and PAcc 420

across all rs. The model trained on Clean+IC data 421

performs slightly worse, while the Non-IC model 422

lags behind both. These results suggest that train- 423

ing solely on IC leads to stronger robustness, be- 424
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rs Clean Clean+IC IC

SAcc PAcc SAcc PAcc SAcc PAcc

≤ 15 35.9 41.3 70.0 71.2 73.2 74.7
16 22.0 22.7 32.0 32.0 33.3 33.3
17 21.0 21.0 23.0 23.0 20.7 21.3
18 13.0 13.0 15.7 15.7 16.7 16.7
19 13.7 13.7 13.3 13.3 15.0 15.0
20 9.0 9.0 8.3 8.3 10.0 10.0
21 7.7 7.7 8.7 8.7 5.7 5.7
22 6.0 6.0 5.3 5.3 6.3 6.3

Table 1: Comparison of SAcc and PAcc under different
training regimes: Clean, Clean+IC, and IC.

cause of increased exposure to IC during learning.425

The clean model performs worse on questions426

with IC, even under in-distribution (ID) settings.427

To better understand this limitation, we examine428

the gap ∆(SACC, PACC), represented as the ratio429

between SAcc and PAcc (Figure 6). A lower ratio430

indicates a larger gap—arithmetic errors occurring431

even when the reasoning path is correct. The model432

trained on Clean data consistently shows a higher433

∆, suggesting that IC affects not only reasoning434

path selection, but also arithmetic execution. These435

findings reveal that IC broadly disrupts reasoning,436

and that training with IC-injected examples leads437

to more robust models.438
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Figure 6: Step accuracy (%) for models trained with
Clean or IC using LoRA or continued pretraining.

Result V: Training with challenging irrelevant
context leads to the strongest robustness and gen-
eralization across all pretraining settings.

439

Having established that exposure to irrelevant440

context during training improves robustness, we441

now investigate whether the intensity of such con-442

text further influences generalization. In particular,443

we test whether training on harder, more distracting444

IC leads to greater robustness on out-of-distribution445

(OOD) reasoning problems. Based on the method 446

described in §3, we construct two main versions of 447

the GSM-DC benchmark for evaluation: 448

GSM-DC-Clean: For each reasoning step rs ∈ 449

[2, 22]∩Z, we sample 300 clean dependency graphs 450

without injecting any IC. Each graph contains a 451

unique solution path P and no distractor nodes. 452

This clean subset comprises 6,300 math problems. 453

GSM-DC-with-IC: To study robustness under 454

IC, we generate IC variants of the clean graphs by 455

injecting distractors following the procedure (§3.2). 456

For each reasoning step, we sample 100 graphs 457

under each of three IC intensity levels: LIGHT-IC, 458

MEDIUM-IC, and HARD-IC, while keeping the 459

reasoning path P fixed. Each subset thus contains 460

2,100 problems (100 per step), resulting in a total 461

of 6,300 problems across all IC levels. 462

To evaluate how IC difficulty affects training, we 463

compare five regimes: CLEAN, LIGHT / MEDIUM 464

/ HARD-IC, and MIX-IC. As shown in Table 2 and 465

Table 3, HARD-IC yields the best SAcc across all 466

in-distribution and OOD settings, regardless of IC 467

presence or difficulty. 468

Training
Noise Level

Testing w/ IC (SAcc) Testing w/o IC (SAcc)

ID OOD All ID OOD All

CLEAN 35.91 13.19 32.36 81.95 17.05 60.32
LIGHT-IC 64.79 6.90 46.57 67.33 7.09 46.56
MEDIUM-IC 65.79 7.23 47.44 69.39 9.95 50.38
HARD-IC 77.95 18.57 59.48 82.30 19.86 61.21
MIX-IC 73.23 15.33 57.86 78.09 15.62 57.38

Table 2: Step Accuracy (%) under different training IC
difficulties, evaluated across test IC conditions.

