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Abstract

Pretraining data selection has the potential to improve language model pretraining
efficiency by utilizing higher-quality data from massive web data corpora. Current
data selection methods, which rely on either hand-crafted rules or larger reference
models, are conducted statically and do not capture the evolving data preferences
during pretraining. In this paper, we introduce model-aware data selection with
data influence models (MATES), where a data influence model continuously adapts
to the evolving data preferences of the pretraining model and then selects the
data most effective for the current pretraining progress. Specifically, we collect
oracle data influence by locally probing the pretraining model and fine-tune a
small data influence model to approximate it accurately. The data influence model
then predicts data influence over the whole pretraining corpus and selects the
most influential data for the next pretraining stage. Experiments of pretraining
410M and 1B models on the C4 dataset demonstrate that MATES significantly
outperforms random data selection on extensive downstream tasks. It doubles
the gains achieved by the state-of-the-art data selection approach that leverages
larger reference models and reduces the total FLOPs required to reach certain
performances by half. Further analyses validate the effectiveness of the locally
probed oracle data influence and the approximation with data influence models.
Our code is open-sourced at https://github.com/cxcscmu/MATES.

1 Introduction

The power of large language models (LLMs) rises with scaling up [7; 23; 58]: pretraining models
with more parameters on more data using more compute resources [23; 27]. Among these three
aspects of scaling, compute is often the most restrictive factor, as current large-scale pretraining
frequently demands millions of GPU hours [2; 8; 58], while the model parameters and the pretraining
data amounts are determined based on the pre-allocated compute budget [23; 27].

This provides a unique opportunity to elevate the scaling law of pretraining through data selection
since the available data sources, such as the web [42; 55], are orders of magnitude bigger than
available compute resources and contain data of varying quality. Recent research has shown that
effective data selection can improve the generalization ability of pretrained models [15; 62], enhance
scaling efficiency [5], and introduce specialized capabilities [34]. These explorations mainly focus on
heuristic-based methods, such as rule-based filtering [49; 50; 55], deduplication [1; 45; 57], proximity
to high-quality corpora [17; 33; 61; 64], and prompting LLMs [52; 62]. Despite their success on
certain datasets and models, these techniques rely heavily on the static heuristics and often overlook
the evolving nature of pretraining [39]. As a result, their performance tends to be limited when
applied to the real-world pretraining scenarios. [3; 33].
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The data preferences of pretraining models dynamically shift as they progress through different stages
of pretraining [4; 11; 39; 40]. For instance, Figure 1a illustrates how the data influence measured by
the pretraining model evolves at different pretraining steps. As a result, the data quality measurement
should also keep pace with the model’s evolving data preferences during the pretraining. This leads
us to our core research question: How can we precisely track the data influence with the pretraining
model and efficiently select pretraining data based on the acquired influence?
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Figure 1: Correlation of locally probed data influences at different
pretraining steps (a) and the zero-shot performance with model-aware
data selection (b). The experiments are based on 1B models.

In this paper, we introduce
Model-Aware data selec-
tion with daTa influencE
modelS (MATES), a new
pretraining paradigm where
pretraining data is selected
on-the-fly by a data influ-
ence model capturing the
ever-changing data prefer-
ences of the pretraining
model. To track the model’s
data preferences, we locally
probe the oracle data in-
fluence by evaluating the
pretraining model’s perfor-
mance on a reference task after training on individual data points. Then, we train a small data
influence model using the locally probed oracle data influence, which then predicts data influence
over the whole pretraining corpus and selects the most influential data for the next pretraining stage.
This side-by-side learning framework ensures that the data influence model continuously adapts to
the evolving data preferences of the pretraining model, providing the most valuable data accordingly.

Our pretraining experiments with 410M and 1B models on the C4 dataset [50] demonstrate that
MATES can significantly outperform random selection by an average zero-shot accuracy of 1.3%
(410M) and 1.1% (1B) across various downstream tasks, ranging from reading comprehension,
commonsense reasoning, and question answering. MATES doubles the gains obtained by state-of-the-
art data selection approaches that rely on signals from reference models larger than the pretraining
model. Furthermore, our model-aware data selection significantly elevates the scaling curve of
pretraining models, as shown in Figure 1b, reducing the total FLOPs required to achieve certain
downstream performances by more than half. Further analyses confirm the advantages of our locally
probed oracle data influence and the effective approximation of this oracle with data influence models.
Ablation studies demonstrate the robustness of MATES across various hyperparameter settings and
different design choices of the data influence models.

We summarize our main contributions as follows:

1. We propose a model-aware data selection framework, MATES, where a small data influence
model continuously adapts to the constantly changing data preferences of the pretraining
model and selects the training data to optimize the efficacy of the pretraining process.

2. We effectively collect oracle data influence through local probing with the pretraining model
and use a small BERT-base model to approximate it accurately.

3. We empirically verify the superiority of MATES over rule-based, influence-function-based, and
LLM-based selection methods and the effectiveness of the probed oracle and its approximation.

2 Related work

Early approaches on data selection relied heavily on manual intuitions. For example, T5 [50] first
proposed the C4 pipeline, followed by Gopher rules [49], which utilized criteria like document
length, mean word length, and the presence of harmful or stop words to curate data. Recent FineWeb
dataset [46] further applied quality and repetition filters on top of these basic rules. These rule-based
data selection methods have been shown effective as an initial data curation step [46], though manual
intuitions may not capture the nuances of models’ data preferences [36].
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Figure 2: Overview of MATES. The language model is first pretrained with a random set of data.
Then, a data influence model is trained to approximate data influences on the target performance of
the pretraining model and select the most effective data for the next pretraining stage.

Deduplication is another standard approach in pretraining data selection. Specifically, Lee et al. [32]
and Penedo et al. [45] explored exact string match and fuzzy MinHash to filter out duplicate sequences.
SemDeDup [1] further leveraged pretrained embeddings to identify semantic duplicates, and D4 [57]
introduced diversification factors into the deduplication process. These methods effectively narrow
down the number of similar documents in a corpus and are often used together with quality-oriented
selection techniques to improve performance.

Selecting data that is proximate to high-quality corpora can enhance the data quality as well [17; 61].
Techniques leveraging n-gram similarity [17; 64; 33] and language modeling perplexity [8; 14; 16; 61]
have been adopted to evaluate how closely sequences in large datasets approximate high-quality
data. As the size of pretraining data grows, the effectiveness of proximity-based methods becomes
unclear, as they potentially reduce the diversity of the pretraining data and, consequently, the general
capability of the pretrained models [36].

