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Abstract
Large Language Models (LLMs) have shown
remarkable capabilities, yet ensuring their out-
puts conform to strict structural or grammatical
constraints remains challenging, which is crit-
ical in function calls and domain-specific lan-
guage (DSL) generation. Constrained decoding
with context-free grammar is a flexible approach
to guarantee LLMs’ adherence to a specific for-
mat by dynamically building a token logits mask.
However, creating this mask requires checking
the validity of all tokens in the LLM vocabu-
lary at every decoding step, which often incurs
significant overheads in existing constrained de-
coding engines. To address this challenge, we
propose ZapFormat, a novel dynamic pruning
strategy based on the Earley algorithm that iden-
tifies and eliminates invalid or redundant Earley
states in real-time, significantly reducing mem-
ory occupation of the Earley algorithm’s states.
This further enables us to use a state cache to
speed up structured generations on a large num-
ber of queries. We implemented ZapFormat in a
new constrained decoding engine called Forma-
tron which also incorporates existing optimiza-
tions. Through comprehensive experiments on
structured generation tasks, including JSON gen-
eration, JSON Schema validation, and semantic
parsing, we demonstrate that Formatron not only
consistently maintains high-precision compliant
outputs but also achieves significant improve-
ments in inference speed up to 2x compared to
state-of-the-art implementations. More impor-
tantly, Formatron is generally applicable across
various LLM architectures. We release Formatron
as open source at https://github.com/Dan-wanna-
M/formatron.
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1. Introduction
In recent years, Large Language Models (LLMs) have
demonstrated remarkable progress, achieving breakthrough
advances across multiple frontier domains including natural
language processing (OpenAI & Sandhini Agarwal, 2024),
code generation(Chen et al., 2021; Wang et al., 2021), and
robotic control (Liu et al., 2023; OpenAI, 2024). As their ap-
plications continue to expand, a critical research challenge
has emerged: how to guide models to generate text that
precisely adheres to required grammatical and formatting
specifications. In numerous practical applications, the struc-
tural conformity of output text is paramount (Beurer-Kellner
et al., 2023; Lundberg et al., 2023). For instance, in func-
tion calling or external tool interactions, systems typically
require generated text to comply with specific parseable for-
mats (e.g., JSON) , imposing heightened demands on LLMs
(Shin et al., 2021; Roy et al., 2024; Fang et al., 2023).

Constrained decoding (Deutsch et al., 2019; Kuchnik et al.,
2023) is one of the prevalent technical approaches to tackle
this challenge, which filters out tokens that violate grammat-
ical requirements by screening the entire vocabulary at each
decoding step, thereby ensuring model outputs conform
to specified formal grammars. Among various constraint
forms, context-free grammar (CFG) (Chomsky, 1956) is
regarded as a flexible and universal constraint format due to
its robust descriptive capabilities across multiple languages
and structures. However, when applying these methods to
large language models, several common challenges emerge:

1. Computational Overhead from Large Vocabularies
and Complex Grammars. To ensure each newly decoded
token correctly follows CFG rules, it is typically necessary
to continuously assess the compatibility of all candidate
tokens in the vocabulary and maintain the grammar parsing
stack or state in real-time. For scenarios involving large vo-
cabularies, long sequences, or complex grammars, this can
lead to increases in computational and memory consumption
(Geng et al., 2023; Beurer-Kellner et al., 2024).

2. State Redundancy and Maintenance Complexity. De-
coding requires storing and updating multiple parsing states,
including information that may branch or backtrack. When
state quantities rapidly accumulate, the timely elimination of
repetitive, invalid, or unused states becomes crucial (Willard
& Louf, 2023). If not handled properly, these redundant
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states can trigger cache misses, increase memory usage,
and ultimately result in decreased inference speeds (Opedal
et al., 2023).

We propose ZapFormat, a novel dynamic pruning strat-
egy based on the Earley algorithm, which serves as the
core component of our new constrained decoding engine
Formatron. This approach identifies and eliminates invalid
or redundant Earley states in real-time, significantly reduc-
ing memory occupation. Formatron integrates ZapFormat
with state-of-the-art optimizations to achieve both grammat-
ical compliance and computational efficiency.

The key insight behind our approach is that during the pars-
ing process, many intermediate parsing states become “ob-
solete” or “dead” – meaning they no longer contribute to
finding valid parsing paths but continue to consume mem-
ory resources. Traditional parsing algorithms, including
the widely-used Earley algorithm, tend to accumulate these
unnecessary states throughout the decoding process, leading
to memory bloat and reduced performance.

Our core mechanism continuously tracks the utility of pars-
ing states during decoding, allowing Formatron to swiftly
identify and discard these dead states while maintaining only
the states useful for parsing. For instance, consider parsing
the input “aa” with the grammar (A → AB | B; B → a).
In the baseline Earley parser, Earley Set 1 (after scanning
the first ‘a’) retains four states: the completed (B → a•; 0),
active items (A → •AB; 0) and (A → B•; 0), and the
predicted (B → •a; 1). However, the completed state
(B → a•; 0) becomes obsolete once subsequent parsing
states (e.g., Earley Set 2’s (A → AB•; 0)) no longer ref-
erence its start position. Formatron’s dynamic pruning
removes such dead states immediately, reducing memory
footprint and lowering overall state counts. This approach
ensures that only relevant states propagate, streamlining the
parsing process without compromising grammatical adher-
ence.

