Under review as submission to TMLR

A Watermark for Black-Box Language Models

Anonymous authors
Paper under double-blind review

Abstract

Watermarking has recently emerged as an effective strategy for detecting the outputs of large
language models (LLMs). Most existing schemes require white-box access to the model’s
next-token probability distribution, which is typically not accessible to downstream users of
an LLM API. In this work, we propose a principled watermarking scheme that requires only
the ability to sample sequences from the LLM (i.e. black-boz access), boasts a distortion-free
property, and can be chained or nested using multiple secret keys. We provide performance
guarantees, demonstrate how it can be leveraged when white-box access is available, and
show when it can outperform existing white-box schemes via comprehensive experiments.

1 Introduction

It can be critical to understand whether a piece of text is generated by a large language model (LLM). For
instance, one often wants to know how trustworthy a piece of text is, and those written by an LLM may be
deemed untrustworthy as these models can hallucinate. The goal of watermarking is to cleverly bias the LLM
so that detecting its generations becomes easier. Most proposed techniques do not modify the underlying
LLM’s model weights or its training procedure but rather inject the watermark during autoregressive decoding
at inference time. They require access to the next-token logits and inject the watermark every step of the
sampling loop. This required access prevents third-party users of an LLM from applying their own watermark
as proprietary APIs currently do not support this option. Supporting this functionality presents a security
risk in addition to significant engineering considerations. Concretely, Carlini et al. (2024) showed that parts
of a production language model can be stolen from API access that exposes logits. In this work, we propose
a watermarking scheme that gives power back to the people — third-party users can watermark a language
model given nothing more than the ability to sample sequences from it. Our scheme is faithful to the
underlying language model and it can outperform existing white-box schemes.

2 Related Work

Watermarking outside the context of generative LLMs, which is sometimes referred to as linguistic steganog-
raphy, has a long history and typically involves editing specific words from an non-watermarked text.
Watermarking in the modern era of generative models is nascent — Venugopal et al. (2011) devised a
scheme for machine translation, but interest in the topic grew substantially after the more recent seminal
works of Kirchenbauer et al. (2023a;b) and Aaronson (2023). Many effective strategies employ some form of
pseudorandom functions (PRFs) and cryptographic hashes on token n-grams in the input text. Kirchenbauer
et al. (2023a) proposes modifying the next-token probabilities every step of decoding such that a particular
subset of the vocabulary, referred to as green tokems, known only to those privy to the secret key, are
made more probable. Watermarked text then is expected to have more green tokens than non-watermarked
text and can be reliably detected with a statistical test. The scheme distorts the text, but with the right
hyperparameters a strong watermark may be embedded with minimal degradation in text quality.

Meanwhile, Aaronson (2023) proposes a clever distortion-free strategy which selects the token that is both
highly probable and that achieves a high PRF value. Kuditipudi et al. (2023) applies a scheme similar in spirit
to Aaronson (2023) but to improve robustness to attacks, pseudorandom numbers (PRNs) are determined

Under review as submission to TMLR

by cycling through a fixed, pre-determined sequence of values called the key, rather than by n-grams. They
compute a p-value using a permutation test to determine if the text was watermarked with that specific key.

Lee et al. (2023) adapts Kirchenbauer et al. (2023a)’s scheme for code-generation by applying the watermark
only at decoding steps that have sufficient entropy. Zhao et al. (2023) investigates a special case of
Kirchenbauer et al. (2023a) for improved robustness to adversarial corruption. Fernandez et al. (2023) tests
various watermarking schemes on classical NLP benchmarks and also introduces new statistical tests for
detection — most notably, they suggest skipping duplicate n-grams during testing.

Yang et al. (2023) introduces a scheme that relies on black-box access to the LLM. Their method samples
from the LLM and injects the watermark by replacing specific words with synonyms. Although their approach
shares the assumption of black-box LLM access, as in our work, it has limitations not present in ours: the
watermarking process is restricted to words that can easily be substituted with multiple synonyms, synonym
generation is powered by a BERT model (Devlin, 2018), making it computationally expensive, and the scheme
is not distortion-free. Chang et al. (2024) presents POSTMARK, a black-box watermarking method that uses
semantic embeddings to identify an input-dependent set of words. These words are then inserted into the
text by an LLM after decoding. However, this approach is also not distortion-free, as the insertion of words
by the LLM often results in significantly longer watermarked text.

Given the weakness of many schemes to paraphrasing or word substitution attacks, some have proposed
watermarking based on semantics and other features that would remain intact for common attack strategies (Liu
et al., 2023b; Hou et al., 2023; Ren et al., 2023; Yoo et al., 2023). Meanwhile, others have viewed the problem
through the lens of cryptography and classical complexity theory (Christ et al., 2023; Christ & Gunn, 2024).
Lastly, Liu et al. (2023a) proposes an un-forgeable publicly verifiable watermark algorithm that uses two
different neural networks for watermark generation and detection. Huang et al. (2023) improves the statistical
tests used for detection, providing faster rates than prior work.

As the deployment of watermarks to LLMs is still early and also presumably secretive, the correct threat
model is still undetermined. Krishna et al. (2024) shows that paraphrasing can evade both third-party
and watermarking detectors alike. Some may posit that attacks like paraphrasing or round-trip translation
are unrealistic since either they are too expensive to conduct at scale or parties in possession of a capable
paraphrasing model have adequate resources to serve their own LLM. Zhang et al. (2023) show that attackers
with weaker computational capabilities can successfully evade watermarks given access to a quality oracle
that can evaluate whether a candidate output is a high-quality response to a prompt, and a perturbation
oracle which can modify an output with a non-trivial probability of maintaining quality. Alarmingly, Gu
et al. (2023) demonstrates that watermarks can be learned — an adversary can use a teacher model that
employs decoder-based watermarking to train a student model to emulate the watermark. Thibaud et al.
(2024) formulates tests to determine whether a black-box language model is employing watermarking, and
they do not find strong evidence of watermarking among currently popular LLMs.

3 Algorithm

High-level sketch. At a high level, our scheme operates autoregressively; each step, we sample multiple
generations from the LLM, score each with our secret key, and output the highest scoring one. We do this
repeatedly until our stopping condition (e.g. reaching the stop-token or the max length) is met. To determine
whether a piece of text was watermarked, we score it using our key — if it’s high, it’s likely watermarked.
We now describe the algorithm more formally.

Preliminaries. We begin with some preliminaries. If F is a cumulative distribution function (CDF), we let
F[s] (square brackets) refer to a single draw from a pseudorandom number generator (PRNG) for F' seeded

by integer seed s. Let Fj be the CDF for Zle X, where X; % F. We sometimes abuse notation and treat a
distribution as its CDF (e.g. N(0,1)(2) is the standard normal CDF evaluated at 2) and when the context is
clear we let —F be the distribution of —X where X ~ F. Now, we detail our proposed algorithm, for which
pseudocode is provided in Algorithm 1. A Python implementation and example usage are presented in the
Appendix.

Under review as submission to TMLR

Algorithm 1 Black-Box Watermarking

1: function WATERMARK (cdf F, key K, # cand m, ctx len n, prompt P, seq len k, LM)

2: O+ ¢

3: while - sTopCoND(O) do > Continue until stop token is encountered or max length reached.
4 | O <+ O | WATERMARKSINGLE(F, K, m, n, P|O, k,LM)

5 | return O

6: function WATERMARKSINGLE(cdf F', key K, # cands m, ctx len n, prompt P, seq len k, LM)

7 Qi,.,Qm ~LM(| P; k) > Draw m sequences from LM, each with at most k tokens.
8: (X1,¢1), ..., (X5, ¢5) < UNIQUESEQSWITHCOUNTS((Q1, - .-, Q@m))

9: U1, ...,u; < SCORESEQS(F, (X1,...,X;), K,n, P)
10: i* < argmax)_, uT/Ci
11: | return X;-

12: function SCORESEQS(cdf F, candidates C, key K, ctx len n, prefix P)

13: Z +— ¢

14: for X; in C' do

15: for w in NGrRAMS (X;,n, P) do > Don’t compute n-grams over original prompt.
16: | Z <« Z| (G, nTHASH(K |w)) > Apply cryptographically secure integer hash.
17: Z < REMOVEDUPLICATES(Z)

18: for i, S in SORTEDGROUPBY(Z) do > [terate through each candidate’s set of unique seeds.
19: R < (F([s] for s in S)

20: U; $— F‘R‘ (Z] Rj)

21: | return ui,...,u|c|

22: function DETECT(cdf F, tokens X, key K, ctx len n) > p-value-based detection.
23: S+ ¢

24: for w in NGRAMS (X, n, ¢) do
25: | S+« S| mnTHASH(K |w)

26: S < REMOVEDUPLICATES(S)
27: R + (F[s] for s in S)
28: return Fiy Zj R; > Higher score means higher likelihood of being watermarked.

Algorithm 2 Recursive Black-Box Watermarking

1: function WATERMARKRECURSIVE(F, (K1,...,K:), m', n, P, k, LM) > Sub. for WATERMARKSINGLE.
2: if t =1 then

3: M =1M(-|-;)

4: else

5: | M = WATERMARKRECURSIVE(F, (Ko, ..., K;),m'™' n, -, - | LM)

6 return WATERMARKSINGLE(F, K1, m,n, P, k, M)

7: function DETECTRECURSIVE(F, X, (K1,...,K}), n)

8: P9

9: for K; in (K1,...,K:) do

10: | P+« P|(1-Dgrect(F, X, K;,n))

11: Y= =2 ZZ log P; > Combine p-values using Fisher’s method.
12: return x3, (y)

Let F be a continuous CDF of our choosing, P the input prompt, K a secret integer key known only to
the watermark encoder and decoder, LM a conditional language model with vocabulary V of size V, and h a
cryptographic hash function (e.g. SHA-256) from Z* to Z. Let n be the number of tokens (typically 4 or 5)
that serves as input to our pseudorandom function. Our PRF ¢ : V* — R is given by g(w) = F[h (K|w)],
where | denotes concatenation.

Under review as submission to TMLR

Watermark encoding. We sample m sequences {Q1,...,Qn}, each consisting of at most k tokens from
LM (- | P; k). Let {(X1,¢1),...,(Xj,¢;)} be the unique sequences along with their counts from {Q;} — for
example, the sequence X; appears ¢; times in {Q;}. To score each distinct sequence Xy, we first extract its
n-grams as {(X;i—n—1,.-- ,Xt,i)}f:(tl‘, where we allow the left endpoint to spill over only to earlier-generated
tokens and not the original prompt tokens. [-grams are taken instead for boundary indices with only
Il —1 < n—1 eligible tokens strictly left of it. We compute an integer seed for each n-gram w, as h(K|w).
Given a collection of seeds with their associated sequences, we deduplicate seeds across the collection. We do
this by picking one instance of the seed at random and remove all remaining instances from the collection.
We ensure every sequence has at least one seed by adding a random seed not already used, if necessary. For
each sequence X;, we iterate through its new seeds S; (order does not matter) and compute the quantity
us = Fig,| (Zlitll F[S’“]) Finally, we compute i* = argmaszl uzn/ci and choose X;- as our watermarked
sequence of length at most k. To generate longer texts, we run the aforementioned process autoregressively
until our stopping condition, where we condition the language model on P and the tokens generated thus far.

One may notice that the LLM is expected to return at most k tokens. This choice is made to simplify the
analysis. In practice, the API may only return texts, not tokens, with no option to specify max length. The
watermarker can generate n-grams from the responses however they would like (with custom tokenization
or not). Furthermore, there is no constraint on k; k can be set adaptively to the max length in each batch
of returned responses. The main consideration though is smaller k£ begets a stronger watermark, so if the
adaptive k is too large, detectability will suffer.

Watermark detection. We treat detection as a hypothesis test, where the null Hg is that the query text
was not watermarked with our scheme and secret key and the alternative H; is that it was. While Bayesian
hypothesis testing could be used, this would require choosing priors for both hypotheses, which could be
challenging and a poor choice could lead to terrible predictions. Let X be the query text. Akin to the
encoding process, we extract W, the set of unique n-grams from X, permitting smaller one near the left
boundary. For each n-gram w; we compute R; = F'[h (K|w¢)]. Under Hy (assuming that the test n-grams

are independent), Ry w F, so ELV:VII Ry ~ Flyy| giving a p-value p = 1 — Fyy, (Z\tV:VlI Rt). Our detection score
s is 1 — p (higher means more likely to be watermarked).