Recent advancements explore the use of LLMs to improve the pretraining data quality. For instance,
QuRating [62] and Ask-LLM [52] employed LLMs like GPT-3.5 to annotate high-quality documents.
Maini et al. [38] rephrased web corpora by providing LLMs with detailed prompts to balance quality
and diversity. These methods leverage the capabilities of strong reference LLMs, which are often
several orders of magnitude larger, to guide the pretraining of smaller models.

Influence functions [29; 59] provide a theoretical tool to assess the impact of individual data points
on a model’s performance. However, they face scalability challenges in the context of LLMs due
to the expensive gradient calculations [21; 54]. To efficiently and robustly approximate influence
functions, TRAK [44] performed Taylor approximation and gradient dimension reduction, making
influence computation feasible for pretraining experiments [15]. Nevertheless, the computational
cost remains prohibitive for model-aware data selection, which requires tracking the evolving data
preferences of pretraining models on the fly.

On the other hand, many researchers have proposed curriculum learning strategies that dynamically
adjust the data distribution in the pretraining [11; 24; 47; 51; 56; 62]. ELECTRA-style models [11]
incorporated curriculum learning in their pretraining process by synchronously training the model with
an auxiliary generator, which provided more and more difficult training signals for the discriminator.
This implicit curriculum significantly improved the pretraining efficiency on denoising language
models [4; 11; 19; 39; 65]. Other methods have explicitly designed the curriculum for pretraining
data selection, such as decreasing gradient norms [56], least certainty [24; 51], and increasing
expertise [62], demonstrating the benefits of adapting the pretraining data signal according to the
model’s ever-changing preferences.

3 Methods

This section first introduces the model-aware data selection framework MATES (§ 3.1) and then
proposes a local probing technique to collect oracle data influence during pretraining (§ 3.2).
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Algorithm 1 Model-Aware Data Selection
Require: Training data Dt, hold-out data Dh, reference data Dr, pretraining modelM, optimizer
A, total training step T , selected size k, data influence model Θ, sampling temperature τ , update
step U
Initialize pretraining model parametersM
Initialize S∗

k as a randomly sampled size-k subset from Dt

for t = 1, . . . , T do
if t mod U = 0 then

Collect oracle data influence {IM(xi;Dr) | xi ∈ Dh}
Fine-tune data influence model Θ on {(xi, IM(xi;Dr)) | xi ∈ Dh}
Select data S∗

k ← {Gumbel-Top-k(Θ(xi)
τ ) | xi ∈ Dt}

end if
Sample a batch of data B∗ from S∗

k
M←A(M, B∗)

end for

3.1 Model-aware data selection framework

MATES selects the most effective data for pretraining a language model, aiming to maximize its final
target performance, as illustrated in Figure 2. The target performance here can be evaluated using any
downstream task or their combinations. Specifically, we leverage non-evaluation data as a reference
for the model’s target performance and select the pretraining data according to the reference loss.

Formally, given a size-n pretraining dataset Dt and the current model stateM, in each iteration, the
objective of data selection is to find an optimal batch B∗ from Dt to minimize the loss L over the
reference data Dr after trainingM on B∗:

B∗ = argminB L(Dr | A(M, B)) (1)
where L(Dr | A(M, B)) = E(x,y)∼Dr

ℓ(y | x;A(M, B)), (2)

M←A(M, B∗), (3)

where A(M, B) denotes the optimization of modelM on a batch B, e.g., one-step training with
Adam [28] and ℓ denotes the function to compute the model loss on an input-output pair (x, y).

There are two challenges to implement this framework. First, enumerating all possible batches
will exponentially increase computational complexity. Second, obtaining oracle data influence for
all pretraining data points is challenging. To address these issues, we introduce two techniques:
pointwise data influence and data influence parameterization.

Pointwise Data Influence. To avoid the computationally intensive task of enumerating all possible
batches, a more practical workaround is to decompose the group influence into the pointwise
influence [15; 44]. Following previous research [44], we aggregate all the data influences by the
summation, assuming that each data point xi has an independent influence irrespective of the others:

L(Dr | A(M, B)) =
∑
xi∈B

IM(xi;Dr), (4)

where IM is the oracle pointwise data influence function based on model stateM. IM continuously
changes along with the model pretraining.

Data Influence Parameterization. Estimating oracle pointwise data influence normally involves
gradient-based calculation [21; 29; 44], which is impractical to perform over millions of pretraining
examples for every pretraining model state. To make the data influence collection feasible, we
propose to collect the oracle data influence on a small hold-out dataset Dh (sampled from the same
distribution as Dt) and fine-tune a small data influence model Θ on {(xi, IM(xi;Dr)) | xi ∈ Dh}
to approximate the oracle. This data influence parameterization process transfers the costly influence
computation to the small data influence model’s inference.
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Then, we obtain the influence prediction Θ(xi) with the fine-tuned data influence model over all the
training examples xi ∈ Dt. For better efficiency, we only asynchronously update the data influence
model every U steps with the new oracle IM. Therefore, one data influence model checkpoint can
select the entire data subset S∗

k for the next U steps of pretraining. The selection process uses the
Gumbel-Top-k algorithm [30; 62] to sample data from Dt, with influence scores as weights:

S∗
k ← {Gumbel-Top-k(

Θ(xi)

τ
) | xi ∈ Dt}, (5)

where τ is the sampling temperature. The update step U is chosen to balance the data selection
efficiency with the evolving data influence. Empirically, we warm up the model with a randomly
sampled size-k subset from Dt in the initial U steps. The overall pretraining and data selection
pipeline of MATES is illustrated in Algorithm 1.