These findings indicate that exposure to adding 469

challenging distractors (HARD-IC) is the most ef- 470

fective training strategy for enhancing model ro- 471

bustness and generalization performance. Intrigu- 472

ingly, MIX-IC, despite incorporating distractor di- 473

versity, consistently underperformed HARD-IC, 474

suggesting that distractor difficulty, rather than va- 475

riety, is the primary driver of improvement. The 476

advantage of HARD-IC over NON-IC, particularly 477

under test-time IC conditions, further reinforces the 478

utility of IC augmentation, specifically with high- 479

difficulty examples, for fostering robust reasoning. 480

5 Improving Model Robustness Against 481

Irrelevant Context 482

The previous section (§4) demonstrate that LLMs 483

are highly sensitive to irrelevant context (IC), and 484
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Training
IC Level

ID Test SAcc OOD Test SAcc

Light Medium Hard Light Medium Hard

LIGHT-IC 67.21 66.57 60.57 8.14 7.29 5.28
MEDIUM-IC 68.14 66.07 63.14 8.71 8.43 4.57
HARD-IC 78.36 79.21 76.28 22.7 18.43 14.57
MIX-IC 74.71 75.07 69.93 17.7 16.57 11.28

Table 3: Step Accuracy (%) per test IC difficulty. All
models are trained with a specific IC difficulty.

that continued pretraining with challenging IC-485

injected examples alone can substantially improve486

robustness. However, even with the strongest con-487

tinued pretraining configurations (e.g., HARD-IC),488

model performance still degrades significantly on489

out-of-distribution (OOD) reasoning steps. This490

raises the question of how robustness can be fur-491

ther improved at test time.492

The number of Bob’s oranges are 4. The number of Alice’s bananas equals 
the number of Bob’s oranges. How many bananas does Alice have?  

②: Select top N / M

Define Alice’s 
oranges as B;

Define Bob’s 
oranges as D;

Define Bob’s 
bananas as X;

so D = 4. so B = 3.

Define Alice’s 
bananas as L;

so M = 4. so L = 4.
③: Repeat ②

so G = B = 4. so B = G = 3. so B = L = 4. so L = B = 3.

Define Alice’s 
apples as B;

Define Alice’s 
bananas as G;

Define Bob’s 
apples as B;

Define Bob’s 
oranges as B;

①: N initial paths
0.89 0.87

0.93

0.790.95

0.98

0.83

0.71

Figure 7: An overview of the ToT algorithm with N = 4
and M = 2. Green nodes indicate those that were
scored highly by the PRM and thus expanded in subse-
quent iterations, while red nodes were not selected as
candidate nodes for the next step. After the algorithm
terminates, the leftmost node is scored the highest and
thus that reasoning path is chosen as the final answer.

Our Tree of Thoughts (ToT) algorithm addresses493

complex reasoning problems by combining tree494

search with the step-by-step inference capabilities495

of large language models (LLMs). As illustrated496

in Figure 7, ToT not only uses an LLM to propose497

candidate reasoning steps, but also integrates a Pro-498

cess Reward Model (PRM) to evaluate and guide499

the search process. Given a partial reasoning path500

h1:t, the PRM assigns a reward R(h1:t) indicating501

the quality of reasoning up to step t. Leveraging502

a synthetic dataset, we systematically inject irrele-503

vant context (IC) and arithmetic errors into selected504

reasoning paths. These negative examples are used505

to train the PRM to distinguish valid reasoning tra-506

jectories from those corrupted by irrelevant context507

(IC) and wrong arithmetic calculations enabling508

the model to prioritize more accurate and robust509

Training
IC Level

ID SAcc OOD SAcc

w/o w/ ∆ w/o w/ ∆
PRM PRM PRM PRM

LIGHT-IC 64.79 66.10 +1.31 6.90 9.59 +2.69
MEDIUM-IC 65.79 70.05 +4.26 7.23 13.52 +6.29
HARD-IC 77.95 79.48 +1.53 18.57 24.17 +5.60
MIX-IC 73.23 75.81 +2.58 15.33 19.06 +3.73
CLEAN 35.91 36.38 +0.47 13.19 15.76 +2.57

