On Union-Closedness of Language Generation

Steve Hanneke Anay Mehrotra
Purdue University Yale University
steve.hanneke@gmail.com anaymehrotral@gmail.com
Amin Karbasi Grigoris Velegkas*
Yale University Google Research
amin.karbasi@gmail.com gvelegkas@google.com
Abstract

We investigate language generation in the limit — a model by [Kleinberg and Mul-
lainathan| [[2024] NeurIPS] and extended by |Li, Raman, and Tewari| [2025]. While
Kleinberg and Mullainathan proved generation is possible for all countable col-
lections, [Li et al) [2025] defined a hierarchy of generation notions (uniform,
non-uniform, and generatable) and explored their feasibility for uncountable col-
lections. Our first set of results resolve two open questions of [Li et al.,[2025]] by
proving finite unions of generatable or non-uniformly generatable classes need
not be generatable. These follow from a stronger result: there is a non-uniformly
generatable class and a uniformly generatable class whose union is non-generatable.
This adds to the aspects along which language generation in the limit is different
from traditional tasks in statistical learning theory like classification, which are
closed under finite unions. In particular, it implies that given two generators for
different collections, one cannot combine them to obtain a single “more powerful”
generator, prohibiting this notion of boosting. Our construction also addresses a
third of [Li et al.l 2025]]’s open questions on whether there are uncountable classes
that are non-uniformly generatable and do not satisfy the eventually unbounded
closure (EUC) condition introduced by Li, Raman, and Tewari. Our approach
utilizes carefully constructed classes along with a novel diagonalization argument
that could be of independent interest in the growing area of language generation.

1 Introduction

The algorithmic problem at the core of language generation — in both humans and large language
models (LLMs) — is deceptively simple: given a sequence of examples from some target language,
generate new and previously unseen strings that also belong to this language. Despite the remarkable
capabilities of humans and, perhaps, more so of LLMs, to generate coherent text, a thorough
understanding of the theoretical underpinnings of language generation has remained elusive.

Language Generation in the Limit. |Kleinberg and Mullainathan| [2024] recently formalized this
problem in a model resembling online learning: First, an adversary fixes a target language K € £
and an enumeration of K E] At each round n > 1, the adversary presents the n-th element x,, of
the enumeration to the generator. The generator, given the strings S,, = {z1,...,z,} seen so far,
outputs a new string w,, ¢ S,, — its guess for an unseen string in K. The generator wins this game
if it eventually learns “to generate from K.” Formally, a generator G is said to generate from £ in

*Part of the work was done while the author was a PhD student at Yale University.
2Formally, en enumeration of K is an infinite sequence of elements x1, 2, . . . (possibly including duplicates)
such that each ; € K, and for every element « € K there is some position n,, in the sequence where x appears.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

the limit if for all K € £ and any enumeration of K, there exists a finite time n* such that for any
subsequent round n > n*, the generated string wy, is an unseen element of K, i.e., w, € K\ S,,.

This model is closely connected to the seminal work of |Gold|[[1967]] — which studied the problem with
the harder goal of identifying the target language K from a collection of languages £ — and sparked a
long line of work both in linguistics and computer science, culminating in a complete characterization
by |Angluin| [1979] |1980]. This characterization revealed a profound paradox: while language
generation is readily accomplished by humans (and now, LLMs), language identification in the
Gold-Angluin model proves intractable for virtually all non-trivial collections £ — even collections of
regular languages, which are considerably simpler than human languages. This intractability persists
despite Gold’s model imposing no constraints on the computational power of the learner.

Kleinberg and Mullainathan| [2024]] offer a striking resolution to this paradox: they demonstrated that
a subtle shift in the problem formulation — from identification to generation — renders the problem
tractable. Their main result is that language generation in the limit is achievable for any countable
collection of languages. This remarkable finding sparked significant interest within the learning
theory community, spawning a growing line of works (e.g., |Li et al.|[2025]], Kalavasis et al.|[2025]],
Charikar and Pabbaraju|[2025]], Raman and Raman| [2025]); see Section for a detailed discussion.

Most relevant to our work is the work of L1 et al.|[2025]] — who take a learning theory perspective
on language generation in the limit (henceforth, simply language generation) — allowing £ to be an
uncountable collection — and characterizing which collections £ are amenable to different forms
of generation. In particular, they define a hierarchy of generation notions which differ in whether
the number of samples n* that are needed to achieve consistent generation depends on the target
language K € £ or its enumeration. In decreasing order of hardness, these notions are:

> Uniform Generation where n* neither depends on K nor its enumeration; it only depends on £
> Non-uniform Generation where n* can depend on £ and K but not K’s enumeration

> Generation where n* can depend on £, K, and K’s enumeration
Here, the weakest notion, generation, is the one studied by [Kleinberg and Mullainathan|[2024].

QOur Main Questions. In their work, [Li et al.|[2025]] demonstrated that the problem of generation,
under any of these notions, is fundamentally distinct from prediction and the PAC learning framework:
they constructed several classes that are generatable but not PAC learnable and vice versa, establishing
a clear separation between these paradigms. While these examples illustrate specific differences
between prediction and generation, they raise a more profound question: do the conceptual properties
of generation differ significantly from those of prediction? One of the most fundamental properties of
traditional prediction tasks (such as binary, multiclass, or online classification) is closure under finite
unions — if classes #1 and #5 can be learned (under any of the aforementioned notions of prediction)
then so can #; U #(>. However, establishing the closure of generatability has remained elusive so far.
Indeed, the challenge of effectively combining generators also appears in the work of |[Kalavasis et al.
[2025]], where it is a crucial obstacle in establishing tight sample complexity bounds for generation in
statistical settings. Although Kalavasis et al.|[2025]] ultimately circumvent this challenge through
alternative techniques, the following fundamental question remains:

> Q1. Is generation closed under finite unions?

This was also explicitly posed as a key open problem by |Li et al.| [2025]] (as Questions 6.2) and as a
first step in addressing this broader question, they also posed the following more specific Variantﬂ

> Q2. Are finite unions of non-uniformly generatable classes always generatable?

Apart from differences between generation and prediction, two main results of [Li et al.| [2025]] are
complete characterizations of uniform generation and non-uniform generation, respectively. A natural
and important question is to develop a complete characterization of generation in the limit. Toward
this goal, L1 et al.[[2025]] provide several sufficient conditions. Perhaps the most natural one of these
is based on the Eventually Unbounded Closure (EUC) property (see Definition[2.7). Informally, a

3Li et al.| [2025] show finite unions of uniformly generatable classes are generatable but need not be
non-uniformly generatable.

collection £ satisfies the EUC property if for any target language, K € £, after seeing a finite number
of elements x1, xo, ..., x, € K, all languages L € £ consistent with z1, zs, . .., z,, share infinitely
many elements. (In other words, all languages in the “version space” defined by =1, z2, . . . , z,, share
infinitely many elements for large enough n.) Further, |Li et al.|[2025]] observed that the EUC property
is connected to a certain “autoregressive’” property where, after seeing finitely many samples, the
generator no longer needs to observe further samples to generate new and unseen examples in the
future. Given the central role of EUC in current approaches to characterizing generatability and its
connection to the autoregressive property, |Li et al. [2025]] pose the following question:

> Q3. Is there a non-uniformly generatable and uncountable class violating the EUC property?