Another way to compute a p-value is to compute token-level p-values and, assuming they are independent,
combine them using Fisher’s method. This way, p = 1 — XSIWI (—2 EltV:VlI log (1 — F(Rt))> Furthermore,

tests that incorporate the alternative distribution can be used — the best example being the likelihood
ratio test: s = ZLVL‘ (log f1(Ry) —log fo(R:)), where fo and f; are the densities of R; under Hy and H;
respectively. For some choices of F' and under some assumptions, f; may be written explicitly. In other cases,
one can estimate f1 by logging values of R; for the watermarked sequence as the encoding is run live or via
simulation and then building a kernel density estimator. We consider these alternative detection strategies
later for ablative purposes.

Recursive watermarking. Since our scheme requires only a black box that samples sequences, it can be
applied iteratively or recursively. Consider the following. User 1 uses User 2’s LLM service who uses User 3’s
LLM service, so on so forth until User ¢. Our scheme allows User i to watermark its service with its secret key
K;. Each user can then run detection using its key oblivious to whether other watermarks were embedded
upstream or downstream. Furthermore, the users can cooperate in joint detection by sharing only p-values
without revealing their secret keys.

Consider the special case that all users are actually the same entity in possession of ¢ distinct keys (K1, ..., K}).
Then the iterative watermarking becomes a recursive one, where K; is used to watermark the result of
watermarking with keys (K;i1,...,K:). The entity can run DETECT to get a p-value for each key and
these t p-values can subsequently be combined using Fisher’s method. We present this recursive scheme in
Algorithm 2.

White-box watermarking. In the case of k¥ = 1, our scheme can be efficiently run for users who have
white-box access — with the next-token distribution in hand, one can sample a large number of candidate
tokens without any inference calls to the model.

Under review as submission to TMLR

Extensions. At its crux, the proposed scheme samples sequences of text from a service, divides each unique
sequence into a bag of units (namely n-grams) where each unit is scored using a PRF and the scores are
combined in an order-agnostic way. The strength of the watermark depends on the number of distinct units
across the candidate sequences and the robustness depends on how many of the units are kept intact after
the attack. Although any symmetric monotone function can be used instead of the simple summation of the
PRNSs for each unit, we do not see any compelling reason to make our algorithm more general in this way.
However, we briefly highlight some other possible extensions.

Beam search. Rather than drawing i.i.d. samples from the model, one can apply our watermark selection
to the sequences that arise from beam search, with the caveat that this would violate our distortion-free

property.

Semantic watermarking. Rather than use n-grams, the watermarker can extract a set of meaningful semantic
units for each sampled text. Robustness may be improved as these units will largely remain intact under an
attack like paraphrasing. On the other hand, many of the sampled sequences will have the same meaning, so
there may be a lot of duplicate units across the candidate sequences, which would degrade the watermark
strength.

Paraphrasing. Thus far, we assumed the service provides m draws from the LLM. If m is large, this can be
prohibitively expensive. The resource-constrained may consider the following alternative: draw one sample
from the LLM and feed it to a much cheaper paraphrasing model to generate m paraphrases. The downside
is that there may be a lot of duplicate n-grams across the candidate set.

Relation to similar work. With our algorithm presented, we now discuss its relation to two similar
methods whose treatment we had deferred.

SYNTHID (Dathathri et al., 2024) is a white-box scheme which resembles the recursive variant we propose.
Specifically, when the sequence length is 1 and each watermarking party samples 2 sequences, then our
encoding procedure overlaps with theirs. Both processes can be visualized via a binary tree where nodes
represent tokens. At the very bottom, leaf nodes represent tokens sampled i.i.d. from the next-token
distribution. The token for a non-leaf node is decided by applying a specific PRF determined by the node’s
level to the two children tokens. Scoring, or decoding, differs however in that while they propose training a
Bayesian detector or zero-shot detection by combining PRF values for the unique n-grams across levels of the
tree (equivalently, virtual watermarking parties) using a weighted average (or corresponding z-scores) that
accounts for entropy differences across depths, we suggest combining p-values using Fisher’s method with
equal contributions across the layers. Furthermore, they suggest using a Bernoulli distribution instead of the
standard uniform and consider much deeper trees (e.g. a depth of 30) than the ones we do in this work.

Most similar to our work is the WATERMAX algorithm of Giboulot & Furon (2024). At a high level, their
scheme is very similar to ours: i.i.d. responses are sampled from the LLM for a specific prompt, pseudorandom
values are determined for each token in each sequence based on n-grams and an aggregate score is computed
for each sequence. The sequence with the largest aggregate score is returned as the watermarked text.
However, very crucially, their algorithm is not distortion-free, as ours is, and their theory does not capture
the critical role of entropy on detectability. Meanwhile, we are able to formally and empirically quantify the
dependence on entropy on performance and formulate provably optimal tests. Furthermore, we propose a
recursive variant of the algorithm and also carefully study the effect of the distribution used for the PRF.

4 Theory

Our goal here is to show that our scheme is faithful to the model’s next-token distribution and to give
detection performance guarantees. All proofs are in the Appendix.

Theorem 4.1 (Distortion-free property). Let X be any finite sequence and P any prompt. Let X,, ~ LM(- | P)
be the non-watermarked output of the conditional autoregressive language model. Let X,, be the output of
the watermarking procedure (WATERMARK in Algorithm 1, for both recursive and non-recursive settings) for
the same prompt and model and any choice of remaining input arguments with the constraint that F is a
continuous distribution. Furthermore, assume that the deduplicated seeds (determined by hashing the secret

Under review as submission to TMLR

key and n-grams) across sequences, are conditionally independent given the counts of the sampled sequences.
Then, P(X, = X) =P(X,, = X).

Theorem 4.1 tells us that sampling tokens using our proposed scheme is, from a probabilistic perspective,
indistinguishable from sampling from the underlying model, with the caveat that the unique seed values are
conditionally independent given the counts of sequences. If we dismiss hash collisions as very low probability
events, then since the key is fixed, this reduces to the assumption that unique n-grams across the sampled
sequences are independent. How strong of an assumption this is depends on many factors such as m, the
underlying distribution, and the counts (c1, ..., c;) themselves. One can construct cases where the assumption
is reasonable and others where it is blatantly violated (e.g. if nm-grams within a sequence are strongly
correlated). One direction to making the assumption more palatable is to draw a fresh keys i.i.d. for each
hash call. This would obviously destroy detectability. As a trade-off, one can leverage a set of secret keys (i.e.
by drawing keys uniformly at random from a key set), which may reduce distortion, but will hurt detection
as each key in the set needs to be tested against.

Theorem 4.2 (Lower bound on detection ROC-AUC). Consider the specific case of using flat (i.e. non-
recursive) watermarking with k = 1 and F = U(0,1). Let so be the score under null that the T test
tokens',assumed to be independent, were generated without watermarking and s, be the score if they were.

With ¢; as the number of times vocabulary token i was sampled, we have the following lower bound on the
detector’s ROC-AUC.

1
P > > h
(s1 > s0) > T 1/ (3T0203)" where

1 m o1 - ¢
= Tog(m) <m+ T~ 2) and o = Z c; > 0 log (m)] .

a represents the average Shannon entropy in the sampled next-token distribution.

Theorem 4.2 connects detection performance to the language model’s underlying distribution, number of
sampled tokens m, and number of test samples T. More entropy and more test samples guarantee higher
performance. When the model is extremely confident, o — 0 and so does our lower bound. Note that because
« measures the entropy of the empirical distribution arising from sampling tokens, it depends on both the
underlying next-token probability distribution as well as m. Concretely, when conditioned on the next-token
probabilities p, ¢ ~ Multinomial (m, p). The largest « is achieved when the nonzero ¢;’s are 1, which can
occur when the underlying distribution is uniform (maximal uncertainty) and/or m is not large. In this

2
case, o — log(m) and our bound goes to 1/ (1 +1/ <3T (Tﬂ - %))) This quantity has very sharp
diminishing returns with respect to m, so there may be little value in increasing m beyond a certain point.
When m — oo, the bound goes to 1/(1+4/(3T)), which increases very quickly with 7. A mere 50 test tokens
guarantees at least 97% ROC-AUC. We study the interplay of the various factors on our lower bound more

carefully in the Appendix.

The intuitions here carry over to other choices of F' and k > 1, though formal bounds can be tricky to obtain
because of difficulty quantifying the alternative distribution. The null distribution is easy — p-values are
U(0,1) under Hyp, and as a result, we have a straightforward equality on the false positive rate.

Theorem 4.3 (False positive rate). No matter the choice of watermarking settings, assuming that the
unique test n-grams are independent, we have the following equality on the false positive rate of DETECT
(Algorithm 1), using decision threshold t.

FPR=Py,(s>t)=1—t

This also holds for DETECTRECURSIVE (Algorithm 2) if we further assume the p-values across secret keys are
independent.

1To be more precise, these are T unique n-grams.

Under review as submission to TMLR

Selecting distinct independent secret keys (K71, ..., K;) (and ignoring hash collisions that arise across calls to
DETECT within DETECTRECURSIVE), will help attain the necessary independence.

Although the alternative score distribution is generally intractable, with the strong assumption that there
are no duplicate n-grams across the candidate sequences, then for a special choice of F', we can write the
alternative in closed form, formulate the optimal detection test and write down false-positive and false-negative
rates exactly.

Theorem 4.4 (Optimal detection for Gamma). Assume that candidate sequences are unique with length k
and that the n-grams are independent and contain no duplicates. Suppose we choose F = —Gamma (1/k, §)
(flat scheme), for any rate parameter 5. Let Fo = F with pdf fo, F1 = —Gamma (1/k,mp) with pdf f1, and
R the PRF wvalues of the T test tokens (unique n-grams), assumed to be independent. Then, Vi, R; (S Fy
under the null that the text was watermarked using our procedure and R; & Fy otherwise. The uniformly

most powerful test is the log-likelihood ratio test (LRT) with score

fo(R:)

Furthermore, for any decision threshold t on score s, we have that:

s(R) = Zlog fi(B)

FPR (Type-I error) =Py, (s > t) = Gamma(T/k, B) (Q(t)), and
FNR (Type-II error) = Py, (s < t) =1 — Gamma(T/k,mp) (Q(t)), where
_ Tlog(m)/k —t

In the Appendix, we use Theorem 4.4 to study the impact of k, m, and T" on TPR at fixed FPR. For example,
with T'= 100, k = 50, m = 64, 8 = 1, we can achieve 99.9% TPR at 1% FPR.

For other choices of F', we can estimate f; via simulation. If we assume candidate sequences have the same
length k£ with no duplicate n-grams, then we can fill an m x k matrix with i.i.d. draws from F' and pick
the first element of the row with the largest row-sum (among the m). We do this until we have sufficiently
large (e.g. 10,000) samples from f;. We apply a Gaussian kernel-density estimator where the bandwidth is
chosen using Scott’s rule (Scott, 2015) to estimate fi(r) for test value r. Despite having fy in closed-form,
for consistency, we can also estimate it non-parametrically by drawing from F'.

5 Experiments

In this section, we compare the performance of our scheme with that of prior work.

5.1 Models, Datasets, and Hyperparameters

Models and Datasets. Our main model and dataset is MISTRAL-7B-INSTRUCT (Jiang et al., 2023) hosted
on Huggingface? with bfloat16 quantization, and databricks-dolly-15k® (Conover et al., 2023), an open source
dataset of instruction-following examples for brainstorming, classification, closed QA, generation, information
extraction, open QA, and summarization. We use prompts from the brainstorming, generation, open QA (i.e.
general QA), and summarization categories, whose human responses are at least 50 tokens long (save one
example, which was removed because the prompt was extremely long). For each of the 5233 total prompts, we
generate two non-watermarked responses — a stochastic one using temperature 1, and the greedy / argmax
decoding — along with a watermarked one for each scheme. We always force a minimum (maximum) of
250 (300) new tokens by disabling the stop token for the first 250 tokens, re-enabling it, and stopping the
generation at 300, regardless of whether the stop token was encountered. To simulate real-world use, we
de-tokenize the outputs to obtain plain text, and re-tokenize them during scoring. We study performance as
a function of token length T' < 250 by truncating to the first T' tokens.

