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Abstract

We face the challenge of zero-shot generalization in contextual reinforcement
learning problems. A distinction is generally made between two cases: either
explicit context information is available for the agent, or it is not and has to be
inferred from data. We propose DMA*-SH, an approach that builds on dynamic
model aligned context inference. It emergently forms context representations
and is never informed explicitly about the actual contextual situation it is in. We
first show that normalization and random masking can significantly improve the
encoded context representation. Second, we enhance context utilization using a
hypernetwork which predicts context-dependent weights that are shared between
dynamic model, policy, and value function estimation neural modules. Across a
diverse set of contextualized environments, we show that our approach achieves
superior results, even compared to context-aware baselines.

1 Introduction

Reinforcement Learning (RL) has shown remarkable success in solving complex tasks such as robotic
manipulation [Nair et al., |2018]] and locomotion [Duan et al., 2016a]. However, RL agents often
lack robustness when confronted with variations in task dynamics, such as changes in the mass of
objects or surface friction [Moos et al.,2022]]. These variations typically require extensive retraining,
undermining the generalization capabilities of learned policies [Beck et al.,[2023]]. This challenge is
particularly evident in sim-to-real transfer, where discrepancies between simulation and real-world
dynamics can lead to instability and poor performance.

To address this, we propose a method for zero-shot generalization [Kirk et al., [2023|] and robust
representation learning using Contextual Markov Decision Processes [Hallak et al., 2015, Modi et al.|
2018]). In this setup, each context corresponds to a distinct variation in transition dynamics, such
as altered physical properties (e.g., mass of objects or surface friction). Typically, contextual RL
distinguishes two main assumptions: either 1) explicit context information is available as privileged
information, or 2) it is not available to the agent, hence it is context-unaware. This work focuses on
the latter: we aim to infer the underlying context directly from data, allowing for robust behavior
across diverse environments. We extend prior work that encodes a context representation in alignment
with a jointly trained dynamic model [Evans et al.,[2022| [Lee et al., [2020]. We refer to that vanilla
baseline as dynamic model aligned (DMA) context inference.

Our contributions. The contributions of this work can be summarized as follows:
* Building on top of recent works for dynamic model aligned context inference [Lee et al.|
2020, |[Evans et al., 2022| for model free contextual RL, we introduce an advanced context

encoder architecture DMA* for improved latent context representation achieving superior
performance with respect to zero-shot generalization.
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* We introduce a novel approach to incorporate dynamic models aligned context information
into the agent, using a hypernetwork [Ha et al.,|2017] that is trained jointly with the dynamics
model and shared with the policy and Q-function. We refer to that as DMA*-SH.

* We introduce a range of contextualized environments making a clear distinction between
overlapping and non-overlapping contexts [Beukman et al., [2023]]. Especially, the latter
are usually unsolvable for simple domain randomization approaches [Tobin et al., [2017]],
highlighting the necessity for a dedicated context encoder.

* We compare the zero-shot generalization capabilities of our approach to recent methods for
contextual RL and obtain superior results. The baselines are comprised of both, context-
aware — explicit context information is provided as privileged information, and, context-
unaware agents — explicit context information is not available but is possibly inferred
implicitly from past transitions; our case. Aggregated performances are reported with
empirical confidence intervals as suggested by |Agarwal et al.|[2021]].

2 Background

Contextual reinforcement learning.  We consider a reinforcement learning problem being mod-
eled as a Markov Decision Process (MDP). An MDP is defined by a tuple (S, A, P,r,v), where
S and A are the state and action spaces, respectively. P(s|s, a) is the probability of transitioning
into state s after starting in state s and taking action a. r : S X A — R is the reward function and
~v € (0, 1) is the discount factor, representing the difference in importance between future and present
rewards.

Further, we consider the Contextual Markov Decision Process (CMDP) formalism, which is defined
by a tuple (C,S,.A, m), where C is the context space, and m is a function that maps a context ¢ € C
to an MDP m(c) = (S, A, P¢,r¢,~). A CMDP thus defines a family of MDPs, that all share an
action and state space, but the transition probability P¢ and/or the reward function r¢ differ depending
on the context c. The context c is assumed to be time invariant, i.e., it does not change with time
within an episode in the environment. Similar to related work [Beukman et al., 2023 |Benjamins
et al.} 2023| |Prasanna et al., 2024] we focus on changes in the transition dynamics P and keep the
reward function fixed, ¢ = r,Vc € C.