3.2 Locally probed oracle data influence

The rest of this section presents our method to estimate the oracle data influence IM. We start the
derivation from the standard influence functions [29; 59] that quantify the reference loss change if
one data point xi in the training data is upweighted by a small ϵ. We denote the optimal model state
after the upweighting asM∗

ϵ,xi
= argminM

1
n

∑n
j=1 L(xj | M) + ϵL(xi | M) and simplify the

optimal model under ϵ = 0 case (i.e., no upweighting) asM∗. Then, the oracle data influence of
upweighting xi is given by:

IM∗(xi;Dr)
def
=

dL(Dr | M∗
ϵ,xi

)

dϵ

∣∣∣∣
ϵ=0

(6)

= ∇ML(Dr | M∗)⊤
dM∗

ϵ,xi

dϵ

∣∣∣∣
ϵ=0

(7)

= −∇ML(Dr | M∗)⊤H−1
M∗∇ML(xi | M∗), (8)

where HM∗ = 1
n

∑n
j=1∇2

ML(xj | M∗) is the Hessian and is positive definite. The derivation
from Eq. 7 to Eq. 8 is given by building a quadratic approximation to the empirical risk around
M∗ and taking a Newton step [29]. Now consider the case that we incorporate xi into the training
data, which means ϵ = 1

n , then the parameter change due to the inclusion of xi isM∗
1
n ,xi
−M∗ ≈

− 1
nH

−1
M∗∇ML(xi | M∗) and the influence in Eq. 8 can be further represented as:

IM∗(xi;Dr) ≈ n∇ML(Dr | M∗)⊤(M∗
1
n ,xi
−M∗) (9)

≈ n(L(Dr | M∗
1
n ,xi

)− L(Dr | M∗)) (10)

∝ −L(Dr | M∗) + L(Dr | M∗
1
n ,xi

). (11)

In practice, we manage to obtain the data influence based on the current model stateM, while the
above influence calculation still remains meaningful in the non-converged state by adding a damping
term λ that ensures HM + λI is positive definite [29]. Under this assumption, the first term in Eq. 11
can be regarded as a fixed value whatever xi is, since xi is sampled from the hold-out data Dh. The
second term in Eq. 11 can be locally probed with the one-step training of the current model with the
new xi, i.e., A(M, xi)). This one-step training incorporates xi into the optimization of the current
model. Finally, the influence of xi on the reference loss is:

IM(xi;Dr) ∝ −L(Dr | M) + L(Dr | A(M, xi)). (12)

This formula means, for each xi in the hold-out data Dh, we run one-step training with the current
modelM and evaluate the difference in reference loss before and after one-step training. To ensure
that a positive influence score reflects a beneficial impact on model performance, we empirically
define the negative influence, L(Dr | M)− L(Dr | A(M, xi)), as our locally probed oracle data
influence of xi. A full derivation of locally probed oracle data influence can be found in Appendix A.
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Table 1: Zero-shot evaluation of pretraining 410M/1B models with different data selection methods.
We report the accuracy(standard error) and the total GPU FLOPs for each method. Dependencies on
stronger reference models (e.g., GPT-3.5) are denoted by ∗. Best performances are marked bold.

Methods (#FLOPs ∗1e19) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
410M Setting: 410M model, 25B tokens

Random (6.35) 64.1(1.5) 40.2(1.0) 25.6(1.3) 24.7(1.7) 29.4(2.0) 58.9(0.9) 39.7(0.5) 67.1(1.1) 50.6(1.4) 44.5(1.3)
DSIR (6.35) 63.1(1.5) 39.9(1.0) 23.8(1.2) 27.0(1.7) 28.4(2.0) 58.3(0.9) 39.6(0.5) 66.8(1.1) 51.5(1.4) 44.3(1.3)
LESS (246.35) 64.6(1.5) 42.3(1.0) 23.1(1.2) 25.2(1.7) 30.4(2.1) 55.6(0.9) 41.9(0.5) 67.2(1.1) 51.0(1.4) 44.6(1.4)
SemDeDup (7.81) 63.5(1.5) 42.4(1.0) 24.4(1.3) 27.6(1.8) 30.0(2.1) 58.2(0.9) 40.8(0.5) 67.8(1.1) 52.3(1.4) 45.2(1.4)
DsDm (10.72) 65.4(1.5) 41.7(1.0) 24.7(1.3) 27.5(1.8) 29.0(2.0) 57.5(0.9) 40.3(0.5) 68.1(1.1) 50.1(1.4) 44.9(1.4)
QuRating∗ (26.35) 64.8(1.5) 42.0(1.0) 25.4(1.3) 25.3(1.7) 30.2(2.1) 58.9(0.9) 40.7(0.5) 67.5(1.1) 52.1(1.4) 45.2(1.4)
MATES (Ours) (8.11) 66.0(1.5) 41.8(1.0) 25.0(1.3) 25.7(1.7) 30.8(2.1) 60.6(0.9) 41.0(0.5) 68.7(1.1) 52.7(1.4) 45.8(1.4)

1B Setting: 1B model, 25B tokens

Random (17.67) 65.8(1.5) 43.7(1.0) 25.6(1.3) 27.5(1.8) 31.8(2.1) 60.2(0.9) 43.8(0.5) 68.9(1.1) 50.7(1.4) 46.4(1.4)
DSIR (17.67) 65.8(1.5) 42.6(1.0) 24.7(1.3) 28.7(1.8) 29.2(2.0) 59.7(0.9) 44.2(0.5) 68.3(1.1) 53.2(1.4) 46.3(1.4)
SemDeDup (19.13) 66.8(1.5) 45.5(1.0) 25.3(1.3) 27.6(1.8) 30.6(2.1) 60.2(0.9) 45.3(0.5) 69.7(1.1) 52.5(1.4) 47.1(1.4)
DsDm (22.04) 68.2(1.5) 45.0(1.0) 26.5(1.3) 26.6(1.7) 29.4(2.0) 59.0(0.9) 44.8(0.5) 68.9(1.1) 51.9(1.4) 46.7(1.3)
QuRating∗ (37.67) 67.1(1.5) 45.5(1.0) 25.6(1.3) 26.9(1.7) 29.8(2.0) 60.3(0.9) 45.2(0.5) 70.2(1.1) 51.6(1.4) 46.9(1.3)
MATES (Ours) (19.97) 67.3(1.5) 44.9(1.0) 25.9(1.3) 28.7(1.8) 32.2(2.1) 60.9(0.9) 45.3(0.5) 69.5(1.1) 52.4(1.4) 47.5(1.4)

4 Experimental methodologies

Implementation Details. We pretrain 410M/1B models with Pythia [5] architecture from scratch on
the C4 dataset [50] as our pretraining modelM, and continuously fine-tune BERT-base [13] as our
data influence model Θ. The data influence model is smaller than the pretraining model, ensuring the
efficiency of data selection. More details of data influence models can be found in Appendix B.3. For
model pretraining, we utilize Warmup-Stable-Decay (WSD) scheduler proposed in MiniCPM [25],
which offers flexibility in the varying training length [22]. More details of WSD scheduler can be
found in Appendix B.2.