Table 4: The Step Accuracies of the models trained with
different IC levels without and with PRM.

solutions during search. 510

Through our experiments, we found that the mea- 511

sured accuracy, both SAcc and PAcc, for the in- 512

distribution case with and without a PRM were 513

similar. Furthermore, in the OOD case, the accu- 514

racy we measured was significantly improved when 515

a PRM was used. The results suggest that using 516

a PRM preserves model performance in ID tasks, 517

while also allowing the model to generalize its re- 518

sponses to OOD tasks. As can be seen from Table 4, 519

the model trained with hard IC performs the great- 520

est, and supplementing it with a PRM significantly 521

improves its accuracy. 522

6 Conclusion 523

We present GSM-DC, a controlled benchmark de- 524

signed to rigorously evaluate and improve the ro- 525

bustness of LLM reasoning in the presence of 526

systematically injected irrelevant context (IC). By 527

framing math problems as symbolic DAGs, GSM- 528

DC enables precise control over reasoning com- 529

plexity and distractor structure, along with auto- 530

matic stepwise evaluator. Our experiments reveal 531

that: 1) LLM accuracy degrades as distractor count 532

increases, with the error roughly following a power- 533

law trend whose exponent grows with reasoning 534

depth; 2) IC affects not only reasoning path se- 535

lection, but also arithmetic execution; 3) Train- 536

ing with challenging IC, combined with continued 537

pretraining, yields the strongest robustness across 538

both in-distribution and out-of-distribution settings, 539

consistently outperforming LoRA finetuning un- 540

der clean and noisy conditions. Finally, we show 541

that reasoning robustness can be further improved 542

at inference time using beam search with PRM, 543

which boosts OOD step accuracy by up to 6.29%. 544

Together, these findings position GSM-DC as both 545

a diagnostic tool for analyzing IC sensitivity and a 546

foundation for developing robust training and infer- 547

ence strategies for language models reasoning. 548
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Limitations549

GSM-DC provides a controlled environment for550

probing LLM reasoning, combining symbolic551

DAGs with natural-language templates inspired552

by datasets like iGSM (Ye et al., 2024). To en-553

hance linguistic diversity and realism, we designed554

a hierarchical vocabulary system derived from555

GSM8K (Cobbe et al., 2021) and constructed tem-556

plated prompts with varied surface forms. While557

this approach balances control and naturalness,558

the use of templates still limits full linguistic ex-559

pressiveness. To address this, we plan to expand560

the benchmark with more diverse natural-language561

realizations sampled from real corpora and sup-562

port more flexible arithmetic reasoning. The cur-563

rent reasoning depth is capped at 22 operations;564

we are generating new tiers with 30+ steps to ex-565

plore long-horizon compositionality. While we566

benchmark six models—Grok-3-Beta, GPT-4.1,567

GPT-4o-mini, LLaMA-3.3-70B, LLaMA-3.1-8B,568

and LLaMA-3.2-1B—all training experiments are569

conducted solely on LLaMA-3.2-1B using a 30K-570

sample dataset (see Appendix E) due to computa-571

tional constraints. Future work will scale to larger572

models to test robustness across capacities. To573

generalize our Process Reward Model and Tree-of-574

Thoughts framework, we will retrain the PRM on575

external reasoning datasets (e.g., ProofWriter, Strat-576

egyQA) and benchmark adaptive beam heuristics.577

Finally, we aim to include faithfulness and bias578

diagnostics—such as explanation consistency and579

demographic sensitivity—to ensure that robustness580

gains translate into safe and trustworthy reasoning.581
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A.1 Training Dataset with Different IC for767

Finetuned Model768

For models that have been finetuned on mathemat-769

ical reasoning tasks, we provide the question di-770

rectly, omitting any system or instruction prompt.771

772

Light-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Science Park’s Zion Market equals 1 more
than each Arts Campus’s T&T Supermarket.
The number of each Engineering Campus’s
Zion Market equals each Engineering
Campus’s T&T Supermarket. How many Zion
Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