Zero-shot generalization.  Typically, contextual RL is evaluated with respect to zero-shot gen-
eralization. Therefore we define three context sets, Cypqin for training and Ceyql,in and Ceval,out
for evaluation [Kirk et al., [2023|], while Cirqin N Cevat,in N Ceval,out = (). Context instances for
evaluation are either sampled from the distribution for training contexts Cey,q1,in, O oOut-of-distribution
Ceval,out- We are interested in the zero-shot generalization capabilities of the agent, hence, the agent
is not allowed to adapt (no gradient updates) to the unknown contexts from Ceyq1,in and Ceyai,out-

The agent’s objective is to learn a policy 7y that maximizes the cumulative reward, often expressed
as the expected return over the entire training context set m > By [ Yo, ' (ar, 5¢)], where

E.,[:] denotes the expectation given that the agent follows policy 7 and s;y1 ~ P¢(s|s, a) with
ce Ctrain~

3 Related Work

Zero-shot generalization in contextual RL. Contextual RL has been studied in various forms,
from cMDPs to domain randomization and meta-RL [[Hallak et al., 2015, | Modi et al., 2018, Beck
et al.|[2023]]. A recent survey [Kirk et al.,|2023] highlights its relevance for zero-shot generalization,
emphasizing that separate context sets for training and evaluation enable systematic analysis. One
research direction assumes context is observed explicitly as privileged information and integrates it
into learning [Chen et al.| |2018| |Ball et al.| 2021} |Seyed Ghasemipour et al., 2019, Eghbal-zadeh et al.|
2021, |Sodhani et al., 2021}, [Mu et al.,|2022| |Benjamins et al.,|2023| |Prasanna et al.,[2024]]. In contrast,
we follow recent work that assumes context can not be observed explicitly. Rather, it is latent and
must be inferred [|[Chen et al.,[2018, [Xu et al., 2019/ |Lee et al., [2020\ |Seo et al., [2020} Xian et al., 2021}
Sodhani et al.| 2022| Melo, 2022} Evans et al.| 2022]], focusing on self-supervised context inference
through dynamic model alignment. Likely, recurrent agents also create an internal representation of
contexts [Grigsby et al.|[2024alb, [Luo et al.|[2024, Hafner et al.} 2019} 2025]], although not explicitly
being dynamic model aligned.



Related to our work, Beukman et al.|[2023]] make use of Hypernetworks [Ha et al.,|2017] to incorporate
context information to the RL models. Still, our approach differs inherently as we do not make the
assumption that explicit context information is available.

Meta-RL. Meta-RL trains agents to adapt rapidly to new tasks with minimal experience [Beck
et al., [2023]], typically by learning adaptive policies that infer task-specific information from past
interactions. However, most meta-RL methods require fine-tuning on new tasks [Rakelly et al., 2019}
Duan et al., 2016bl [Finn et al., 2017} [Zintgraf et al., 2019, Nagabandi et al., 2018, [Melo, |2022]]. Our
approach, in contrast, aims for zero-shot generalization by utilizing the latent representations that
transfers across environment variations.

Context in Cognition. Besides context approaches in the RL literature, cognitive modeling work
has suggested that our minds segment the perceived environment into context-like events [Butz, [2016]
Zacks and Tversky, 2001} [Zacks et al., 2007}, [Zacks, 2020]]. Along these lines, the recurrent neural
network REPRISE was shown to learn latent context representations from scratch, distinguishing
between different dynamic regimes [Butz et al.| 2019]. More recently, the event-segmentation-
oriented perspective has been separated from context. Internally, contextual priors were shown to
support the learning of our sensorimotor repertoire as well as other memory structures [Heald et al.}
2021, [2023]]. Bayesian active inference-based models have shown that context can save computational
cognitive effort while modeling human behavior most accurately [Butz, 2022, |Cuevas Rivera and
Kiebel, 2023| [MarkovicC et al.| 2021}, Mittenbiihler et al.| 2024, [Parr et al.l 2023| [Schwobel et al.,
2021]]. On the deep learning side, contextualized hypernetworks have been introduced in various
forms, showing superior generalization and emergent compositionality in early work [Sugita et al.,
2011]], the emergence of affordance maps [Scholz et al., [2022], as well as the possibility to focus
object-oriented encoding pipelines [Traub et al., [2024]]. Interlinking neuroscience, developmental
psychology, cognitive modeling, and machine learning, a recent interdisciplinary review has pointed
out that context inference and context-conditioned learning may be the key to enable behavioral
learning in highly complex environments [Butz et al., 2024]—where context invokes task-oriented
priors onto both active conceptual model representation and behavioral policies.

4 Context encoding and utilization

In this section we first focus on the representation learning part for a dynamic model aligned (DMA)
context representation and highlight our additions to improve this very representation. We call that
improved version DMA*. Then, we describe our novel approach that incorporates latent context
information using a shared hypernetwork. We refer to that approach as DMA*-SH, as it extends
DMA* with a shared hypernetwork.