1.1 Our Contributions

We present a family of constructions and corresponding techniques that resolve three open questions
of [Li et al.|[2025] in the model of language generation of Kleinberg and Mullainathan| [2024]].

> Non-Closure Under Finite Unions: Our first result constructs two collections £; and £ that
are generatable individually, while their union £; U L5 is not, answering Question 1 negatively
(Theorem [3.1). This construction relies on specific properties relating the two collections (which
we explain later; Section[3.4)), allowing us to develop a family of counterexamples — demonstrating
that the failure of union-closedness is not isolated but an inherent property of language generation
that fundamentally distinguishes it from traditional prediction tasks. In particular, we can also
ensure that £; and L9 are both non-uniformly generatable, hence, also resolving Question 2.

> A Minimal Pair of Classes Whose Union Is Not Generatable: Next, we investigate the spectrum
between known extremes: at one end, Kleinberg and Mullainathan| [2024] showed that unions of
countable collections are generatable; at the other end, our first result (Theorem @ shows that
unions of uncountable generatable collections need not be generatable. Our second result, refines
this understanding by constructing a countable collection £} and an uncountable collection £
whose union is not generatable. Notably, in this construction, £/ is non-uniformly generatable
and L) is uniformly generatable (both without requiring to get any examples from the target
language), yet their union £] U £, is not generatable (Theorem . This observation shows
that the construction is minimal in the sense that simplifying either collection further (by, e.g.,
making £ to be uniformly generatable or £}, countable) would make the union generatable, due
to results of |L1 et al.|[2025]], Kleinberg and Mullainathan| [[2024]].

> Non-Uniformly Generatable Collections without EUC: Our third result (Theorem[3.3)) answers
Question 3 by identifying an uncountable collection that is non-uniformly generatable but
violates the Eventually Unbounded Closure (EUC) property. This result provides insight into the
relationship between non-uniform generatability and the autoregressive property, suggesting that
current sufficient conditions for characterizing generation in the limit need to be expanded.

Technical Novelty. We now highlight the key technical challenges and innovations in obtaining our re-
sults. The problem of studying generatability of unions of classes was previously examined by Li et al.
[2025]], who showed that countable unions of uniformly generatable classes need not be generatable
in the limit. As they note, their result “showcases the hardness of characterizing generatability in the
limit.” Their construction is highly sophisticated, involving a countable list of collections £, Lo, .. .,
each defined by a different prime number. In this construction, they are able to ensure that the union,
(U, £i, was sufficiently complex that it ends up being non-generatable. This is achievable because
they take unions of countably many classes — an operation under which even standard prediction
tasks in learning theory (such as binary and multi-class classification) are not closedE]

A key challenge in our work is that we consider unions of just two classes. These two classes must
simultaneously possess enough structure to be individually generatable, yet become sufficiently
complex when combined that their union is not generatable in the limit. Our result in Theorem [3.2]is
even more surprising, as it demonstrates this phenomenon with one class being (trivially) uniformly
generatable and the other being countable. Our construction relies on several careful choices that we
outline below and elaborate on in Section 3.4

Overview of Diagonalization. The only method for proving non-generatability is diagonaliza-
tion [Li et al.| 2025, (Charikar and Pabbaraju, 2025, |[Kalavasis et al., 2024]. This approach is

“Indeed, one can construct a countable union of classes where the i-th class has VC dimension 4, so that the
countable union necessarily has infinite VC dimension, rendering it unlearnable.

also fundamental in computational complexity theory [[Arora and Barakl 2009]. At a very high
level, using diagonalization one constructs, for any consistent generator, an adversarial enumeration
of the target language with distinct “phases” t1, ¢, ... such that in the ¢-th phase, the generator
must generate from language L; (and not from languages L;i1,L;t2,...,Lo = K). Conse-
quently, either the generator fails to be consistent in one phase (failing to generate from L;), or we
identify infinite steps where it fails to generate from K = L.

Challenges in Using Diagonalization with Finite Unions. When applying this argument to two
collections, we must partition the languages L, Lo, . . . between our collections, £, and £5. However,
this causes a problem: by the Pigeonhole principle, at least one collection must contain infinitely many
of these languages. Typically, this would allow us to reproduce a similar diagonalization argument,
showing that the corresponding collection (say £) is itself not generatable — contradicting our goal.
(Note that|Li et al.|[2025]] avoid this problem by using countably many collections, assigning language
L; to collection £; — ensuring that each collection only has a single language from L1, Lo,)

Idea 1 (Embedding A Shared Structure). To overcome this challenge, we divide the languages into
twosets Ly, L3, L5, ... and Lo, Ly, Lg, . . ., embed a shared structure across each set of languages,
and assign the sets to the collections £1 = {Ly, L3, L5, ...} and Lo = {Lo, Ly, Lg, . . . } respec-
tively. For instance, one form of structure is to ensure that Ly, L3, L5, ... 2 Z4 (all odd-indexed
languages contain all positive integers) and Lo, L4, Lg, ... 2 Z_ (all even-indexed languages con-
tain all negative integers). This structure prevents the diagonalization argument from working
independently on either £ or L.

This approach, however, introduces a new challenge: it potentially prevents diagonalization from
working on £; U L7 as well. For example, a generator could determine whether it is in the “even
world” (where K D Z_) or the “odd world” (where K D Z) by comparing the length of observed
prefixes of negative integers versus positive integers. (We make this argument formal in Section [3.4])

Idea 2 (Omitting Shared Elements). To prevent such identification, we need to ensure that after
seeing only finitely many elements, every even-indexed language consistent with the enumerated
stream is sufficiently similar to some odd-indexed language, and vice-versa. In the context of our
running example, to do that we allow each language L; to omit finitely many elements from its shared
set (either Z, or Z_). This turns out to be sufficient to ensure that the generator cannot identify
whether K € £, or K € L.

This idea, however, creates an additional technical hurdle because standard diagonalization leads
to the language K (= L) missing infinitely many elements from both shared sets (positive and
negative integers for £; and £, respectively), meaning it could not belong to either collection,
otherwise the corresponding collection would be non-generatable.

Idea 3 (A Variant of Diagonalization). Our third innovation is a novel form of diagonalization
where, counter-intuitively, the adversary forces the generator to make mistakes only in alternate
rounds. This approach carefully balances the constraints to ensure that (1) both collections remain
generatable individually, (2) their union is not generatable, and (3) the final language K enumerated
during diagonalization belongs to one of the collections.

We believe this novel diagonalization technique will have broader applications in the study of language
generation, potentially paving the way toward a complete characterization of generatability in the
limit — addressing the main open question in this research area identified by Li et al.|[2025].

1.2 Related Work

Our work directly builds on the framework of |Kleinberg and Mullainathan|[2024]], who introduced
the model of language generation in the limit. Since then, a growing line of research has explored
various aspects of language generation (e.g.,|L1 et al.| [2025]], |Kalavasis et al.|[2025]], (Charikar and
Pabbaraju| [2025]], Raman and Raman|[2025]], [Peale et al.| [2025]], Kleinberg and Wei| [2025])). Here,
we discuss the most relevant prior works.

Uniform and Non-Uniform Generation. [Li et al.|[2025] introduced a hierarchy of three notions of
generation — uniform, non-uniform, and generatable — and provided characterizations for uniform and
non-uniform generation along with sufficient conditions for generatability. (Charikar and Pabbaraju
[2025] also, independently and concurrently, studied non-uniform generation and showed that
all countable collections can be non-uniformly generated, strengthening the results of |[Kleinberg

and Mullainathan|[2024] (which only showed that countable collections are generatable and finite
collections are uniformly generatable).