’https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
Shttps://huggingface.co/datasets/databricks/databricks-dolly-15k

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/datasets/databricks/databricks-dolly-15k

Under review as submission to TMLR

For completeness, we also present the key results when GEMMA-7B-INSTRUCT (Team et al., 2024)* with
bfloat16 quantization is applied to the test split of eli5-category®. Prompts are formed by concatenating the
the title and selftitle fields. Only examples with non-empty title and whose prompt contains a ¢ are kept —
for a total of 4885 examples.

Hyperparameters. We consider the following choices of CDFs F' / F,. (1) F' = U(0,1) and F}, =
IrwinHall(k). (2) F = N(0,1) and Fy, = N(0,k). (3) F = —Gamma(1/k,1) and Fy, = —Exp(1). (4) F = x3
and F, = x3,. We set n = 4.

5.2 Evaluation Metrics

We evaluate performance using three criteria. For all metrics and methods, standard errors are computed by
running watermark generation multiple times, keeping the secret keys fixed.

Detectability. How well can we discriminate between non-watermarked and watermarked text? We choose
non-watermarked text to be text generated by the same model, just without watermarking applied during
decoding. There are three reasons for choosing the negative class in this way. Firstly, it makes controlling for
text length easier as we can generate as many tokens as we do for watermarked samples — in contrast, human
responses are of varying lengths. Secondly, watermarked text has far more token / n-gram overlap with its
non-watermarked counterpart than the human reference, which makes detection more challenging. Lastly,
since one intended use case of our scheme is for third-party users of a shared LLM service, users may want to
distinguish between their watermarked text and non-watermarked text generated by the same LLM service.

Our primary one-number metric is ROC-AUC for this balanced binary classification task. Since performance
at low FPR is often more useful in practice, we report the partial ROC-AUC (pAUC) for FPR < a target FPR
(taken to be 1%), which we find to be more meaningful than TPR at the target FPR. We look at performance as
a function of length by truncating the positive and negatives samples to lengths {25, 50, 75, 100, 150, 200, 250}.
To understand aggregate performance, we pool all different length samples together and compute one ROC-
AUC. Here, it is paramount that the detection score be length-aware to ensure that a single decision threshold
can be used across lengths.

Distortion. Our scheme, along with most of the baselines, boasts a distortion-free property. This property
comes with assumptions that are often violated in practice, for example by reuse of the secret key across
watermarking calls. We would like to quantify the amount of distortion actually induced by the watermark
but doing so is no straightforward task.

A meaningful metric is the KL-divergence between the true non-watermarked next-token distribution and the
watermarked one conditioned on the same context, where the former is used as the reference, for all contexts
that occur in the non-watermarked generation. This is challenging because while the explicit watermarked
distribution is easily derived for Kirchenbauer et al. (2023a)’s scheme which explicitly tweaks the probability
of each token in the vocabulary, this is not the case for our scheme; we could estimate it via simulations
at each step but this would be computationally expensive. As an alternative, we measure the perplexity
of the watermarked text under the LLM sans watermarking. The caveat is that while perplexity is often
used in the literature to measure text quality, the goal here is not necessarily to minimize it (which greedy
decoding would do) but to verify that watermarking does not materially change perplexity levels compared
to that of non-watermarked randomly sampled text. We also report likelihood as the log-probabilities used in
calculating perplexity can over-emphasize outliers.

Quality. Watermarking may distort the text per the model, but does the distortion tangibly affect the
quality of the text? Quality can be challenging to define and measure — one proxy is likelihood under a
much larger model than the generator. Alternatively, one can run standard benchmark NLP tasks and use
classic metrics like exact match, etc. We instead opt for using Gemini-1.5-Pro as an LLM judge and compute
pairwise win rates for each watermark strategy against no watermarking (greedy decoding). We do this in
two ways for each scheme — (1) we compute win rates using a single response for each prompt and (2) we
first ask the LLM judge to pick the best of 3 responses for each prompt and compute win rates using the best

4https://huggingface.co/google/gemma-7b-it
Shttps://huggingface.co/datasets/rexarski/elib_category

https://huggingface.co/google/gemma-7b-it
https://huggingface.co/datasets/rexarski/eli5_category

Under review as submission to TMLR

response. (2) represents the common practice of sampling a few generations from the LLM and selecting the
best one using some criterion. It captures diversity, as methods that can express an answer in a few different
good ways will have an advantage. A caveat with win rates is that they may not reflect the degree by which
one method is better or worse. For instance, if one strategy’s output was always marginally worse than no
watermarking, the win rate would be 0% — the same as if it were much worse.

5.3 Adversarial Attacks

An adversary in possession of watermarked text (but who lacks knowledge of the secret key) may try to evade
detection. We study how detectability degrades under two attack strategies —- random token replacement
and paraphrasing.

Random token replacement. Here, we take the watermarked tokens and a random p-percent of them are
corrupted by replacing each with a random different token. p is taken to be {10, 20, 30,40, 50}. This attack
strategy is cheap for the adversary to carry out but will significantly degrade the quality of the text.

Paraphrasing. In this attack, the adversary attempts to evade detection by paraphrasing the watermarked
text. We use Gemini-1.5-Pro to paraphrase each non-truncated watermarked generation. Details are deferred
to the Appendix.

5.4 Baselines

The watermark schemes we consider here operate token-by-token in the autoregressive decoding loop. Let p
be the next-token probability distribution. Higher detection scores indicate higher confidence that the query
text is watermarked.

Aaronson (A). Aaronson (2023) computes a PRN for each token 7 in the vocabulary as u; = U(0, 1)[h(K |w|i)],
where w is the preceding (n — 1)-gram, K is the secret key and h is a cryptographic hash. Token i* is selected,
where ¢* = argmax; u}/ Pi_ At test time, n-grams {w;}~_, are extracted from the query test and the detection
score s4 = — ZiT:1 log (1 — R;), where R; = U(0,1) [h(K|w;)]. n is set to 4. This choice strikes a good
balance between generation quality / diversity and robustness to attacks. The scheme boasts a distortion-free
property, but the generated text is a deterministic function of the prompt — i.e. only one generation is
possible conditioned on a particular prompt.

Remark. If k=1 and F =U(0,1), then our watermark encoding can be viewed as a stochastic version of

Aaronson (2023)’s. As m — 0o, ¢;/m “3 p;, where p; and ¢; are the probability and observed occurrences of
token t.

Aaronson Corrected (AC). Aaronson (2023)’s detection score s4 is not length-aware and consequently
a single decision threshold across scores involving various lengths results in poor performance, as we later
show. Observing that s, is a sum of (negative) log p-values, s ~ Gamma(T, 1), or equivalently, 254 ~ X3
under the null that all test tokens are non-watermarked. We propose the new corrected detection score,
sac = Gamma(T,1)(sa) = x37(254). For completeness we also experiment with a p-value computed in the

way we do for our method — concretely as, IrwinHall(T') ZiT=1 Ri). Note that both transformations are
monotonic so they have no effect on ROC-AUC when T is fized.

Kirchenbauer (KB). Kirchenbauer et al. (2023a) uses the n previous tokens to pseudorandomly partition
the vocabulary for the next token into two lists: a green list of size vV and a red list consisting of the
remainder. A positive bias of ¢ is added to the logits of the green list tokens while those of the red list are
left unchanged. This has the effect of modifying p so that green list tokens are more probable. The score
for a text consisting of T tokens, T, of which were found to be green is, sk = (Ty —¥T)//Tv(1 — 7).
We incorporate the latest updates to the algorithm® such as including the current token in the n-gram and
skipping duplicate n-grams at test time. We set n =4, v = 0.25, and ¢ € {0.5,1,2,3,4}.

Kuditipudi (K). A drawback of using the last n tokens as a basis for the PRF is that changing just one of
them changes the output and hurts detection. Kuditipudi et al. (2023) addresses this limitation as follows.

Shttps://github.com/jwkirchenbauer/lm-watermarking

https://github.com/jwkirchenbauer/lm-watermarking

Under review as submission to TMLR

H PPL \ WR \ WR (3) \ AUC \ pAUC \ C. AUC \ C. pAUC \ P. AUC \ P. pAUC
Max Std. Error || 003 | - | - |01 | 03 | 02 | 03 | - | -
Greedy Decoding || 1.37 - - - - - - - -
Random Sampling || 3.50 | 49.6 65.3 - - - - - -
Aaronson || 2.81 | 45.3 45.3 71.7 65.5 65.6 60.3 53.9 50.5
Aaronson Cor. || 2.81 | 45.3 45.3 97.9 83.6 94.8 73.2 58.8 50.7
Kuditipudi || 3.55 | 50.3 | 67.3 | 87.8 | 76.6 87.2 74.4 75.9 53.2
0.5 || 3.39 | 49.6 66.6 73.2 52.0 71.0 51.4 49.0 49.8
11 3.37 | 50.1 67.0 86.9 60.6 83.7 57.1 52.9 49.9
Kirchenbauer 2 || 3.69 | 47.9 64.1 97.0 83.3 95.4 77.4 58.4 50.3
3| 4.67 | 41.5 58.4 99.3 94.4 98.6 90.9 63.4 51.5
4 || 5.81 | 26.0 41.2 99.8 98.4 99.6 96.8 66.4 52.7
2 || 3.46 | 50.0 66.4 90.2 68.8 82.0 58.7 50.5 50.3
4 || 3.36 | 50.8 67.0 95.8 82.9 90.3 70.5 51.3 50.6
Flat (k = 1) 16 || 3.20 | 47.7 64.5 97.7 89.7 93.9 79.1 52.7 51.1
32 || 3.06 | 48.4 65.3 97.8 90.2 94.2 80.0 53.0 50.8
512 || 2.63 | 47.7 62.5 97.7 90.0 94.1 79.7 54.6 51.3
1024 || 2.61 | 47.7 62.2 97.7 90.0 94.0 79.7 52.8 51.1
2 || 4.10 | 46.1 62.2 83.4 55.8 73.6 52.0 49.0 50.0
4 || 4.06 | 45.2 61.5 93.8 72.7 85.7 59.4 51.3 50.3
Flat (k = 10)
16 || 3.86 | 44.6 60.6 97.8 87.0 93.1 73.5 54.3 50.7
32 || 3.80 | 43.0 60.8 98.2 89.0 94.0 76.7 55.0 50.8
2 || 3.79 | 48.5 64.2 69.6 50.7 62.2 50.3 47.0 50.0
4 || 3.76 | 47.7 63.9 82.9 53.5 71.9 51.3 49.4 50.0
Flat (k = 50) 16 || 3.72 | 48.3 64.2 92.7 66.7 83.1 55.6 50.5 50.1
32 || 3.67 | 47.3 63.9 94.2 71.6 85.5 58.1 51.1 50.5
4 || 3.41 | 49.0 65.0 93.4 75.5 86.3 63.2 48.4 50.4
Rec. (k= 1) 16 || 3.33 | 49.2 66.2 95.4 82.9 90.6 71.8 53.4 50.8
’ o 32 || 3.29 | 48.4 64.3 96.3 85.0 91.6 73.5 49.4 50.8
512 || 3.05 | 48.3 64.5 97.2 87.9 92.6 76.5 50.4 51.2
4 || 4.13 | 45.7 61.3 88.6 61.7 78.8 53.8 48.0 50.0
Rec. (k=10) 16 || 4.13 | 43.7 59.7 93.4 74.0 86.8 61.6 52.9 50.4
32 || 4.06 | 42.9 59.5 94.8 76.9 88.1 63.2 50.6 50.3
4 || 3.79 | 48.2 63.8 74.2 51.2 65.1 50.5 46.5 49.9
Rec. (k=50) 16 || 3.77 | 47.0 64.0 81.2 54.5 73.3 51.9 51.4 50.2
32 3.79 | 47.2 63.3 83.3 55.7 74.4 52.2 49.4 50.0

Table 1: Main table of results, showing our black-box scheme (Flat) and its recursive variant (Rec.) for
various k’s and m’s, along with baselines. The k& = 1 setting can be executed very efficiently when white-box
access is available. PPL; WR and WR (3) refer to perplexity, win rate of a single response, and win rate
of the best-of-3 responses respectively. pAUC is ROC-AUC up to max FPR of 1%. C and P stand for
10% corruption and paraphrasing attack. For paraphrasing, target lengths of {150, 200, 250} are used in
calculating AUC and pAUC as performance is essentially random on shorter lengths. The standard errors are
quite small and the maximum across rows is shown for each column. AUCs, pAUCS, and their standard
errors are scaled by 100.