4.1 Context inference by dynamic model aligned representation learning

We denote the sliding window of the past K state-action-next state deltas transitions (s, as, 0S¢11),
belonging to the same context c as 7. 77 is fed into the core context encoder g, (7f) for which we
choose a LSTM layer and its final hidden and cell states are used as context representation z;. This is
in accordance with prior work, where also MLPs, RNNs or Transformer encoder layers were used
with slight modifications as the core context encoder [Rakelly et al.,[2019| |Evans et al.,[2022]]. Our
experiments confirm the experiments performed by |[Evans et al.| [2022] showing that differences in
performance are marginal. The gradient updates of the context encoder are driven by the task of
learning a representation model. As our contexts solely vary the transition dynamics of the system, a
(forward) dynamic model fy is sufficient for that task. It predicts the difference between the current
and the next state 03,1 given the current state s;, action a;, and the inferred context representation z;.
The model is trained by minimizing a reconstruction loss between the predicted next state difference
05¢+1 and the true next state difference ds441:

Lyo = 1|05141 — 08¢41]]5 - ey

Given the past transitions 77 we attempt to make the latent z; as informative as possible for the
unknown but underlying contexts ¢, especially for unseen ones that are out of the training distribution.
Prior work [Rakelly et al.| 2019} [Evans et al.| [2022]] highlighted that it is beneficial to treat the
transitions in 7{ in random order, so that the latent states of the context encoder does not contain



the temporal structure of 7. This is an important idea that we adopt. In the following we describe
our additional architecture choices for the context encoder. Masking and specific normalization
comprise well-known ideas to improve representation learning. To distinguish from the (vanilla)
DMA inferred context representation, we refer to our extended approach as DMA* with an emphasis
on representation learning.

Input masking. We consider first 7 to be the input to the core context encoder module g4. Prior
works suggest that randomly masking input features or tokens can in general improve representation
learning for vision, language and decision making [Devlin et al.| 2019, Liu et al., 2022 |He et al.|
2022]). As we are already relying on an explicit forward dynamics prediction (cf. Equation|[I), we do
not adopt the prediction task of masked out features which is common in these lines of works. Also,
we observe that masking performs best for our purpose with a comparably low masking ratio of 15%.
Within 7 we apply random masking on states, actions and next state deltas independently.

Input normalization.  After masking, 7/ is fed through a linear layer projecting the concatenation
of (s¢, at, ds¢1+1) to a latent model dimension. We continue with a normalization step, for which we
experimented with a range of different techniques. Namely, layer normalization [Ba et al., [2016]],
AvgL1Norm [Fujimoto et al., [2023]], SimNorm [Lavoie et al., [2023| [Hansen et al., 2024]], and a
normalization for which statistics are computed across the transitions within 77 (WindowNorm).
An ablation is provided in Section [A]in the Appendix, resulting in best performances choosing
AvgL1Norm. Also in theory, AvgL1Norm provides desirable properties: It divides the input vector by
its average absolute value in each dimension. With x; being the ¢-th dimension of an N-dimensional
vector x, then

AvgLINorm(z) = )

x
% > il

AvgL1Norm prevents monotonic growth in the embedding space [|Gelada et al., 2019], while keeping
the relative scale of the embedding constant during learning without the necessity of updating statistics
(as for example in LayerNorm [Ba et al.|[2016] or our custom WindowNorm) [[Fujimoto et al., 2023].

We tested processing states, actions and next state deltas independently, with no significant benefit.
Hence, we omit separate input embeddings for simplicity.

Output normalization. The normalized and masked input 7/ is fed into a LSTM layer and the
concatenation of its final hidden and cell state are then projected down by a linear layer to a relatively
small final dimension for the context representation. We found z; € R? to be sufficient. Further, we
found output normalization to be crucial. Again, we tested different normalization techniques: layer
normalization [Ba et al.| 2016], AvgL.1Norm [Fujimoto et al., [2023]] and SimNorm [Lavoie et al.|
2023, Hansen et al., [2024]] (cf. Sectionin the Appendix for an ablation). For DMA*, when the
context representation z; is directly used by the dynamic model and the RL models, best performances
were achieved when using SimNorm. Here, the latent representation is normalized by projecting z;
into V'-dimensional simplices using a softmax operation. With z; € RS we are using a smaller V = 4.
Embedding z, as simplices promotes sparsity without enforcing discreteness or hard constraints. We
refer to|Hansen et al.|[2024] for further motivation and implementation details.

For DMA*-SH, z, is used only by an external hypernetwork, hence only indirectly used by the
dynamic model and the RL models. In that case we found again AvgL1Norm (cf. Equation 2 to be
beneficial. DMA*-SH is described next.

4.2 Context utilization by a shared dynamic model aligned hypernetwork

In the (vanilla) DMA case, policy and Q-function simply expect the concatenation of the state s; with
the implicitly inferred context information z; as input (cf. Figure[Ta). In contrast, we are inspired by
Beukman et al.|[2023]] who used a hypernetwork [Ha et al., [2017].

Hypernetworks are meta or second order neural networks [Pollackl |1990, |Sugita et al.,[2011] that
generate weights for a main neural network in an end-to-end differentiable manner.