Language Generation with Breadth. While Kleinberg and Mullainathan’s algorithm eventually
ceases outputting elements outside of K after finite time (i.e., it eventually stops hallucinating), this
property comes at a cost: the algorithm sacrifices breadth — i.e., the ability to generate diverse strings
from the target language. A number of works study language generation with different notions of
breadth and demonstrate that requiring many natural notions of breadth makes generation significantly
harder, almost as hard as language identification |[Kalavasis et al.| [2025]], |Charikar and Pabbaraju
[2025]], |[Kalavasis et al.|[2024], Peale et al.|[2025]], Kleinberg and Weil[2025]].

Further work on Language Generation. Recent works have also explored several other aspects of
language generation. Raman and Raman|[2025] investigated language generation in a model where
an adversary can introduce errors in the inputs, developing a robust framework for noisy settings.
Karbasi et al.|[2025] explored the complexity of determining if a specific generator G is hallucinating.

Union-Closedness of Prediction. Understanding the behavior of learning problems such as binary
classification and online learning under various natural operations on the underlying hypothesis class,
e.g., finite unions, intersections, and products, is a fundamental challenge that is now well-understood
in the literature — see, e.g.,|Van Der Vaart and Wellner|[2009], |Alon et al.|[2020], Ghazi et al.|[2021]]
and references therein. Notably, these properties also reveal natural learning strategies: one can
decompose the underlying class into simpler ones, learn them separately, and “combine” the learners.

2 Preliminaries
In this section, we present some background on language generation in the limit.

Notation. Let X be a finite alphabet (e.g., {a,b, ..., z}), and ¥* the set of all finite-length strings
formed by concatenating symbols from ¥. We define a language L as an infinite subset of >*.
A collection of languages is denoted by £. We define a generating algorithm G = (G,)nen as a
sequence of mappings G, : (X*)™ — ¥* parametrized by the input size n. In words, the generator
maps a finite training set to a (potentially infinite) set of elementsE]

Language Generation in the Limit. We begin with the formal definition of language generation in
the limit, introduced by [Kleinberg and Mullainathan|[2024]].

Definition 2.1 (Language Generation in the Limit [Kleinberg and Mullainathan| 2024]). Fix some K
Sfrom the language collection L and a generating algorithm G = (G,,). At each step n, let S,, C K
be the set of all strings that the algorithm G has seen so far. G must output a string w,, ¢ S, (its
guess for an unseen string in K). The algorithm G is said to generate from K in the limit if, for all
enumerations of K, there is some n* € N such that for all steps n > n*, the algorithm’s guess w,
belongs to K \ S, (or K \ S, is empty). The collection £ allows for generation in the limit if there
is an algorithm G that generates from K in the limit for any K € 0.

To gain some intuition about this definition, consider the collection £ = {Z, L1, L_1,Ls, L_5,...}
of thresholds over integers where, for each i € Z, L; = {i,i+ 1,7 + 2,...}. Suppose the target
language is some K € £ and the adversary first enumerates string z;. The generator can deduce
that K = L, for some z < xy, i.e., K € {Z,L,,,Ly,1,...}. Since the intersection of all of
these languages is non-empty and is a strict superset of the strings enumerated so far (namely, the
intersection is {1 + 1,21 + 2,... }), the generator can generate an element that is guaranteed to be
in K: for instance, it is sufficient to output z; + 1. More generally, after seeing strings x1, z2, . . . , Z;,
the generator can output any integer larger than max{x1, o, ..., x;}.

Remark 2.2. For the problem to be interesting, we assume that each language in the collection has
infinite cardinality, i.e., |L| = oo for all L € £. (Otherwise, K \ S,, eventually becomes empty.)
Remark 2.3 (Repetitions). For simplicity, we throughout also assume that the adversary is not allowed
to repeat strings in its enumeration. Otherwise, to define uniform and non-uniform generatability, we
have to count the number of unique elements listed by the adversary [Li et al., [2025]].

*While Kleinberg and Mullainathan|[2024] required outputting only one element at a time, [Kalavasis et al.
[2025]], |(Charikar and Pabbaraju| [2025] relaxed this to allow for case where, at some finite point, one can stop
training and generate a rich set of responses.

Kleinberg and Mullainathan|[2024]] showed that language generation in the limit is possible for all
countable collections of languages — starkly contrasting results in language identification.

Uniform and Non-Uniform Generation in the Limit. Next, we present two strengthenings of the
notion of generation in the limit introduced by |Li et al.|[2025]]. The first notion is the strongest, it
requires the number n* in Definition (which is the number of samples required by the generator
before it starts generating consistently) to be independent of the target language and its enumeration.

Definition 2.4 (Uniform Generation [Li1 et al., 2025[)). A collection L is said to be uniformly generat-
able, if there is an algorithm G and n* such that, for each K € L and each (adversarially chosen)
enumeration Ex of K, G generates from K in the limit after seeing n > n* examples from K.

The non-uniform generation weakens this notion by allowing n* to depend on the target language.

Definition 2.5 (Non-Uniform Generation [L1 et al., 2025[]). A collection L is said to be non-uniformly
generatable, if there is an algorithm G such that, for each K € L, there is a number n* = n*(K)
such that for any (adversarially chosen) enumeration E of K, G generates from K in the limit after
seeing n. > n* examples from K.

Li et al.|[2025] provide characterizations for both the collections that are uniformly and non-uniformly
generatable, respectively. These, in particular, show that all countable collections are non-uniformly
generatable; a result independently and concurrently also shown by |Charikar and Pabbaraju| [2025].
They also show that all finite collections are uniformly generatable in the limit; a result that was also
earlier shown by Kleinberg and Mullainathan| [2024].

A key remaining question, after these works, is a characterization for the weakest notion of generation
in the limit in Definition where n* can depend on both K and F. Next, we define the eventually
unbounded closure property, which forms the basis of a sufficient condition for generatability proposed
by |Li et al.|[2025].

Definition 2.6 (Version Space). Given a finite sequence of strings X = {x1, ...,z } and a collection
L, let V (L, X) be the set of languages L € L containing X.

Definition 2.7 (Eventually Unbounded Closure). A collection L is said to have the Eventually
Unbounded Closure (EUC) property if, for every L € L and enumeration x1,xs, ... of L, there is a
finite time t, at which all languages in V (L, {x1, T2, . .., xt}) share infinitely many elements.

It is not too hard to show that all uniformly generatable collections possess the EUC property, while
some generatable collections do not [Li et al.,2025]). The relationship between EUC and non-uniform
generatability is less clear, and |Li et al.|[2025]] constructed a countable class that was non-uniformly
generatable without the EUC property, but left open whether an uncountable such class exists. Our
work resolves this question by demonstrating an uncountable class that is non-uniformly generatable
yet lacks the EUC property.

3 Our Results and Technical Overview

In this section, we present our results on language generation in the limit, addressing three open
questions of [Li et al.|[2025]).

3.1 Non-Closure Under Finite Unions

Our first result demonstrates that generation is not closed under finite unions.

Theorem 3.1. There are uncountable collections L1, Lo that are non-uniformly generatable while
L1 U Lo is not generatable.