For MATES selection, we sample 20% data with their influence scores as weights at each pretraining
stage (10k steps). The sampling temperature τ is set to 1.0 to balance the data quality and the diversity.
The update step U is also set to 10k so that the selected data is trained by one epoch. Following
DsDm [15], we leverage LAMBADA [43] as our reference data Dr. LAMBADA is a widely-used
language modeling task and often serves as a validation task for language model pretraining [7; 8; 23].
A summary of these details can be found in Appendix B.1.

Evaluation Methods. We use lm-evaluation-harness [18] codebase to perform a holistic evalu-
ation of the pretraining models across 9 downstream tasks, including SciQ [60], ARC-E [12], ARC-
C [12], LogiQA [35], OBQA [41], BoolQ [10], HellaSwag [66], PIQA [6], and WinoGrande [53].
These tasks cover the core abilities of the pretrained language model, ranging from reading compre-
hension, commonsense reasoning, and question answering. We report zero-shot accuracy for BoolQ
and WinoGrande; otherwise, normalized zero-shot accuracy. We also report the total GPU FLOPs,
including model pretraining and data selection, as both are parts of the scaling formulae [20].

The learning outcome of our data influence model is evaluated by the validation Spearman correlation
between its predictions and the oracle data influence on a 10% hold-out validation set. This set is
sampled from the collected data-oracle mapping {(xi, IM(xi;Dr)) | xi ∈ Dh}.
Baselines. We compare MATES with random selection as well as the state-of-the-art pretraining
data selection baselines, which include (1) DSIR [64]: proximity with Wikipedia by n-gram fea-
tures. (2) SemDeDup [1]: removal of semantically duplicate sentences. (3) LESS [63]: computing
cosine similarity between training and validation (LAMBADA) gradients as influential scores. 1

(4) DsDm [15]: static approximation of influence scores on LAMBADA by a well-trained proxy
model [48]. (5) QuRating [62]: ranking with Llama-learned [58] quality scores identified by GPT-3.5
in terms of educational values. These baselines cover all the mainstream data selection schemes,
ranging from simple heuristics, static influence functions, and LLM rating. Some recent methods,
such as Ask-LLM [52], are not open-sourced yet, prohibiting direct comparisons.

1Due to the high computational cost of LESS to compute the gradients for all the pretraining examples, we
only report its results in the 410M setting.
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(d) 1B w/ steps.

Figure 3: Downstream performance of 410M and 1B models w.r.t. pretraining FLOPs and steps. The
data selection procedure of MATES only accounts for 21.7% and 11.5% of the total FLOPs for 410M
and 1B models, respectively.

5 Evaluation results

This section evaluates the effectiveness of MATES (§ 5.1), locally probed oracle data influence (§ 5.2),
and data influence model (§ 5.3). It further presents a case study to illustrate the model’s changing
data preferences (§ 5.4). More ablation studies can be found in Appendix C.

5.1 Overall performance

MATES outperforms the state-of-the-art data selection approach. Table 1 presents the zero-
shot evaluation of pretraining 410M/1B models with different data selection methods. MATES
significantly outperforms random selection by an average downstream accuracy gain of 1.3% and
1.1% in the 410M and 1B settings, respectively. These gains are nearly double those achieved by the
state-of-the-art data selection method, QuRating, which depends on larger reference models. Notably,
we observe an absolute improvement of nearly 2.0% across most tasks in the 410M setting, except
for ARC-C and LogiQA, where the predictions of 410M models are close to random guessing. In
the 1B setting, MATES outperforms random selection across all 9 tasks, demonstrating the strong
scalability and generalization capabilities of our method.

Table 2: FLOPs breakdown of MATES steps.

Process #FLOPs ∗1e19 Ratio
410M Setting: 410M model, 25B tokens

Model pretraining 6.35 78.3%
Oracle data influence collection 0.29 3.6%
Data influence model training 0.01 0.1%
Data influence model inference 1.46 18.0%
Total 8.11 100%
1B Setting: 1B model, 25B tokens

Model pretraining 17.67 88.5%
Oracle data influence collection 0.83 4.1%
Data influence model training 0.01 0.1%
Data influence model inference 1.46 7.3%
Total 19.97 100%

MATES selects the data with low costs. We
also show a detailed breakdown of the pre-
training cost of MATES in Table 2. The rel-
ative selection cost of larger models is generally
smaller since their pretraining cost dominates
the total FLOPs while the training and inference
cost of our data influence model remains stable.
Even with the 1B pretraining model, the wall
clock time to collect one oracle data influence
is only around 2.5 seconds on one GPU, which
means we can get all the required 160k oracle
scores during 50k-step pretraining on one node
(8 GPUs) around 14 hours, which is significantly
lower than the actual pretraining time (4 days).
The inference speed of our data influence model
can also be improved with data parallelism or
a fast-inference framework like vLLM [31], re-
ducing the selection cost further. This breakdown analysis underscores the low expense of MATES in
achieving model-aware data selection.

MATES significantly elevates the scaling curves. Figure 3 plots the performance of the pretraining
models w.r.t. different FLOPs and steps. Measuring by FLOPs counts both the model pretraining
and data selection costs, demonstrating the total compute expense during pretraining. Measuring by
steps reflects the compute cost of the model pretraining alone, as the data selection can be trivially
parallelized when more computational resources are available. At both 410M and 1B scales, MATES
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(d) FLAN.

Figure 4: Oracle data influence distribution in the 410M setting with different reference tasks at 50k
steps. MC: multiple choice. LM: language modeling. We also present the standard deviation of the
distribution and the proportions of the data with positive/negative oracle data influence.

Table 3: Performances of oracle selected data with different reference tasks in the 410M setting. We
run the decay stage starting from the MATES model at 50k steps.