773

Medium-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Arts Campus’s La Michoacana Meat Market
equals 4. The number of each Preparatory
School District’s La Michoacana Meat
Market equals 3 more than the difference
of each Science Park’s T&T Supermarket
and each Science Park’s La Michoacana
Meat Market. The number of each Science
Park’s Zion Market equals 1 more than
each Arts Campus’s T&T Supermarket. The
number of each Engineering Campus’s Zion
Market equals each Engineering Campus’s
T&T Supermarket. How many Zion Market does
Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

774

Hard-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s La
Michoacana Meat Market equals 4. The
number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Arts Campus’s Seafood City Supermarket
equals 2 more than each Science Park’s Zion
Market. The number of each Preparatory
School District’s Zion Market equals
each Engineering Campus’s Seafood City
Supermarket. The number of each Science
Park’s Seafood City Supermarket equals the
sum of each Science Park’s La Michoacana
Meat Market and each Science Park’s T&T
Supermarket. The number of each Preparatory
School District’s Seafood City Supermarket
equals 4 more than the sum of each Science
Park’s Zion Market, each Arts Campus’s T&T
Supermarket and each Arts Campus’s Seafood
City Supermarket. The number of each Arts
Campus’s Zion Market equals the sum of
each Science Park’s T&T Supermarket, each
Arts Campus’s T&T Supermarket and each
Engineering Campus’s La Michoacana Meat
Market. The number of each Preparatory
School District’s T&T Supermarket equals
4 more than each Engineering Campus’s
Seafood City Supermarket. The number of
each Science Park’s T&T Supermarket equals
4. The number of each Engineering Campus’s
La Michoacana Meat Market equals 0. The
number of each Engineering Campus’s T&T
Supermarket equals 1 times as much as the
difference of each Engineering Campus’s La
Michoacana Meat Market and each Preparatory
School District’s Seafood City Supermarket.
The number of each Engineering Campus’s
Seafood City Supermarket equals 2 times
as much as the sum of each Science Park’s
Seafood City Supermarket, each Science
Park’s La Michoacana Meat Market and each
Science Park’s T&T Supermarket. The number
of each Science Park’s La Michoacana Meat
Market equals 3 times as much as each
Science Park’s T&T Supermarket. The number
of each Preparatory School District’s La
Michoacana Meat Market equals 3 more than
the difference of each Science Park’s T&T
Supermarket and each Science Park’s La
Michoacana Meat Market. The number of each
Science Park’s Zion Market equals 1 more
than each Arts Campus’s T&T Supermarket.
The number of each Engineering Campus’s
Zion Market equals each Engineering
Campus’s T&T Supermarket. How many Zion
Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.
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Non-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Science Park’s Zion Market equals 1 more
than each Arts Campus’s T&T Supermarket.
How many Zion Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

776

A.2 Testing on Closed-Sourced Model777

To evaluate closed-source models, we use GPT-4o-778

mini to test across all operations. Additionally, we779

included a Background from the underlying graph780

structure to explicitly tell the model entity rela-781

tionships, helping the model construct the correct782

reasoning context. Since the model struggles to783

learn modular operations, we also embed five-shot784

prompting.785

5-shots Testing Sample(Operations = 2)

⋆ System:
You’re an expert at solving elementary math
problems involving addition, subtraction,
and multiplication. You solve all the
problems in a uniform format. All
calculations are done modulo 5. For
example, 3 + 2 equals 0, 1 + 1 equals 2, 4
+ 2 + 4 equals 0, 3 * 2 equals 1, and 3 *
1 equals 3. When providing your solution,
please end with ’The final answer is
«x».’ where x is your final answer, an
integer between 0 and 4. You must solve
all the problems using the same solution
format. Our scenarios involve up to four
categories of objects:schools, classrooms,
backpacks and stationeries. Each school
may contain classrooms, each classroom
may contain backpacks, and each backpack
may contain stationeries. We can specify
quantities, such as "the number of dance
studios at each Lakeshore High."