We stress that while each collection is non-uniformly generatable, their union does not just violate
non-uniform generatability, it also violates generatability. Thus, Theorem [3.1]resolves both Questions
1 and 2 negatively. Further, the construction in Theorem [3.1] relies on a certain “prefix-realizability”
properties between £; and £ (see Appendix[A.2)), which enable us to generalize this approach to a
family of counterexamples. This demonstrates that the failure of union-closedness is not an isolated
phenomenon but rather an inherent property of language generation.

3.2 On Finite Union of Non-Uniformly Generatable Collections

Both collections in Theorem [3.1] are uncountable. This is necessary in part: at least one collection
must be uncountable since, otherwise, if both are countable collections, then their union remains

countable and, hence, generatable by the results of Kleinberg and Mullainathan|[2024]]. This naturally
raises the question: must both collections be uncountable for the union to be non-generatable?

Our second result shows that both collections need not be uncountable. From our family of coun-
terexamples, we identify a pair (L1, £2) where £; is countable, L5 is uncountable, and their union is
not generatable.

Theorem 3.2. There are collections £1 and Lo for which L1 U Lo is not generatable such that:

> L4 is countable and non-uniformly generatable, without requiring any elements from the
adversary

> Lo is uncountable and uniformly generatable, without requiring any elements from the adversary.

Thus, Theorem [3.2] establishes that unions of non-uniformly and uniformly generatable classes
are not guaranteed to be generatable. Moreover, these collections are minimally complex in the
following precise sense: if either collection is any simpler (i.e., if £; is uniformly generatable or Lo
is countable), then £ U Lo would be generatable. When £, is uniformly generatable this is due to a
result of |Li et al.| [2025] which shows that unions of uniformly generatable classes are generatable.
When L5 is countable, this is due to a result of Kleinberg and Mullainathan| [2024] showing that all
countable collections are generatable.

Furthermore, even among non-uniformly generatable and uniformly generatable classes, £, and Lo
represent the simplest collections because they can be generated without observing any elements
from the adversary. In the terminology of |Li et al.| [2025]], this enables “autoregressive” generation —
where the generator can produce new elements without requiring input from the adversary.

Finally, since £; is countable it can be expressed as a union of singletons £; = |J;=, {L;}. Since
each singleton is trivially uniformly generatable, Theorem [3.2] provides a list of countably many
classes (La,{L1},{La},...) that are each uniformly generatable without requiring any elements
from the adversary but their union £2 U {L1} U {L2} U ... is not generatable. This, in particular,
recovers a result of |L1 et al.| [2025]], namely their Lemma 4.3.

3.3 On the EUC Property and Non-Uniform Generation
Our third result resolves Question 3 as a direct consequence of our construction in Theorem|3.1

Theorem 3.3. There is an uncountable collection L that is non-uniformly generatable and violates
the EUC property (Definition 2.7).

Specifically, the collection £ from Theorem [3.1]is non-uniformly generatable but violates the EUC
property, providing a concrete counterexample that addresses this open question.

3.4 Technical Overview

In this section, we give a detailed overview of our approach; for a higher-level summary, we refer
readers to Section [I.T] Our goal is to show that finite unions of generatable classes need not be
generatable. Toward this, it is instructive to build some intuition about how to show that a class is not
generatable. Recall that Kleinberg and Mullainathan| [2024] showed that any countable collection is
generatable, thus we must necessarily work with uncountable collections.

Warm-Up: A Non-generatable Collection. Let the domain >* be N. A natural candidate to
consider is the collection of all infinite subsets of NE] Given a generator G, we will pick some
K € £ and enumeration of K, both tailored to G, so that it makes a mistake in every step. Let
us denote the element enumerated at step ¢ € N by x; and the element generated at step ¢ € N
by y; = Gi(x1,...,2;). We begin by setting 1 = 1. Then, for each & € N we define =}, =
max {max;—1,.. k12 Maxj—1, k-1¥;} + 1. Welet K = (J,cy{zi} and E = (21,22,...).
Notice that x; # x; for i # ', hence K contains infinitely many elements. Moreover, K € £ and F
is a valid enumeration of K E] Why does the learner make a mistake in every step? Consider two cases:
at step 4 either the learner outputs some y; € {x1,...,2;} so it fails to output an unseen element,
or it outputs some y; & {x1,...,x;}. In the latter case, by the definition of F, all the elements we

SRecall that for the problem of generation to be well-defined [Kleinberg and Mullainathan|[2024] require that
all languages in the collection are infinite.
"In fact, it is an “easy” enumeration since it lists elements in increasing order.

enumerate in subsequent rounds (the unseen elements of K), are greater than y;, which means that y;
is not an unseen element of K.

Unfortunately, the collection £ is very complex so it is not clear at all if it is possible to split it into
two collections L1, £ such that both of them are generatable and £; U Lo = £. Nevertheless, this
idea of constructing hard enumerations and target languages as a function of the underlying generator
—a.k.a. diagonalizing against the underlying generator — will be the first ingredient towards our main
result. Next, we explore the crucial question: Can we construct £1, Lo that are individually easy to
generate from but £; U £, is (almost) as complex as the previous collection?

A First Attempt (which Fails). Our first idea is to create £; and L5 in a symmetric way. Both
defined over Z, £ contains languages that are “easy” on the negative integers and “hard” on the
positive integers, while £ contains languages that are “hard” on the negative integers and “easy” on
the positive integers. Taking this approach to the extreme, we define

L1 ={La=Z_UA ACZy, |Al=c0} and Lo:={Lp:=ZyUB, BCZ_, |B|=o0}.

In words, every language in £; contains all the negative integers and some infinite subset of the
positive integers (and for every such subset there exists a corresponding language in £1). The
collection L4 is defined in a symmetric way where the roles of positive and negative integers are
flipped. Both £, and £ are uniformly generatable in a trivial way: for £ it suffices to generate any
unseen negative number and symmetrically for Lo.

Can a single generator successfully generate £1 U £57 Since there is no systematic way to generate
from uncountable collections (unlike countable collections), we explore natural heuristics. Perhaps
the most intuitive approach is to track the positive and negative integers observed so far and generate
from the “heavier” side (the side with more observed elements). This approach fails: an adversary
can select a language from £ and ensure any finite prefix of the enumeration contains more positive
than negative integers — fooling the learner into generative positive integers — and, then, selecting the
set A to using our warm-up technique to force mistakes. However, a more sophisticated generator
does exist for £ U Lo: the generator keeps track of the longest preﬁxﬁ enumerated on the positive
and negative side separately, and outputs an unseen number from the side with the longer prefix.

Why does this work? If i’ = 7Z, then the generator is always correct. Otherwise, K either contains
Z._ and misses at least one element from Z or it contains Z and misses at least one element from
Z_. In either case, since the adversary must completely enumerate K the prefix of one of the two
sides will stop growing, while the other increases indefinitely. Thus, in the limit, this generator will
output valid and unseen elements from K.

An Attempt (which Works). The core reason why our previous attempt fails is that (in the limit), a
sufficiently clever generator can identify if K € £; or K € L5. To get our result, we need to ensure
that no generator can make this determination. We therefore modify our collections £1, Lo to make
them even more similar while keeping them individually generatable:

L= {Lap=(Z_\A)U(Z.\B),ACZ_,|A|l < c0,BCZ,|B|l=cc},
V= {Lap=(Z_\A)U(Z4y\B),ACZ_,|A|=o00,BCZ,,|B| <oo}.

