
Faster Streaming and Scalable Algorithms for
Finding Directed Dense Subgraphs in Large Graphs

Slobodan Mitrović 1 Theodore Pan 1

Abstract
Finding dense subgraphs is a fundamental algo-
rithmic tool in data mining, community detec-
tion, and clustering. In this problem, the aim is to
find an induced subgraph whose edge-to-vertex
ratio is maximized. We show how to find a (2+ϵ)
approximation of the directed densest subgraph
on randomized streams in a single pass while
using O(n · poly log n) memory on n-vertex
graphs. In contrast, the approach by Bahmani et
al. (VLDB 2012) uses O(log n) passes and by
Esfandiari et al. (2015) makes one pass but uses
O(n3/2) memory; both algorithms also apply to
arbitrary-ordered streams. Our techniques extend
to Massively Parallel Computation (MPC), yield-
ing quadratic improvement over state-of-the-art
by Bahmani et al. (VLDB 2012 and WAW 2014).
We empirically show that the quality of our out-
put is essentially the same as that of Bahmani
et al. (VLDB 2012) while being 2 times faster
on large graphs, even on non-randomly ordered
streams.

1. Introduction
Given a directed graph G = (V,E), the directed densest
subgraph problem asks to find two vertex subsets S, T ⊆
V , not necessarily disjoint, such that the number of edges
from S to T scaled by

√
|S| · |T | is maximized. When

S = T , this problem is equivalent to finding the densest
subgraph in undirected graphs. Dense subgraph discovery
is a fundamental algorithmic tool in data mining (Kriegel
& Pfeifle, 2005; Wu et al., 2019; Fang et al., 2022), com-
munity detection (Chen & Saad, 2010; Harenberg et al.,
2014), spam detection (Leon-Suematsu et al., 2011; Zhang
et al., 2016), fraud discovery (Zhang et al., 2017; Ren et al.,

1Department of Computer Science, University of Califor-
nia, Davis, CA. Correspondence to: Slobodan Mitrović <smitro-
vic@ucdavis.edu>, Theodore Pan <thjpan@ucdavis.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

2021), clustering (Kriegel et al., 2011; Bhattacharjee &
Mitra, 2021), graph compression (Buehrer & Chellapilla,
2008), and many other applications. Specifically for un-
supervised learning, we observe multiple practical algo-
rithms that implement dense subgraph discovery in finance,
web graphs, or computational neuroscience just to name
a few (Chen & Tsourakakis, 2022; Mitzenmacher et al.,
2015; Chen et al., 2022). Given its importance, this prob-
lem has been studied in various computational settings, in-
cluding semi-streaming (Bahmani et al., 2012; McGregor
et al., 2015; Bhattacharya et al., 2015), dynamic (Epasto
et al., 2015; Sawlani & Wang, 2020), distributed (Su & Vu,
2019), and parallel (Bahmani et al., 2012; Ghaffari et al.,
2019), with the first study of its undirected version dating
back to the eighties (Goldberg, 1984).

A directed densest subgraph can be found in polynomial
time (Charikar, 2003). However, the corresponding algo-
rithm solves a family of O(|V |2) linear programs, making
it impractical for execution on large graphs. Nevertheless,
much faster approximation algorithms have been devel-
oped. For instance, there exists a simple greedy algorithm
running in near-linear time that yields a 2 + ε approxima-
tion for any arbitrary constant ε > 0 (Bahmani et al., 2012;
Charikar, 2003). The prevalence of large graphs has mo-
tivated researchers to study the approximate densest sub-
graph problem in settings for processing big data, such as
streaming and massively parallel computation (MPC).

There has been a significant interest in designing semi-
streaming algorithms for finding dense subgraphs, e.g.,
(Bahmani et al., 2012; Esfandiari et al., 2015; Bhattacharya
et al., 2015; McGregor et al., 2015) and references therein.
(Esfandiari et al., 2015) designed a single-pass semi-
streaming algorithm for finding (1 + ε)-approximate dens-
est subgraph in undirected graphs. For n-vertex graph
G, this algorithm uniformly at random samples O(n ·
log(n)/ε2) edges from G in the streaming fashion. The
authors show that the densest subgraph in such a sample
is a (1 + ε)-approximate densest subgraph in G. This
sampling idea fails in the context of directed graphs. To
see that, consider the example in Figure 1. In that ex-
ample, the directed densest subgraph is the star, having
density Θ(

√
n); each clique has density Θ(n0.499). How-

1

Finding Directed Dense Subgraphs in Large Graphs

Figure 1. An illustration of why uniformly at random sampling
applicable to undirected fails in the context of directed densest
subgraph.

ever, sampling O(n · log n) edges from that graph will, in
expectation, contain only O(n0.501) edges from the star,
which is insufficient to recover the densest subgraph in
Figure 1. To alleviate this, (Esfandiari et al., 2015) pro-
pose a single-pass semi-streaming algorithm that requires
O(n1.5 poly log n) memory. In another line of work, (Bah-
mani et al., 2012), the memory requirement is kept at
O(npoly log n) at the expense of making O(log n) passes
and a (2 + ε)-approximation. It is unknown whether these
techniques can be extended to achieve the best of both
worlds, i.e., a single pass and O(npoly log n) memory.

Finding dense subgraphs in MPC has also received signif-
icant attention. For undirected graphs, the sampling strat-
egy devised in (Esfandiari et al., 2015) for the streaming
setting readily transfers to an O(1) MPC round algorithm
in the near-linear memory regime. For the sublinear mem-
ory regime, (Bahmani et al., 2014) developed an algorithm
that in O(log(n)/ε2) rounds outputs a (1 + ε) approxima-
tion. This was improved to O(

√
log n · log log n) rounds

by (Ghaffari et al., 2019). However, state-of-the-art al-
gorithms for densest subgraphs have significantly higher
round complexity for directed than for undirected graphs.
The works (Bahmani et al., 2012) and (Bahmani et al.,
2014) also design an algorithm for finding (2 + ε)- and
(1 + ε)-approximate densest subgraphs in directed graphs
in O(log(n)/ε) and O(log(n)/ε2) MPC rounds, respec-
tively. To the best of our knowledge, this is the most ef-
ficient MPC approach, even for the super-linear memory
regime, leaving a considerable gap between the case of
directed and undirected graphs: O(log n) vs. O(1) round
complexity. Given that many modern graphs are directed –
examples include Twitter and Instagram “following” rela-
tionships, links on the Web, etc. – it is natural to wonder
whether faster algorithms for finding directed densest sub-
graphs can be developed.

1.1. Our contributions

As our first result, we make progress in the semi-streaming
setting.

Result 1 (Theorem 4.8 rephrased). Given an n-vertex

graph, there exists a single-pass semi-streaming algorithm
that, with high probability, over randomized streams out-
puts a (2+ε)-approximate directed densest subgraph while
using O(npoly(log(n)/ε)) memory.

We build on ideas we develop for Result 1 and improve the
state-of-the-art in the context of MPC as well.

Result 2 (Theorems 5.1 and 5.2 summarized). Given an n-
vertex graph, there exists an MPC algorithm that, with high
probability, outputs a (2+ε)-approximate directed densest
and

• when the memory per machine is n1+δ , for any con-
stant δ > 0, the algorithm runs in O(1) rounds;

• when the memory per machine is npoly(log(n)/ε),
the algorithm runs in O(

√
log n) rounds.

The fastest previously known MPC algorithms require
O(log n) rounds even when the memory per machine is
n1+δ (Bahmani et al., 2012; 2014). So, our approach makes
significant progress toward closing the gap between the
undirected and directed cases.

Moreover, our empirical evaluations show that our semi-
streaming algorithm is at least 2 times faster than (Bah-
mani et al., 2012) while achieving essentially the same ac-
curacy. It is interesting to note that our algorithm is by
several percent more accurate than (Bahmani et al., 2012)
on large graphs. These hold even when the underlying
stream is non-randomized. Also, for our MPC algorithm
with npoly(log(n)/ε) memory per machine, our evalua-
tions show that it uses at least half the number of phases
compared to (Bahmani et al., 2012).

2. Preliminaries
Notation. Given a directed graph G = (V,E), we use
EG to denote E, the set of edges specific to graph G. We
use n to refer to |V |. Given two vertex sets S, T ⊆ V ,
we refer to the edges between them by EG(S, T)

def
= {e =

(i, j) ∈ EG : i ∈ S, j ∈ T}. For the sake of brevity,
for i, j ∈ V , we also write EG(i, T)

def
= EG({i}, T) and

EG(S, j)
def
= EG(S, {j}). Specific to streams, we use

Estream(S, T) to denote the subset of EG(S, T) remaining
in the stream. For vertex v ∈ V , we use d−G(v) to denote
the in-degree and d+G(v) to denote the out-degree of v in G.