Beukman et al.|[2023]] assume that the explicit context is available and then condition the hyper-
network on that information to generate weights for parts of the neural networks of the RL models.
They call these second order parametrized parts adapters. As we assert that this kind of privileged
information often cannot be assumed to be available, our approach takes a detour by inferring first



context-like information z; from past trajectories 77 via the dynamic model aligned representation
learning (c.f. Section . Then, taking z; as input the parametrized hypernetwork h,, predicts
weights w for a fraction (an adapter) of the neural network for the dynamic model fy ,,, hence in
total parametrized by w and the remaining weights . The weights ¢, 6 and 7 for the context encoder,
hypernetwork and dynamic model, respectively, are updated jointly with the reconstruction loss

Lo =1108t41 — 05t 41y - (3)

Lastly, without any modifications the generated weights w are shared with the adapters in the policy
¢, and in the Q-value function ()¢ ,. We noticed, performance- and computation-wise this sharing
mechanism is more desirable than creating separate hypernetworks for the adapters in the dynamic
model and the RL models, being optimized jointly with the respective losses. An overview of the
shared hypernetwork approach is provided in Figure[Ib] Extending DMA* (cf. Section[4.T)) with the
shared hypernetwork for context utilization, we refer to our approach as DMA*-SH.
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Figure 1: Schematic overview on how to make use of the inferred context information. (a) Usually
the dynamic model aligned context representation z; is utilized by the RL models [Lee et al., [2020|
Evans et al., 2022]. (b) We extend this approach by a hypernetwork h,, whose weights 7 are updated
Jointly with the context encoder g4 and the dynamic model fp ., using the reconstruction loss L g .
h,, takes as input the context representation z; and generates weights w that are used by the dynamic
model and the RL models. When performing the updates for the RL models, gradients through h,,
are stopped.

S Experimental setup

5.1 Maetrics

We use a standard evaluation schema for zero-shot generalization in the contextual RL setting
[Beukman et al., 2023} [Kirk et al., 2023, Benjamins et al., 2023]].

We proceed as follows: we sample n. = 20 contexts from the sets Cirqin, Ceval,in aNd Cepal,outs
respectively. The agent is trained on the n. context instances sampled from the training context set
Ctrain- Then, for each context we take the trained agent and average its cumulative episodic return
over n. = 10 episodes. We then compute the average across contexts within a respective context
set. With that we end up with three averaged episodic returns (AER) [Beukman et al., 2023]], one for
each context set. Performances are reported as AER and as interquartile mean (IQM) with empirical
confidence intervals as suggested by |/Agarwal et al.[[2021]]. For the latter, we min-max scale them
with environment specific upper and lower bounds for the episodic returns, provided in Section[5.3]
In general, we run each experiment with n, = 10 different random seed initializations.



5.2 Baselines

For our approaches DMA* and DMA*-SH as well as for all baselines but Amago we use Soft-Actor-
Critic [Haarnoja et al., | 2018]| as the underlying RL algorithm. We do not perform any tuning of SAC’s
hyperparameters to obtain the best possible comparability. Hyperparameters and implementation
details are provided in Section[C|in the Appendix.

All approaches underlie the same training procedure. The agent is trained in parallel on the n, = 20
contexts drawn from Cirgin-

Domain randomization (DR). This approach has no explicit context information and the agent is
not able to infer it. It solely relies on some sort of domain randomization Tobin et al.|[2017] as the
agent is trained across multiple contexts.

Dynamic model aligned (DMA). Methods such as IIDA [Evans et al.,2022]] and CaDM [Lee et al.
2020]] rely on dynamic model alignment to represent context information based on recent experience.
Usually, the order of transitions used for context inference is random to break temporal correlations
(shuffled), and basic dropout is used to improve the latent representation. The latent representation is
provided as additional input to policy and Q-function model. Our DMA* extends this line of work,
hence we use the vanilla dynamic model alignment as a valid baseline for comparison.

DMA-Pearl. Pearl [Rakelly et al.,|2019] is a meta RL algorithm. It uses a probabilistic context
encoder to infer context from past transitions. As [Rakelly et al.,|2019] tested Pearl solely for reward
variations they obtained best results when training the context encoder using gradients from the
Bellman updates for the Q-function. Instead we vary the transition dynamics, hence we had to update
the context encoder jointly with a dynamic model to achieve comparable baseline performance. We
refer to Section [A]in the Appendix for corresponding ablations. With that, this baseline extends
DMA with a probabilistic context encoder and an additional KL loss term to regularize the context
representation to a unit Gaussian prior N'(0, I).

Amago. In recurrent agents latent information about the environment can emerge over time
(in-context RL). Amago [|Grigsby et al., 2024a] is a general purpose in-context RL algorithm for
various branches of meta-RL. Although not being solely designed for contextual variations in
transition dynamics, it yields a strong baseline using a dedicated recurrent trajectory encoder. For our
comparison we use the improved Amago-2 [Grigsby et al.,[2024b|] with a GRU trajectory encoder.

Concat. This baseline assumes privileged information and concatenates the explicit context with
the state. Policy and Q-function expect an expanded state space, S’ = S x C. This approach is
straight-forward and often the standard approach if explicit context information is available [Ball
et al.,[2021} [Eghbal-zadeh et al., 2021}, [Sodhani et al., [2021} |2022].