Consider a secret, finite ordered list of seeds of length k. Start watermarking by selecting a position in the
seed list uniformly at random and apply the selection rule of Aaronson (2023) with the PRNG seeded to the
current value. Advance to the next seed in the list (wrap-around if you are at the end) and repeat. Scoring is
done by conducting a permutation test evaluating how compatible the query text is with the specific list of
seeds used during encoding as opposed to any other random list of seeds of the same length. As the random
starting position is not known during scoring, an alignment score based on the Levenshtein distance is given

10

Under review as submission to TMLR

Detection Perf Detection Perf.
- 1.0 1
1.00 —3
o
] a 0.91
0.95 a
&
1 0.81
O 0.90 g
2 °
< 0.851 — 0.7
Q
0-807 —o— KB(2) —e— Ours (k=1, m=16) ?E 0.6 —o— KB (2) —e— Ours (k=1, m=16)
—— A —e— Ours (k=1, m=1024) o —o— A —o— Ours (k=1, m=1024)
0.75 1 —— K —e— Ours (k=50, m=16) 05 o— o K —e— Ours (k=50, m=16)
50 100 150 200 250 50 100 150 200 250
T T
Detection Perf. Detection Perf.
1.00 1
0.95 0.91
0901 0.8
O 0.851 Q
= 2 07 KB
0.80 1 . v
0.75 1 —— K
—eo— KB (2) —e— Ours (k=1, m=16) 0.6 —e— Ours (k=1, m=16)
0.704 —e— AC —e— Ours (k=1, m=1024) —o— Ours (k=1, m=1024)
—o— K —e— Ours (k=50, m=16) —o— Ours (k=50, m=16)
0.651 ; ! . : 051 , , , , , j . :
0.5 1.0 1.5 2.0 2.5 10 15 20 25 30 35 40 45 50
Entropy % Corruption

Figure 1: Performance of our flat scheme. Top: Detection AUC and pAUC with 1% max FPR for a range of
target text lengths when there is no corruption. Bottom Left: AUC (mixed T7s) as a function of the average
non-watermarked response entropy of the examples used in the calculation. z-coordinate = corresponds to
the bucket of examples whose entropy is between [z — 0.25, z] nats. Bottom Right: Effect of amount of
random token corruption on AUC (mixed T7s).

that considers alignments of various subsequences of the text and seeds. The proposed method is quite similar
to Aaronson (2023) with the difference of using a fixed list of seeds (instead of input tokens to determine the
seed) and using a permutation test for scoring. The upside is robustness to token substitution attacks; the
downside is significantly higher computational cost for scoring. Larger k offers more diversity and quality in
generation but comes with costlier and weaker detection. The scheme is distortion-free. Following their work,
we let k = 256 and accelerate the permutation test by pre-computing 5000 reference values for the secret
list using snippets from the train set of C4-realnewslike (Raffel et al., 2019) at the various target lengths we
evaluate on.

5.5 Experimental Results

Table 1 shows results for baselines and our scheme using F' = U(0, 1) and p-values for scoring, as detailed in
Algorithms 1 and 2. For the recursive scheme, depth is lg(m) (i.e. m = 2 for each virtual watermarker). Here,
the negative class is non-watermarked argmax/greedy generations. Results for using stochastic (temperature
1) generations as the negative as well as the average likelihood scores are presented in Table 5 (Appendix); the

11

Under review as submission to TMLR

trends remain the same. We summarize our observations on MISTRAL-7B-INSTRUCT on databricks-dolly-15k,
which also hold for GEMMA-7B-INSTRUCT on eli5-category (presented in the Appendix).

5.5.1 Overall performance of our flat and recursive schemes

Our scheme is a competitive option for white-box watermarking. Is it better to use our method or
alternatives in the white-box setting? When & = 1,m = 1024, we are able to achieve lower perplexity (2.61 vs.
2.81), better diversity (62.2% vs. 45.3% on best-of-3 win rates) than and comparable detection performance
to Aaronson (2023). Furthermore, it has lower perplexity (2.61 vs. 3.55) and detection performance (97.7%
vs. 87.8% AUC) than Kuditipudi et al. (2023). By cranking up d, Kirchenbauer et al. (2023a) can achieve
strong detection but at the expense of perplexity. When matched on perplexity, we achieve better detection.
For example, § = 0.5 achieves 3.39 PPL and 73.2% AUC compared to our 2.61 PPL and 97.7% AUC.
GEMMA-7B-INSTRUCT on elid-category with k = 1, m = 1024 outperforms Kuditipudi et al. (2023) and is
on-par with Aaronson (2023) (see Appendix). Kirchenbauer et al. (2023a) with ¢ = 0.5 gives 1.649 PPL and
61.6% AUC whereas k = 1, m = 1024 gets us 1.610 PPL with 93.2% AUC and even 1.645 PPL with 89.7%
AUC when k = 50, m = 16 (black-box).

Flat watermarking outperforms recursive. Across metrics and settings we see that the flat scheme
outperforms its recursive counterpart, suggesting it is more effective when a strong signal is embedded using
a single key rather than when multiple weak signals are embedded with different keys. For example, when
k =1,m = 32 flat (recursive) PPL and AUC are 3.06 (3.29) and 97.8% (96.3%) respectively.

5.5.2 Effects of Hyperparameters

Increasing m improves perplexity but hurts diversity. Across k’s, we observe that perplexity decreases
as m increases, but that win rates, especially when best-of-3 generations are used, decrease. For example,
when k = 1, increasing m from 2 to 1024 decreases perplexity from 3.46 to 2.61 but also drops the best-of-3
win rate from 66.4% to 62.2%. As remarked earlier, as m — o0, ¢;/m — p; and our scheme becomes less
diverse — deterministic conditioned on the prompt, like Aaronson’s. On the flip side, large m reduces
sampling noise which drives down perplexity.

Increasing m improves detection but has diminishing returns. Across the board we see that detection
improves as m increases, but there are diminishing returns. For example, when k = 1, our AUC increases from
90.2% to 95.8% as m goes from 2 to 4, but flattens out when m hits 16. This corroborates our theoretical
intuition from Theorem 4.2 which is further explored in Figure 4 (Appendix).

For fixed m, increasing k£ hurts detection performance. For fixed m and target generation length 7',
increasing k gives us fewer opportunities (fewer calls to WATERMARKSINGLE) to inject the watermark signal,
and detection consequently suffers. For example, when m = 32, AUC drops from 97.8% to 94.2% when k
increases from 1 to 50.

U(0,1) slightly outperforms alternative distributions. Flat distributions may offer better
robustness to attacks. In Table 4 (Appendix), we see that U(0, 1) fares comparably to N(0,1) and slightly
outperforms x3 both on detection and perplexity. For example, when k = 50,m = 2, U(0,1) and x3 have
AUCs of 69.6% and 68.1% respectively. Furthermore, we find evidence that U(0, 1) offers better protection to
attacks. For example, when k = 50, m = 32, the AUC for U(0,1) (x3) degrades from 94.2% (94.5%) to 85.5%
(84.5%) in the presence of 10% random token corruption. We provide some intuition for why flat distributions
like U(0, 1) may be more robust than those with quickly decaying tails. Consider shaping the continuous F' so
it approaches Bern(p) (i.e. f(z) ~ (1 — p)d(z) + pd(x — 1)), where p is very small. Suppose k is large and m
is small. Then, the winning sequence X;- will have extremely few (if any) of its R;’s equal to 1. If the text is
unmodified and these few n-grams are kept intact, we are fine, but if they are corrupted in an attack, then the
watermarking signal is effectively lost. In other words, flat distributions smear the watermarking signal over
more tokens than do sharper distributions, which localize the signal to few lucky token positions. However,
whereas scoring with Fr = IrwinHall(T") when F' = U(0, 1) involves computing T-fold convolutions or cardinal

B-splines, when F' = N(0,1), Fr is easier to compute for very large T'; specifically, Frr(z) = F (x/\/f)

12

Under review as submission to TMLR

5.5.3 Observations on detection

Length correction of Aaronson (2023) is crucial. Recall that the ROC-AUCs presented in Table 1 are
computed over a pool of different lengths. Our p-value-based score for Aaronson (2023) improves detection
significantly; for example, AUC goes from 71.7% to 97.9%. Table 7 (Appendix) shows that the sum-based
p-value correction fares a bit worse, which was a little surprising given that this worked the best for our
scheme, even for the k = 1 case.

Sum-based p-values outperform Fisher ones. In Table 2 (Appendix), we observe that replacing our
sum-based p-value (where Hy is that ZZT r; ~ Fr) by a Fisher combination of token-level p-values hurts
detection performance. For example, when k = 1,m = 2, AUC degrades from 90.2% to 86.3%. Note that
when k = 1, this setting corresponds exactly to a stochastic version of Aaronson (2023).

Likelihood-ratio scoring does well for large k and small m, when its assumptions are more
realistic. In Table 3 (Appendix), we observe that likelihood-based scoring — both when the distribution is
Gamma and the exact likelihood ratio test (LRT) is used and under KDE with alternative distributions —
performs the best when the assumptions of no duplicate sequences or n-grams hold better. This happens
when the sequences are long (large k) and when fewer sequences are sampled (small m). For example, when
k =1, AUC degrades monotonically from 78.1% to 55.4% as m increases from 2 to 1024. In contrast, AUC
under the p-value-based scoring increases monotonically with m, from 90.2% to 97.7%. Larger m increases
the number of duplicate sequences sampled, increasing the importance of the latent exponent m/¢; used in
the scoring and deviating us further from the LRT assumptions. However, LRT has the potential to be an
effective alternative when k is large. For example, when k& = 50 and m = 32, Uniform KDE-based LRT gives
AUC of 95.5% compared to p-value’s 94.2%.

Detection performance improves sharply with test samples 7. Figure 1 shows the effect of 7" on
AUC. We see sharp improvements with respect to T', even when k is large and m is small, highlighting the
power of more test samples to counteract a weaker watermark signal.

Entropy improves detection performance. In Figure 1 we bucket prompts based on the entropy of
their non-watermarked response and then look at detection AUC on samples in each bucket. As we expect,
detection improves when the prompts confer more entropy in the response. This trend is more stark for our
method.

Paraphrasing can be extremely effective at destroying watermarks. We observe that paraphrasing
can effectively erase the watermark as detection performance for most methods is near random. Kuditipudi
et al. (2023) and Kirchenbauer et al. (2023a) with large § do better on AUC (but not so much on pAUC).
Furthermore, in Figures 1 and 2 (Appendix) we observe that large amounts of random token corruption
hurts our scheme and Aaronson (2023)’s more than it that of Kirchenbauer et al. (2023a) or Kuditipudi et al.
(2023).

6 Conclusion

In this work, we present a framework for watermarking language models that requires nothing more than a
way to sample from them. Our framework is general and extensible, supporting various real world use-cases,
including the setting where the next-token probabilities are in fact available. We study its various components
and the trade-offs that arise, provide formal guarantees for the theoretically-inclined as well as concrete
recommendations for the practitioner.

References

Scott Aaronson. Watermarking of large language models. Large Language Models and Transformers Workshop
at Stmons Institute for the Theory of Computing, 2023.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase, A Feder
Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing part of a production
language model. arXiv preprint arXiv:2403.066534, 2024.

13

Under review as submission to TMLR

Yapei Chang, Kalpesh Krishna, Amir Houmansadr, John Wieting, and Mohit Iyyer. Postmark: A robust
blackbox watermark for large language models. arXiv preprint arXiv:2406.14517, 2024.

Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. arXiv preprint arXiv:2402.09370,
2024.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv preprint
arXiv:2306.09194, 2023.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi,
Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first
truly open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-11m.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl, Vandana
Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable watermarking for
identifying large language model outputs. Nature, 634(8035):818-823, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three bricks to
consolidate watermarks for large language models. In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), pp. 1-6. IEEE, 2023.

Eva Giboulot and Teddy Furon. Watermax: breaking the llm watermark detectability-robustness-quality
trade-off. arXiv preprint arXiv:2403.04808, 2024.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of watermarks for
language models. arXiv preprint arXiv:2312.04469, 2023.

Abe Bohan Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei Wang, Lingfeng
Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. Semstamp: A semantic watermark
with paraphrastic robustness for text generation. arXiv preprint arXiv:2310.03991, 2023.

Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D Lee, Jiantao Jiao, and Michael I Jordan. Towards optimal
statistical watermarking. arXiv preprint arXiv:2512.07930, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiww preprint arXiv:2310.06825, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, lan Miers, and Tom Goldstein. A watermark
for large language models. arXiv preprint arXiv:2301.10226, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando,
Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of watermarks for large language
models. arXiv preprint arXiv:2306.04634, 2023b.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing evades
detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural Information
Processing Systems, 36, 2024.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free watermarks
for language models. arXiv preprint arXiv:2307.15593, 2023.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. Who wrote this code? watermarking for code generation. arXiv preprint arXiv:2305.15060, 2023.

14

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

Under review as submission to TMLR

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie Wen, Irwin King, and Philip S Yu. An unforgeable
publicly verifiable watermark for large language models. arXiv preprint arXiv:2307.16230, 2023a.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark for
large language models. arXiv preprint arXiv:2310.06356, 2023b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints, 2019.

Jie Ren, Han Xu, Yiding Liu, Yinggian Cui, Shuaigiang Wang, Dawei Yin, and Jiliang Tang. A robust
semantics-based watermark for large language model against paraphrasing. arXiv preprint arXiv:2311.08721,
2023.

David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons,
2015.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Gloaguen Thibaud, Jovanovi¢ Nikola, Staab Robin, and Vechev Martin. Black-box detection of language
model watermarks. arXiv preprint arXiv:2405.20777, 2024.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Josef Och, and Juri Ganitkevitch. Watermarking
the outputs of structured prediction with an application in statistical machine translation. In Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1363-1372, 2011.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu, Yuang Qi, Jie Zhang, Han Fang, and Nenghai Yu.
Watermarking text generated by black-box language models. arXiv preprint arXiv:2305.08883, 2023.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language watermarking
through invariant features. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2092-2115, 2023.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz Barak.
Watermarks in the sand: Impossibility of strong watermarking for generative models. arXiv preprint
arXiv:2311.04378, 2023.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

15

Under review as submission to TMLR

A Appendix

A.1 Broader Impacts

We briefly discuss broader impacts of our work. Our watermarking scheme, like other ones, can be used to
understand the provenance of text — this can be both good and bad. On one hand, it can be used to catch
inappropriate uses of a language model (e.g. illicit applications that violate terms of service), or help users
understand whether they can trust a piece of text (if it is LLM-generated and its factuality is suspicious, it
may be a hallucination). On the other hand, it may violate user privacy — LLM providers can see where
users post the outputs of their models, and to make matters worse, users may not be able to detect if this is
happening.

A.2 Additional Experimental Details

Prompting strategies for Gemini. We use Gemini for paraphrasing and as an LLM judge. Occasionally,
Gemini will refuse to return a response due to safety filters that cannot be bypassed. We use the following
prompt to compute win rates:

“Is (A) or (B) a better response to PROMPT? Answer with either (A) or (B). (A): GREEDY RESPONSE.
(B): WATERMARKED RESPONSE.”

For determining the best response, we use:

“Is (A), (B), or (C) the best responses to PROMPT? Answer with either (A), (B), (C). (A): RESPONSE 1.
(B): RESPONSE 2. (C): RESPONSE 3.”

In both cases, we search for the first identifier (i.e. “(A)”, “(B)”, “(C)”). If one is not found or if Gemini does
not return a response, the example is not used in the win rate calculation or the first response is chosen.

For paraphrasing, we use the following:
“Paraphrase the following: RESPONSE”.

We skip examples for which Gemini does not return a response.

A.3 Omitted Experimental Results

Figure 2 shows the effect of varying the amount of random token corruption on detection pAUC. We observe
the same trend as for AUC. Figure 3 plots a histogram of the entropy of the underlying next-token probability
distribution under temperature 1 random sampling without watermarking across our dataset. We see the
entropy is concentrated between 0.5 and 3 nats. We plot the AUC lower bound predicted by Theorem 4.2
(k =1, m = 1024) sweeping our entropy term « across this range, with the understanding that for sufficiently
large m, our « is a good estimator of the true underlying entropy. In Figure 4 we look at the impact of m
and T on our AUC bound when the optimal o = log(m) is plugged in. We see sharp diminishing returns
with respect to m (performance saturates after around m = 10 for all T’s). We empirically observe this
saturation in Table 1, where AUC saturates at 97.7% at m = 16 — that is, increasing m beyond 16 has
negligible impact. Furthermore, we observe that the bound increases sharply with 7', corroborating the trend
we see empirically in Figure 1.

Given a next-token distribution over the vocabulary, we can estimate « via simulation. In Figure 5 we plot
the effect of m on &, our simulated entropy, for two distributions p — uniform and Zipf — over a 32k token
vocabulary. Neither may be realistic in practice, but the exercise is still informative as we observe that &
follows log(m) pretty well for even large m’s when p is uniform. As expected, & is smaller when p is Zipf
(lower entropy) and deviates from log(m) for large m.

Figure 7 plots the performance that Theorem 4.4 predicts when using the optimal likelihood ratio test with
the Gamma distribution.

16

Under review as submission to TMLR

Detection Perf,

0.801 —o— KB (2)
E —o— AC
& 0.75 K
X 0.70 —e— OQurs (k=1, m=16)
o —o— Ours (k=1, m=1024)
€ 65l —e— Ours (k=50, m=16)
X T~
—
~ 0.60
O
-}
< 0.55
o

0.501

10 15 20 25 30 35 40 45 50
% Corruption

Figure 2: Effect of the amount of (random token replacement) corruption on detection pAUC (flat scheme;
mixed 77’s) with 1% max FPR.

Histogram of Entropy Perf. lower bound for k=1, m=1024
1.0 1.0 —
0-81 0.8
>0 6
2 0.6 g -
S <
N 0.4+
0.4
T=50 —— T=300
0.21 — T=100 —— T=400
0.2 — T=200 —— T=500
0000 05 10 15 20 25 30 05 1.0 15 2.0 25 3.0
Entropy Entropy (alpha)

Figure 3: Left: Histogram of the average entropy (nats) in the LLM’s underlying next-token distribution
across non-watermarked response tokens. Right: A lower bound for ROC-AUC predicted by Theorem 4.2 as
a function of the entropy term « for the range of values we observe empirically. When m is large, a becomes
a reasonable estimator of the LLM’s entropy.

Table 6 shows perplexity and detection performance for GEMMA-7B-INSTRUCT on the eli5-category dataset.
The trends here are as before. Figure 6 shows the impact of number of test samples on detection.

17

Under review as submission to TMLR

Perf. lower bound for k=1, opt. alpha Perf. lower bound for k=1, opt. alpha
1.0’ 10_
0.9 ///’—-7
0.8
0.8
O 07 U 0.61
D)
< 0.6 <
0.41
0.5
T=5 —— T =50 m=2 — m =32
0.4 — T=10 —— T=100 0.2 — m=4 — m =512
0.3 — T=25 — T =200 [— m=16 — m =1024
5 10 15 20 25 30 0 50 100 150 200 250
m T

Figure 4: Left: A lower bound for ROC-AUC predicted by Theorem 4.2 as a function of m (using optimal
a =log(m)). Right: Same plot, but as a function of T' (again, using optimal «).

Simulated Entropy, V = 32k

—— uniform log(m)
14 — zipf
0 1000 2000 3000 4000 5000
m

Figure 5: Given a distribution over the vocabulary (taken to be of size 32k), we can estimate « for finite
m via simulation (1000 trials). We observe that when the underlying next-token distribution is uniform,
a = log(m) in a practical range for m. However, when the underlying distribution is Zipf (less entropy), «
quickly deviates from log(m) as m grows and the probability of sampling duplicate tokens increases.

18

Under review as submission to TMLR

| PPL | LH | AUC | pAUC | C. AUC | C. pAUC

Max Std. Error || 0.03 | 0.002| 0.1 | 01 | 02 | 0.1
Unif. Fisher p-value H ‘ ‘ ‘ ‘ ‘

2| 3.46 | 0.597 | 86.3 | 62.3 | 75.8 54.7

41336 [0.604 | 94.8 | 79.0 | 87.6 66.4

_ 16 || 3.20 | 0.618 | 97.9 | 90.0 | 94.0 80.2

Flat (k =1) 32| 3.06 [0.629 | 982 | 91.7 | 94.9 82.7

512 || 2.63 [0.668 | 98.5 | 93.0 | 95.7 85.5

1024 || 2.61 | 0.670 | 98.5 | 932 | 95.7 85.8

2| 4.10 | 0.568 | 78.9 | 53.1 67.4 51.0

4406 [0.572 | 91.2 | 65.3 | 80.5 55.0

Flat (K =10) 16 | 386 | 0.583 | 071 | s2.8 | 90.9 68.1

32| 3.80 | 0.587 | 97.9 | 86.3 | 92.7 72.7

2| 3.79 | 0.581 | 65.5 | 50.5 | 57.1 50.2

4|1 376 | 0.584 | 784 | 52.0 | 66.1 50.7

Flat (k=500 16 || 372 | 0586 | 0.8 | 602 | 77.9 53.1

32 || 3.67 | 0.589 | 92.0 | 64.7 | 80.7 54.5

Table 2: Results (10% corruption, 1% max FPR) for U(0, 1) when a meta p-value is used for scoring, wherein
the T' n-gram-level p-values are combined using Fisher’s method. The k£ = 1 setting is precisely a stochastic
version of Aaronson Corrected. AUCs, pAUCS, and their standard errors are scaled by 100.

Detection Perf. Detection Perf.
1.0 1 0.901
ol = 0.851
: & o001
—— % 0.751
U 0.81 —— €
S o o 0.70 -
= —e— Ours (k=1, m=16) X —o— KB (2)
0.7 —o— Ours (k=1, m=1024) =~ 0.651 —o— A
' —e— Ours (k=50, m=16) O —— K
) 0.60 _ _
< —e— Ours (k=1, m=16)
0.6 00551 ¥ —e— Ours (k=1, m=1024)
—o— Ours (k=50, m=16)
| | | | . 0.501
50 100 150 200 250 50 100 150 200 250
T T

Figure 6: Impact of number of test samples T on detection performance (flat scheme) for GEMMA-7B-
INSTRUCT on eli5-category.