When we say that an event A happens with high probabil-
ity, or whp for short, we imply that Pr [A] ≥ 1 − n−c, for
a constant c > 0. In our algorithms, the constant c can
be made arbitrarily large by paying constant factors in the
pass/round or memory complexity.

2

Finding Directed Dense Subgraphs in Large Graphs

Directed densest subgraph. Given directed graph G =
(V,E) and vertex sets S, T ⊆ V , the density ρ(S, T)

is defined as ρ(S, T)
def
= |EG(S, T)|/

√
|S| · |T |. A

densest subgraph is sets S∗, T ∗ such that (S∗, T ∗) ∈
argmaxS,T⊆V ρ(S, T).

Semi-streaming. In the semi-streaming model, an algo-
rithm scans input data, e.g., scans edge by edge of an input
graph. After all the edges are scanned, we say that the al-
gorithm made a pass. When the edges of the graph are
presented to the algorithm in a random permutation, we
say that the stream is randomized. Throughout the pro-
cess, for n-vertex graph, the algorithm is typically allowed
to use O(npoly log n) memory. The complexity measure
in this setup is the number of passes the algorithm makes
and the memory it requires; as discussed for (Esfandiari
et al., 2015), some approaches require polynomially more
than memory n. After all the passes are performed, the
algorithm outputs a solution.

Massively Parallel Computation (MPC). The Mas-
sively Parallel Computation (MPC) model has become
a standard in the theoretical study of large-scale frame-
works (Karloff et al., 2010; Goodrich et al., 2011; Beame
et al., 2017) such as MapReduce, Hadoop, Spark, and
Flume. In MPC, the computation proceeds in synchronous
rounds across N machines. Each machine has S words
of memory. Initially, input data is partitioned arbitrarily
across the machines. During a round, each machine per-
forms computation on its data locally. At the end of a
round, machines exchange messages. The communication
topology among the machines is a clique. During a round,
a machine can, in total, send and receive at most S bits of
data. There are three important regimes with respect to S
relative to data size. Let the input be an n-vertex graph and
δ ∈ (0, 1) be an arbitrary constant: sub-linear corresponds
to S = nδ; near-linear corresponds to S = n poly log n;
and, S = n1+δ corresponds to super-linear.

Probability tools. In our analysis, we extensively apply
the following well-known tool from probability.

Theorem 2.1 (Chernoff bound). Let X1, . . . , Xk be in-
dependent random variables taking values in [0, 1]. Let
X

def
=

∑k
i=1 Xi and µ

def
= E [X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [|X − µ| ≥ δµ] ≤
2 exp

(
−δ2µ/3

)
.

(B) For any δ ∈ [0, 1] it holds Pr [X ≥ (1 + δ)µ] ≤
exp

(
−δ2µ/3

)
.

3. The Base Algorithm
Let c be a value such that there exists a densest subgraph
(S, T) in G and c = |S|/|T |. The starting point of our
approach is a classical peeling algorithm for the directed
densest subgraph problem. This method receives c as in-
put and iteratively “peels”, i.e., removes, vertices that are
below a certain degree threshold. Intuitively, the peeling is
performed so that the removed vertices do not significantly
affect the densest subgraph. We make this statement formal
by Theorem 4.3. One iteration of this peeling primitive is
given by VSETS-UPDATE (Algorithm 1).

Algorithm 1 (VSETS-UPDATE)
Input: G = (V,E), c > 0, ϵ ∈ (0, 1), and vertex sets S,
T

1: if |S|/|T | ≥ c then
2: A(S)← {i ∈ S : |E(i, T)| ≤ (1 + ϵ) |E(S,T)|

|S| }
3: S ← S\A(S)
4: else
5: B(T)← {j ∈ T : |E(S, j)| ≤ (1 + ϵ) |E(S,T)|

|T | }
6: T ← T\B(T)
7: end if
8: return (S, T)

By iteratively peeling and keeping track of the vertex sets
that produce the densest subgraph, we are able to find an
approximation of the directed densest subgraph. VSETS-
UPDATE has two handy features. The first one is that, given
two sets S and T , it reduces the size of one of them by 1+ε.

Lemma 3.1. Let G = (V,E) be a directed graph.
For i ≥ 0, let (Si, Ti) be a sequence of set-pairs
such that (S0, T0) = (V, V) and (Si+1, Ti+1) =
VSETS-UPDATE(G, c, ϵ, Si, Ti). Then St = ∅ or Tt = ∅
for some t ∈ O(log(n)/ϵ).

Proof. Consider VSETS-UPDATE invoked with
|Si|/|Ti| ≥ c, so vertices are removed from
Si. Then, all vertices u ∈ Si\A(Si) satisfy
|E(u, T)| > (1+ϵ) |E(Si,Ti)|

|Si| . Since Si+1 = Si\A(Si), we
have that |Si+1| < |Si|/(1+ ϵ). Similarly, if |Si|/|Ti| < c,
we have that |Ti+1| < |Ti|/(1 + ϵ). So, the size of one
of the sets decreases by at least 1 + ϵ times each time
VSETS-UPDATE is invoked. Then, one of the sets becomes
empty after O(log1+ϵ n) = O(log(n)/ε) invocations of
VSETS-UPDATE.

The second useful feature of VSETS-UPDATE is that one of
the pairs (Si, Ti), as defined in the statement of Lemma 3.1,
is a (2 + ϵ)-approximate densest subgraph. We prove such
a statement in Theorem 4.3.

3

Finding Directed Dense Subgraphs in Large Graphs

4. (2 + ϵ) Approximation in a Single Pass
4.1. A Multi-pass Sampling-based Algorithm

We modify the base algorithm to sample edges to determine
which vertices to peel, instead of using the entire graph
for that. By sampling a sufficient number of edges, the
degrees of vertices in the sample are used to estimate the
degrees of vertices in the original graph. For each pass,
Algorithm 2 creates a new sample of our graph to apply
VSETS-UPDATE to. In our analysis, we extensively use
the following threshold

ξ
def
=

60 log n

ϵ2
. (1)

Algorithm 2 A semi-streaming directed densest subgraph
algorithm
Input: G = (V,E), c > 0, and ϵ ∈ (0, 1)
Output: A (2 + ε)-approximate directed densest sub-
graph

1: Initialize each of S, T, S∗, T ∗ to V
2: while S ̸= ∅ and T ̸= ∅ do
3: Let H be a sample of EG(S, T) with each

edge sampled independently with probability
min

{
nξ

(1−ϵ)|EG(S,T)| , 1
}

4: (S, T)← VSETS-UPDATE(H, c, ϵ, S, T)
5: if ρ(S, T) > ρ(S∗, T ∗) then
6: S∗ ← S, T ∗ ← T
7: end if
8: end while
9: return S∗, T ∗

Before we begin analyzing Algorithm 2, we prove
Lemma 4.1 as a tool that connects the degrees of vertices
of graph G and sampled subgraph H .

Lemma 4.1. Let G = (V,E) be a graph, ϵ ∈ (0, 1), and
p ∈ (0, 1]. Let H be a subgraph of G that contains each
edge of G independently with probability p. Then, for all
v ∈ G, the following hold with probability 1 − 1

n3 : (i) if
d−G(v) ≥ ξ/p then pd−G(v) ≤ (1+ ϵ)d−H(v), (ii) if d−G(v) <
ξ/p then d−H(v) < 2ξ (same claims hold for out-degrees
d+G(v) and d+H(v)).

The proof of Lemma 4.1 is given in Appendix A. Now, we
begin analyzing Algorithm 2.

Lemma 4.2. Algorithm 2 uses O
(

n log2(n)
ϵ3

)
memory with

probability 1− log1+ϵ n

n4 .

Proof. By the Chernoff bound, Theorem 2.1 (B), every
pass of Algorithm 2 samples O

(
(1+ϵ)nξ
(1−ϵ)

)
= O

(
n logn

ϵ2

)

edges with probability 1− 1
n4 . From Lemma 3.1, the algo-

rithm makes O(log1+ϵ n) passes. Therefore, by the union
bound over all the passes, the total memory used by Algo-
rithm 2 is O

(
nξ · log1+ϵ n

)
= O

(
n log2 n

ϵ3

)
with probabil-

ity 1− log1+ϵ n

n4 .