Assume that every entity with the
same name has an identical configuration;
for example, each Lakeshore High contains
the same number of dance studios. Another
guiding principle is that what is not
mentioned does not exist: when we refer
to classrooms at Lakeshore High, we are
only discussing the classrooms explicitly
mentioned in our scenario. Furthermore,
if Lakeshore High is not even mentioned,
any classroom within it is automatically
considered to be non-existent (i.e. 0).

▶ User: ...

786

▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User:
Background:
There are 4 types of Zoo: Jurong Bird Park,
Flamingo Gardens, Tracy Aviary, and Avery
Island. There are 4 types of Enclosure:
Ladybug Loft, Dragonfly Delta, Snail
Shellter, and Beetle Bungalow. There are
2 types of Animal: Fire Salamander, and
Newt. There are 3 types of Bone: Tertials,
Secondary Feathers, and Metacarpals. Each
Ladybug Loft’s Fire Salamander can have
Ladybug Loft’s Animal. Each Tracy Aviary’s
Snail Shellter can have Snail Shellter’s
Newt and Ladybug Loft’s Fire Salamander.
Each Snail Shellter’s Newt can have Ladybug
Loft’s Fire Salamander. Each Jurong Bird
Park’s Zoo can have Tracy Aviary’s Snail
Shellter, Snail Shellter’s Newt, and
Ladybug Loft’s Fire Salamander.

The problem description is:
The number of each Snail Shellter’s Newt
equals 4 more than each Tracy Aviary’s
Snail Shellter. The number of each Ladybug
Loft’s Fire Salamander equals 1 times
as much as the difference of each Snail
Shellter’s Newt and each Tracy Aviary’s
Snail Shellter. The number of each Tracy
Aviary’s Snail Shellter equals 4. How many
Animal does Ladybug Loft have?

▶ GPT-4o-mini Predicted Solution: (Incorrect)
Define Tracy Aviary’s Snail Shellter as T; so T = 4.
Define Snail Shellter’s Newt as N; so N = T + 4 = 4 +
4 = 3.
Define Ladybug Loft’s Fire Salamander as F; so F =
N - T = 3 - 4 = 0. [CALCULATION ERROR]
Define Ladybug Loft’s Animal as A; so A = F = 0.

▶ Groud-Truth Solution: (Correct)
Define Tracy Aviary’s Snail Shellter as o; so o = 4.
Define Snail Shellter’s Newt as S; so S = 4 + o = 4 +
4 = 3.
Define Ladybug Loft’s Fire Salamander as s; m = S -
o = 3 - 4 = 4; so s = 1 * m = 1 * 4 = 4.
Define Ladybug Loft’s Animal as H; so H = s = 4.

• Step Accuracy: False
• Path Accuracy: True
• Final Answer Accuracy: False

◀ Failure Reason:
The model correctly selects every relevant entity
and follows the intended dependency chain—first

787
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computing the Newt count N from the Snail Shellter
count T , then deriving the Fire Salamander count F
from N and T , and finally mapping F to the total
Animals—showing no influence from irrelevant
context (Path Accuracy = True). Nonetheless, it
commits a modular–arithmetic error: it evaluates
F = N − T = 3 − 4 as 0 instead of the correct
value 4 under modulo 5.(Step Accuracy = False,
Final Answer Accuracy = False).