19

Under review as submission to TMLR

| PPL | LH | AUC | pAUC | C. AUC | C. pAUC

Max Std. Error || 0.03 | 0.002 | 0.1 | 03 | 02 | 01
Unif. KDE LRT || | | | | |
21 346 | 0.597 | 78.1 | 57.7 64.4 51.5
41| 3.36 | 0.604 | 73.9 | 56.0 60.7 51.2
B 16 || 3.20 | 0.618 | 66.6 | 53.9 56.7 51.3
Flat (k= 1) 32 1| 3.06 | 0.629 | 64.0 | 53.6 55.2 51.3
512 || 2.63 | 0.668 | 56.2 | 51.3 50.4 50.3
1024 || 2.61 | 0.670 | 55.4 | 51.1 49.9 50.2
21 410] 0.568 | 84.1 | 58.0 72.8 53.1
41 4.06 | 0.572 | 94.8 | 72.9 83.9 58.7
Flat (k = 10) 16 || 3.86 | 0.583 | 97.8 | 85.1 88.3 64.2
321 3.80 | 0.587 | 97.3 | 85.6 86.9 64.0
21 379] 0.581 | 69.0 | 51.6 60.9 50.9
41 3.76 | 0.584 | 83.1 | 55.6 71.0 52.4
Flat (F=50) 161l 3.7 | 0586 | 940 | 682 | 818 56.2
32 1| 3.67 | 0.580 | 95.5 | 72.5 84.0 57.9
Gamma Exact LRT H ‘ ‘ ‘
21 345] 0.598 | 76.6 | 57.0 63.8 51.6
41| 3.44 | 0.600 | 74.4 | 55.2 61.5 51.2
Flat (k = 1) 16 || 3.17 | 0.623 | 68.3 | 53.6 57.8 51.3
32 1| 3.04 | 0.634 | 65.5 | 53.5 56.2 51.5
21 4.07 10570 | 82.9 | 584 70.3 52.8
41 4.01 | 0.573 | 894 | 67.5 73.4 54.1
Flat (k = 10) 16 || 3.96 | 0.577 | 85.1 | 61.4 68.0 51.7
321 393 | 0.580 | 82.1 | 57.7 65.7 51.2

Table 3: Results when the likelihood-ratio test is used for scoring in place of p-values. When F' = U(0, 1),
the null and alternative likelihoods are estimated non-parametrically using kernel density estimation (KDE).
When F = —Gamma(1/k, 1), the densities given in Theorem 4.4 are used. AUCs, pAUCs, and their standard
errors are scaled by 100.

20

Under review as submission to TMLR

| PPL | LH | AUC | pAUC | C. AUC | C. pAUC

Max Std. Error || 0.04 | 0.002 | 0.1 | 02 | 01 | 0.2
F=NODI |] | | |

2 || 3.47 | 0.597 | 904 | 68.7 | 817 58.5

41 3.36 | 0.605 | 95.9 | 83.0 | 902 70.7

16 || 3.15 [0.622 | 98.0 | 90.6 | 942 80.4

Flat (k=1) 35 |l 305 | 0.631 | 982 | 91.8 | 94.9 82.2

512 || 2.72 | 0.661 | 98.5 | 929 | 954 83.8

1024 || 2.70 | 0.663 | 98.5 | 93.0 | 954 84.1

2| 413 [0567 | 84.1 | 56.3 | 73.3 52.1

41 4.02 | 0.573 | 94.2 | 733 | 858 59.8

Flat (k=10) 46 || 393 | 0579 | 980 | 87.9 | 93.2 74.5

32| 3.84 | 0.584 | 98.4 | 90.0 | 941 777

2]/ 3.82 (0580 | 71.0 | 50.9 | 625 50.4

41 3.73 | 0.585 | 83.8 | 53.9 | 724 51.5

Flat (k=500 15 || 3.60 | 0.588 | 93.0 | 675 | 83.1 55.9

32| 3.67 | 0.589 | 94.5 | 727 | 856 58.6
F=xall | | | |

2] 3.45 | 0.597 | 86.2 | 62.1 | 755 54.5

41 3.39] 0.602 | 94.8 | 79.1 | 878 66.8

_ 16 || 3.20 | 0.617 | 97.9 | 90.1 | 93.9 80.1

Flat (k=1) 39 || 308 | 0.627 | 982 | 917 | 949 82.9

512 || 2.98 | 0.644 | 98.7 | 952 | 96.7 89.6

1024 || 3.03 | 0.641 | 988 | 95.7 | 97.0 90.5

2| 412 | 0.567 | 81.6 | 544 | 69.8 51.4

41| 4.04 | 0.573 | 935 | 70.3 | 84.0 57.7

Flat (k=10) 16 || 384 | 0585 | 8.1 | 875 | 931 74.1

32| 3.65 | 0.596 | 98.7 | 90.6 | 94.7 78.6

2] 3.77 | 0.583 | 68.1 | 50.6 | 58.7 50.2

41 3.74 | 0.585 | 82.0 | 529 | 69.4 51.0

Flat (k=50) 16 || 368 | 0.588 | 929 | 65.6 | 819 55.0

32| 3.65 | 0.591 | 94.5 | 71.5 | 845 57.7

Table 4: Results (10% corruption, 1% max FPR) when F is N(0,1) or x2 and p-values are used for scoring.
AUCs, pAUCS, and their standard errors are scaled by 100.

21

Under review as submission to TMLR

| LH | AUC | pAUC | C. AUC | C. pAUC | P. AUC | P. pAUC

Greedy Decoding || 0.814 - - - - - -

Random Sampling || 0.593 - - - - - -
Aaronson || 0.654 | 71.8 67.7 65.7 62.6 53.9 50.5
Aaronson Cor. || 0.654 | 98.3 | 92.9 95.4 84.7 58.8 50.7
0.5 0.596 | 70.7 | 51.7 68.3 51.2 49.0 49.8
11/ 0594 | 85.4 | 59.9 81.9 56.5 52.9 49.9
Kirchenbauer 2 || 0.569 | 96.6 | 82.5 94.8 76.5 58.4 50.3
31 0.522 | 99.1 | 94.0 98.4 90.4 63.4 51.5
410493 | 99.8 | 98.2 99.6 96.6 66.4 52.7
Kuditipudi || 0.592 | 85.8 | 76.5 | 85.1 74.3 75.9 53.2
2|/ 0.597 | 90.5 | 69.7 82.6 59.4 50.5 50.3
41 0.604 | 96.0 | 83.7 90.6 714 51.3 50.6
Flat (k = 1) 16 || 0.618 | 97.7 | 90.2 94.1 79.9 52.7 51.1
321 0.629 | 97.9 | 90.7 94.4 80.8 53.0 50.8
512 || 0.668 | 97.8 | 90.5 94.3 80.5 54.6 51.3
1024 || 0.670 | 97.8 | 90.5 94.2 80.5 52.8 51.1
2|/ 0.568 | 84.0 | 56.5 74.3 52.3 49.0 50.0
410572 | 94.1 | 738 86.2 60.2 51.3 50.3
Flat (k =10) 16 || 0.583 | 97.9 | 87.7 93.2 74.2 54.3 50.7
32 || 0.587 | 98.3 | 89.7 94.2 7.7 55.0 50.8
21 0.581 | 70.5 | 50.9 63.1 50.5 47.0 50.0
410584 | 83.5 | 54.1 72.7 51.6 49.4 50.0
Flat (k = 50) 16 || 0.586 | 93.0 | 67.9 83.7 56.3 50.5 50.1
321/ 0589 | 94.5 | 729 86.0 59.0 51.1 50.5
410601 | 93.9 | 78.2 87.3 65.8 48.4 50.4
16 || 0.607 | 954 | 83.5 90.8 72.5 53.4 50.8

Rec. (k=1)

321/ 0.612 | 96.5 | 85.8 92.0 74.5 49.4 50.8
512 || 0.632 | 97.4 | 88.6 92.9 77.5 50.4 51.2
41 0.567 | 89.6 | 64.9 80.3 55.6 48.0 50.0
Rec. (k=10) 16 || 0.568 | 93.6 | 74.8 87.0 62.4 52.9 50.4
32110573] 95.1 | 78.0 88.6 64.4 50.6 50.3
410582 75.9 | 522 67.0 51.0 46.5 49.9
Rec. (k=50) 16 || 0.583 | 81.5 | 55.0 73.7 52.2 51.4 50.2
321/ 0.582 | 84.0 | 56.6 75.3 52.6 49.4 50.0

Table 5: Average per-token likelihoods and detection performance when the negative class is taken to be
non-watermarked generations sampled with temperature 1. For paraphrasing, target lengths of {150, 200,
250} are used in calculating AUC and pAUC. The trends here are consistent with those discussed in the
main text, where the negative class consists of non-watermarked argmax / greedy generations and perplexity
is used to measure distortion. AUCs and pAUCS are scaled by 100.

22

Under review as submission to TMLR

| PPL | LH | AUC | pAUC

Greedy Decoding || 1.313 | 0.872 - -
Random Sampling || 1.627 | 0.811 - -

Aaronson || 1.619 | 0.814 | 61.0 57.8
Aaronson Cor. || 1.619 | 0.814 | 93.0 70.9

0.5]| 1.649 | 0.808 | 61.6 | 50.7

1]} 1.673|0.803 | 72.1 52.3

Kirchenbauer 2 || 1.836 | 0.782 | 87.8 | 63.0
31 2159 | 0.743 | 95.3 | 78.5

4 || 2.847 | 0.683 | 98.3 | 90.0

Kuditipudi || 1.615 | 0.814 58.4‘ 51.0

2 1.631 | 0.810 | 77.1 53.6
411 1.623 | 0.811 | 87.0 | 61.7
16 || 1.621 | 0.812 | 924 | 70.3

Flat (k=1) 59 |l 1615 | 0.812 | 92.8 | 71.9
512 || 1.610 | 0.814 | 93.2 | 73.1

1024 || 1.610 | 0.814 | 93.2 | 72.9

41 1.657 | 0.807 | 89.4 | 61.7

Flat (k=10) 1611 1653 | 0.808 | 94.7 | 75.0
41 1.652 | 0.808 | 80.5 | 52.6

Flat (k=50) 16111645 | 0.810 | 89.7 | 60.4
4 1.623 | 0.813 | 82.1 | 57.0

16 | 1.621 | 0.812 | 87.5 | 63.0

Ree. (k=1) 251l 1630 | 0.810 | 88.1 | 63.9
512 || 1.615 | 0.815 | 90.0 | 66.7

4 1.665 | 0.805 | 84.0 | 56.2

Rec. (k=10) 16111 662 | 0.806 | 89.6 | 64.4
Rec. (k—50) L[1:664|0806] 732 | 512

16 || 1.653 | 0.808 | 79.4 | 53.5

Table 6: Main results (mixed T”s for AUC and pAUC where max FPR is 1%) for GEMMA-7B-INSTRUCT on
the eli5-category test split. AUC and pAUC are scaled by 100. We observe the same trends here as with
MISTRAL-7B-INSTRUCT on databricks-dolly-15k. When k = 1 and m = 1024 (white-box setting) we are
slightly better in perplexity and detection (sans corruption) than Kuditipudi et al. (2023) and on-par with
Aaronson (2023). Kirchenbauer et al. (2023a) can always outperform on detection by cranking up 4, but
when matched on perplexity, we achieve better detection. For example, § = 0.5 gives perplexity of 1.649 and
AUC of 61.6% whereas we achieve perplexities / AUC’s of 1.610 and 93.2% when k = 1, m = 1024 and even
1.645 / 89.7% when k = 50, m = 16 (black-box).

| AUC | pAUC | C. AUC | C. pAUC | P. AUC | P. pAUC
Aaronson Cor. (sum p-value) || 97.1 | 752 | 925 | 629 | 573 | 50.1

Table 7: Detection performance (mixed T’s) when a sum-based p-value is used in the length correction of
Aaronson (2023). We observe slightly worse performance than using Fisher’s method to combine the p-values
of individual tests. AUCs and pAUCs are scaled by 100. For paraphrasing, target lengths of {150, 200, 250}
are used in computing AUC and pAUC.

23

Under review as submission to TMLR

=
=}
.

TPR @ 1% FPR

o
[N)
X

o
o

Figure 7: Detection performance (TPR at 1% FPR) of the likelihood ratio test (LRT) predicted by Theorem
4.4. Left: Effect of m, the number of sampled sequences, for various sequence lengths k, when the number of
test samples T'= 100. Right: Effect of T" for various m’s when k = 50. We see that degradation due to large

Gamma w/ LRT. T=100, beta=1

o
©

o
o

o
>

— k=1 —— k=30
—— k=5 —— k=40
— k=10 —— k=50
— k=20

10 20 30 40 50

m

=
=}

TPR @ 1% FPR

o
[N}

o
=}
!

Gamma w/ LRT. k=50, beta=1

o
o)
!

o
o
)

©
~

-

— m=2 — m=32
— m=4 — m=64
— m=8 - m=128
— m=16 — m=256

0 25 50 75

100 125 150 175 200

T

k can be offset by using a larger m and that the hit from small m can be compensated by large T

24

Under review as submission to TMLR

A.4 Omitted Proofs

Lemma A.1l. Assume all draws from LM(- | P; k) are i.i.d. with distribution p and that the unique seeds
across n-grams and sequences, {S; 1} are conditionally independent given the counts of the sampled sequences.
Then the output of any number of calls to WATERMARKSINGLE with LM using key K are also i.i.d. with
distribution p.