Theorem 4.3. Algorithm 2 produces a 2 (1 + ϵ)-
approximation of the densest directed subgraph with
probability 1− log1+ϵ n

n2 .

The proof of Theorem 4.3 is given in Appendix B and
mainly follows a proof from (Charikar, 2003) with addi-
tional applications of the Chernoff bound and Lemma 4.1.

4.2. Improved Single-pass Algorithm

Building on Algorithm 2, we develop a single-pass semi-
streaming algorithm for (2+ε)-approximate directed dens-
est subgraph when the stream of edges is randomized. The
main idea behind our algorithm is to leverage the additional
randomization of the stream and avoid performing a new
pass to estimate vertex degrees when S or T gets updated;
these degrees are needed to execute VSETS-UPDATE.

Let (S′, T ′) = VSETS-UPDATE(H, c, ε, S, T). Observe
that |E(u, T ′)| and |E(S′, v)|, for u ∈ S′ and v ∈ T ′,
can be estimated by uniformly at random sampling O(nξ)
edges from E(S′, T ′). How can those edges be sampled
without performing a new pass? If our algorithm has not al-
ready seen any edge in E(S′, T ′) from the stream, this task
would be easy – collect edges in E(S′, T ′) from the stream
as long as fewer than the desired many are seen. How-
ever, our algorithm already has a subset E′ of E(S′, T ′)
in its memory, which should be considered. Assuming that
the sampling probability is known – which is not known
and we discuss it in a moment – then SET-SAMPLE (Algo-
rithm 3) outputs the desired sample while considering E′.

Algorithm 3 (SET-SAMPLE)
Input: A set of edges E′ ⊆ EG(S, T), vertex sets S and
T , probability p, an estimate s of |EG(S, T)|
Output: Approximately uniform random sample of edges
from the union of the stream and E′

1: Let H1 be a subset of E′, where each in E′ is included
in H1 with probability p.

2: Sample x from the binomial distr. B(s− |E′|, p).
3: Set H2 to next x edges in EG(S, T) from the stream.
4: return H1 ∪H2

SET-SAMPLE takes value p as input where, ideally,
p = nξ/|E(S, T)|. Unfortunately, |E(S, T)| is not
known; SET-SAMPLE has access to E′ ⊆ E(S, T) but
Estream(S, T) = E(S, T) \ E′ is in the rest of the stream
still unseen by the algorithm. To alleviate this, our algo-

4

Finding Directed Dense Subgraphs in Large Graphs

rithm approximates |E(S, T)|. By using SET-SAMPLE,
this enables generating samples of the E(S, T) sequence
without going through the entire stream each time. This
yields Algorithm 4, which uses only a single pass.

Algorithm 4 A single-pass randomized-stream directed
densest subgraph algorithm
Input: c > 0, and ϵ ∈ (0, 1)
Output: A (2 + ε)-approximate directed densest sub-
graph

1: Initialize each of S, T, S∗, T ∗ to V ; E′ ← ∅
2: while Estream ̸= ∅ do
3: EA ← next nξ edges from Estream

4: if |EA(S, T)| < 2ξ or Estream = ∅ then
5: E′ ← E′ ∪ EA(S, T) ∪ Estream(S, T)
6: If the densest subgraph in E′ is denser than

(S∗, T ∗), update (S∗, T ∗) to be that subgraph.
7: else
8: s← (1− ϵ) · |EA(S,T)|

|EA| · (|Estream|+ nξ) + |E′|
9: E′ ← E′ ∪ EA(S, T)

10: p← nξ
(1−ϵ)s

11: H ← SET-SAMPLE (E′, S, T, p, s)
12: if p > 1 then H ← E′ ∪ Estream(S, T)
13: (S, T)← VSETS-UPDATE(H, c, ϵ, S, T)
14: if ρ(S, T) > ρ(S∗, T ∗) then
15: S∗ ← S, T ∗ ← T
16: end if
17: E′ ← (E′ ∪ EH) ∩ EG(S, T)
18: end if
19: end while
20: return S∗, T ∗

Notice that EA in Algorithm 4 is a sample of nξ edges
taken uniformly at random from the rest of the stream. Ad-
ditionally, graph H uses SET-SAMPLE to create an approx-
imately uniform sample of edges from graph E(S, T). In
both cases, the edges of the samples are not chosen inde-
pendently, so the standard Chernoff bound cannot be ap-
plied. Therefore, to still establish some connection be-
tween the degrees of vertices of the sampled graphs and
the original graph, we consider Lemma 4.4, a general-
ized version of the Chernoff bound which holds for neg-
atively correlated variables. Boolean random variables
X1, X2, . . . , Xn are negatively correlated if any subset S
of {X1, X2, . . . , Xn} and any element a ∈ S follows
Pr(a = 1|∀b∈S−{a}b = 1) ≤ Pr(a = 1).

Lemma 4.4 (Folklore). Let X =
∑n

i=1 Xi where
X1, X2, . . . Xn are negatively correlated boolean random
variables. Then, for ϵ ∈ (0, 1), we have that

Pr(|X − E [X] | > ϵE [X]) ≤ 3 exp(−ϵ2E [X] /3).

With Lemma 4.4, we prove Lemma 4.5, which considers

sampling using SET-SAMPLE, and Lemma 4.6, which con-
siders sampling a fixed amount of edges uniformly at ran-
dom. These lemmas will be used to analyze Algorithm 4.

Lemma 4.5. Let G = (V,E) be a graph, ϵ ∈ (0, 1), and
p ∈ (0, 1]. Let H ← SET-SAMPLE (E′, S, T, p, s) be ob-
tained from Algorithm 4. Then, for all v ∈ G, the fol-
lowing hold with probability 1 − 1

n3 : (i) if d−G(v) ≥ ξ/p

then pd−G(v) ≤ (1 + ϵ)d−H(v), (ii) if d−G(v) < ξ/p then
d−H(v) < 2ξ (same claims hold for out-degrees d+G(v) and
d+H(v)).

Proof. Consider a sample H of G obtained by SET-
SAMPLE. Number the edges in E from 1 to m = |E|.
For each i = 1 . . .m, define a Boolean random variable Xi

which equals 1 iff i ∈ H and 0 otherwise.

Let S be an arbitrary subset of {X1, X2, . . . , Xm} and Xi

be an arbitrary element of S. Recall that SET-SAMPLE
uses two sets to output H: one is the input set E′, and the
other one is the rest of the stream Estream. To sample from
Estream, SET-SAMPLE first samples x on Algorithm 3, and
then fetches the next x edges from Estream ∩ EG(S, T);
hence, that edge-sample is correlated as the number of
edges is fixed. If i ∈ E′, then Xi is independent of
all the other random variables, and therefore, Pr(Xi =
1|∀b∈S−{Xi}b = 1) = Pr(Xi = 1). If i ∈ Estream in-
stead, we observe that if the sample already contains an
edge j, then it “reduces” the probability of i appearing in
H . Overall, the random variables are negatively correlated.

Now, under the conditions of our lemma, we have that p ≤
1. So, when we use SET-SAMPLE, we see that

E
[
d−H(v)

]
= E

[
p · s

|EG(S, T)|
· d−G(v)

]
=

nξ

(1− ϵ)|EG(S, T)|
d−G(v)

since SET-SAMPLE, in expectation, samples ps edges out
of all the edges in EG(S, T). Notice that the result is the
same as E

[
d−H(v)

]
in Lemma 4.1. Therefore, following

the proof of Lemma 4.1 but using Lemma 4.4 instead of
the Chernoff bound, we prove Lemma 4.5.

Lemma 4.6. Let G = (V,E) be a graph, ϵ ∈ (0, 1). As-
suming |E| ≥ nξ, let H be a sample of nξ edges from
G chosen uniformly at random with probability p = nξ

|E| .
Then, for all v ∈ G, the following hold with probability
1− 1

n3 : (i) if d−H(v) ≥ 2ξ then |d−H(v)−pd−G(v)| ≤ ϵd−H(v),
(ii) if d−H(v) < 2ξ then d−G(v) ≤

2(1+ϵ)ξ
p (same claims hold

for out-degrees d+G(v) and d+H(v)).

The proof of Lemma 4.6 is given in Appendix C. The fol-
lowing is our analysis of Algorithm 4.

5

Finding Directed Dense Subgraphs in Large Graphs

Lemma 4.7. Algorithm 4 uses O
(

n log2 n
ϵ3

)
memory with

probability 1− log1+ε n

n4 .