Decision Adapter (DA). |Beukman et al.| [2023]] introduce a strong baseline, again, for the case
that context information is explicitly available. But instead of concatenating context with the state,
they make use of a hypernetwork architecture inside the policy and optionally the Q-function, where
the weights are adapted based on the context. They show strong performance compared to other
context-aware baselines such as FLAP [Peng et al.,2021]] and cGate [Benjamins et al.,[2023].

5.3 Contextualized environments

In the following we describe a range of diverse environments for continuous control that we use to
evaluate the agents. To make generalization more difficult we contextualize all environments with
two dimensional contexts. A summary of the contextualization with ranges corresponding to the sets
Ctrains Ceval,in and Ceyql,out 1S provided in Table For training we allow 100 000 environment steps
per context instance. Note, that we use n, = 20 contexts for training, hence, 2 000 000 environment
steps.

We describe the contexts and classify wether they are i) overlapping where different context instances
are similar enough and an unaware agent without any explicit and implicit knowledge of the context
can perform well on average, or ii) non-overlapping where such an unaware agent will not be able to
solve the task and will perform arbitrarily poorly on average [Beukman et al., 2023]].

To obtain true non-overlapping behavior between different context instances, the effect of a varied
context has to be drastic w.r.t. the transition dynamics in the environment. For that reason, in some of
the listed environments below we allow mirroring the action effect by multiplying the intended action



of the agent by a factor of —1, i.e., the action effect is inverted. To illustrate, one might think of the
scrolling direction of a computer trackpad or mouse. Depending on the preference, some people
prefer congruent behavior, i.e., screen content follows the scrolling direction, and some people prefer
the inverted behavior. When being confronted with the non-preferred setting, it is impossible to
operate the computer without adaptation (zero-shot) and without being able to infer the dynamics
from experience. Contexts are non-overlapping.

DI. We create a custom two dimensional double integrator environment. This version of the
environment is frictionless. The agent is represented by a simple mass. It is initialized randomly in
the corner positions and its task is to reach the origin at [0, 0] allowing a small margin. The agent is
actuated by forces in z, y-direction and its state comprises z, y positions and velocities. The reward
signal is sparse, i.e., +1 if it reaches the goal position, 0 otherwise. This version of the environment
is contextualized by the mass of the agent and by an actuator factor which can either be —1 or 1. The
latter context makes it impossible for the agent to solve the task if the agent has neither explicit nor
implicit knowledge of the context, i.e., contexts are non-overlapping. Episodic returns are scaled
between 0 and 100 (cf. Section[5.1)).

DI-friction.  Similar to DI, although this version contains friction. It is contextualized by the mass
of the agent and by the friction value. Different contextualized environment instances are similar
enough and hence overlapping. Episodic returns are scaled between 0 and 100 (cf. Section[5.).

ODE. |Beukman et al.|[2023] created this environment to study contextualized RL. It is described
by an ordinary differential equation (ODE), parametrized by two context variables cy and c;. The
dynamics equation is w;,1 = x; + d¢dt, with & = cpa + cya?. For more information, please refer to
Beukman et al.|[2023]]. We observed that an unaware agent performs poorly, hence we argue that
context instances are non-overlapping. Episodic returns are scaled between 0 and 200 (cf. Section
B.D.

Cartpole. It is part of the DM control suite (cartpole-balance-v0) [Tassa et al., 2018]]. The task
is to balance an unactuated pole by applying forces to a cart at its base [Barto et al., |[1983]]. This
environment is contextualized by the pole length and similar to DI by an actuator factor which can

either be —1 or 1. Again, hence contexts are non-overlapping. Episodic returns are scaled between 0
and 1000 (cf. Section[5.).

BalllnCup. It is part of the DM control suite (ball_in_cup-catch-v0) [Tassa et al.l 2018]]. An
actuated receptacle can move in the vertical plane in order to swing and catch a ball attached to its
bottom. The reward signal is sparse +1 if the ball is in the cup, 0 otherwise. The environment is
contextualized such that the tendon length and the gravity can be varied. Although, it can be tough
to solve for an unaware agent, we consider context instances to rather overlap. Episodic returns are
scaled between 0 and 1000 (cf. Section[5.T).

Walker. It is part of the DM control suite (walker-walk-v0) [Tassa et al.,[2018|]. A planar walker
is rewarded for moving forward [Lillicrap et al., | 2015]]. The contextualization is the same as in the
work by [Prasanna et al.|[2024]] where they vary actuator strength (we refer to that strength as an
actuator factor) and gravity. It is easily approachable by an unaware agent, hence we consider the
contextualized environment instances to overlap. Episodic returns are scaled between 0 and 1000 (cf.

Section[5.1)).