Dr SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
LAMBADA 66.0(1.5) 42.2(1.0) 24.8(1.3) 27.2(1.7) 30.8(2.1) 59.1(0.9) 41.9(0.5) 68.5(1.1) 52.3(1.4) 45.9(1.4)
ARC-E (MC) 64.9(1.5) 42.4(1.0) 24.9(1.3) 27.8(1.8) 30.4(2.1) 58.0(0.9) 41.1(0.5) 68.1(1.1) 51.7(1.4) 45.5(1.4)
ARC-E (LM) 65.3(1.5) 43.0(1.0) 24.8(1.3) 28.0(1.8) 31.8(2.1) 58.5(0.9) 40.7(0.5) 67.2(1.1) 52.5(1.4) 45.8(1.4)
FLAN 66.4(1.5) 45.1(1.0) 25.1(1.3) 28.7(1.8) 32.0(2.1) 56.2(0.9) 40.5(0.5) 67.9(1.1) 52.3(1.4) 46.0(1.4)

significantly elevates the scaling curves compared to random selection, reducing the FLOPs and
pretraining steps required to reach a certain downstream performance by more than half. Scaling
efficiency is more evident at the 1B scale, where model pretraining dominates 88.5% of FLOPs versus
11.5% for data selection. As a result, MATES reaches the same performance as random selection
with only 43.3% of the total FLOPs. A similar observation can be found in Figure 9, where the
performance of MATES is comparable to or higher than the full pretraining using 3x data. These
results reveal the promising potential of MATES in elevating the scaling law of foundation models.

5.2 Effectiveness of locally probed oracle data influence

This set of experiments analyzes the effectiveness of oracle data influence with different reference
tasks. Besides LAMBADA used in our main experiment, we also consider taking the training sets of
ARC-E [12] and FLAN [9] as the reference tasks to show the generalization ability of our method.
ARC-E represents one of the knowledge-based question-answering tasks, while FLAN represents
a large set of varied instruction-formatted data. For ARC-E, we construct each example either as a
multiple-choice selection (i.e., outputting the correct option [A-D]) or as a language modeling task
(i.e., outputting the verbalized answer) to investigate whether the task format will affect the data
influence collection and parameterization.

In Figure 4, we demonstrate the oracle data influence distribution with different reference tasks, the
standard deviation of the distribution, and the proportions of the data with positive/negative oracle
data influence. The oracle distribution remains spread-out across all reference tasks, indicating that
our oracle effectively differentiates data influences. Notably, the positive influence proportion for
LAMBADA in Figure 4a is higher than others by more than 20%, suggesting that more data is
deemed beneficial when LAMBADA serves as the reference. We hypothesize that this is because
LAMBADA is essentially a word prediction task, which aligns more closely with the pretraining
objective compared to knowledge-based or instruction-following tasks. This hypothesis is further
supported by the results for ARC-E (Figure 4b/4c), where the language modeling format identifies
more positively influential data points compared to the multiple-choice format.

We further validate the effectiveness of the oracle across different reference tasks by sampling 20%
data with oracle scores as weights. Due to the infeasibility of obtaining oracle scores for all the
pretraining data, we only run one short decay stage with the data selected by different oracle scores.
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As shown in Table 3, taking ARC-E as the reference task can benefit the model’s in-domain accuracy,
but its generalization performance is worse than using LAMBADA. In contrast, FLAN benefits a
wider range of downstream tasks due to its diverse instructions. However, there remains a trade-off
between the performance of different tasks, so the average accuracy of choosing FLAN is similar to
that of LAMBADA. This experiment highlights the robustness of our oracle, as it is not limited to
specific reference data but generalizes effectively across multiple reference tasks.

5.3 Effectiveness of data influence model
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(b) Downstream accuracy.
Figure 5: Static (based on a 10k or a 50k random-pretrained
model checkpoint) data selection versus model-aware data
selection in influence modeling and downstream accuracy.

This experiment studies the effective-
ness of data influence model. As
shown in Figure 4, our data influence
model effectively approximates the or-
acle data influence across various ref-
erence tasks. Nevertheless, a higher
standard deviation in the oracle dis-
tribution tends to enhance the valida-
tion Spearman correlation. This sug-
gests that greater variability in influ-
ence scores can provide more diverse
signals for the data influence model to
capture, making it better approximate
the oracle distribution.

Figure 5 compares MATES with static
data influence models trained on influence from a 10k or a 50k random-pretrained model checkpoint.
In Figure 5a, we measure the validation Spearman correlation between the predictions of data influence
models and the oracle data influence probed with each pretraining checkpoint. The correlations of
static data influence models are always below 0.5, while data influence models in MATES, with
dynamic updates, can capture the ever-changing data preferences more and more precisely along with
the model pretraining (e.g., the correlation is around 0.7 in 40k steps). The effects of model-aware
data selection are directly reflected in downstream accuracy. In Figure 5b, the data selected by static
data influence models will cause a notable performance drop, especially at the early pretraining
stage. These observations confirm the ever-changing nature of data preferences in pretraining and the
advantages of model-aware data selection to elevate the scaling curves of pretraining.

5.4 Case study

This case study demonstrates representative examples to illustrate the evolving preferences of the
pretraining model in detail. As shown in Table 4, the model at the early pretraining stage (the 10k
checkpoint) tends to favor learning natural narrative examples without delving too deeply into specific
knowledge. At the 20k checkpoint, it appears to shift focus toward factual knowledge (e.g., pages
from Wikipedia) while gradually reducing reliance on natural narratives. At the 30k checkpoint, the
model shows a preference for more detailed academic text, such as official teaching slides. By the 40k
checkpoint, the model may begin learning more long-tail knowledge, like Telescopic Forklift Training.
These examples provide insights into the evolving nature of the model’s data preferences throughout
pretraining. Although they may not cover every aspect of the selected data, our observation highlights
the necessity to adapt data selection strategies to different model learning stages.

6 Discussion and limitations

Combinational Measurement of Data Influence. One primary assumption in our work is that
each data point contributes independently to the pretraining outcome, without accounting for its
interactions with other data points. Despite a common hypothesis [15; 44], the pretraining essentially
applies the long-term combinational effect of batched data on language models, and the learning of
many advanced capabilities is accumulative. Efficiently and effectively measuring and learning the
combinational and accumulative nature of the pretraining process can make us better understand and
leverage the value of data [37].
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Table 4: Case study in the 1B setting. We show the 300 character excerpts of data points with the
ranks of their influence scores among 80k randomly sampled data at different pretraining checkpoints.
A lower rank denotes a higher influence.

Influence Rank ↓ Source Text
0 at 10k checkpoint
6376 at 20k checkpoint

Blog She went to the place where Jonathan lay and gave to his
servant’s David’s richest garment to be placed next to him
as he lay crying out in his sickness. She went in and out
of the house. She went in and out of the city gates. She
waited for David in the place...