The proof of this memory upper bound, Lemma 4.7, can be
found in Appendix D, using applications of the Chernoff
bound and Lemma 4.6.

Theorem 4.8. Algorithm 4 produces a 2 (1 + ϵ)-
approximation of the densest directed subgraph with
probability 1− log1+ϵ n

n2 .

Proof. The pruning of vertices in our algorithm follows
that of Algorithm 2, using SET-SAMPLE to create sample
graph H and then applying VSETS-UPDATE. Therefore,
following the proof of Theorem 4.3 but using Lemma 4.5
instead of Lemma 4.1, we attain the same approximation of
the directed densest subgraph.

4.3. Removing the assumption on cOPT being known

Executing Algorithm 4 requires knowing cOPT, the ratio
between the two optimal sets. We remove this assump-
tion by using standard techniques. Namely, it is unclear
how to learn c without finding the densest subgraph. To
alleviate this, our algorithm guesses the value of c and
runs the algorithm described above for each guess. Since
there are O(n2) candidates for c, i.e., values a/b for a, b ∈
{1, . . . , n}, our algorithm guesses the value of c in the mul-
tiplicative increments of δ > 1. More precisely, we run our
algorithm for values of c ranging from 1/n to n and of the
form δi/n. As Lemma 4.9 shows, this approach incurs an
additional factor of

√
δ in our approximation.

Lemma 4.9. The best density of Algorithm 4 ran on values
of c = 1/n through n, multiplying by a constant factor of
δ, is a 2(1 + ϵ)

√
δ-approximation of the densest directed

subgraph with probability 1− log1+ϵ n

n2 .

Proof. Consider c where cOPT/δ ≤ c ≤ δcOPT. Draw-
ing from the proof of Theorem 4.3, consider S̃, T̃ with
|S̃|/|T̃ | = cOPT that maximizes ρ(S̃, T̃) = ρ∗(G). Then,

ρ∗(G) =
|E(S̃, T̃)|√
|S̃||T̃ |

≤ |S̃| · d
∗
out + |T̃ | · d∗in√
|S̃||T̃ |

=
√
cOPT · d∗out +

1
√
cOPT

· d∗in

≤
√
δc · d∗out +

√
δ/c · d∗in

≤ 2 (1 + ϵ)
3
√
δ · ρ(S∗, T ∗)

Therefore, this gives a 2(1 + ϵ)
√
δ-approximation of the

densest directed subgraph.

5. MPC Algorithms
In this section, we extend our approach developed in Sec-
tion 4 to two memory regimes of the MPC model. We
present the ideas gradually. First, we show that slightly ad-
justing Algorithm 4 yields an O(1) MPC round algorithm
in the super-linear memory regime. To achieve this round
complexity, we prove a certain edge-size progress that was
not required for the semi-streaming analysis. Second, in
Section 5.2 we show that, by further building on the MPC
super-linear memory algorithm, it is possible to find an
approximate directed densest subgraph in only O(

√
log n)

rounds in the near-linear memory regime.

5.1. Super-linear Memory Regime

Recall that in Algorithm 4, Estream is the remaining edges
in the stream. In developing a super-linear regime MPC al-
gorithm, our main idea is to implement Estream efficiently
in MPC. More concretely, assume that a machineM aims
to simulate Algorithm 4. Then, M first samples n1+δ

edges from the graph – let that set be X1 – and presents
X1 to Algorithm 4 as a prefix of Estream. Once Algo-
rithm 4 makes a pass over X1, M needs to fetch another
set X2 of n1+δ edges from E \ X1 and continue Algo-
rithm 4 with X2. This process continues until there are
no edges to feed to Algorithm 4; the samples X1, X2, . . .
represent Estream. Clearly, this simulation corresponds to
Algorithm 4 executed on a stream. Unfortunately, fetching
sets Xi can happen m/n1+δ times, which for m ≫ n1+δ

is highly inefficient.

Our main idea is that after processing X1, it suffices ifM
takes a random sample from EG(S, T) ∩ (Estream \ X1)
as opposed from Estream \ X1. The main question here
is: “How does this translate to round complexity?” As the
primary measure of progress, we show the following. Let
(S′, T ′) be the vertex set pair in Algorithm 4 just before our
simulation of Algorithm 4 exhausted X1. Then, we show
that, up to low-order terms, |EG(S

′, T ′)| < m/nδ . More
generally, we show that whenever our simulation needs to
fetch fresh Xi from the remaining unused edges, the num-
ber of relevant remaining edges reduces by a factor of nδ .
Hence, after O(1/δ) many such steps, the number of re-
maining relevant edges fits in the memory of a single ma-
chine, at which point the rest of the problem can be solved
locally. We dive into the details of this argument in our
proof, given in Appendix E, of the following claim.

Theorem 5.1. There exists an algorithm that runs in
O(1/δ) rounds with probability 1− log1+ϵ n

n4 .

5.2. Near-linear Memory Regime

In this section, we improve the efficiency of our MPC al-
gorithm for the super-linear memory regime, enabling us to

6

Finding Directed Dense Subgraphs in Large Graphs

obtain a quadratically faster algorithm for the near-linear
memory regime than currently known (Bahmani et al.,
2012; 2014). Our approach stems from two ideas. The
first idea is an observation: instead of sampling nξ edges,
our algorithm requires sampling only (|S|+ |T |) · ξ edges.
Hence, once |S| + |T | become sufficiently small, then the
memory per machine becomes significantly larger than our
sample sizes, and we can use ideas similar to those from
the proof of Theorem 5.1 to improve the O(log n) round
complexity. Unfortunately, this alone is not sufficient. To
see that, consider an example in which |S|/|T | = Θ(n),
e.g., the densest subgraph has a star-like structure. In that
case, it is potentially needed to peel T for O(log n) times.
Since |S| + |T | = Θ(n) during those peeling steps, our
observation does not yield any improvement.

The second idea is that as long as our algorithm peels
only T or only S, no fresh sampling is required. To
elaborate, assume that the peeling process produces sets
(S, T1), (S, T2), . . . , (S, Tj). Since S remains the same,
the estimated degree between S and a vertex v ∈ Tj is the
same in all the sets T1, T2, . . . , Tj . Hence, once |EG(S, v)|
is estimated, no new sample is needed until S changes. In
other words, the star-like example we pointed to above can
be handled with a single sample. Nevertheless, what does
happen when S changes? In that case, the algorithm might
need a new round to obtain a fresh sample. Fortunately, the
size of S reduces by at least a factor of (1 + ε), increasing
the gap between the memory per machine and |S| + |T |,
which our algorithm utilizes in a way similar to described
in Section 5.1. We formalize these ideas in the proof of
Theorem 5.2 given in Appendix F.

Theorem 5.2. There exists an algorithm that runs in
O(

√
log1+ϵ n) rounds with probability 1− log1+ϵ n

n4 .

Note that our approach uses samples of size O((|S|+ |T |) ·
poly(log(n)/ε)) in order to estimate the degrees between
S and T whp and enable multiple iterations of peeling
in a single round on a single machine. Therefore, when
|S| + |T | ≫ nδ , it is difficult to generalize our algorithm
to the sub-linear memory regime since there is not enough
memory per machine to store the entire sample needed to
accurately estimate degrees of the vertices in S and T . Ad-
ditionally, if we rely on recalculating the degrees of vertices
directly using O(1) rounds, our optimization can no longer
be done until the graph is able to fit on a single machine.
This could potentially require Θ(log n) peeling steps, each
of which requires O(1) rounds.

6. Experiments
We now demonstrate the practical performance of Algo-
rithm 4, comparing it to Algorithm 3 from (Bahmani et al.,
2012) in the streaming setting. Additionally, we implement

our MPC algorithm in the near-linear memory regime, de-
scribed in Theorem 5.2, analyzing the amount of phases it
takes in practice.

6.1. Data

We use 4 data sets from the Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014): Slashdot,
Berkeley-Stanford Web Graph, LiveJournal, and Twitter.
In addition, we generate two synthetic graphs, PrefAttach
1 and 2, using the preferential attachment scheme (Simon,
1955). This scheme is popular in the scientific analy-
sis of graphs as it can generate the power-law distribu-
tion (Barabási & Albert, 1999; Jacob & Mörters, 2015;
Wan et al., 2017) and, as such, it models the vertex-degree
distribution of many important graphs, including World
Wide Web (Kunegis et al., 2013) and Wikipedia (Capocci
et al., 2006; Gandica et al., 2015).