5.4 Zero-shot generalization

When evaluating our proposed approaches, the main emphasis is on zero-shot generalization capa-
bilities of the agents. As described in Section [2]and[5.1] we distinguish three cases, corresponding
to three context sets Cypqip for training and Ceyqi,in and Ceyal,out for evaluation within- and out-of-
distribution. IQM scores aggregated over all considered contextualized environments (cf. [2) suggest
that our approaches DMA* and DMA*-SH achieve strong generalization capabilities, especially in
the difficult out-of-distribution evaluation case. The main competitor is the context-aware Concat
case, which is only surpassed by DMA*-SH in all three context regimes. For the diverse set of
environments and types of contextualization DMA*-SH achieves consistently excellent results in
terms of AER scores (cf. Table[2). Notably, simple unaware domain randomization is sufficient
for the Walker environment, indicating that for some approaches context information (explicit or
inferred) can even distract from solving the task. Although not being solely optimized for changes
in the transition dynamics, the context-unaware Amago achieves competitive results in most of the



Table 1: Environment contextualization.

Context ranges

Name Context Training Eval-in Eval-out

DI mass 05,15 (05,15  [0.1,0.5) U (L5,2.0]
actuator factor {—1,1} {- 1 , 1} {-1,1}

DI-friction mass 0.5,1.5] (0. 5, 1.5 0.1,0.5) U (1.5,2.0]
friction 05,15  (0.5,1.5 0.1,0.5) U (1.5, 2.0]

ODE co —5,5] (—5,5) ~10,—5) U (5, 10]
c1 —5,5] (—5,5) ~10,-5) U (5, 10]

Cartpole length 0.3,0.85]  (0.3,0.85) 0.1,0.3) U (0.85, 2.0
actuator factor  {—1,1} {-1,1} {-1,1}

BalllnCup  gravity 8.0,12.0]  (8.0,12.0) 1.0,8.0) U (12.0,20.0]
tendon length ~ [0.24,0.36]  (0.24,0.36) [0.1,0.24) U (0.36, 0.5]

Walker gravity 49,147)  [49,147] [1.0,4.9) U (14.7,19.6]
actuator factor  [0.5, 1.5] (0.5,1.5) 0.1,0.5) U (1.5, 2.0]

environments (cf. Figure[7]in the Appendix for IQM scores whit omitted BalllnCup), also in those
with non-overlapping contexts, e.g., the DI environment, which cannot be solved by simple domain
randomization, as opposed to DI-friction with its overlapping contexts.

DMA-Pearl shows desirable performance compared to the vanilla DMA, indicating a positive impact
of the probabilistic context encoder and the KL regularization. Incorporating these design choices
into DMA* and DMA*-SH remains for future work.

Training Eval-in Eval-out

DR I I I
Amago I I |
Concat I I I

DA I I I

DMA I I I
DMA-Pearl m L1 |
DMA* I I I
DMA*-SH m | m

0.6 0.7 0.8 0.6 0.7 0.8 0.48 0.56 0.64 0.72
IQM normalized scores

Figure 2: Interquartile mean (IQM) [[Agarwal et al.,|2021]] based on AER scores (cf. Section
aggregated over the contextualized environments (cf. Section[5.3). We distinguish results for contexts

drawn from the three context sets Cirqin, Ceval,in @0d Ceyal,out and compare our approaches DMA*
and DMA*-SH to the baselines (cf. Section [5;2[)

5.5 Context representation

We evaluate, to what extend our additions in DMA*, namely in- and output normalization and random
input masking, improve the context representation z; compared to the vanilla DMA. Therefore, we
contextualize Cartpole (cf. Section[5.3)) with a small handcrafted set of contexts. When visualizing z;
using a t-distributed Stochastic Neighbor Embedding (t-SNE) [Van der Maaten and Hintonl [2008]], we
can observe that DMA* is more capable to distinguish between contexts, which is reflected in more
separable clusters in the embedding space (cf. Figure [3). Moreover, when training a simple linear
regression model to predict the true contexts based on z; using the same contextualized example as in
Figure 3] we can observe that the context representation from DMA* is more informative than the one
from DMA: R? = 92% for DMA* versus R? = 83% for DMA.



Table 2: AER scores (cf. Section 5.1} for each contextualized environment (cf. Section[5.3). Results
are averaged across all contexts drawn from the three context sets Ctrgins Ceval,in a0d Cepal out. We
compare our approaches DMA* and DMA*-SH to the baselines (cf. Section[5.2). Best AER scores
are highlighted bold. In case multiple approaches are highlighted for an environment, they are within
99% of the maximal achieved AER score. For an simplistic overview we omit variances here. These
are reflected in the aggregated IQM visualization (cf. Figure[2). Environment-specific normalization
factors are used for the row Norm. Mean (cf. Section |5"5[)

Unaware Aware Unaware-Inferred
Name DR Amago Concat DA DMA DMA-Pearl DMA* DMA*-SH
DI 22 60 73 38 57 62 71 76
DI-friction 61 79 70 73 59 65 68 74
ODE 51 168 162 146 157 158 169 179
Cartpole 626 619 852 676 875 861 885 876
BallInCup 745 227 862 806 881 885 884 860
Walker 740 636 705 708 679 717 651 733
Norm. Mean 0.53 0.62 0.78 0.67 0.73 0.75 0.78 0.81
S 0.8 f’13 1_:?)