1 at 20k checkpoint
22998 at 30k checkpoint

Wikipedia Two weeks later, Friedman threw three touchdown passes
in a 27–0 victory over Northwestern. One of Michi-
gan’s touchdowns was set up when Friedman intercepted
a Northwestern pass and returned it 13 yards. On the next
play, Friedman threw a touchdown pass to Dutch Marion...

3 at 30k checkpoint
452 at 40k checkpoint

CRITHINKEDU Critical Thinking Across the European Higher Educa-
tion Curricula), Education and Regional Development
in Southern Europe: Should we invest in Critical Thinking
across the Higher Education Curricula? First. . . What is
Critical Thinking (CT)? CT is not only a high quality way
of thinking (skill), but also a way of being (disposition)...

1 at 40k checkpoint
5954 at 10k checkpoint

forkliftcertification It’s a group of training course resources to help you master
telescopic forklifts in record time. Or else you’re taking
the course and throwing a bunch of forklift telescopic
training against a wall and hoping something sticks. And
forklift is only getting more popular. This chapter is about
handler course and certification...

Exploratory Scale. As an exploratory research work, our experiments are conducted at a moderate
scale, with a pretraining model of 410M or 1B parameters. Although the trend from 410M to 1B
indicates the robustness of our observations, it remains unclear how well our methods scale up to
production-level models with billions of parameters and trillions of pretraining tokens. On the one
hand, moving to that scale provides more headroom for data selection with more urgent needs for
efficiency, more leniency on the relatively small compute spent on data selection, and a larger pool
of candidate data. On the other hand, large-scale pretraining may yield various stability issues that
require dedicated work to introduce new techniques [58; 67]. We leave the exploration of larger
models to future work.

7 Conclusion

In this paper, we introduce MATES, a novel framework to enhance the efficiency and effectiveness of
language model pretraining through model-aware data selection. MATES leverages a data influence
model to continuously capture the evolving data preferences of the pretraining model throughout
the pretraining process, thereby selecting the training data most effective for the current pretraining
stage. To achieve that, we locally probe the oracle data influence on a reference task using the
pretraining model and fit the data influence model on the probed oracle. Our empirical results
demonstrate that MATES surpasses random, rule-based, influence-function-based, and LLM-based
data selection methods on pretraining, significantly elevating the scaling curves of pretraining LLMs.
Further analyses confirm the effectiveness of our locally probed oracle data influence and the accurate
approximation of this oracle with data influence models. Our work successfully demonstrates the
potential of model-aware data curation in pretraining, and we hope it will motivate further explorations
on improving the scaling law of foundation models through better data curation techniques.
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A Full derivation of locally probed oracle data influence

This section presents a full derivation of locally probed oracle data influence. First, we define the optimal model
state after upweighting one training data point xi by ϵ as:

M∗
ϵ,xi

= argmin
M

1

n

n∑
j=1

L(xj | M) + ϵL(xi | M), (13)

and simplify the optimal model under ϵ = 0 case (i.e., no upweighting) as M∗. Following Koh and Liang
[29], data influence quantifies the reference loss change before and after one data point xi in the training data is
upweighted by a small ϵ, i.e.:

IM∗(xi;Dr)
def
=

dL(Dr | M∗
ϵ,xi

)

dϵ

∣∣∣∣
ϵ=0

(14)

= ∇ML(Dr | M∗)⊤
dM∗

ϵ,xi

dϵ

∣∣∣∣
ϵ=0

. (15)

To compute
dM∗

ϵ,xi
dϵ

∣∣∣∣
ϵ=0

, we consider the optimality condition at M∗
ϵ,xi

:

∇M

[
1

n

n∑
j=1

L(xj | M∗
ϵ,xi

) + ϵL(xi | M∗
ϵ,xi

)

]
= 0. (16)

Differentiating both sides with respect to ϵ:

HM∗
dM∗

ϵ,xi

dϵ

∣∣∣∣
ϵ=0

+∇ML(xi | M∗) = 0, (17)

dM∗
ϵ,xi

dϵ

∣∣∣∣
ϵ=0

= −H−1
M∗∇ML(xi | M∗), (18)

where HM∗ = 1
n

∑n
j=1 ∇

2
ML(xj | M∗) is the Hessian and is positive definite. Therefore,

IM∗(xi;Dr) = −∇ML(Dr | M∗)⊤H−1
M∗∇ML(xi | M∗). (19)

With the first-order Taylor expansion, we can approximate the change in model parameters:

M∗
ϵ,xi

−M∗ ≈ ϵ
dM∗

ϵ,xi

dϵ

∣∣∣∣
ϵ=0

= −ϵH−1
M∗∇ML(xi | M∗). (20)

For ϵ = 1
n

, i.e., incorporating xi into the training data, this becomes:

M∗
1
n
,xi

−M∗ ≈ − 1

n
H−1

M∗∇ML(xi | M∗). (21)

Substituting H−1
M∗∇ML(xi | M∗) in Eq. 19 with −n(M∗

1
n
,xi

−M∗), we get:

IM∗(xi;Dr) ≈ n∇ML(Dr | M∗)⊤(M∗
1
n
,xi

−M∗) (22)

≈ n(L(Dr | M∗
1
n
,xi

)− L(Dr | M∗)) (23)

∝ −L(Dr | M∗) + L(Dr | M∗
1
n
,xi

). (24)

In practice, we manage to obtain the data influence based on the current model state M, while the above
influence calculation still remains meaningful in the non-converged state by adding a damping term λ that
ensures HM + λI is positive definite [29]. Finally, the locally probed oracle data influence of xi is:

IM(xi;Dr) ∝ −L(Dr | M) + L(Dr | A(M, xi)). (25)

To ensure that a positive influence score reflects a beneficial impact on model performance, we empirically define
the negative influence, L(Dr | M)− L(Dr | A(M, xi)), as our locally probed oracle data influence of xi.
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Table 5: Experimental configurations.