788

B Quantifying Irrelevant Information789

To empirically study the impact of irrelevant infor-790

mation, we control the number of extraneous nodes791

and edges injected into each example (see Table 5).792

These irrelevant parameters are randomly sampled793

from unused entities in the underlying graph, ensur-794

ing they do not alter the correct reasoning path. We795

incrementally adjust the number of injected nodes796

based on both model performance and problem dif-797

ficulty. Notably, when the number of irrelevant798

nodes becomes large, model performance drops799

significantly. To avoid saturating the model’s ca-800

pacity and distorting evaluation, we refrain from801

injecting more irrelevant information beyond this802

point.803

Operation Irrelevant Parameters

Light Medium Hard

op = 2 0–2 3–4 5-
op = 3 0–1 2–4 5–
op = 4 0–1 2–3 4–
op = 5 0–1 2–3 4–
op = 6 0–1 2–3 4–
op = 7 0–1 2–3 4–
op = 8 0–1 2–3 4–
op = 9 0–1 2–2 3–
op = 10 0–1 2–2 3–
op = 11 0–0 1–2 3–
op = 12 0–0 1–2 3–
op = 13 0–0 1–2 3–
op = 14 0–0 1–2 3–
op = 15 0–0 1–2 3–
op = 16 0–0 1–1 2–
op = 17 0–0 1–1 2–
op = 18 0–0 1–1 2–
op = 19 0–0 1–1 2–
op = 20 0–0 1–1 2–
op = 21 0–0 1–1 2–

Table 5: Quantile distribution of extraneous nodes
across different operations.

C Operation-Range Bias in GSM-IC804

We found that models trained on problems contain-805

ing only a small number of arithmetic operations806

tend to overfit short reasoning templates and fail807

to extrapolate to longer chains of computation. To808

Figure 8: Test accuracy of a model trained on the MIX
≤ 15 set (operation distribution identical to GSM-IC)
when evaluated on OP = 2–22. Accuracy drops sharply
once the required operation count exceeds the training
ceiling.

make this limitation explicit, we adopt exactly the 809

same operation-count distribution as GSM-IC 810

for all in-distribution (ID) training examples (OP 811

= 2–15). Generalisation is then probed with a 812

held-out out-of-distribution (OOD) slice compris- 813

ing problems that require sixteen to twenty-two 814

operations. Figure 8 plots test accuracy against 815

operation count: performance remains high within 816

the ID range but deteriorates rapidly once the task 817

exceeds the training horizon, underscoring the ne- 818

cessity of our two-tier protocol for a fair assessment 819

of compositional reasoning. 820

D Process Reward Model 821

The Process Reward Model (PRM) we used in our 822

experiments was trained using responses from an 823

already fine-tuned model on problems of varying 824

operation levels. Additionally, we utilized a parser 825

that would identify exactly at which step of the 826

LLM’s reasoning chain the first mistake was made. 827

We segmented the model’s responses by using "." 828

and ";" as our stop tokens, and labeled each seg- 829

ment depending on whether it is correct or not as 830

illustrated below. Wherever the parser identified 831

an error, that step and all subsequent steps would 832

receive a negative label [−], while all steps prior 833

received a positive label [+]. 834

PRM Example with Correct Steps

▶ Problem:
The number of each Coniferous Forest’s Hippopota-
mus equals 2 more than the difference of each
Hippopotamus’s Aortic Valve and each Hippopota-
mus’s Organs. The number of each Tropical Dry
Forest’s Rhinoceros equals 2 more than the sum of
each Coniferous Forest’s Organs, each Rhinoceros’s

835
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Organs and each Hippopotamus’s Cardiac Muscle.
The number of each Hippopotamus’s Aortic Valve
equals 1. The number of each Hippopotamus’s
Cardiac Muscle equals 3 times as much as each
Hippopotamus’s Aortic Valve. How many Organs
does Tropical Dry Forest have?

▶ Responses + Labels:
"Define Hippopotamus’s Aortic Valve as g;" [+]
"so g = 1." [+]
"Define Hippopotamus’s Cardiac Muscle as l;" [+]
"so l = 3 * g = 3 * 1 = 3." [+]
"Define Hippopotamus’s Organs as G;" [+]
"so G = g + l = 1 + 3 = 4." [+]
"Define Coniferous Forest’s Hippopotamus as y;" [+]
"w = g - G = 1 - 4 = 2;’, ’so y = 2 + w = 2 + 2 = 4."
[+]
"Define Coniferous Forest’s Organs as L;" [+]
"so L = y * G = 4 * 4 = 1." [+]
"Define Rhinoceros’s Organs as u;" [+]
"so u = 0." [+]
"Define Tropical Dry Forest’s Rhinoceros as R;" [+]
"s = L + u = 1 + 0 = 1;" [+]
"C = s + l = 1 + 3 = 4;" [+]
"so R = 2 + C = 2 + 4 = 1." [+]
"Define Tropical Dry Forest’s Organs as V;" [+]
"so V = R * u = 1 * 0 = 0." [+]