1
>
0.5 7 0:5), —
1!!: %.y 0.3 oo
el oa :

03
\1 - length: 0.3; a factor: % 038
length: 0.3; a factor: - 1
fength: 0.5; a factor
e a facto
act
'

(a) DMA. (b) DMA*.

LN
°

Figure 3: TSNE visualization [[Van der Maaten and Hinton, 2008 comparing the vanilla DMA with
the improved DMA*. For visual clarity the Cartpole environment is contextualized with just a few
different contexts, listed in the legend and in the center of the corresponding clusters. Pole length and
the actuator factor is varied. Each dot corresponds to a z; encoded from different inputs 7. For each
context we visualize 1000 different encodings. Color coding is based on the true underlying context
(unknown for the context encoder).

6 Conclusion

In the domain of contextual RL we consider the assumption that agents are context-unaware and
have to infer context information based on past transitions. For the case that the context parametrizes
the transition dynamic of the world, this is usually done dynamic model aligned. By applying
simple normalization and masking techniques we can improve the context representation significantly
(DMA*). Further, we propose a novel approach for utilizing the context representation based on a
shared hypernetwork (DMA*-SH). It results in superior zero-shot generalization across a diverse
range of contextualized environments, even compared to context-aware methods that assume the
explicit context information.

Limitations. Dynamic model aligned methods, hence also our proposed ones, rely on the assump-
tion that solely the transition dynamics are varied. This can be captured by a (forward or inverse)
dynamic model. In case the reward function is parametrized by a context (which is allowed in the
CMDP formalism), naturally this line of work would not be appropriate. However, a possible solution
would be to replace the dynamic model with a reward model. Second, we assume that a context
is time-invariant, i.e., it does not change within one episode. We leave considerations to relax that
assumption for future works.
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A Ablations

We perform a range of ablations on which we base the design choices in Section[d.1I] Figure []for
DMA* and Figure [5] for DMA*-SH show probability of improvements as suggested by [Agarwal
et al.| [2021]. They only show if there is a likely improvement using our choices compared to
the alternatives. They do not necessarily tell us something about the magnitude. In Figure 2] we
compare the vanilla DMA to DMA* DMA*-SH, indicating that our design choices cumulatively
have significant impact.

In Figure [l we compare IQM scores [Agarwal et al|[2021]] for different ratios of the random input
masking of actions, states, and next state deltas in 7¢ resulting in a ratio of 15% to be overall
beneficial.

We noticed that the baseline Amago struggles with the BalllnCup environment. IQM scores raise
significantly when omitting this very environment (cf. Figure[7).

defaults ablations
input norm: avgllnorm | input norm: simnorm
input norm: avgllnorm | input norm: window
input norm: avgllnorm | input norm: layer
input norm: avgllnorm | input norm: none

output norm: simnorm |

output norm: simnorm [

output norm: simnorm |
random mask: input N

0.50 0.55 0.60 0.65 0.70
P(defaults > ablations)

output norm: avgllnorm
output norm: layer
output norm: none
random mask: none

Figure 4: Probability of improvement (POI) [Agarwal et al.|[2021] based on AER scores (cf. Section
[5.1) aggregated over the contextualized environments (cf. Section[5.3)) and over contexts drawn from
the three context sets Cirqin, Ceval,in aNd Ceyal,out- We ablate the random masking and compare
different normalization techniques. POI is based on DMA¥*, i.e., the usual concatenation of the
dynamic model aligned context representation with the state.

defaults ablations

input norm: avgllnorm | input norm: simnorm

input norm: avgllnorm | input norm: window

input norm: avgllnorm | input norm: layer

input norm: avgllnorm | input norm: none
output norm: avgllnorm | output norm: simnorm
output norm: avgllnorm IS | output norm: layer
output norm: avgllnorm | output norm: none

0.45 0.50 0.55 0.60 0.65
P(defaults > ablations)

random mask: input random mask: none

Figure 5: Probability of improvement (POI) [|Agarwal et al., 2021]] based on AER scores (cf. Section
[5.1) aggregated over the contextualized environments (cf. Section[5.3)) and over contexts drawn from
the three context sets Cirqin, Ceval,in aNd Ceyal,out- We ablate the random masking and compare
different normalization techniques. POI is based on DMA*-SH, i.e., the novel dynamic model aligned
context utilization based on a shared hypernetwork.