Table 1. Datasets we use in the evaluation.
Graph Nodes Edges

Slashdot 82,168 948,464
Berk-Stan Web 685,230 7,600,595

LiveJournal 4,847,571 68,993,773
PrefAttach 1 100,000 100,051,302
PrefAttach 2 1,000,000 999,999,375

Twitter 41,652,230 1,468,364,884

6.2. Experimental Setup

As a baseline, we use (Bahmani et al., 2012). Both algo-
rithms, (Bahmani et al., 2012) and ours, are implemented
in C++ on a M1 machine running macOS Monterey 12.5.1
with 4 cores, 8 GB of RAM, 256 KB of L2 Cache, and 2.5
MB of L3 Cache (per core). We run the algorithms for val-
ues of c ranging from 1/n to n with constant δ = 2 and
ϵ = 0.2. Then, we study the algorithms in terms of how
close their approximation of the densest subgraph is and
their runtime. Plots of density and runtime are created with
respect to the constant c.

An important note about Algorithm 4 is that it cannot cal-
culate ρ(S, T) for each iteration without seeing the whole
graph. However, when implementing the algorithm, we ap-
proximate that density through our sampled graph by multi-
plying the density in the sampled graph, ρH(S, T), by 1/p.

Algorithm 4 creates samples of size nξ = f ·n logn
ϵ2 . In the

theoretical analysis, we set f = 60. In our evaluations,
we also investigate the effect of f on the performance of
our approach, expecting that f significantly smaller than
60 would also result in accurate and fast execution of Algo-
rithm 4. To that end, in our implementation of Algorithm 4,
we consider f ranging from 1/1200 to 1/30.

Although our guarantees for Algorithm 4 require random-
ized streams, to perform a faithful comparison to (Bahmani

7

Finding Directed Dense Subgraphs in Large Graphs

10 6 10 4 10 2 100 102 104 106

c

0

50

100

150

200

250

300

de
ns

ity
LiveJournal Densities

Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 6 10 4 10 2 100 102 104 106

c

50

100

150

200

250

300

de
ns

ity

LiveJournal (Randomized) Densities
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 6 10 4 10 2 100 102 104 106

c

4

6

8

10

12

14

16

18

tim
e

(s
ec

on
ds

)

LiveJournal Times
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

Figure 2. Density and running-time as a function of c for LiveJournal with f = 1/150, 1/300, 1/450.

10 7 10 5 10 3 10 1 101 103 105 107

c

0

1000

2000

3000

4000

de
ns

ity

Twitter Densities
Bahmani
Ours - 1/100
Ours - 1/200

10 7 10 5 10 3 10 1 101 103 105 107

c

5

10

15

20

25

tim
e

(m
in

ut
es

)

Twitter Times

Bahmani
Ours - 1/100
Ours - 1/200

Figure 3. Density and running-time as a function of c for Twitter with f = 1/100, 1/200.

10 5 10 3 10 1 101 103 105

c

2

4

6

8

10

12

ph
as

es

Berkeley Stanford Web Phases
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 6 10 4 10 2 100 102 104 106

c

2

4

6

8

10

12

14

16

ph
as

es

LiveJournal Phases

Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 7 10 5 10 3 10 1 101 103 105 107

c

2

4

6

8

10

12

14

ph
as

es

Twitter Phases

Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

Figure 4. Number of phases as a function of c for various data sets with f = 1/150, 1/300, 1/450.

et al., 2012), we also execute Algorithm 4 on arbitrar-
ily ordered streams. In many cases, these arbitrarily or-
dered streams are edges sorted by their endpoints, i.e., these
streams are far from being randomized.

6.3. Streaming Results

Our algorithm finds subgraphs with densities very close to
those output by our baseline (Bahmani et al., 2012). For
each graph, the densities with the best corresponding f are
within 3% of each other. Interestingly, this is the case even
for relatively small values of f , such as f = 1/300, sug-
gesting that relatively sparse samples can be leveraged in
extracting dense subgraphs. Moreover, our algorithm at-

tains higher accuracy for large graphs than (Bahmani et al.,
2012). For example, our algorithm’s density is better by
5.5% for LiveJournal (Figure 2) and by 1.5% for Twitter
(Figure 3).

In addition to the maximum density of our algorithm being
similar to (Bahmani et al., 2012), the shapes of the density
plots with respect to c are incredibly similar. This further
solidifies that, in terms of accuracy, Algorithm 4 matches
(Bahmani et al., 2012) even on non-randomized streams.

In the cases of denser graphs, our algorithm is around 2
times faster than the baseline. For LiveJournal (Figure 2)
and Twitter (Figure 3), they both reach around 2.5 times

8

Finding Directed Dense Subgraphs in Large Graphs

faster. There is a balance between using smaller constants
for our sample size, leading to the algorithm becoming
faster, and the accuracy of the algorithm’s density approxi-
mation.

Note that we can see improvements in the density attained
when the stream becomes randomized. For example, when
the stream is randomized, all the maximum densities at-
tained by our algorithm for LiveJournal (Figure 2) become
better than the maximum density attained by (Bahmani
et al., 2012) and the plots match significantly more closely.
However, as mentioned before, even with non-randomized
streams our algorithm still performs well. In Appendix G,
we provide results of additional evaluations, including re-
sults for ϵ = 0.1 which are similar to those described here.

6.4. MPC Results

We also test the number of phases our MPC algorithm,
which simulates Algorithm 4, takes in the near-linear mem-
ory regime. From Theorem 5.2, we already have a bound of
O(

√
log1+ϵ n) phases. Additionally, we make a compari-

son to (Bahmani et al., 2012) and their O(log1+ϵ n) parallel
algorithm, defining a phase of their algorithm to be calcu-
lating the degrees of all vertices and peeling vertices based
on these degrees. We let each machine have enough mem-
ory to hold 2

1−ϵ · nξ = 2
1−ϵ ·

f ·n logn
ϵ2 edges in order for

there to be enough edges per machine for Algorithm 4 to
run for at least one iteration during each phase.

As we can see from Figure 4, the amount of phases our
MPC algorithm takes is at least half of that of (Bahmani
et al., 2012). Also, there doesn’t seem to be a correlation
between the number of phases and the number of vertices
of the graph n, showing that in practice these algorithms
perform much better than their theoretical upper bounds.
Appendix G contains plots of phases for other data sets.

7. Conclusion and Future Work
We studied the approximate directed densest subgraph
problem. We developed sampling strategies that enabled us
to design efficient algorithms for finding dense subgraphs
in semi-streaming and MPC. Moreover, our approach ap-
pears to be highly practical – we showed empirically that
these sampling strategies yield faster algorithms even on
non-randomized streams.

Our work was largely inspired by a discrepancy between
state-of-the-art efficiency of finding undirected and di-
rected dense subgraphs. Even though we made significant
progress in bridging this gap, many interesting questions
remain. We mention three that we find the most exciting.
(1) Is it possible to find a Θ(1)-approximate directed dens-
est subgraph in a non-randomized semi-streaming setting
in o(log n) passes? As an intermediate question, study-

ing the trade-off between the number of passes and the
memory requirement would be interesting, e.g., interpolat-
ing between 1 pass and n3/2 memory, and O(log n) passes
and O(n poly log n) memory. (2) For the same problem,
does a o(log n) MPC round algorithm exist in the sublin-
ear memory regime? (3) Our MPC algorithm for the near-
linear memory regime outputs a (2 + ε)-approximation. Is
it possible to achieve a (1+ε)-approximation with the same
round complexity?

Acknowledgements
We are grateful to Rishabh Bhaskaran for many insight-
ful discussions on the empirical portion of our work. We
are also grateful to anonymous reviewers for their valuable
feedback. S. Mitrović was supported by the Google Re-
search Scholar and NSF Faculty Early Career Development
Program #2340048.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Bahmani, B., Kumar, R., and Vassilvitskii, S. Densest sub-

graph in streaming and mapreduce. Proceedings of the
VLDB Endowment, 5(5), 2012.

Bahmani, B., Goel, A., and Munagala, K. Efficient primal-
dual graph algorithms for mapreduce. In International
Workshop on Algorithms and Models for the Web-Graph,
pp. 59–78. Springer, 2014.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Beame, P., Koutris, P., and Suciu, D. Communication
steps for parallel query processing. Journal of the ACM
(JACM), 64(6):1–58, 2017.

Bhattacharjee, P. and Mitra, P. A survey of density based
clustering algorithms. Frontiers of Computer Science,
15:1–27, 2021.