In this construction, languages in £/ contain almost all negative integers (missing only finitely many
in A) and only some positive integers (missing infinitely many in B). The collection £} is defined
symmetrically, with finite/infinite exclusions reversed. First, notice that £, £} are non-uniformly
generatable in a trivial way: there exists a generator that generates from £, (and £}) without seeing
any examples from the target language and the number of mistakes it makes depends only on K ﬂ

The crux of the difficulty with the new collections is that, while they have a clear asymmetry (one side
missing finitely many elements, the other missing infinitely many), this asymmetry cannot be detected
at any finite time. Indeed, it is not hard to see that the sophisticated generator that kept track of
continuous prefixes of both positive and negative integers and generated according to the longer-prefix
side fails for £7 U L. It turns out that every generator fails for the union of this pair of collections.

To show this, a tempting approach is to try to replicate our strategy from the warm-up construction
and force a mistake in every round. For instance, we can start enumerating positive integers, and if

8A prefix of length 4 from Z_ is the set {—i,—i—1,...,—1} and symmetrically from Z
“Indeed, for £ the generator can start outputting negative integers in decreasing order and since any K
misses only finitely many of them it will eventually start generating correctly (symmetrically for £5.)

the generator ever outputs an unseen positive number z;,, switch to enumerating negative integers
ensuring that we do not enumerate any negative number the generator has generated. Indeed, £} U £}
is sufficiently complex to ensure that for every ¢ € N the elements S; enumerated up to timestep ¢ are
consistent with some language K; € £. Unfortunately, this property does not imply that we present a
complete enumeration of some K € L. Indeed, it is not hard to construct generators for which the

stated approach ends up enumerating some K that does not contain infinitely many negative integers
and infinitely many positive integers; such languages are not part of £7 U £). Hence, to show the
non-generatability of £} U £}, we must use a more involved argument.

A Modified Diagonalization Argument. We now present a lower bound construction that proceeds
in (potentially infinitely) many phases, which are now broken into two subphases, and is tailored to
the underlying generator G. Let us introduce some notation: let S; denote the elements enumerated
by the adversary up to (and including) step t. We also denote by P; the set of positive integers the
generator has outputted up to (and including) step ¢ and N; set of negative integers the adversary has
enumerated up to (and including) step t. We now describe our construction inductively:

Phase 1-A: During this phase, the adversary enumerates the negative integers starting from —1 in a
sequential, decreasing order (—1, —2, —3, . ..) until the generator outputs an unseen negative integer.
If this never happens, the adversary ends up enumerating K = Z_ € £/ and the generator makes a
mistake in every timestep, hence the adversary wins the game. Thus, let us assume that ¢ 4 is the first
timestep the generator outputs an unseen negative integer. At this point, we switch to phase 1-B.

Phase 1-B: The adversary now enumerates positive integers starting from max P, , + 1 in a sequen-
tial increasing order. Let t; g > 1,4 the first timestep when the generator outputs a positive integer.
Using similar reasoning, if this never happens, the adversary enumerates a valid language from £}
and the generator makes infinitely many mistakes. Otherwise, we proceed to phase 2.

For ¢ > 2, the /-th phase follows:

Phase ¢-A: Upon entering this phase, the adversary enumerates the largest negative integer not yet
enumerated, i.e., the number min N; — 1, and in the subsequent rounds of this phase it continues
in decreasing order. Importantly, some of these negative integers might coincide with elements the
generator has previously outputted, thus “correcting” some of its tentative mistakes. As we explained,
this is unavoidable since there are G such that if the adversary forces G to make a mistake in every
step it necessarily enumerates a language that is not in £} UL). Let tg 4 > ¢,_1 p be the first timestep
when the generator outputs an unseen negative integer. At this point, we move to subphase ¢-B.

Phase ¢-B: Similar to subphase 1-B, the adversary enumerates positive integers starting from
max P, , + 1 until the generator outputs a positive integer, at which point this subphase ends.

Having described the construction, we now argue its correctness. As we argued already, if the
construction terminates after finitely many phases, then the learner makes infinitely many mistakes
and the adversary enumerates a valid language. Alternatively if the construction proceeds for infinitely
many phases, then the adversary enumerates Z_ along with an infinite subset of Z , producing a
valid language from £’. What about the generator’s mistakes? The crucial observation is that every
time we move from subphase ¢-B to (¢ + 1)-A the adversary forces a mistake for the generator. With
infinitely many phases, the generator necessarily makes infinitely many mistakes. The formal details
are in Appendix

Remark 3.4 (Connection to EUC). This construction yields an additional insight: there are uncount-
able classes that are non-uniformly generatable (in a trivial way), yet do not satisfy the Eventually
Unbounded Closure (EUC) property. Indeed, both £} and £/ are uncountable and non-uniformly
generatable, but we can prove they violate EUC (Appendix [B.2), thus addressing Question 3.
Remark 3.5 (Stronger Lower Bound). The ideas we described in this section can be utilized to derive
the stronger lower bound from Theorem [3.2] The formal details are in Appendix [B.2]

4 Concluding Remarks

In this paper we have continued studying the emerging line of work on language generation in
the limit, resolving three open questions from |Li et al.|[[2025]]. While the work of Kleinberg and
Mullainathan|[2024] showed a remarkable tractability of the problem when the collection of languages

is countable, our results and the results of |Li et al.|[2025]] show that this learning task is significantly
more involved when we move to uncountable collections and exhibits behaviors that are qualitatively
different from traditional learning problems such as binary classification [[Valiant, [1984] [Vapnik and
Chervonenkis}, 2015]] or online learning [Littlestone, [1988]. Our results further highlight the difficulty
of coming up with a characterization of generatibility, since there are collections that are generatable
(in a strong sense), yet even taking the union of two of them yields a non-generatable collection.
Nevertheless, we hope that the technique we introduce to show non-generatability will help pave the
way to the solution of this challenging problem.

Acknowledgments

This research was supported (in part) by the Al Institute for Learning-enabled Optimization at Scale
(TILOS).

10

References

Noga Alon, Amos Beimel, Shay Moran, and Uri Stemmer. Closure properties for private classification
and online prediction. In Conference on Learning Theory, pages 119-152. PMLR, 2020.

Dana Angluin. Finding patterns common to a set of strings (extended abstract). In Proceedings
of the Eleventh Annual ACM Symposium on Theory of Computing, STOC 79, page 130-141,
New York, NY, USA, 1979. Association for Computing Machinery. ISBN 9781450374385. doi:
10.1145/800135.804406. URL https://doi.org/10.1145/800135.804406,

Dana Angluin. Inductive inference of formal languages from positive data. Information and Control,
45(2):117-135, 1980. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(80)90285-5.
URL https://www.sciencedirect.com/science/article/pii/S0019995880902855.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

Moses Charikar and Chirag Pabbaraju. Exploring facets of language generation in the limit. In
Nika Haghtalab and Ankur Moitra, editors, Thirty-eighth Conference on Learning Theory (COLT
2025), Proceedings of Machine Learning Research. PMLR, 2025. URL https://arxiv.org/
abs/2411.09642.

Badih Ghazi, Noah Golowich, Ravi Kumar, and Pasin Manurangsi. Near-tight closure bounds for
the littlestone and threshold dimensions. In Algorithmic learning theory, pages 686—696. PMLR,
2021.

E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447-474,
1967. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(67)91165-5. URL https:
//www.sciencedirect.com/science/article/pii/S0019995867911655.