Proof. For concreteness, let m be the number of calls to WATERMARKSINGLE, where the v-th call draws
m samples Q, = {Q(l,,l), ce, Q(v,m)} from LM (- | P; k). First we show (mutual) independence. We note
that because F', m, K, P are all fixed, non-random quantities, the watermark selection process embodied in
Algorithm 1 can be seen as a deterministic function ¢r, i, p that takes m input sequences Q, and outputs
one of them. The randomness in the deduplication of n-grams is a non-issue since it is independent across
calls. Since functions of independent random variables are independent and {Q,U}ZL:1 is independent, so is

{YFm.Kx,P (Qv)}Tzl. This proves independence.

Now, we prove that the outputs are identically distributed with the same distribution as their inputs. To do this,
consider the v-th call in isolation and for ease of notation, let {Q1,...,Qm} = Q, and X, = Yrpn k. P(Qu).
Let {(X1,¢1),...,(Xj,¢j)} be the unique sequences and corresponding counts. Note that the {(X;,¢;)}i
need not be independent (it is easy to come up with a counter-example). Let S; be the integer seeds for
X, after deduplication. Conditioned on (ci,...,¢;), {Sii}i is independent and so {R;;};, consists of .i.d.
draws from F' by virtue of pseudorandomness. As F' is also continuous, we have that when conditioned on
(c1,.--,¢5), wi i U(0,1) for i =1,...,7, by the inverse-sampling theorem.

Let o be any sequence. We wish to show that P(X,, = z) = u(z). Let ¢ =), 1[{Q; = z]. The independence
of the 1[Q; = z|’s follows from the independence of the @;’s, and thus ¢ ~ Binomial(m, y(x)). Clearly,
P({z selected} | ¢ = 0) = 0. If ¢ > 0 then obviously one of the X,’s is x, and we can, without loss of generality,
label X; = 2 and ¢; = ¢, so that P({z selected} | ¢ = i) = P({ X} selected} | ¢; = i). Now,

P({X; selected} | ¢1,...,¢j;) =P ({1 = argmax, u;n/ct} ‘ i, .- .,cj)

1
=P ({1 = argmax, c;g/(z;)} ’ cl,...,cj>
t

=P ({1 = argmin, log(—log(u;)) —log(c;/m)} | c1,...,¢;)
=P ({1 = argmax, —log(—log(u)) + log(c:/m)} | c1,...,¢5) .

Let gt = —log(—log(u)). It is a known fact that if u, i U(0,1), then g, i Gumbel(0,1). Now we can apply
what is often referred to the "Gumbel-Max trick" in machine learning. Conditioned on (c1,...,¢;),

ct/m

Zt ct/m

argmax, g; + log(c;/m) ~ Categorial () = Categorial (c;/m), .
¢

Thus,
P({ X selected =1 ey ci)Pleg =1 ceyC
P({X; selected} | ¢; = i) = Z ({Xy selected} | cx];’(62’_)’ ¢)Pler =ic,,05)
€2y0005Cj =1
_i/mP(ep =14)
= TPy ™

Putting it all together, we have that

P(X, =x)= ZIP’({JC selected} | ¢ = 4)P(c = %)
=0

Under review as submission to TMLR

We have shown that the outputs of WATERMARKSINGLE are mutually independent and carry the same
distribution p as their inputs. O

Remark. The proof of Lemma A.1 treats the secret key K as fized (possibly unknown); treating it as random
changes the story, as we illustrate with the following toy example.

Suppose that regardless of the conditioning prompt, the LLM outputs one of two sequences — x; or xo with
equal probability. Let u; = SCORESEQS(F, (z;), K, n, P) for i € {1,2}. If m is very large, then it becomes very
likely that X; = x1, Xo = x5 (modulo the labeling) and ¢; =~ ¢y ~ m/2 and so argmax?_; u;n/ci A argmasx; u;.
The outputs to two sequential calls to WATERMARKSINGLE should not be independent, because the output
and key are dependent and the key is shared across calls. Concretely, if the output to the first call is z; we
learn that our scheme with key K prefers x; over xo, and so we will likely output x; in the second call. In
contrast, if we had not observed the first call (and our prior on the key had not been updated), we may have

returned each sequence with equal probability.

Proof of Theorem 4.1. We first show that WATERMARKSINGLE and WATERMARKRECURSIVE are distortion-
free and then that autoregressive calls to them as done by WATERMARK preserves this property.

To show WATERMARKSINGLE is distortion-free, we observe that the LM argument supplied is the true
underlying language model p and that our stochastic samples from the model are i.i.d., so we can apply
Lemma A.1 directly.

Distortion-free for WATERMARKRECURSIVE follows easily from induction on ¢, the number of keys (and hence
the number of recursive calls). When ¢ = 1, the LLM is the true underlying language model, so the outputs
are i.i.d. from p. We get t = v + 1 by combining Lemma A.1 with the inductive step — that the outputs of
WATERMARKRECURSIVE with keys (Ko, ..., K,41) are i.i.d. from p.

Finally, we show that autoregressive decoding where sequences no longer than %k tokens are generated one at
a time via watermarking continues to be distortion-free.

To do this, we introduce two sets of random variables: {Xq(f)}fil represents k-sized chunks of the model’s
response when watermarking is not employed — that is, Xff) represents non-watermarked response tokens
for indices (¢ — 1)k + 1 to ¢k. Unused chunks can be set to a sentinel value like ¢. {Xq(,f)}l represents the
same collection but when WATERMARK is employed. Let = be a sequence of any length. Partition x into
contiguous k-sized chunks (z1,...,z;). Note that z; may have length less than k if the stop-token was reached
in that chunk, but all other chunks have exactly k tokens. With P as the original prompt, we need to show
P(X, =z | P)=P(X, =2 | P), where X,, and X,, are the watermarked and non-watermarked responses of
any length.

P(Xy=z|P)=PX® =z, | X¢V=0,_,.... XY =2, P)-. . P(XV) =2, | P)
=P(XWY =z, | (Pa1,...,201)) - P(XP =2, | P)
Because WATERMARKSINGLE and WATERMARKRECURSIVE are distortion-free:
=PXV =a, | (Pxy,...,201)) - P(XY =2, | P)
=P(X, = x).

O

Proof of Theorem 4.3. First consider the flat scheme. Under the null, given our assumption of independence,
R; YR, so Fig (Zj Rj) ~ U(0,1) and the result follows. For the recursive scheme, we know from the flat
scheme and from assumed independence that P; Yy (0,1), where P; is the p-value associated with the j-th
key. Thus, y ~ XgIP\ so that X%\P|(y) ~U(0,1). O

Lemma A.2. Assume the conditions of Theorem 4.2. Conditioned on the counts ¢ of each token in the
vocabulary, and which token id i* was selected (i.e. is the argmazx), u;» ~ Beta(m/ci«, 1).

26

Under review as submission to TMLR

Proof of Lemma A.2. Let z; = —mlog(u;)/c;, where u; ud U(0,1). Then, z; ~ Exp(c;/m) and

ko J mjc; . o .
i* = argmax]_, u, ' = argmin; —mlog(u;)/c; = argmin, z;.

By nice properties of the Exponential, we have that
Ci
o ~E = | = Exp(1).
bS5 <o
U = exp(—ci»zj= /M), SO
Plug < t) = P(z+ > —mlog(t)/c;+) = exp(mlog(t)/c;-) = t™/ %"

Differentiating this with respect to ¢, we recover the pdf of Beta(m/c¢;«,1).

O

Proof of Theorem 4.2. F is U(0,1). The detection score is Frp (ZJ Rj) with R; “ F under H, and when

conditioned on the counts C' and the argmax token ids I*, R; ~ Beta (m/ Cjrrs 1) under #H;. Redefine sg

and s; to be Zj R; under Hg and H; respectively.

P(Fr(s1) > FPr(so)) =P(s1 > s0) = E¢(s1 > 1),

where t ~ IrwinHall(T") since s is the sum of 7" i.i.d. U(0,1)’s. Our task now is to find a lower-bound for s;.

Noting independence across tokens and that R; € [0, 1], we can use Popoviciu’s bound on variance to obtain

V(sy) = ;V(Rj) <102 =T/4

Plugging in the expectation of a Beta and recalling that when conditioned on C', the probability that token ¢

in the vocabulary is the argmax token at step j is C;;/m, we have
T v
E = E).
(s1) ; c (; 1+ Cj,i/m>

With tedious calculation, it can be shown that

lix zg—Mclog(x)7 for z = %,j €[1,...,m], where

L (w1
~log(m) \m+1 2/)°

Thus,

i=1

T 1 \4 o C. .
J,? J,t
E(s1) > jE:I (2 —AEc > 1[Cj; > 0] e 10%(m >> :

=> 1/2+4Xa=T/2+ ATa.
J

With bounds on expectation and variance, we proceed to upper-bound the error. Firstly, we have that,

E(s1 —s0) >T/2+ XTa—T/2=ATa >0,
V(s1 — s0) < T/4 +T/12 = T/3.

27

Under review as submission to TMLR

P(s1 < s9) =P(s1 — so —E(s1 — s0) < —E(s1 — s0))
<P(s1 —sg —E(s1 — s9) < —\Ta)
< V(s1 — s0)
~ V(s1 — s0) + (A\Ta)?
1
[
~ 1+3TX%a?’

where the penultimate line follows from Cantelli’s inequality. Thus, we have that

1
P > =1-P < D .
(81 > sp) (81 < s89) > 1+ 1/(3TA2a2)

O

Proof of Theorem 4.4. Let r be the PRF value for some n-gram from the text we wish to text. Let Fy =
—Gamma(1l/k, 8) with pdf fy and F; = —Gamma(1/k, mg) with pdf f;. By definition, r ~ Fy under Hy. By

our assumptions, ¢; = 1 and |R;| = k, Vi. So, argmax, u:-”/ci = argmax;>, u; = argmax; Fy (ZJ Ri,j) =
argmax; »_; I; j = argmin; — > R; j, where the second-to-last equality follows from the monotonicity of Fj.
— Zj R; j ~ Gamma(k/k, 3) = Exp(1,). Zj R;- j ~ —Exp(1,mf3), because the minimum of Exponentials
is Exponential. Thus, Vj, R;- ; ~ —Gamma(l/k,mB) = Fy and r ~ F; under H;. Now let R refer to the
T test-time PRF values. From the independence of test n-grams, the log-likelihood ratio test has score
s(R) = szrzl (log f1(R;) — log fo(R;)) and the fact that it is the uniformly most powerful test follows directly

from the Neyman—Pearson lemma. We now have that,

1/k

Folr) = g () el
ml/kgL/k

filr) = I‘(l/ﬂk:)(_T)l/k_l exp(mpr),

T
s(R) = %log(m) + (m— 1)BZR¢, so that
i=1

Py, (s >t) = Py, ((m - l)ﬁZRi >t— ilog(m)) = Gamma(T/k, 8) (Q(t)), and

Py, (s <t)= Py, ((m - l)ﬁZRi <t-— ilog(m)) =1— Gamma(T/k,mp3) (Q(t)), where

_ Tlog(m)/k—1

M TRV

28

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Under review as submission to TMLR

B Code

For full reproducibility, we provide a Python implementation of our algorithm, largely following the pseudocode

presented earlier.

import collections

from collections import abc

import hashlib
import typing
import numpy as np

import scipy

TokenIds: typing.TypeAlias

def int_hash(tokens: TokenIds, key: int) -> int:
m = hashlib.sha256()
code = str(key) + str(tokens)
m.update (bytes(code, 'utf-8'))
return int(m.hexdigest(), 16)

def calc_prn(seeds: list[int]) -> float:

if not seeds:

seeds = [None]

A different choice of F / F_k can be plugged in here.
vals = [np.random.default_rng(seed).uniform() for seed in seeds]

return scipy.stats.irwinhall.cdf (np.sum(vals), len(vals))

def score_seqs(

seqs: list[TokenIds], key: int, ctx_len: int, prefix: TokenIds
-> dict[TokenIds, float]:

"""Return dictionary mapping each sequence to a pseudorandom value.