Bhattacharya, S., Henzinger, M., Nanongkai, D., and
Tsourakakis, C. Space-and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic
streams. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 173–182,
2015.

Buehrer, G. and Chellapilla, K. A scalable pattern mining
approach to web graph compression with communities.

9

Finding Directed Dense Subgraphs in Large Graphs

In Proceedings of the 2008 international conference on
web search and data mining, pp. 95–106, 2008.

Capocci, A., Servedio, V. D., Colaiori, F., Buriol, L. S.,
Donato, D., Leonardi, S., and Caldarelli, G. Preferential
attachment in the growth of social networks: The inter-
net encyclopedia wikipedia. Physical review E, 74(3):
036116, 2006.

Charikar, M. Greedy approximation algorithms for finding
dense components in a graph. In Approximation Algo-
rithms for Combinatorial Optimization: Third Interna-
tional Workshop, APPROX 2000 Saarbrücken, Germany,
September 5–8, 2000 Proceedings, pp. 84–95. Springer,
2003.

Chen, J. and Saad, Y. Dense subgraph extraction with ap-
plication to community detection. IEEE Transactions
on knowledge and data engineering, 24(7):1216–1230,
2010.

Chen, T. and Tsourakakis, C. Antibenford subgraphs: Un-
supervised anomaly detection in financial networks. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2762–2770,
2022.

Chen, T., Bonchi, F., Garcia-Soriano, D., Miyauchi, A., and
Tsourakakis, C. E. Dense and well-connected subgraph
detection in dual networks. In Proceedings of the 2022
SIAM International Conference on Data Mining (SDM),
pp. 361–369. SIAM, 2022.

Epasto, A., Lattanzi, S., and Sozio, M. Efficient densest
subgraph computation in evolving graphs. In Proceed-
ings of the 24th international conference on world wide
web, pp. 300–310, 2015.

Esfandiari, H., Hajiaghayi, M., and Woodruff, D. P. Ap-
plications of uniform sampling: Densest subgraph and
beyond. arXiv preprint arXiv:1506.04505, 2015.

Fang, Y., Luo, W., and Ma, C. Densest subgraph discov-
ery on large graphs: Applications, challenges, and tech-
niques. Proceedings of the VLDB Endowment, 15(12):
3766–3769, 2022.

Gandica, Y., Carvalho, J., and Dos Aidos, F. S. Wikipedia
editing dynamics. Physical Review E, 91(1):012824,
2015.

Ghaffari, M., Lattanzi, S., and Mitrović, S. Improved
parallel algorithms for density-based network clustering.
In International Conference on Machine Learning, pp.
2201–2210. PMLR, 2019.

Goldberg, A. V. Finding a maximum density subgraph.
1984.

Goodrich, M. T., Sitchinava, N., and Zhang, Q. Sorting,
searching, and simulation in the mapreduce framework.
In International Symposium on Algorithms and Compu-
tation, pp. 374–383. Springer, 2011.

Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Har-
lalka, J., Seay, R., Padmanabhan, K., and Samatova, N.
Community detection in large-scale networks: a survey
and empirical evaluation. Wiley Interdisciplinary Re-
views: Computational Statistics, 6(6):426–439, 2014.

Jacob, E. and Mörters, P. Spatial preferential attachment
networks: Power laws and clustering coefficients. 2015.

Karloff, H., Suri, S., and Vassilvitskii, S. A model of com-
putation for mapreduce. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algo-
rithms, pp. 938–948. SIAM, 2010.

Kriegel, H.-P. and Pfeifle, M. Density-based clustering
of uncertain data. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge dis-
covery in data mining, pp. 672–677, 2005.

Kriegel, H.-P., Kröger, P., Sander, J., and Zimek, A.
Density-based clustering. Wiley interdisciplinary re-
views: data mining and knowledge discovery, 1(3):231–
240, 2011.

Kunegis, J., Blattner, M., and Moser, C. Preferential at-
tachment in online networks: Measurement and expla-
nations. In Proceedings of the 5th annual ACM web sci-
ence conference, pp. 205–214, 2013.

Leon-Suematsu, Y. I., Inui, K., Kurohashi, S., and Ki-
dawara, Y. Web spam detection by exploring densely
connected subgraphs. In 2011 IEEE/WIC/ACM Interna-
tional Conferences on Web Intelligence and Intelligent
Agent Technology, volume 1, pp. 124–129. IEEE, 2011.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford
large network dataset collection. http://snap.
stanford.edu/data, June 2014.

McGregor, A., Tench, D., Vorotnikova, S., and Vu, H. T.
Densest subgraph in dynamic graph streams. In Math-
ematical Foundations of Computer Science 2015: 40th
International Symposium, MFCS 2015, Milan, Italy, Au-
gust 24-28, 2015, Proceedings, Part II, pp. 472–482.
Springer, 2015.

Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C.,
and Xu, S. C. Scalable large near-clique detection in
large-scale networks via sampling. In Proceedings of the
21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 815–824, 2015.

10

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Finding Directed Dense Subgraphs in Large Graphs

Ren, Y., Zhu, H., Zhang, J., Dai, P., and Bo, L. Ensemfdet:
An ensemble approach to fraud detection based on bi-
partite graph. In 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), pp. 2039–2044.
IEEE, 2021.

Sawlani, S. and Wang, J. Near-optimal fully dynamic dens-
est subgraph. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pp. 181–
193, 2020.

Simon, H. A. On a class of skew distribution functions.
Biometrika, 42(3/4):425–440, 1955.

Su, H.-H. and Vu, H. T. Distributed dense subgraph de-
tection and low outdegree orientation. arXiv preprint
arXiv:1907.12443, 2019.

Wan, P., Wang, T., Davis, R. A., and Resnick, S. I. Fitting
the linear preferential attachment model. 2017.

Wu, J. M.-T., Lin, C. W., Fournier-Viger, P., Djenouri, Y.,
Chen, C.-H., and Li, Z. The density-based clustering
method for privacy-preserving data mining. 2019.

Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J.,
Davulcu, H., and Tong, H. Hidden: hierarchical dense
subgraph detection with application to financial fraud
detection. In Proceedings of the 2017 SIAM Interna-
tional Conference on Data Mining, pp. 570–578. SIAM,
2017.

Zhang, X., Li, Z., Zhu, S., and Liang, W. Detecting spam
and promoting campaigns in twitter. ACM Transactions
on the Web (TWEB), 10(1):1–28, 2016.

11

Finding Directed Dense Subgraphs in Large Graphs

A. Proof of Lemma 4.1
Proof. Consider a vertex v ∈ V . Let X be the random
variable equal to d−H(v). Observe that E [X] = pd−G(v).
Then, if d−G(v) ≥ ξ/p, we have

Pr(E [X] ≥ (1 + ϵ)X)

≤ Pr
(
E [X]−X ≥ ϵ

2
E [X]

)
≤ 3 exp

(
−ϵ2E [X] /12

)
(2)

= 3 exp
(
−ϵ2pd−G(v)/12

)
≤ 3 exp(−5 log(n))

=
3

n5
≤ 1

n4

assuming n ≥ 3, where we used the Chernoff bound, The-
orem 2.1 (A), to derive (2).

Now, if d−G(v) < ξ/p, we have

Pr (X ≥ 2ξ)

≤ Pr (X − E [X] ≥ ξ)

≤ 3

2
exp(−ξ2/(3E [X])) (3)

≤ 3

2
exp(−ξ/3)

≤ 1

n4

where (3) follows by the Chernoff bound.

Therefore, using the union bound, the claim holds with
probability 1 − 1

n3 . The same proof applies to out-
degrees.

B. Proof of Theorem 4.3
Proof. Consider a pass with |S|/|T | ≥ c. Hence, ver-
tices are removed from S in that pass. Let p = nξ/((1 −
ϵ)|EG(S, T)|); the same probability is used on Algorithm 2
of Algorithm 2. Then, for all vertices i ∈ A(S), where
A(S) is defined in VSETS-UPDATE, we have

√
c|EG(i, T)| ≤

√
c · (1 + ϵ)2|EH(S, T)|

p|S|
(4)

≤
√
c · (1 + ϵ)

3 |EG(S, T)|
|S|

(5)

≤
√
c · (1 + ϵ)

3 |EG(S, T)|√
c|S||T |

= (1 + ϵ)
3 |EG(S, T)|√

|S||T |
= (1 + ϵ)

3
ρ(S, T). (6)

For (4), we either have that |EG(i, T)| ≥ ξ/p or
|EG(i, T)| < ξ/p. If |EG(i, T)| ≥ ξ/p, we use Lemma 4.1

to get

√
c|EG(i, T)| ≤

√
c · (1 + ϵ)|EH(i, T)|

p

≤
√
c · (1 + ϵ)2|EH(S, T)|

p|S|
.