Alkis Kalavasis, Anay Mehrotra, and Grigoris Velegkas. Characterizations of language generation
with breadth, 2024. URL https://arxiv.org/abs/2412.18530\ https://arxiv.org/abs/
2412.18530.

Alkis Kalavasis, Anay Mehrotra, and Grigoris Velegkas. On the limits of language generation:
Trade-offs between hallucination and mode collapse. In Proceedings of the 57th Annual ACM
Symposium on Theory of Computing (STOC’25), New York, NY, USA, 2025. Association for
Computing Machinery. URL https://arxiv.org/abs/2411.09642.

Amin Karbasi, Omar Montasser, John Sous, and Grigoris Velegkas. (im)possibility of automated
hallucination detection in large language models, 2025. URL https://arxiv.org/abs/2504.
17004. https://arxiv.org/abs/2504.17004.

Jon Kleinberg and Sendhil Mullainathan. Language generation in the limit. Advances in Neural
Information Processing Systems, 37:66058-66079, 2024.

Jon Kleinberg and Fan Wei. Density measures for language generation, 2025. URL https://arxiv,
org/abs/2504.14370. https://arxiv.org/abs/2504.14370.

Jiaxun Li, Vinod Raman, and Ambuj Tewari. Generation through the lens of learning theory. In
Nika Haghtalab and Ankur Moitra, editors, Thirty-eighth Conference on Learning Theory (COLT
2025), Proceedings of Machine Learning Research. PMLR, 2025. URL https://arxiv.org/
abs/2411.09642.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285-318, 1988. doi: 10.1007/BF00116827. URL https:
//doi.org/10.1007/BF00116827.

Charlotte Peale, Vinod Raman, and Omer Reingold. Representative language generation. In Forty-
second International Conference on Machine Learning, 2025.

Ananth Raman and Vinod Raman. Generation from noisy examples. In Forty-second International
Conference on Machine Learning, 2025.

11

https://doi.org/10.1145/800135.804406
https://www.sciencedirect.com/science/article/pii/S0019995880902855
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2411.09642
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://arxiv.org/abs/2412.18530
https://arxiv.org/abs/2412.18530
https://arxiv.org/abs/2412.18530
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2504.17004
https://arxiv.org/abs/2504.17004
https://arxiv.org/abs/2504.17004
https://arxiv.org/abs/2504.14370
https://arxiv.org/abs/2504.14370
https://arxiv.org/abs/2504.14370
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2411.09642
https://doi.org/10.1007/BF00116827
https://doi.org/10.1007/BF00116827

Leslie G Valiant. A theory of the learnable. Commun. ACM, 27(11):1134—-1142, 11 1984. ISSN
0001-0782. doi: 10.1145/1968.1972. URL https://doi.org/10.1145/1968.1972.

Aad Van Der Vaart and Jon A Wellner. A note on bounds for vc dimensions. Institute of Mathematical
Statistics collections, 5:103, 2009.

V. N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities, pages 11-30. Springer International Publishing, Cham, 2015. ISBN
978-3-319-21852-6. doi: 10.1007/978-3-319-21852-6_3. URL https://doi.org/10.1007/
978-3-319-21852-6_3|

12

https://doi.org/10.1145/1968.1972
https://doi.org/10.1007/978-3-319-21852-6_3
https://doi.org/10.1007/978-3-319-21852-6_3

A Further Results

A.1 Formal Lower Bound of Non-Generatability

In this section we show formally that the class of all infinite languages over N is not generatable in
the limit. It is worth mentioning that this result follows from a result of [Li et al.| [2025]]. Here, we
give a simpler proof which also generalizes to randomized learners (Proposition [A.2)).

Proposition A.1. Let X* = N and £ be the set of all infinite subsets of N. Then, no deterministic
algorithm can generate from £ in the limit.

Proof. Let G = (G,: N® = N),__ be a deterministic generating algorithm and, for each n, let
Gn (1,22, ..., 2y) be the string outputted by G,, when provided the strings z1, o, . . ., Z,, as input.
We will show that there is a language K € £ and an enumeration E of K, both of which depend on
G, for which g fails to generate from K in the limit. We will construct the enumeration and the target
language inductively. For all n € N, we denote by E,, the first n elements of E.

Let z; = 1 and F; = (1). We then define zo = max{z1,G(x1)} + 1 and
E; = (x1,x2). Continuing in the same fashion, for any n € N, we define z, =
max {max;<, &;, MaX;<n, Gj(T1,...,2;)} + 1 and E, = (x1,...,x,). Lastly, we let K =
UnEan-

First, notice that since x; # x;,Vi,j € N,i # j, it holds that | K| = oo, hence K € £. Moreover,
notice that E is a valid enumeration of K. Finally, notice that for every n € N, the algorithm either
outputs a number that does not belong to K or a number that has already been enumerated. To prove

that formally, it suffices to show that for all n € N it holds that G,, (1, ..., 2n) ¢ {Tnt1, Tnta,.-.}-
This follows by two observations: for all n € N it holds that z,, 1 > G, (z1,...,2,) and Tptlts >
Tny1, V) €N

O

It is natural to consider whether randomization can help circumvent the result of Proposition[A.T]
Our next result shows that this is not the case.

Proposition A.2. Let >* = N and £ be the set of all infinite subsets of N. Then, for every randomized
algorithm G = (G, : N — A(N)), _y there exists a language K € L and an enumeration E of K
such that, with probability 1, G will produce unseen elements of K only finitely many times.

Proof. Let G = (Gn: N™ — A(N)), .\ be a (potentially randomized) generating algorithm. We will
show that there is a language K € £ and an enumeration E of K, both of which depend on G, for
which g fails to generate from K in the limit, with probability 1. We will construct the enumeration
and the target language inductively. For all n € N, we denote by F,, the first n elements of E.

Let z; = 1 and Ey = (1) . For any n € N, n > 2 we define the random variable

X, = max < maxz,;, max G;(z1,...,%;) ¢ ,
j<n j<n

and we let

1
T, :min{jEN: Pr[X, > j] < 2} .
n

We also define E,, :== (x1,...,2,) and K = Upen®y,.

First, notice that, with probability 1, z; # x;,Vi,j € N,i # j, hence it holds that | K| = oo, thus
K € L. Moreover, notice that E is a valid enumeration of K. Next, we argue that with probability 1,
the algorithm outputs unseen elements of K only finitely many times. For all n € N, let &, be the
event that G, (x1,...,2,) € K \ {z1,...,2,}. Notice that, by definition of the enumeration E and
the target language K,

Pr [éan] =Pr [%(171, s axn) € {xn+17 LTn+42y- - H .

Moreover, since with probability 1, z,,+1 < Zp42 < ..., it holds that

PriGn(z1,...,2n) € {Znt1,Tnyo,...}] <1 =PrGu(z1,...,2n) < Tpt1] -

13

By definition of z,,4; it holds that

1

PriGn(z1,...,@n) < Tpi1] >1— m

Chaining the previous inequalities, we get

1
Pr[&, ;
(o] = (n+1)2
thus,
Z Pr[é,] < o
neN

By the Borel-Cantelli lemma we deduce that with probability 1 only finitely many of the events
{60}, en Will occur.

