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Abstract

Single-cell data are crucial for biomedical discov-
ery, facilitated by low-dimensional latent space en-
coding of single-cell RNA-seq profile. Obtained
latent codes can then be plotted into 2-D space via
t-SNE or UMAP allowing practitioners to infer
new knowledge. Alternatively, downstream deep
learning applications can also be trained from the
latent codes, one of the common being the cell
type classifier. The usefulness of the 2-D plot
or downstream application depends critically on
the structure of the latent space and whether it
encodes biological information or noise. The pro-
posed approach aims to improve the latent space
via injecting a bit of label information, thus denot-
ing our approach as a semi-supervised one. We
include a novel dual-VAE structure, where infor-
mation flows from the controller VAE to the main
model. Our results demonstrate that the incorpo-
ration of SemafoVAE improves the performance
of the existing scANVI model, therefore offering
a refined model structure with disentangled latent
representations for robust biological insights.

1. Introduction
Single-cell data are pivotal for dissecting cellular hetero-
geneity, understanding individual cell functions, and reveal-
ing nuanced biological processes that bulk analyses often
obscure. Considerable effort (Xu et al., 2021; Yu & Welch,
2021; Piran et al., 2024; Lotfollahi et al., 2022; Gayoso
et al., 2022; Trong et al., 2020) has been devoted to the
analysis of single-cell data, including scArches (Lotfollahi
et al., 2022) which aims at analyzing single-cell query data
by integrating it into a reference atlas. Among its multiple
applications, single-cell annotation using variational infer-
ence (scANVI (Xu et al., 2021)) can enhance the accuracy
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and efficiency of identifying cell types from single-cell se-
quencing data, handling single-cell data integration tasks,
etc.

The quality of the downstream applications, such as cell
type labeling, is crucially dependent on the quality of the
encoded latent space itself. The holy grail in latent space
quality is seen as the disentangled latent space, where each
latent dimension independently controls one factor of varia-
tion (Bengio et al., 2014). Unfortunately it has been shown
that without external metadata, disentanglement learning
for VAEs is impossible (Locatello et al., 2019; Khemakhem
et al., 2020). For these reasons, we aim to improve the latent
space quality by incorporating a portion of meta-data into
the VAE training. We are motivated by a recent Semafo-
VAE (Ngo et al., 2022), where the authors used double-VAE
structure. One VAE incorporates the meta-data and the other
scRNA-seq profiles. The full training algorithm is derived
using information theoretic principles. This is the first time
SemafoVAE has been applied to biological data.

2. Related Work
Kingma et al. (Kingma & Welling, 2014) first introduced
the Variational Autoencoder (VAE) and integrated the varia-
tional inference method into the VAE model. Subsequently,
Kingma et al. (Kingma et al., 2014) proposed the M1+M2
model structure, which consists of two VAEs operating si-
multaneously during the semi-supervised learning process.
This dual-VAE structure has leveraged properties of the data
to enhance generation quality and has yielded more accu-
rate classification results than classifiers using only labeled
data. Similarly, Ngo et al. (Ngo et al., 2022) constructed
their model based on the M1+M2 framework, incorporating
transitive information theory to maximize the mutual infor-
mation between the latent representations and the observed
raw data, while ensuring that the latent space is influenced
by the data properties for structured and disentangled latent
representations.

Furthermore, numerous efforts have been made to utilize
deep generative models in single-cell data analysis. For in-
stance, the integration of VAE and GAN (Generative Adver-
sarial Networks) technologies in MichiGAN (Yu & Welch,
2021) has successfully combined the strengths of both ap-
proaches, resulting in high-quality data generation. Addi-
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tionally, the Biolord model (Piran et al., 2024) has advanced
recent disentanglement techniques to learn latent representa-
tions in single-cell data, which have been applied to various
biological prediction tasks and obtained great performance.
Lastly, Gayoso et al. (Gayoso et al., 2022) developed the
code of scANVI (Xu et al., 2021), a semi-supervised deep
learning model for single-cell data, structurally reminiscent
of the M1+M2 model. ScANVI utilizes cell type informa-
tion from a subset of cells within the dataset to predict the
properties of other cell groups.

3. Method
3.1. Model Structure Overview

Figure 1. The model structure for the integrated model which in-
cludes both the scANVI regularizer and the SemafoVAE regular-
izer.