On the other hand, if |EG(i, T)| < ξ/p, (4) follows di-
rectly. Additionally, since E [|EH(S, T)|] = p|EG(S, T)|,
a direct application of Chernoff bound, Theorem 2.1 (B),
yields (5).

Similarly, for a pass with |S|/|T | < c, we have that for all
vertices j ∈ B(T),

1√
c
|EG(S, j)| ≤ (1 + ϵ)

3
ρ(S, T). (7)

We define dremout (i)
def
= |EG(i, T)| and dremin (j)

def
= |EG(S, j)|

where T is the respective set during the pass i is removed
from S and, similarly, S is the respective set during the
pass j is removed from T . Let d∗out = maxi∈V {dremout (i)}
and d∗in = maxj∈V {dremin (j)}. Then, for S̃, T̃ ⊆ V with
|S̃|/|T̃ | = c that maximizes ρ(S̃, T̃) = ρ∗(G), we have
that

ρ∗(G) =
|E(S̃, T̃)|√
|S̃||T̃ |

≤ |S̃| · d
∗
out + |T̃ | · d∗in√
|S̃||T̃ |

=
√
c · d∗out +

1√
c
· d∗in ≤ 2 (1 + ϵ)

3
ρ(S∗, T ∗)

where the last inequality comes from using (6) and (7).
(The last chain of inequalities is also shown in (Charikar,
2003).)

Therefore, the algorithm produces a 2 (1 + ϵ)
3-

approximation. Note that we use Lemma 4.1 on
each vertex for every pass. Therefore, by the
union bound, we have a success probability of
1− n · log1+ϵ n · 1

n3 = 1− log1+ϵ n

n2 .

C. Proof of Lemma 4.6
Proof. Note that we can apply Lemma 4.4 since we per-
form uniform random sampling with a fixed number of
edges. Therefore, when referencing Lemma 4.1 in this
proof, it will be using Lemma 4.4 instead of the Chernoff
bound in the context of uniform random sampling with a
fixed number of edges.

Consider a vertex v ∈ V . Note that if d−H(v) ≥ 2ξ, then
d−G(v) ≥ ξ/p with probability 1 − 1

n4 using the Chernoff
bound. Therefore, with Lemma 4.1, we have that |d−H(v)−
pd−G(v)| ≤ ϵd−H(v).

If d−H(v) < 2ξ, we split our analysis into two cases. If

12

Finding Directed Dense Subgraphs in Large Graphs

d−G(v) ≥ ξ/p, then

d−G(v) ≤
(1 + ϵ)d−H(v)

p
<

2(1 + ϵ)ξ

p

using Lemma 4.1. Otherwise, if d−G(v) < ξ/p, then
d−G(v) <

2(1+ϵ)ξ
p holds as well. Therefore, the statements

in Lemma 4.6 hold with probability 1− 1
n3 using the union

bound. The same proof applies to out-degrees.

D. Proof of Lemma 4.7
Proof. First, note that our algorithm takes O(log1+ϵ n) it-
erations.

For the graph H , we either have p ≤ 1 or p > 1. If
p ≤ 1, we create a sample of edges with probability nξ

(1−ϵ)s
using SET-SAMPLE. Note that s is an approximation of
|EG(S, T)| where, with probability 1− 1

n4 , it holds

s ≤ |EG(S, T)| ≤
1 + ϵ

1− ϵ
· s (8)

using the Chernoff bound, Theorem 2.1 (A). So, for
each of the O(log1+ϵ n) iterations, graph H will have

O
(

(1+ϵ)2n logn
ϵ2(1−ϵ)2

)
= O

(
n logn

ϵ2

)
edges with probability

1 − 1
n4 and ϵ < 0.9. On the other hand, if p > 1, we

must have that

(1− ϵ)s < nξ =⇒ |EG(S, T)| <
(1 + ϵ)nξ

(1− ϵ)2

with probability 1− 1
n4 using (8). Then, in this case, graph

H will also have O
(

n logn
ϵ2

)
edges.

Note that E′ only increases by at most nξ edges each iter-
ation in addition to edges from graph H . Therefore, using
the union bound, the number of edges in E′ at any point
in time is at most O

(
n logn·log1+ϵ n

ϵ2

)
= O

(
n log2 n

ϵ3

)
with

probability 1− log1+ϵ n

n4 .

Now, EA is either a uniform random sample of nξ edges
from the remaining edges in the stream, since the stream
is randomized, or is the rest of the stream. If it is the
rest of the stream, then our algorithm reduces to finding
the densest subgraph in E′ ∪ EA(S, T). This uses at most
O
(

n log2 n
ϵ3

)
memory. However, if EA is not the rest of the

stream, then either |EA(S, T)| < 2ξ or |EA(S, T)| ≥ 2ξ.

If |EA(S, T)| < 2ξ, then we add the edges from EA(S, T)
and Estream(S, T) to E′ and find the densest subgraph in
E′. Using Lemma 4.6, at most 2(1+ϵ)ξ

p ≤ 2(1 + ϵ)n edges,

where p = nξ
|Estream(S,T)∪EA(S,T)| , are added to E′ from

EA and the stream. This uses O
(

n log2 n
ϵ3

)
memory.

If |EA(S, T)| ≥ 2ξ, then we have that the number of
edges from EG(S, T) that were in the stream is at least
s(1−ϵ)|EA(S,T)|

|EA| using Lemma 4.6, allowing us to calculate
s′ for creating graph H .

Therefore, the total amount of memory used by the algo-
rithm is O

(
n log2 n

ϵ3

)
.

E. Proof of Theorem 5.1
Proof. We first describe the algorithm and then an analysis
of its round complexity.

Algorithm description. Let AMPC be our MPC algo-
rithm.

• AMPC maintains the set of relevant edges, denoted by
Erel. Initially, Erel = EG.

• This algorithm simulates an instance of Algorithm 4,
and only that instance. Let the instance be simulated
on a machine M; the simulation proceeds in phases
as follows:

– Let (Si+1, Ti+1) be the vertex sets of Algo-
rithm 4 at the end of phase i of AMPC.

– At the beginning of phase i + 1, AMPC updates
Erel ← Erel ∩ EG(Si+1, Ti+1).

– Then, AMPC places on M a set Xi+1 of n1+δ

edges chosen uniformly at random from Erel and
updates Erel ← Erel \Xi+1.

– The rest of phase i+1 consists of continuing the
Algorithm 4 instance with the set Xi+1.

• AMPC stops when Erel fits entirely onM.

All the steps of AMPC, except updating Erel and sampling
Xi+1, are done on a single machine. Removing Xi from
Erel can be done by first sorting Erel and Xi together and
then removing that edge that has a duplicate in the sorted
list. Sorting can be done in O(1) rounds (Goodrich et al.,
2011). Performing Erel ∩ EG(Si+1, Ti+1) can be done
again by sorting Erel, Si+1 and Ti+1 altogether. Those
edges incident to Si+1 or Ti+1 are the only ones kept in
Erel. To sample Xi+1, first, each edge in Erel samples a
random integer in the range [1, n8]. Whp, all the integers
sampled by the edges are distinct. Second, all the edges are
sorted with respect to the sampled integers; effectively, this
creates a random permutation of Erel. Third, the first n1+δ

edges in that sorted list are Xi+1.

Algorithm analysis. Consider a phase i of AMPC and let
(Si, Ti) be our vertex sets before the pruning starts. Now

13

Finding Directed Dense Subgraphs in Large Graphs

consider some pair of vertex sets (S′, T ′) while running
Algorithm 4 during phase i. We define Erem as the union
of Erel and the remaining edges in Xi that the algorithm has
not inspected so far. There are |EG(S

′, T ′)| − |E′| edges
in EG(S

′, T ′) remaining in Erem.

Algorithm 4 needs at most 2nξ
1−ϵ edges in EG(S

′, T ′) from
the stream in order to start peeling. Let k be the number
of edges taken from the stream to perform one iteration
of peeling. Therefore, using the Chernoff bound, Theo-
rem 2.1 (A), we see that

k ≤ 2nξ|Erem|
(1− ϵ)2(|EG(S′, T ′)| − |E′|)

.

with probability 1− 1
n4 , assuming that |EG(S

′, T ′)|−|E′| is
Ω
(
n log2 n/ϵ2

)
. If |EG(S

′, T ′)|−|E′| is O
(
n log2 n/ϵ2

)
,

then all the edges in Erel for the next phase fit onM.