~

seeds_with_id = []

for seq_id, tokens in enumerate(seqgs):
tokens_with_prefix
for i in range(len(prefix), len(tokens_with_prefix)):
ctx = tokens_with_prefix[max(0, i+l-ctx_len):i+1]
seed = int_hash(ctx, key)
seeds_with_id.append((seed, seq_id))

np.random.shuffle(seeds_with_id)

used_seeds = set()

deduped_seeds = [[] for _
for seed, seq_id in seeds_with_id:
if seed not in used_seeds:
deduped_seeds [seq_id] . append (seed)

used_seeds.add(seed)

seq_to_prn = dict()

for seq_id, seeds in enumerate(deduped_seeds):

seq_to_prn[seqs[seq_id]]

return seq_to_prn

def watermark(

key: int,

prefix + tokens

calc_prn(seeds)

52

53

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

106

107

108

Under review as submission to TMLR

n_cands: int,
ctx_len: int,
prompt: TokenIds,
seq_len: int,
11lm: abc.Callable[[TokenIds, int], TokenIds],
stop_cond: abc.Callable[[TokenIds], booll,
-> TokenlIds:
tokens = ()
while not stop_cond(tokens):
tokens = tokens + watermark_single(
key, n_cands, ctx_len, prompt + tokens, seq_len, 1llm
)

return tokens

def watermark_single(

key: int,
n_cands: int,
ctx_len: int,
prompt: Tokenlds,
seq_len: int,
1lm: abc.Callable[[TokenIds, int], TokenIds],
-> TokenIds:
seqs = [1lm(prompt, seq_len) for _ in range(n_cands)]
seq_counter = collections.Counter (segs)
unique_seqs = list(seq_counter.keys())
seq_to_prn = score_seqs(unique_seqs, key, ctx_len, prompt)
scores = [
seq_to_prn[seq] ** (float(n_cands) / seq_counter[seq])
for seq in unique_seqgs
]

return unique_seqs[np.argmax(scores)]

def detect(seq: TokenIds, key: int, ctx_len: int) -> float:

return score_seqs([seq]l, key, ctx_len, ())[seq]

def watermark_recursive(

keys: list[int],
n_cands_per_key: int,
ctx_len: int,
prompt: TokenIds,
seq_len: int,
1lm: abc.Callable[[TokenIds, int], TokenIds],
stop_cond: abc.Callable[[TokenIds], booll,
—> Tokenlds:
Total number of candidates is n_cands_per_key**len(keys).
tokens = ()
while not stop_cond(tokens):

tokens = tokens + watermark_recursive_single(

keys, n_cands_per_key, ctx_len, prompt + tokens, seq_len, 1llm

)

return tokens

def watermark_recursive_single(

30

110

111

112

114

115

116

119

120

121

123

124

125

128

129

130

132

133

134

20

21

22

23

24

25

Under review as submission to TMLR

keys: list[int],
n_cands_per_key: int,
ctx_len: int,
prompt: Tokenlds,
seq_len: int,
1lm: abc.Callable[[TokenIds, int], TokenIds],
) -> Tokenlds:

if len(keys) == 1:
1lm_rec = 1llm

else:
1lm_rec = lambda _prompt, _seq_len: watermark_recursive_single(

keys[1:], n_cands_per_key, ctx_len, _prompt, _seq_len, 1llm

)

return watermark_single(

keys[0], n_cands_per_key, ctx_len, prompt, seq_len, 1llm_rec

def detect_recursive(
seq: Tokenlds,
keys: list[int],
ctx_len: int
) —> float:
pvals = [1 - detect(seq, key, ctx_len) for key in keys]
y = —2+#np.sum(np.log(pvals))
return scipy.stats.chi2.cdf(y, 2*len(pvals))

Furthermore, we provide an example of our watermarking applied to a dummy language model that generates
tokens at random.

from matplotlib import pyplot as plt
from sklearn import metrics

key = 1

n_cands_per_key ** len(keys) == n_cands
n_cands = 64

keys = [1, 2, 3, 4, 5, 6]
n_cands_per_key = 2

ctx_len = 4

prompt = ()

seq_len = 20

max_len = 100

stop_cond = lambda x: len(x) >= max_len
n_trials = 200

Increasing vocab_size increases entropy and hence
the strength of the watermark.
vocab_size = 100

def random_llm(prompt, seq_len):
To experiment with wvariable length responses,
change range(seq_len) to range(np.random.randint (1, seq len+1))
return tuple(

np.random.randint (0, vocab_size) for in range(seq_len)

31

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

Under review as submission to TMLR

def random_llm_loop(prompt, seq_len):
tokens = ()
while not stop_cond(tokens):
tokens = tokens + random_llm(prompt + tokens, seq_len)

return tokens

def simulate_flat():
pos_scores = []
neg_scores = []
for _ in range(n_trials):
pos_scores. append (
detect (
watermark (
key, n_cands, ctx_len, prompt,
seq_len, random_llm, stop_cond
Vg
key,

ctx_len,

)
neg_scores.append (
detect (
random_11m_loop(prompt, seq_len), key, ctx_len

)

return neg_scores, pos_scores

def simulate_recursive():
pos_scores = []
neg_scores = []
for _ in range(n_trials):
pos_scores.append (
detect_recursive(
watermark_recursive(
keys, n_cands_per_key, ctx_len, prompt, seq_len,
random_llm, stop_cond
Do
keys,

ctx_len,

)
neg_scores.append(
detect_recursive(

random_l1lm_loop(prompt, seq_len), keys, ctx_len
)
return neg_scores, pos_scores
for scheme, (neg_scores, pos_scores) in zip(

['flat', 'recursive'], [simulate_flat(), simulate_recursive()]

auc = metrics.roc_auc_score(

32

83

84

86

87

88

89

90

91

92

93

94

95

Under review as submission to TMLR

[0]*1len(neg_scores) + [1]*len(pos_scores), neg_scores + pos_scores

)

plt.hist(
pos_scores, label=f'{scheme} watermarked', range=[0, 1],
bins=30, color='red',

)

plt.hist(

neg_scores, label='non-watermarked', range=[0, 1],

bins=30, color='blue', alpha=0.3,

plt.title(f'Score histogram. ROC-AUC = {auc:0.2f}')
plt.legend()
plt.show()

C Examples of Watermarked Outputs

We provide examples of watermarked outputs (minimally reformatted) under different schemes for the prompt:

“Give me a list of some characteristics of a good coffee shop?”.

Aaronson (2023)

1. Comfortable and inviting atmosphere

2. Good quality coffee beans

3. Professional and friendly staff

4. A wide variety of coffee and food options

5. Specialty menu items and unique flavors

6. A clean and well-maintained space

7. A cozy and comfortable seating area

8. Free Wi-Fi and plenty of charging stations

9. A welcoming and inclusive environment

10. Reasonable prices for their food and beverages.

These are just a few of the characteristics of a good coffee
shop, of course, tastes and preferences vary from

person to person.

Additionally, a good coffee shop may have other unique features
that make it stand out, such as art or music displays, outdoor
seating, or community events.

Ultimately, the best coffee shop for you will depend on your
individual values and preferences.

Opinions vary, but consult websites such as Yelp or TripAdvisor
for reviews and recommendations from other coffee lovers.

Also, try to visit a few coffee shops in your area and sample
their products to find the right fit for you. Happy coffee
shopping! #collegenow #studentlife #coffee

Kirchenbauer et al. (2023a) (6 = 2)

Answer: 1. Comfortable and inviting atmosphere
High-quality coffee and food

. Knowledgeable and friendly staff

Adequate seating

A variety of beverage and food options

Wide range of fresh ingredients

D O WwN

33

Under review as submission to TMLR

7. A menu that caters to different dietary needs

8. Competitive prices

9. A clean and well-maintained space

10. A great selection of pastries and baked goods.

Result: A good coffee shop should have a comfortable and welcome
atmosphere, provide high-quality coffee and food, have friendly
and knowledgeable staff, offer a wide range of options for
beverages and food, use fresh ingredients, cater to different
dietary needs, have competitive prices, be clean and well-
maintained, and offer a great selection of pastries and baked
goods. #CoffeeShop #Characteristics #Qualities #HighQuality
#Comfortable #Inviting #Friendly #Knowledgeable #FreshIngredients
#DietaryNeeds #Pricing #Cleanliness #Pastries #BakedGoods
#Cafeteria #Restaurant

Flat (k= 1,n = 1024)

1. Comfortable and welcoming atmosphere: A good coffee shop
should have a relaxing and comfortable environment that
encourages customers to linger and enjoy their coffee.

2. Quality coffee: The coffee should be of high quality and
freshly brewed. Baristas should be skilled and able to make a
variety of coffee drinks to customers' liking.

3. Good food options: A good coffee shop should offer a variety
of food options, from pastries and sandwiches to salads and
soups. The food should be of good quality and complement the
coffee.

4. Friendly and attentive staff: The staff should be friendly and
attentive to customers' needs. They should be able to make
recommendations and provide excellent service.

5. Wide range of drinks: A good coffee shop should offer a wide
range of drinks, such as tea, hot chocolate, smoothies, and ice
coffees.

6. A quiet and efficient workspace: The coffee shop should have a
quiet and efficient workspace for customers who need to work
while they sip their coffees.

7. Good music and ambiance: A good coffee shop should have a
relaxing and comfortable ambiance, with good music and lighting
that complement the overall experience.

8. A range of seating options: The coffee shop should have a
range of seating options, including tables, sofas, and armchairs,
to cater to customers' preferences and needs.

Kuditipudi et al. (2023)

A good coffee shop should have the following characteristics:

1. Quality coffee: A coffee shop should serve high-quality coffee
that is well-roasted and brewed to perfection.

2. Comfortable atmosphere: The shop should have a cozy and
inviting atmosphere that attracts customers for their morning
coffee routine or a mid-day break.

3. Variety of beverages: Apart from coffee, a good coffee shop
should also offer a variety of other beverages like tea, hot
chocolate, and smoothies.

34

Under review as submission to TMLR

4. Friendly and attentive staff: The staff should be friendly,
attentive, and knowledgeable about the menu.

5. Adequate seating: A coffee shop should have enough seating to
accommodate customers who want to sit and enjoy their coffee.

6. Cleanly maintained: The shop should be clean, neat,

and well-maintained to maintain a high level of hygiene.

7. Elegant and sophisticated decor: The decor should be elegant
and sophisticated, giving the customers a sense of style and
class.

8. Free or fast Wi-Fi: A coffee shop should offer free or fast
and reliable Wi-Fi so customers can stay connected while sipping
on their coffee.

Greedy Decoding

1. Comfortable and inviting atmosphere: A good coffee shop should
have a cozy and welcoming ambiance that makes customers feel at
home. This includes comfortable seating, soft lighting, and
pleasing decor.

2. Quality coffee: The most important characteristic of a coffee
shop is the quality of the coffee. It should be freshly brewed,
made with high-quality beans, and served at the right temperature.
3. Friendly and attentive staff: The staff at a coffee shop
should be friendly, knowledgeable about the menu, and attentive
to customers' needs. They should be able to make recommendations
and provide excellent customer service.

4. Variety of menu items: A good coffee shop should offer a
variety of menu items, including breakfast, lunch, and snack
options. This can include sandwiches, pastries, salads, and other
light bites.

5. Convenient location: A coffee shop should be located in a
convenient and accessible location, such as a busy street or near
a park or public transportation hub.

6. Good music: A coffee shop should have a good selection of
music that complements the atmosphere and appeals to customers.
This can include classical, jazz, or contemporary music.

7. Community involvement: A good coffee shop should be involved
in the local community and support local events and organizations.
This can include hosting events, sponsoring

35

	Introduction
	Related Work
	Algorithm
	Theory
	Experiments
	Models, Datasets, and Hyperparameters
	Evaluation Metrics
	Adversarial Attacks
	Baselines
	Experimental Results
	Overall performance of our flat and recursive schemes
	Effects of Hyperparameters
	Observations on detection

	Conclusion
	Appendix
	Broader Impacts
	Additional Experimental Details
	Omitted Experimental Results
	Omitted Proofs

	Code
	Examples of Watermarked Outputs