836

The use of a synthetic dataset offers two key ad-837

vantages: it simplifies the curation of training data838

for our Process Reward Model (PRM) and enables839

precise control over injected mistakes, allowing us840

to label incorrect reasoning steps explicitly. This841

was made possible by a solution parser capable of842

not only verifying the final answer but also pin-843

pointing the exact step where an error occurred.844

As a result, we were able to construct high-quality,845

fine-grained supervision signals to effectively train846

the PRM.847

Furthermore, we are able to purposely inject IC848

into a given problem due to the synthetic nature of849

our dataset. For our experiments, after having con-850

structed the directed graph of the correct problem,851

we add IC by generating extraneous details and852

directly including them within the given problem853

statement at various steps. We then pass this new854

problem into the LLM to get its response. After-855

wards, we pass the LLM’s response into our parser856

and it can identify the presence of and type of error857

that was made. Examples of errors include, but858

are not limited to, arithmetic errors, definitions of859

irrelevant/non-existent symbols, or duplicate sym-860

bols.861

PRM Example with Wrong Steps

▶ Problem:
The number of each Nasal Cavity’s Pericytes equals
the difference of each Nasal Cavity’s Arrector Pili
Muscle Cells and each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Nasal Cavity’s
Gastrointestinal Smooth Muscle Cells equals 3
times as much as each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Respiratory
Mucosa’s Pericytes equals 4 times as much as the
sum of each Nasal Cavity’s Gastrointestinal Smooth
Muscle Cells and each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Vocal Cords’s
Pericytes equals 3. The number of each Respiratory
Mucosa’s Arrector Pili Muscle Cells equals 2. The
number of each Nasal Cavity’s Arrector Pili Muscle
Cells equals 3 more than the difference of each
Nasal Cavity’s Gastrointestinal Smooth Muscle
Cells and each Respiratory Mucosa’s Pericytes. The
number of each Vocal Cords’s Arrector Pili Muscle
Cells equals 3 times as much as each Vocal Cords’s
Gastrointestinal Smooth Muscle Cells. The number
of each Respiratory Mucosa’s Gastrointestinal
Smooth Muscle Cells equals each Nasal Cavity’s
Arrector Pili Muscle Cells. The number of each
Vocal Cords’s Gastrointestinal Smooth Muscle Cells
equals 4. How many Cells does Respiratory Mucosa
have?

▶ Responses + Labels:
"Define Vocal Cords’s Gastrointestinal Smooth Mus-
cle Cells as W;" [+]
"so W = 4." [+]
"Define Vocal Cords’s Arrector Pili Muscle Cells as
p;" [−]
"so p = 3 * W = 3 * 4 = 2." [−]
"Define Nasal Cavity’s Gastrointestinal Smooth Mus-
cle Cells as g;" [−]
"so g = 3 * p = 3 * 2 = 1." [−]
"Define Nasal Cavity’s Arrector Pili Muscle Cells as
e;" [−]
"c = g - p = 1 - 2 = 4;" [−]
"so e = 3 + c = 3 + 4 = 2." [−]
"Define Respiratory Mucosa’s Pericytes as z;" [−]
"w = g + p = 1 + 2 = 3;" [−]
"so z = 4 * w = 4 * 3 = 2." [−]
"Define Respiratory Mucosa’s Arrector Pili Muscle
Cells as F;" [−]
"so F = 2." [−]
"Define Respiratory Mucosa’s Gastrointestinal
Smooth Muscle Cells as P;"" [−]
so P = e = 2." [−]
"Define Respiratory Mucosa’s Cells as m;" [−]
"G = P + F = 2 + 2 = 4;" [−]
"so m = G + z = 4 + 2 = 1." [−]
▶ Parser:
existing_but_not_required_params: Vocal Cords’s
Arrector Pili Muscle Cells