Now, if k ≥ n1+δ

2 log1+ϵ n
, then we have that

n1+δ

2 log1+ϵ n
≤ 2nξ|Erem|

(1− ϵ)2(|EG(S′, T ′)| − |E′|)

=⇒ |EG(S
′, T ′)| ≤

4ξ log1+ϵ n

(1− ϵ)2nδ
· |Erem|+ |E′|.

Recall from Lemma 4.7 that E′ contains at most
O
(

n′ log2 n
ϵ3

)
edges. So, if |Erem| ≤ |E′|, then in

the next phase Erel fits entirely on M. On the other
hand, if |Erem| > |E′|, then whp EG(S

′, T ′) has
O
(

log2 n
ϵ3nδ · |Erem|

)
edges for ϵ < 0.9. Therefore, since

Erem is a subset of EG(Si, Ti), this phase causes the num-
ber of edges between vertex sets S and T to reduce by a
factor of Ω(nδ). Then,AMPC takes O(1/δ) rounds if every
phase has at least one pair of vertex sets with k ≥ n1+δ

2 log1+ϵ n
.

Consider now that k < n1+δ

2 log1+ϵ n
for all pairs of vertex

sets in a phase. Observe that Algorithm 4 takes at most
2 log1+ϵ n iterations, meaning that the entire algorithm will
be finished this phase entirely onM.

Combining these two cases with respect to k, AMPC takes
O(1/δ) rounds.

F. Proof of Theorem 5.2
Proof. LetAMPC be the algorithm described in the proof of
Theorem 5.1. We extendAMPC this algorithm to obtain the
desired round complexity. In this proof, we only describe
the extension.

Algorithm description. In a phase i, we calculate
EG(u, Ti) and EG(Si, v) for all u ∈ Si, v ∈ Ti. Then,
if |Si|/|Ti| ≥ c, we peel from set T using VSETS-UPDATE

until the resulting sets (S′
i, T

′
i) satisfy |S′

i|/|T ′
i | < c. Sim-

ilarly, if |Si|/|Ti| < c, we peel from set S using VSETS-
UPDATE until the resulting sets (S′

i, T
′
i) satisfy |S′

i|/|T ′
i | ≥

c. Finally, we do what AMPC does every phase except that
the edge samples now have size (|S|+ |T |) · ξ.

Algorithm analysis. Consider a phase i of our algorithm
and let (Si, Ti) be our vertex sets before the peeling starts.
Without loss of generality, assume that |Si|/|Ti| ≥ c. Note
that calculating the degrees of vertices and peeling from
set T can all be done in a constant number of rounds. Af-
terwards, we have that the resulting sets (S′

i, T
′
i) satisfy

|S′
i|/|T ′

i | < c. This guarantees that both vertex sets are
peeled from.

Now, let n′ = |S′
i| + |T ′

i |. We consider some pair of ver-
tex sets (S′, T ′) while running Algorithm 4 during phase
i. With samples of n′ξ edges, we follow a similar proof
of Theorem 5.1 to see that if k ≥ n poly(log(n)/ε)

2 log1+ϵ n
, either

Erel fits entirely onM in the next phase or EG(S
′, T ′) has

O
(

n′ log2 n
ϵ3n poly(log(n)/ε) · |Erem|

)
edges. With the latter, the

number of edges between vertex sets S and T reduces by a
factor of x = Ω

(
ϵ3n poly logn

n′ log2 n

)
. Since both vertex sets are

peeled from, n′ reduces by at least a factor of 1 + ϵ every
phase. Then, the algorithm takes O(

√
log1+ϵ n) rounds

if every phase has at least one pair of vertex sets with
k ≥ n poly(log(n)/ε)

2 log1+ϵ n
because x reduces by at least a factor

of 1 + ϵ every phase as well due to n′.

With k < n poly(log(n)/ε)
2 log1+ϵ n

for all pair of vertex sets in a
phase, the entire algorithm can be finished in this phase
entirely on M. So, the algorithm takes O(

√
log1+ϵ n)

rounds.

14

Finding Directed Dense Subgraphs in Large Graphs

G. Additional empirical evaluation
In this section, we provide empirical evaluation in addition to those given in the main paper. We refer a reader to Section 6
for details on the baselines, datasets, and computational setup.

10 4 10 2 100 102 104

c

10

20

30

40

50

60

70

80

de
ns

ity

Slashdot Densities
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 4 10 2 100 102 104

c

30

40

50

60

70

80

de
ns

ity

Slashdot (Randomized) Densities
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 4 10 2 100 102 104

c

0.04

0.06

0.08

0.10

0.12

0.14

0.16

tim
e

(s
ec

on
ds

)

Slashdot Times
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 5 10 3 10 1 101 103 105

c

0

100

200

300

400

500

600

700

de
ns

ity

Berkeley-Stanford Web Densities
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 5 10 3 10 1 101 103 105

c

0

100

200

300

400

500

600

700

de
ns

ity

Berkeley-Stanford Web (Randomized) Densities
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 5 10 3 10 1 101 103 105

c

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

tim
e

(s
ec

on
ds

)

Berkeley-Stanford Web Times
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 4 10 2 100 102 104

c

0

1

2

3

4

de
ns

ity

1e7 PrefAttach 1 Densities
Bahmani
Ours - 1/30
Ours - 1/300

10 4 10 2 100 102 104

c

0

1

2

3

4

de
ns

ity

1e7 PrefAttach 1 (Randomized) Densities
Bahmani
Ours - 1/30
Ours - 1/300

10 4 10 2 100 102 104

c

2

4

6

8

10

12

tim
e

(s
ec

on
ds

)
PrefAttach 1 Times

Bahmani
Ours - 1/30
Ours - 1/300

10 5 10 3 10 1 101 103 105

c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity

1e8 PrefAttach 2 Densities
Bahmani
Ours - 1/30
Ours - 1/300

10 5 10 3 10 1 101 103 105

c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity

1e8 PrefAttach 2 (Randomized) Densities
Bahmani
Ours - 1/30
Ours - 1/300

10 5 10 3 10 1 101 103 105

c

50

100

150

200

tim
e

(s
ec

on
ds

)

PrefAttach 2 Times
Bahmani
Ours - 1/30
Ours - 1/300

Figure 5. Density and running-time as a function of c for remaining data sets, with and without randomization

15

Finding Directed Dense Subgraphs in Large Graphs

10 4 10 2 100 102 104

c

10

20

30

40

50

60

70

80

de
ns

ity

Slashdot Densities
Bahmani
Ours - 1/600
Ours - 1/1200

10 5 10 3 10 1 101 103 105

c

0

100

200

300

400

500

600

700

de
ns

ity

Berkeley-Stanford Web Densities
Bahmani
Ours - 1/600
Ours - 1/1200

10 6 10 4 10 2 100 102 104 106

c

0

50

100

150

200

250

300

de
ns

ity

LiveJournal Densities
Bahmani
Ours - 1/600
Ours - 1/1200

10 4 10 2 100 102 104

c

0.06

0.08

0.10

0.12

0.14

0.16

tim
e

(s
ec

on
ds

)

Slashdot Times
Bahmani
Ours - 1/600
Ours - 1/1200

10 5 10 3 10 1 101 103 105

c

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

tim
e

(s
ec

on
ds

)

Berkeley-Stanford Web Times
Bahmani
Ours - 1/600
Ours - 1/1200

10 6 10 4 10 2 100 102 104 106

c

6

8

10

12

14

16

18

tim
e

(s
ec

on
ds

)

LiveJournal Times
Bahmani
Ours - 1/600
Ours - 1/1200

Figure 6. Density and running-time as a function of c for some data sets with ϵ = 0.1 and f = 1/600, 1/1200

10 4 10 2 100 102 104

c

2

4

6

8

10

12

ph
as

es

Slashdot Phases

Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 4 10 2 100 102 104

c

1

2

3

4

5

6

7

ph
as

es

PrefAttach 1 Phases
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

10 5 10 3 10 1 101 103 105

c

1

2

3

4

5

6

7

8

9

ph
as

es

PrefAttach 2 Phases
Bahmani
Ours - 1/150
Ours - 1/300
Ours - 1/450

Figure 7. Number of phases as a function of c for remaining data sets with f = 1/150, 1/300, 1/450.

16