O

A.2 Extensions to a Family of Constructions

We first explain some high-level properties of our lower bound construction and illustrate how they
can be used to show non-generatability in other settings. In our construction, we can split the
underlying collection £ into two parts, say £1, Lo that allow for the following lower bound argument:
the adversary can start enumerating some language L; from £, if at some point the generator
generates an unseen element of L, the adversary moves to enumerating a language Lo from L5, and
then if the generator generates unseen elements of L, the adversary moves back again to enumerating
some language L3 of £;. Crucially, the adversary can ensure that when switching from L5 to £, the
generator makes a mistake, and if there are infinitely many switches the adversary enumerates some
language L that is in the collection.

To illustrate the generality of these conditions, we present another family of language collections
L1,L9,...,L that are individually generatable, but whose union is not generatable. Let the domain
be X = N x N. Fix anindex + € N. We begin by defining £;. Each language L € £, is parameterized
by i finite subsets A_1, A1, Ao, ..., A;_1:

(A_l,Al,...,Ai_li ‘A_1|7‘A1|,...7‘A7;_1‘ < oo and A_17A1,...7AZ‘_1 - N) .

Given the finite sets A_1, A1, As, ..., A;_1 C N, the corresponding language L in £; is defined as

follows:
L=<U U Kk%)})uU{(i,j)}u U {(-10}.

k=1 [(eA; leA_y

Next, we define £,: Each language L € L, is parameterized by a countable collection of finite
subsets

(A_l,Al,AQ,...Z |A_1|,|A1|,|A2|,"' < oo and A_l,Al,AQ,"' QN) .

Given finite sets A_1, A1, As,--- C N, the corresponding language L in £, is defined as follows

(U U wenr)o U e

k=1 (€A; (gA_y

Note that the last union is over elements ¢ not belonging to A_;. Hence, each language in £,
contains all but finitely many elements of the form (—1, j) (for j € N). This, in particular, ensures
that £, can be trivially generates: e.g., it suffices to output element (—1, ¢) in the ¢-th iteration.
Remark A.3. Consider the collection £ = U352, £; U £, Having described this collection, it is not
hard to show that a direct adaptation of our approach in the main result goes through. We can group
these collections in a natural way, e.g., by having £, £1, L3, L5, ..., inone group and Lo, Ly, ...,
in the other. Then, the lower bound follows by picking an enumeration that alternates between these
two collections, as described above.

14

B Proofs

B.1 Proof of Theorem 3.1]

In this section, we prove Theorem [3.1] We first state a more detailed version of the theorem.
Theorem B.1. Let X* = Z and L = L1 U Lo where
Ly ={Lap=(Z-\A)U(Z4+\B),ACZ_,|A| <o0,BCZy4,|B|l =00},
Lo={Lap=(Z-\A)U((Z4+\B),ACZ_,|A|=00,BCZ4,|B| <0} .
Then, L1, Lo are trivially non-uniformly generatable and £ is not generatable.
Proof. Notice that every language L 4 g in £ contains all the negative integers except for the finite
set A and all of the positive integers except for the infinite set B. The languages in £ are defined

symmetrically. Hence, the algorithm can generate from £, without observing any input samples
simply by just omitting increasing prefixes of the positive integers (symmetrically for £5.)

Next, we show that £ = £ U L, is not generatable. Assume, towards a contradiction, that there
exists a deterministic generating algorithm

g:(glaGQ,"')

that generates from £ in the limit. We now describe an adversarial strategy that constructs an
enumeration F = {wy, ws, ...} of a target language K € £ such that the generator makes infinitely
many mistakes.

To simplify the notation define the following sets:
 S;"and S; denote the sets of positive and negative numbers enumerated up to time ¢, respec-
tively, i.e., S;7 = {w1, ..., w } NZy, S, ={wy,...,w} N7Z_;

* P, be the set of positive integers outputted by the generator in rounds 1 through ¢.
The adversary’s construction is organized into phases, each divided into two subphases.
Phase 1. This phase is divided into two sub-phases.

1. Subphase 1-A: In every round ¢, the adversary enumerates the positive integer ¢, i.e.,
Wy = t.

This subphase continues as long as the generator’s output, given the current prefix (1,2, ...,t), is
not an integer greater than ¢. If there is a first round ¢ for which

Gi(1,2,....t) € Zy \ {1,...,t},

then subphase 1-A ends, and we move to Subphase 1-B. If the generator never deviates (i.e., never
outputs an integer greater that {1, ...,¢}), then the enumeration F = {1,2,3,...} is complete
for the language K = N, and N € £5. Moreover, by definition, the generator makes infinitely
many mistakes (because it never produces an unseen element of K).

2. Subphase 1-B: Let ¢; denote the first time step at which we enter this subphase. In every round ¢
that we are in this phase, the adversary enumerates the negative integer

wt:—t—tl—l.

This subphase continues until the first time ¢ at which the generator outputs a negative number
that is smaller than the current wy, i.e.,

Gi(St) € Z_ and Gi(S) < wy.

If no such round occurs, then the final enumeration £ will be complete for some K € £1, since it
consists of all negative integers and a finite number of positive integers, and the generator will
have made infinitely many mistakes.

15

Phase k (k > 2). After the end of Subphase (k— 1)-B, the adversary alternates the strategy as follows:

1. Subphase k-A: Let ¢, be the first time of Subphase k-A. The adversary first enumerates a fresh
positive number defined by

pr=1+max{z:z €S} UP,}.
Then, in every round ¢ = ¢, + 1, ... during this subphase, the adversary enumerates
wy = pr + (t —tx),

thereby listing an increasing sequence of fresh positive numbers. This subphase ends when, for
the first time, the generator outputs a positive number (given the current prefix) that exceeds the
maximum of the current enumerated positives. An identical argument to the one we used for
subphase 1-A shows that if this subphase never terminates, then the generator makes infinitely
many mistakes and the adversary gives a complete enumeration of a language from L.

2. Subphase k-B: After completing Subphase k-A, the adversary enters Subphase k-B. In every
round during this subphase, the adversary enumerates the number

wy =min S, —1,

introducing a fresh negative number. This subphase ends at the first round when the generator
outputs a negative number that is less than w;. An identical argument to the one we used for
subphase 1-B shows that if this subphase never terminates, then the generator makes infinitely
many mistakes and the adversary gives a complete enumeration of a language from £;.

Let us now assume that infinitely many of the phases are executed. Then, the target language is
K =7_UA, where A C N, is determined by the elements enumerated during the subphases k-A,
k € N, hence it is a valid language from £;. Moreover, notice that every time we transition from
subphase k-B to (k + 1)-A, then the generator makes a mistake because the element it outputted is
not included in the constructed enumeration.

Since there are infinitely many phases, and in each phase the generator is forced to err at least once,
the deterministic generating algorithm makes infinitely many mistakes. This contradicts the definition
of generation in the limit. O

Remark B.2 (Language Identification Is Not Closed under Finite Unions Either). It is worth high-
lighting that identification in the limit is not closed under finite unions either and it exhibits a very
similar behavior: there is a finite collection £; that is trivially uniformly identifiable and a countable
collection Ly that is trivially non-uniformly identifiable such that £, U L4 is not identifiable in the
limit. To see that, let £1 = {N} and Lo = {I; .= {1,...,i},i € N}.

B.2 Proof of Theorem3.2]

We first restate a more detailed version of the theorem for completeness.
Theorem B.3. Let ¥* = Z and let L = L1 U Ly where

le{LA SZZ_UAZAQZ+}
Lo={N,L; p={—4,...,—1}U(Z4 \ B) :i € N,B C Z,,|B| < o0} .
Then,

e L1 is uncountable and trivially uniformly generatable,
e Lo is countable and trivially non-uniformly generatable, and

* no deterministic generating algorithm G = (G, G, . . .) can generate from L in the limit.