In the original M1+M2 model structure, it was stated that
M1 is the latent-feature discriminative model that aims to
provide the embedding or feature representation of the data,
whereas M2 is the generative semi-supervised model which
utilizes the embedding from the M1 and possible latent class
variable y to generate new data. In Figure 1, we present the
model structure of scANVI and the modified version of Se-
mafoVAE proposed in (Ngo et al., 2022). The reconstruction
VAE functions similarly to model M1 in the M1+M2 model
structure, whereas the controlling VAE functions similarly
to model M2. The difference is that in our model struc-
ture, the reconstruction VAE will be the VAE that is used
to generate the final result, and the controlling VAE is the
one that is used to generate encoded conditional distribution
which contains the class information y. By minimizing the
Kullback-Leibler (KL) divergence between the conditional
distributions and the approximate posterior distribution of
reconstruction VAE, we enforce the reconstruction VAE
to learn more about the class information y and be influ-
enced by it, consequently generating new data with more
accurate classes. ScANVI operates by leveraging the de-

coded conditional distribution from the controlling VAE
for regularization purposes whereas SemafoVAE utilizes
the conditional distribution derived from double encoding
operations.

3.2. Transitive Information Theory

In Ngo et al.’s work (2022), the concept of transitive infor-
mation theory was utilized, which asserts that the mutual
information between two target variables x and z, can be
effectively maximized through a third variable y. In our
integrated model which combines both scANVI and Se-
mafoVAE, we denote x to be the observed raw data, z to
be the latent variables sampled in the reconstruction VAE
and y to be the variable that represents the class information.
Our objective is to maximize mutual information I(x, z) to
ensure that z captures the maximum information from x
while the class variable y is utilized to impose structured,
controlled, and disentangled representations in the latent
space, enhancing the informativeness of the generative out-
puts. This process involves maximizing both I(x, y) and
I(y, z), with the class variable y serving as the bridge by
the transitive information theory.

3.3. Model Obejectives

Variational Autoencoder (VAE) was introduced in (Kingma
& Welling, 2014), but because the exact true posterior distri-
bution is intractable, they implemented variational inference
to facilitate the estimation of parameters. This technique is
again used in the M1+M2 model structure (Kingma et al.,
2014), lower bounds of the log marginal likelihood of the
model are derived to ensure the approximate posterior can
be as close to the true posterior as possible.

There are separate model objectives for model M1 and
model M2, for model M1, the variational bound J (x) on
the log marginal likelihood for a single data point is:

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]
−KL[qϕ(z|x)∥pθ(z)] = −J (x), (1)

where qϕ(z|x) is the approximate posterior, with parameters
ϕ and pθ(x|z) is the decoder with parameters θ. The goal
of the VAE training is to estimate both ϕ and θ.

For model M2, depending on whether a data point is labeled
or not, there are two different variational bounds for each
situation, from the scvi-tools code (Gayoso et al., 2022), it
can be observed that for scANVI, whether the data point is
originally labeled or not, through broadcasting, labels would
be generated for all the data points, thus we only focus on
the variational bound where the data point is labeled in
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model M2, which is shown as follows:

log pθ(x, y) ≥ Eqϕ(z|x,y)[log pθ(x|y, z) + log pθ(y)

+ log p(z)− log qϕ(z|x, y)] = −L(x, y). (2)

Compared with the model objectives above, in scANVI,
KL divergence is missing for the reconstruction VAE and
the log-likelihood of it is slightly different. For the con-
trolling VAE, several KL divergence terms were composed
as constraints. Additionally, if any data point is labeled,
classification loss is also computed, otherwise, this term is
omitted. Because of the similarity of the model structure
between scANVI and SemafoVAE, we solely conclude the
variational bound of SemafoVAE as a whole based on our
integration and our understanding of the original scvi-tools
code:

log pθ(x, y) ≥ Eqϕ(z|x)[log pθ(x|z)]− α log qτ (y|z)
−log qϕ(z|x, y)]−DKL(q(z|x)∥p(z|y))−DKL(q(z)∥p(z))

= −L(x, y), (3)

where α log qτ (y|z) is the term evaluating classification per-
formance, as mentioned above, if the data point is unla-
belled, this term is omitted.

4. Results
4.1. RNA-seq Cell Type Prediction

We choose the pancreas single-cell RNA sequencing
(scRNA-seq) data (Naghipourfar, 2020) to train the model
and perform downstream prediction analysis using the clas-
sifier from scvi-tools (Gayoso et al., 2022) and the learned
latent representations. In particular, we compare the label in-
formation predicted from the classifier and the ground-truth
labels in the latent representations to calculate the predic-
tion accuracy. The model was trained based on the modi-
fied version of the semi-supervised surgery pipeline from
scArches (Lotfollahi et al., 2022), the pancreas scRNA-seq
dataset is also obtained from this pipeline. Detailed infor-
mation about the dataset’s splitting plan during the training
procedure can be found in Appendix A.