Configuration Name Value
Pretraining
Dataset C4
Tokens 25B
Model Pythia-410M/1B (randomly initialized)
Steps 50k
Sequence length 1024
Batch size 512
Max learning rate 0.001

Data influence parameterization

Amount of collected oracle data 80k at 10k steps
20k at the following steps

Initialization of data influence model Pretrained BERT at 10k steps
Last fine-tuned checkpoint at the following steps

Selection ratio 20%
Update step of data influence model 10k
Amount of data in reference tasks 1024
Epochs 5
Batch size 256
Max learning rate 5e-5
Validation set of data influence model 10% sampled from the collected oracle data

B Experimental details

This section provides our experimental configurations (§ B.1), details of WSD scheduler (§ B.2), and design of
data influence model (§ B.3).

B.1 Experimental configurations

We provide all experimental configurations in Table 5.

B.2 WSD scheduler

WSD learning rate scheduler is initially proposed in MiniCPM [25] and is found to scale predictably and reliably
similar to the widely-used cosine learning rate scheduler [22]. Moreover, WSD offers better flexibility than
cosine for training across different lengths since its learning rate is constant during the stable stage. The learning
rate of WSD scheduler is configured as follows:

lr(t) =


t
W

· η, if t < W

η, if W ≤ t < S

0.54·(t−S)/D · η, if S ≤ t < S +D

(26)

where t, W , S, and D represent the number of steps now, at the end of the warmup, stable, and decay stages,
respectively. η is the max learning rate. In our main experiments, we choose W = 2000, S = 50000, and D =
200. Inspired by MiniCPM [25], each checkpoint is evaluated after the short decay stage for better stability. We
run all experiments on 8 A6000 GPUs, which will take 2 days for 410M models and 4 days for 1B models.

B.3 Design of data influence model

Our BERT-based data influence model averages all the hidden representations of the last model layer to obtain
the sequence representation h ∈ RH , where H is the hidden size of the model. Note that BERT can only support
a maximum input sequence length of 512. To deal with our pretraining sequence length of 1024, we divide one
sequence into two chunks and forward them separately. Then, we average the hidden representations from both
chunks to obtain the final h. This vector will be multiplied by a regression output weight wo ∈ RH to get the
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model prediction wo · h. The training objective is the mean squared error between the model prediction and the
normalized ground truth IM.

Note that BERT has a different tokenizer from our pretraining models, but the average sequence length of all the
examples after the tokenization is almost the same. Our chunk-based design can be easily extended to longer
pretraining sequences in the future.

C Additional experiments

This section presents the comparison of different data influence attribution methods (§ C.1), the ablation study
on data influence models (§ C.2), and the analysis of oracle data influence (§ C.3).

C.1 Comparison of different data influence attribution methods

Table 6: Performances of locally probed oracle data influence, MATES, and DsDm in 410M setting
at 40k steps. We show zero-shot/two-shot results.

Methods SciQ ARC-E ARC-C LogiQA OBQA
Oracle 65.4(1.5)/70.4(1.4) 42.5(1.0)/43.6(1.0) 25.2(1.3)/25.0(1.3) 26.1(1.7)/25.7(1.7) 31.8(2.1)/30.4(2.1)
MATES 67.3(1.5)/76.7(1.3) 41.7(1.0)/44.4(1.0) 24.7(1.3)/24.0(1.2) 26.9(1.7)/26.3(1.7) 28.8(2.0)/28.0(2.0)
DsDm 66.0(1.5)/72.7(1.4) 41.7(1.0)/43.2(1.0) 23.7(1.2)/25.2(1.3) 24.4(1.7)/23.3(1.7) 29.2(2.0)/29.4(2.0)

Methods BoolQ HellaSwag PIQA WinoGrande Average
Oracle 58.9(0.9)/59.1(0.9) 41.1(0.5)/43.1(0.5) 68.2(1.1)/66.6(1.1) 51.6(1.4)/53.2(1.4) 45.6(1.4)/46.3(1.3)
MATES 59.6(0.9)/57.0(0.9) 40.1(0.5)/39.6(0.5) 67.6(1.1)/67.7(1.1) 52.1(1.4)/51.3(1.4) 45.4(1.3)/46.1(1.3)
DsDm 60.3(0.9)/58.1(0.9) 40.4(0.5)/40.2(0.5) 67.2(1.1)/66.5(1.1) 50.4(1.4)/52.2(1.4) 44.8(1.3)/45.6(1.3)

We compare the performance of data selection directly using our oracle with DsDm at the short decay stage
in Table 6. Our locally probed oracle, utilizing one-step training, outperforms DsDm, which relies on Taylor
approximation and gradient dimension reduction. The performance gap (0.8 zero-shot accuracy gain) is
significant, considering the decay stage only consists of 200 steps. This improvement can be attributed to two
factors: (1) we leverage the current model state to calculate the data influence rather than relying on an existing
checkpoint like DsDm, and (2) we perform one-step training to obtain the oracle score, considering the training
dynamics of the pretraining model and eliminating the precision loss from multiple approximation manipulations
in DsDm. It is always costly to acquire the optimal data influence oracle for the entire pretraining dataset, but
our local probing method with data influence parameterization beats Taylor approximation with fewer FLOPs,
offering a new direction for future exploration.

C.2 Ablation study on data influence models

Table 7: Ablation study of pretraining 410M models with different update steps U and sampling
temperatures τ between 40k to 50k steps. We show zero-shot/two-shot results.

Hyperparameters SciQ ARC-E ARC-C LogiQA OBQA
U=10k, τ=1.0 66.0(1.5)/74.9(1.4) 41.8(1.0)/43.8(1.0) 25.0(1.3)/25.3(1.3) 25.7(1.7)/24.9(1.7) 30.8(2.1)/30.6(2.1)

U=5k, τ=1.0 65.8(1.5)/74.6(1.4) 42.2(1.0)/44.1(1.0) 24.8(1.3)/25.1(1.3) 25.3(1.7)/25.8(1.7) 31.0(2.1)/30.0(2.1)
U=2.5k, τ=1.0 65.0(1.5)/74.4(1.4) 41.8(1.0)/43.5(1.0) 24.9(1.3)/24.7(1.3) 27.6(1.8)/26.4(1.7) 30.6(2.1)/28.8(2.0)
U=10k, τ=2.0 64.0(1.5)/72.2(1.4) 41.8(1.0)/44.3(1.0) 24.7(1.3)/23.5(1.2) 27.8(1.8)/24.9(1.7) 29.6(2.0)/30.6(2.1)
U=10k, τ=0.0 65.9(1.5)/74.5(1.4) 41.8(1.0)/43.5(1.0) 24.6(1.3)/23.5(1.2) 28.0(1.8)/24.6(1.7) 30.0(2.1)/28.8(2.0)