Proof. Notice that every language L 4 in £ contains all the negative integers and some subset A
of the positive integers. Hence, Npec, = Z_, which implies that an algorithm can generate from
L1 without using any input samples, by simply outputting negative integers. Regarding £, notice
that every language L; g contains the first ¢ negative integers and all positive integers except for
the finite set B. We claim that for any such language L; g, the algorithm that just outputs number

16

{1,2,...} achieves generation in the limit, without requiring any input samples from L; g. To
see that, notice that since B is finite it has some maximum element, denoted by z . Notice that
(Z4 \A{1,...,zp}) C L; p. Thus, at timestep ¢ = = g+ 1 the algorithm will generate a valid element
and will keep generating valid elements from that point on. Hence, £ is trivially non-uniformly
generatable. He next show that £ = £ U L5 is not generatable. The proof of this uses an analog of
the diagonalization argument in Theorem[3.1] We produce the complete argument below.

Assume, towards a contradiction, that there exists a deterministic generating algorithm

G=1(61,G2,...)
that generates from £ in the limit. We now describe an adversarial strategy that constructs an
enumeration £ = {wy,ws, ...} of a target language K € £ such that the generator makes infinitely

many mistakes.

For clarity, let:

+ S;" and S; denote the sets of positive and negative numbers enumerated up to time ¢, respec-
tively, i.e., ;7 = {wy,...,w} NZ4, Sy = {wy,...,w} NZ_;

* P, be the set of positive integers outputted by the generator in rounds 1 through ¢.

The adversary’s construction is organized into phases, each divided into two subphases.
Phase 1.

1. Subphase 1-A: In every round ¢, the adversary enumerates the positive integer ¢, i.e.,
Wy = t.

This subphase continues as long as the generator’s output, given the current prefix (1,2, ..., t),
is not an integer greater than ¢. If there is a first round ¢ for which

G(1,2,....t) € Z, \ {1,....t},

then subphase 1-A ends, and we move to Subphase 1-B. If the generator never deviates (i.e.,
never outputs an integer greater that {1,...,t¢}), then the enumeration £ = {1,2,3,...} is
complete for the language K = N, and N € £,. Moreover, by definition, the generator makes
infinitely many mistakes (because it never produces an unseen element of).

2. Subphase 1-B: Let ¢; denote the first time step at which we enter this subphase. In every round
t that we are in this phase, the adversary enumerates the negative integer

wt:—t—tl—l.

This subphase continues until the first time ¢ at which the generator outputs a negative number
that is smaller than the current wy, i.e.,

gt(St) €Z_ and gt(St) < We¢.

If no such round occurs, then the final enumeration £ will be complete for some K € L1, since
it consists of all negative integers and a finite number of positive integers, and the generator will
have made infinitely many mistakes.

Phase & (k > 2). After the end of Subphase (k — 1)-B, the adversary alternates the strategy as follows:

1. Subphase k-A:

 Let t; be the first time of Subphase k-A. The adversary first enumerates a fresh positive
number defined by
pr=1+max{z:2z €S UP,}.

* Then, in every round ¢ =y, ¢, + 1, ... during this subphase, the adversary enumerates
wy = pr + (t — k),

thereby listing an increasing sequence of fresh positive numbers.

17

* This subphase ends when, for the first time, the generator outputs a positive number (given
the current prefix) that exceeds the maximum of the current enumerated positives. An
identical argument to the one we used for subphase 1-A shows that if this subphase never
terminates, then the generator makes infinitely many mistakes and the adversary gives a
complete enumeration of a language from L.

2. Subphase k-B:

» After completing Subphase k-A, the adversary enters Subphase k-B. In every round during
this subphase, the adversary enumerates the number

wy =min S; —1
t 9

introducing a fresh negative number.

* This subphase ends at the first round when the generator outputs a negative number that
is less than w;. An identical argument to the one we used for subphase 1-B shows that if
this subphase never terminates, then the generator makes infinitely many mistakes and the
adversary gives a complete enumeration of a language from £;.

Let us now assume that infinitely many of the phases are executed. Then, the target language is
K =7_U A, where A C N, is determined by the elements enumerated during the subphases k-A,
k € N, hence it is a valid language. Moreover, notice that every time we transition from subphase
k-B to (k4 1)-A, then the generator makes a mistake because the element it outputted is not included
in the constructed enumeration.

Since there are infinitely many phases, and in each phase the generator is forced to err at least once,
the deterministic generating algorithm makes infinitely many mistakes. This contradicts the definition
of generation in the limit. O

B.3 Proof of Theorem 33|

In this section, we prove Theorem [3.3] We begin by stating a more detailed version of Theorem3.3]
Theorem B.4. Let ¥* = Z and let

Li={Lap=(Z_\A)UB,ACZ_ |Al <o0,BCZ,}.

Then, L is is uncountable and trivially non-uniformly generatable but it does not satisfy the EUC
property.

Proof. For each one of uncountably many subsets B C Z, £ contains a language (e.g., Z_ U B)
and, hence, £ is an uncountable collection. To see that £ is trivially non-uniformly generatable notice
that, since every K € £ omits only finitely many negative integers the algorithm that in every round
t generates the largest element from the set Oy = {i € Z_,i < —t,i ¢ S;} generates in the limit. In
fact, this algorithm generates in the limit in the modified setting where .S; = @ for all rounds ¢, hence
it is trivially uniformly generatable.

We now show that £ does not satisfy the EUC property. Consider any target language K and S,
any set of elements of K. Consider the induced version space V' (£, .S;), i.e., the set of languages
from £ containing S;. Assume that Npcy(g,s,)L # S¢ for some ¢. Then, there exists some
Ty € Npev(c,s,)L such that z; ¢ S;. Consider the language L = Z_ \ {w;} . Then, S; C L and
x¢ € L, hence this show that Ncy (¢,s,)L = St (violating the EUC property). O

18

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: We provide proofs of the claims we make in the abstract.
Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss how our results operate in a stylized mathematical model and how a
complete characterization of learnability within this model is still lacking.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

L]

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

19

Justification: We have defined precisely the mathematical model under which our results hold
and have given proof sketches of the approaches to get the results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: No experiments are included.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

20

Answer: [NA]
Justification: No data or code is used.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

» The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis of Normality
of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [NA]

Justification: Justification: The paper does not include experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have followed the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]
Justification: The work is theoretical and the results hold under a mathematical model.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,

deployment of technologies that could make decisions that unfairly impact specific groups),

privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

22

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any models or data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not

require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the

paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA|
Justification: We do not use such assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.
 The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

23

paperswithcode.com/datasets

14.

15.

16.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: No such study was conducted for the paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|
Justification: The paper does not invlove such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only used LLMs for text editing.
Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Our Results and Technical Overview
	Non-Closure Under Finite Unions
	On Finite Union of Non-Uniformly Generatable Collections
	On the EUC Property and Non-Uniform Generation
	Technical Overview

	Concluding Remarks
	Further Results
	Formal Lower Bound of Non-Generatability
	Extensions to a Family of Constructions

	Proofs
	Proof of thm:notClosed
	Proof of thm:simple
	Proof of thm:euc