To further test our model’s performance, datasets with dif-
ferent labeled rates are utilized as inputs for the training
process, the result is shown in Table 1. For the combination
of two models, we keep the structure of two models at the
same time, both the SemafoVAE regularizer and the scANVI
regularizer are utilized during the training process. It can
be observed that for the fully labeled dataset, scANVI has
the best prediction performance, and for partially labeled
datasets or completely unlabeled datasets, SemafoVAE or
the combination of both models usually yields the best re-
sult.

Table 1. Prediction accuracy of pancreas scRNA-seq data using
scANVI, SemafoVAE and their combination under different la-
beled rates.

Labeled Rate (%) scANVI SemafoVAE Both

100.0 0.9735 0.9540 0.9489
82.4 0.9046 0.9072 0.9080
45.0 0.9003 0.9105 0.9087
39.1 0.9088 0.9069 0.9042
21.2 0.9146 0.9185 0.9210
16.8 0.8990 0.9046 0.9035
0.0 0.8998 0.9174 0.9157

Figure 2. The confusion matrices comparison between scANVI
and SemafoVAE for completely unlabeled (labeled rate: 0.0%)
pancreas scRNA-seq data.

In Figure 2 we also present two confusion matrices that
visualize the accuracy of our model’s predictions when the
labeled rate is 0.0%. In the query dataset under this condi-
tion, pancreas beta and pancreas alpha are the most com-
mon cell types which take up about 35.8% and 26.3% of
the whole query dataset respectively. In contrast, pancreas
gamma is the rarest by taking up only 2.8% of the whole
query dataset. Each row in the matrix corresponds to the
observed cell types (true labels), and each column corre-
sponds to the model’s predictions (predicted labels). In both
matrices, the brightness of the cells along the diagonal repre-
sents the proportion of correct predictions for each cell type.
According to the color bar, brighter cells (tending towards
yellow) indicate a higher proportion of correct classifica-
tions. Cells off the diagonal represent misclassifications,
where the model predicted a different cell type other than
the true label. Notable differences in prediction accuracy
across various cell types can be observed from the matri-
ces, for example, the orange rectangles along the diagonals
indicate that SemafoVAE demonstrates better predictive ac-
curacy for pancreas acinar cells as its color in SemafoVAE
matrix is brighter than its counterpart in scANVI matrix.
For the orange rectangle off the diagonal in the SemafoVAE
matrix, the cells inside are colored lighter, tending towards
darker shades of purple, compared to their counterparts in
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the scANVI matrix. This indicates that SemafoVAE exhibits
fewer misclassifications in these areas, demonstrating its
enhanced predictive reliability.

To validate the robustness of our integrated model, we also
trained it with the bone marrow human cell atlas scRNA-seq
dataset created by (Luecken et al., 2021), this dataset is
approximately 178 times bigger than the pancreas scRNA-
seq data we used earlier, it is a complex, real-world dataset
with diverse cell types found in human bone marrow and
thus could be served as a high-quality benchmark dataset
for models that integrate multi-modal single-cell data. The
training process is similar to that of the pancreas scRNA-seq
data.

Table 2. Bone marrow human cell atlas scRNA-seq data label pre-
diction accuracy using scANVI, SemafoVAE and their combina-
tion.

Labeled Rate(%) scANVI SemafoVAE Both

100.0 0.9954 0.9882 0.9892
78.5 0.9441 0.9377 0.9434
34.2 0.9414 0.9433 0.9359
0.0 0.9396 0.9367 0.9444

Table 3. Result of other evaluations towards completely unlabeled
(labeled rate: 0.0% ) bone marrow human cell atlas scRNA-seq
data label prediction using scANVI, SemafoVAE and their combi-
nation.

Method scANVI SemafoVAE Both

F1 Score 0.9387 0.9342 0.9429
Balanced Accuracy 0.7889 0.7679 0.8034
Cohen’s Kappa 0.9244 0.9207 0.9306

In Table 2, scANVI achieves the best prediction perfor-
mance when the dataset is mostly labeled, but when it comes
to scarcely labeled or completely unlabeled datasets, Se-
mafoVAE or the combination of both models still yields the
best result, this conforms with the conclusion drawn from
the pancreas scRNA-seq data. Based on the size of the bone
marrow human cell atlas scRNA-seq dataset, for completely
unlabeled datasets, the combination of both models can cor-
rectly predict over 330 cell labels more than scANVI alone.
Other evaluation methods like the F1 score (Powers, 2011)
and Cohen’s Kappa (Cohen, 1960) were also applied to as-
sess the models’ prediction performance in Table 3. The
comparison of the prediction performance among the three
model structures in Table 2 is more directly observable in
Figure 3 under varying labeled rates.

Detailed information about this dataset’s splitting plan dur-
ing the training procedure can be found in Appendix A.
Additional experimental results about the visualized predic-
tion performance can be found in Appendix B

Figure 3. The prediction accuracy comparison among scANVI,
SemafoVAE and the combination of both with bone marrow human
cell atlas scRNA-seq data under different labeled rates.