B Context representations

In Figure[9)and [T0] we provide more examples underlining the results in Section [5.3]
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Training Eval-in Eval-out

DMA*-SH 40% mask ratio 1 1 |
DMA*-SH 35% mask ratio 1 1 1
DMA*-SH 30% mask ratio 1 1 1
DMA*-SH 25% mask ratio 1 1 1
DMA*-SH 20% mask ratio 1 1 1
DMA*-SH 15% mask ratio 1 1 1

DMA*-SH 10% mask ratio o — ———] I — —(— S — —(—
DMA*-SH 5% mask ratio [ [ 1
DMA*-SH 0% mask ratio I o — ) —]

0.825 0.850 0.875 0.825 0.850 0.875 0.675 0.700 0.725
Normalized scores

Figure 6: Interquartile mean (IQM) [Agarwal et al.,[2021]] based on AER scores (cf. Section
aggregated over the contextualized environments (cf. Section[5.3). We distinguish results for contexts
drawn from the three context sets Cirqins Ceval,in aNd Ceyaiout- Using DMA*-SH we compare
different ratios for the random input masking. When averaging over the three context sets, best
performance is achieved using a ratio of 15%.

Training Eval-in Eval-out
Amago w/o bic | | |
Amago IN——— [ — S —
0.72 0.76 0.80 0.72 0.76 0.80 0.56 0.60 0.64
IQM normalized scores

Figure 7: Interquartile mean (IQM) [Agarwal et al., [2021]] based on AER scores (cf. Section[S.1))
aggregated over the contextualized environments (cf. Section[5.3)). We distinguish results for contexts
drawn from the three context sets Ctrqin, Ceval,in aNd Ceyal,out- We notice that Amago struggles with
the contextualized BallInCup environment skewing the aggregated performance significantly. As
Amago is not explicitly designed for changes in the transition dynamics, we highlight its performance
showing aggregated IQM without BallInCup.

C Hyperparameters and implementation details

Table [3| provides an overview for the used hyperparameters of the SAC agent, the context encoder
and the dynamic model. We did not perform any tuning for SAC and kept hyperparameters standard
as provided in CleanRL [Huang et al.} [2022]. We noticed that context window size K of the context
encoder depends on the environments. Environments that are originated from the DM Control Suite
required a larger K compared to the other ones. The context encoder then takes just a random fraction
of the K transitions as input. A relatively small fraction is sufficient. For example in the DM Control
Suite case, the context encoder only sees 128 * (0.2 ~ 25 transitions as input for its 7.

For our hypernetworks we use the framework by [Henning et al.[[2021]] providing an easy access. The
adapter architecture is kept the same as|Beukman et al.|[2023]]. For implementation details we refer
to their extended Appendix.
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Training Eval-in Eval-out
Pearl I | |
DMA-Pearl [ | [ | [ |
0.4 0.6 0.8 0.4 0.6 0.8 0.30 0.45 0.60
IQM normalized scores

Figure 8: Interquartile mean (IQM) [Agarwal et al., [2021]] based on AER scores (cf. Section[S.1))
aggregated over the contextualized environments (cf. Section[5.3). We distinguish results for contexts
drawn from the three context sets Ctrain, Ceval,in and Ceyalout- We compare the original Pearl
approach aligned with the Q-function to the dynamic model aligned variant that we are using as a
baseline.
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(a) DMA. (b) DMA*.

Figure 9: TSNE visualization [Van der Maaten and Hinton|, 2008 comparing the vanilla DMA with
the improved DMA*. For visual clarity the Cartpole environment is contextualized with just a few
different contexts, listed in the legend and in the center of the corresponding clusters. Pole length
and the actuator factor is varied. Each dot corresponds to a z; encoded from different inputs 7. For
each context we visualize 1000 different encodings. Color coding is based on the true underlying
context (unknown for the context encoder). Training a simple linear regression model to predict the
true contexts based on z; we achieve R? = 97% for DMA* and R? = 91% for DMA. Compared to
Figure El with a different random seed initialization.
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(a) DMA. (b) DMA*.

Figure 10: TSNE visualization [[Van der Maaten and Hinton|, 2008]] comparing the vanilla DMA with
the improved DMA*. For visual clarity the Cartpole environment is contextualized with just a few
different contexts, listed in the legend and in the center of the corresponding clusters. Pole length
and the actuator factor is varied. Each dot corresponds to a z; encoded from different inputs 7. For
each context we visualize 1000 different encodings. Color coding is based on the true underlying
context (unknown for the context encoder). Training a simple linear regression model to predict the
true contexts based on z; we achieve R? = 90% for DMA* and R? = 84% for DMA. Compared to
Figure EI with a different contextualization.
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Table 3: Hyperparameters.

Module Name Value
SAC Buffer capacity 1000000
Batch size 256
Discount ~ 0.99
Optimizer Adam
Critic LR 0.0003
Actor LR 0.0003
Temperature LR 0.0003
Critic soft target update 7 0.005
Init temperature (SAC) 1.0
Init temperature (DrQ) 0.1
Hidden dims (256, 256)
Context encoder LR 0.0003
Model dim 32
Dropout 0.1
Context dim 8
Context window size K (general) 24
Context window size K (DMC environments) 128
Context window fraction 0.2
Dynamic model LR 0.0003
Hidden dims (256, 256)
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