862

Thus, this allows us to control the amount of 863

IC present and ultimately measure the effects of 864

unnecessary information on LLM’s responses. We 865

prepared a dataset of 5000 problems of varying OP 866

values ∈ [2, 15] as well as an additional 1000 prob- 867

lems of OP=15 so that the model had a sufficient 868

number of high operation training problems. Ulti- 869

14



mately, the PRM was trained on each problem and870

each of its steps and used to facilitate our Tree of871

Thoughts (ToT) algorithm.872

In settings with a PRM, we generated responses873

in a step by step manner by using ";" and "." as874

our intermediary stop tokens. Each intermediary875

step would be scored by the PRM and only the top876

N/M responses would be selected as candidates in877

the next step to be explored further. This process878

was repeated until the LLM generated the <EOS>879

token, signaling that the response was complete.880

This final response would then be passed into the881

parser to determine its correctness.882

E Finetuning Details883

Model We finetune LLaMA 3.2-1B Instruct884

model released by Meta using both LoRA fine-885

tuning and continued pretraining (full finetuning).886

This model adopts a decoder-only transformer ar-887

chitecture with rotary positional embeddings and888

gated MLP layers. All experiments are performed889

on two NVIDIA H100 GPUs.890

Finetuning Configuration Due to some compu-891

tational constraints, our training is conducted on892

a fixed dataset of 30,000 samples. Each example893

contains a complete problem-solution pair, and in-894

puts exceeding 2048 tokens are filtered out. We895

use a context length of 2048, a learning rate of896

5e−5, and the AdamW optimizer with cosine learn-897

ing rate decay. Training proceeds for 50 epochs898

with a batch size of 8 and gradient accumulation899

of 8 steps, yielding an effective batch size of 64.900

We apply mixed-precision training with bfloat16,901

no warmup, and a maximum gradient norm of 1.0.902

Flash attention is enabled.903

Evaluation Protocol We evaluate each model on904

a fixed test set containing 100 examples per rea-905

soning operation and per level of irrelevant context906

(IC), including Light, Medium, and Hard. Evalu-907

ations are performed separately on in-distribution908

(ID) and out-of-distribution (OOD) data. This setup909

enables precise measurement of reasoning robust-910

ness under varying levels of distractibility, support-911

ing our core analysis of how irrelevant information912

affects model behavior.913

Architectural Generalization. Recent con-914

trolled studies suggest that decoder-only915

transformer models equipped with full atten-916

tion and rotary positional embeddings tend to917

exhibit similar learning dynamics and inductive918

biases, even when implemented under different 919

architectures. These models—such as GPT-style, 920

LLaMA, Mixtral, and others—differ in details 921

like normalization placement or gated MLPs, but 922

such variations do not appear to fundamentally 923

alter their learnability or reasoning behavior in 924

practice (Allen-Zhu and Li, 2024a,b,c). In our 925

case, although early experiments were conducted 926

using a LLaMA-style architecture, all final results 927

presented in this paper are based on the more 928

recent LLaMA 3.2–1B Instruct model. We did 929

not observe substantial performance differences 930

across architectures during preliminary runs. 931

Given resource constraints, we focus on LLaMA 932

3.2–1B in this version; however, we acknowledge 933

that running a comprehensive comparison across 934

reasoning models (e.g. DeepSeek-R1) would 935

strengthen the generality of our findings and plan 936

to pursue this in future work. 937

Does More In-Distribution Data Help? To iden- 938

tify an effective training budget, we varied the num- 939

ber of in-distribution samples from 1 K to 30 K and 940

observed saturating OOD gains around 30 K (Fig- 941

ure 9). Based on this, we fixed 30 K samples for 942

all subsequent experiments. 943
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Figure 9: OOD step accuracy as a function of in-
distribution training size.
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