4.2. Atlas-Level Integration of Lung Data Using
SemafoVAE

We also tested SemafoVAE’s performance based on the
pipeline of atlas-level integration task of lung data in scvi-
tools (Gayoso et al., 2022), where the main challenge is
to keep trade-off between two metrics: batch correction
and biological conservation (Li et al., 2022). SemafoVAE
is showing better performance in batch correction, while
scANVI excels in biological conservation. However, the
overall performance is comparable. Detailed experimental
results and evaluating metrics can be found in Appendix B.

5. Conclusion and Future Work
After integrating SemafoVAE into the scANVI model struc-
ture, we tested the integrated model’s performance with
different datasets and methods using multiple metrics, it
can be concluded that when it comes to partially labeled
datasets or completely unlabeled datasets, SemafoVAE or
the combination of scANVI and SemafoVAE usually gener-
ates the best label prediction result, SemafoVAE itself also
improves the batch correction performance in integration
task. In practical terms, improving single-cell data label
prediction benefits multiple aspects of biological research
and clinical applications. For example, this could lead to a
deeper understanding of biological processes at the cellular
level, including differentiation, development, and cellular
responses to stimuli or drugs. Malignant cells in tumors or
cells undergoing pathological changes can also be identi-
fied more easily. What remains to be explored in the future
could be identifying the individual factors that correspond
to specific latent dimensions.
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Software and Data
The code of the model and training pipeline can be found at
GitHub: https://github.com/sabrin1997/AccMLBio-esvlsss.
The data used can be accessed by relevant names and refer-
ences.
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A. Dataset Statistics

Table 4. Usage of Different Groups under Various Labeled Rates for Pancreas scRNA-seq Data
Group 100% 82.4% 45.0% 39.1% 21.2% 16.8% 0.0%

Pre-train Train Pre-train Train Pre-train Train Pre-train Train Pre-train Train Pre-train Train Pre-train Train
Pancreas inDrop (8391) X X X X X X
Pancreas CelSeq2 (2426) X X X X X X X
Pancreas CelSeq (1271) X X X X X X

Pancreas Fluidigm C1 (632) X X X X X X
Pancreas SS2 (2961) X X X X X X X

Table 5. Usage of Different Groups under Various Labeled Rates for Bone Marrow Human Cell Atlas scRNA-seq Data
Group 100.0% 78.5% 34.2% 0.0%

Site1 (15201) - Pre-train Only X X X X
Site2 (23979) X X X
Site3 (31075) X X X
Site4 (15058) X X X

Legend:
X - Indicates the method used (Pre-train or Train)
Number in parenthesis - Indicates the number of cells in each group

7



Enhancing Single-Cell VAE Latent Space via Semi-Supervision

B. Additional Experiment Results

Figure 4. The performance comparison for atlas-level integration of lung data using semafoVI, scANVI, scVI, and pca

The aggregate score in scib-metrics (Luecken et al., 2022) was calculated as follows: The overall score, Soverall,i, for each
integration run i was calculated by taking the weighted mean of the batch removal score, Sbatch,i, and the bio-conservation
score (Li et al., 2022), Sbio,i, following the equation:

Soverall,i = 0.6× Sbio,i + 0.4× Sbatch,i.

Given the fact that we think the batch removal score and the bio-conservation score are equally important factors to be
considered for the integration task, we re-write the equation as follows:

Soverall,i = 0.5× Sbio,i + 0.5× Sbatch,i.

The final aggregate score for the four methods in Figure 4 is shown in Table 6 where the total score of scANVI (Xu et al.,
2021) and semafoVI are the same.

Table 6. The final aggregate score for atlas-level integration of lung data using semafoVI, scANVI, scVI, and pca.

Method Batch Correction Bio-Conservation Total

scANV I 0.59 0.75 0.67
semafoV I 0.62 0.72 0.67
scV I 0.62 0.64 0.63
pca 0.37 0.67 0.52

Below are the confusion matrices for 78.5% labeled Bone Marrow Human Cell Atlas scRNA-seq Data using scANVI and
the combination of scANVI and SemafoVAE, when the labeled rate is 78.5%, the combination of both models performs
extremely close to scANVI alone. The detailed prediction performance for different cells can be visualized in the confusion
matrices below, for example, the combination of both models predicts the hematopoietic cells’ label more accurately as
there’s less misclassification for this cell type off the diagonal.
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Figure 5. The Confusion Matrix for 78.5% Labeled Bone Marrow Human Cell Atlas scRNA-seq Dataset using scANVI
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Figure 6. The Confusion Matrix for 78.5% Labeled Bone Marrow Human Cell Atlas scRNA-seq Dataset using the combination of scANVI
and SemafoVAE
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