Hyperparameters BoolQ HellaSwag PIQA WinoGrande Average
U=10k, τ=1.0 60.6(0.9)/57.4(0.9) 41.0(0.5)/40.6(0.5) 68.7(1.1)/67.1(1.1) 52.7(1.4)/53.4(1.4) 45.8(1.4)/46.4(1.3)

U=5k, τ=1.0 60.3(0.9)/58.8(0.9) 41.1(0.5)/40.8(0.5) 68.2(1.1)/68.1(1.1) 52.5(1.4)/52.2(1.4) 45.7(1.4)/46.6(1.3)
U=2.5k, τ=1.0 60.2(0.9)/57.5(0.9) 41.0(0.5)/40.6(0.5) 67.5(1.1)/67.1(1.1) 51.5(1.4)/51.1(1.4) 45.6(1.4)/46.0(1.3)
U=10k, τ=2.0 56.2(0.9)/54.3(0.9) 40.8(0.5)/40.5(0.5) 67.7(1.1)/67.1(1.1) 52.2(1.4)/51.4(1.4) 45.0(1.4)/45.4(1.3)
U=10k, τ=0.0 57.4(0.9)/55.8(0.9) 40.7(0.5)/40.6(0.5) 68.1(1.1)/66.8(1.1) 50.6(1.4)/51.1(1.4) 45.2(1.4)/45.5(1.3)

This group of experiments conducts ablation studies on the key hyperparameters.
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Figure 8: Correlation of oracle data influence probed with different batch sizes (a) and the correlation
between different reference task accuracy with average downstream accuracy (b-d).

Update Step and Sampling Temperature. Table 7 shows the impact of hyperparameters on downstream
performance. We initialize the model with the 40k-step MATES checkpoint and adopt different hyperparameters
in the 40k-50k training. Decreasing the update step U from 10k to 5k and 2.5k leads to little fluctuations since
the model preferences may not dramatically change within 5k steps. Varying the sampling temperature τ to 2.0
and 0.0 causes decreased performances. The zero temperature extremely up-weights high-quality data, reducing
data diversity, while higher temperatures like 2.0 do not sufficiently emphasize data quality. Our observations
highlight the necessity of balancing quality and diversity in the data selection.
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Data Selection Ratio. As shown in Figure 6, MATES shows the consistent
gains compared to random selection using either low/high-selection ratio,
ranging from 1/200 to 1/2. We also find the optimal sampling rate of a larger
model (1B) is smaller than that of a smaller model (410M). We hypothesize
that a larger model may require a more aggressive selection ratio, such as
10%, since it is more robust to the subtle distribution change of the training
data. However, too low (1/200) or high selection ratio (1/2) does not perform
as good, as a low ratio may harm the diversity and a high ratio does not
leverage the strength of the data influence enough.

Oracle Label Amount and Data Influence Model Scale. Figure 7a demon-
strates the impact of oracle label amounts by comparing the validation
Spearman correlation of different data influence models at 40k steps. The
data influence model is initialized from either the pretrained BERT or its
last checkpoint at 30k steps. We observe that continuous fine-tuning from 30k steps requires less than half of the
oracle data compared to training from the pretrained BERT, which can significantly reduce the cost of collecting
new oracle data. Furthermore, Figure 7b studies the impact of parameter counts in the data influence model.
Generally, the approximation becomes more accurate as the number of parameters increases until BERT-large,
which may have become saturated with the current learning algorithm using the available oracle label. We
have proved the effectiveness of our data influence models through extensive experiments and thus, leave the
exploration of better data influence parameterization algorithms and stronger data influence models to future
work.

C.3 Analysis of oracle data influence
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Figure 7: Data influence parameterization with dif-
ferent amounts of oracle labels and model scales.

To further demonstrate the stability of our oracle data
influence, we enlarge the one-step training batch size
(BS) from 1 to 16. Following Ilyas et al. [26], we
utilize LASSO regression to separate each data’s
influence score in the BS = 16 setup and calculate
the Spearman correlation between BS = 1 and BS =
16 scores. More details of LASSO regression can be
found in Appendix C.3. Figure 8a illustrates that the
oracle data influence is not sensitive to the batch size
as long as they correspond to the same model state.
We calculate batch-level data influences, where one
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Figure 9: Downstream performance of 410M and 1B models w.r.t. pretraining FLOPs and steps.

data point can appear on multiple batches so that separating individual data influence from batch influences is a
regression problem. Formally, the input of the regressor is a m-dimensional binary vector v : [v1, v2, ..., vm]

vector, where m means the size of probing data pool (80k in our experiment) and vi = 1/vi = 0 denotes the
inclusion/exclusion of the i-th data in the current batch; the output is the oracle data influence score probed by
one-batch one-step training. In our experiment, we first collect 80k input-output pairs with batch size equal
to 16 to train a LASSO regressor and then acquire a m-dimensional individual data influence vector from the
regressor’s prediction. This vector represents the influence score shown in the y-axis in Figure 8a. The idea
of adopting LASSO regression is inspired by the linear datamodels in DsDm [15] that separate individual data
influence from the collection of batch data influences.

We also investigate the traits of our reference task, LAMBADA, when collecting oracle data influences. Specifi-
cally, we collect the task accuracy at each model checkpoint and measure the Spearman correlation between a
single task and average downstream accuracy. As shown in Figure 8b, LAMBADA has a significantly positive
Spearman correlation (0.877) with average downstream accuracy. In contrast, the correlation between ARC-
E/PIQA and average downstream accuracy is not high in Figure 8c/8d, although they are parts of the evaluation
tasks. These results imply that ARC-E/PIQA may not reflect the target performance as accurately as LAMBADA
when acting as the reference.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions, such as the introduction of
a model-aware data selection framework, the use of a small data influence model, and the empirical
validation of the proposed method. These claims are consistent with the experimental results and
discussions provided in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses several limitations, such as the computational constraints that limit
the model size to 1B parameters and the need for more advanced data sampling strategies.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: The paper provides a detailed and complete theoretical proof of oracle data influence
proposed in the method.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes detailed descriptions of the experimental setup, including the datasets
used, the models employed, and the training procedures. It also releases code, data, and model
checkpoints to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper releases code, data, and model checkpoints, providing sufficient instructions
to reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.
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