Experimental evaluations on structured generation tasks
demonstrate Formatron’s efficacy. Experimental results
demonstrate that while meeting strict format output require-
ments, this method effectively reduces memory usage and
accelerates inference, providing an efficient and universal
technical pathway for structured generation in large lan-
guage models. Our contributions are as follows:

• We propose a dynamic pruning method based on the
Earley algorithm, which significantly reduces memory
usage during inference and improves computational
efficiency through real-time cleanup of invalid states.

• We design and implement a new constrained decod-
ing engine, Formatron, integrating dynamic pruning
with existing optimization techniques. Across multi-
ple structured generation tasks (such as JSON, JSON

Schema, and semantic parsing), it maintains high-
precision output while achieving up to 2x inference
speed improvements.

• We demonstrate the universality of the Formatron en-
gine, showcasing its broad applicability across various
language model architectures, efficiently supporting
structured generation tasks in both large-scale language
models and task-specific applications.

2. Related Work
Constrained Decoding is a method that ensures text gen-
erated by Large Language Models (LLMs) conforms to
specific formats or task requirements. Within the archi-
tecture of LLMs, tokens serve as atomic processing units
that mediate between raw text input and generated output.
While each token represents a fixed-length character se-
quence, this representation often fails to preserve linguistic
integrity—either by splitting semantically coherent units,
syntactically meaningful structures, or fragmenting multi-
byte Unicode characters (Wang et al., 2020). For instance, as
discussed in (Beurer-Kellner et al., 2024), a standard JSON
string like ”I am Van” might be tokenized into <” I am >
and < Van” >, which disrupts both semantic and syntactic
coherence. These tokenization limitations pose significant
challenges for structured text generation tasks, especially
in applications requiring strict syntactic compliance or fine-
grained semantic control, such as output requirements for a
valid JSON format. Prior work has addressed similar chal-
lenges in semantic parsing (Xiao et al., 2016) and syntactic
code generation (Yin & Neubig, 2017), demonstrating the
importance of incorporating structural constraints during
text generation.

Several works (Beurer-Kellner et al., 2023; Lundberg et al.,
2023; Willard & Louf, 2023) use regular expressions for
constrained decoding, but the approach’s expressiveness
is also limited to regular expressions, which excludes all
formats that can only be described by CFG. These formats
include json grammar, json schema, almost all programming
languages, and more. To support full CFG, several studies
(Scholak et al., 2021; Poesia et al.; Geng et al.) utilise a
parser and scanner running in parallel with the LLM, and
then calculate online which tokens are valid continuations
at each step. However, these approaches incur a relatively
high inference overhead, and in the worst case, they must
examine a nontrivial subset of vocabulary at each step.

Recently researchers have worked on achieving highly effec-
tive and efficient constrained decoding. Beurer-Kellner et al.
(2023) use precomputation, speculative decoding and oppor-
tunistic masks to achieve minimally invasive and efficient
constrained decoding. Koo et al. proposed an approach
based on automata theory to provide an efficient closed

2



Earley-Driven Dynamic Pruning for Efficient Structured Decoding

form solution for regular languages. Recent work XGram-
mar (Dong et al., 2024) significantly accelerates constrained
decoding by classifying the tokens in the vocabulary into
context-independent and context-dependent tokens, which
enables effective usage of precomputable adaptive context-
independent token masks. To further accelerate constrained
decoding, our work investigates a dynamic pruning strategy
for the Earley algorithm that is able to identify and elim-
inate invalid or redundant Earley states in real-time, thus
significantly reducing the memory footprint of the Earley
algorithm states. This further enables us to leverage Earley
state caching to accelerate structured generation.

3. Preliminaries
3.1. Context-Free Grammar

In computer science, Context-Free Grammar (CFG) repre-
sents a crucial grammar type commonly used to describe
programming language syntax. To understand CFGs in-
tuitively, think of them as a set of rules that define how
to construct valid sentences or structures, similar to how
grammatical rules in natural language define valid sentence
constructions.

A CFG consists of a set of rules (or productions), where
each rule has a non-terminal symbol on the left side and
a sequence of terminal symbols and non-terminal symbols
on the right side. Here, non-terminal symbols represent
abstract structural components (like ”noun phrase” in lin-
guistics), while terminal symbols are the actual characters
or words that appear in the final text. Each rule takes the
form:

A → α

Where A is a non-terminal symbol and α is a sequence com-
posed of terminal and non-terminal symbols. For example,
a simple addition grammar might have the following rule:

Expression → Expression+ Term | Term

This grammar rule indicates that an expression can be com-
posed of either another expression plus a term, or simply a
term.

In practical applications, CFGs serve as the backbone for
parser design in compiler construction and natural language
processing. Their formal nature provides a clear framework
for analyzing and processing structured input, whether in
programming languages or natural language text. For con-
strained text generation with large language models, CFGs
act as blueprints that specify exactly what constitutes valid
output, for instance, to ensure that generated JSON follows
proper syntax or that code snippets comply with program-
ming language rules.

�0:  � → � + �

�0:  � →∙ � + �, (0)

�0:  � →∙ �, (0) �0:  � →∙ �, (0)

�1:  � → � ∙ , (0)

�1:  � → � ∙+ �, (0)

Scan “a” Scan “a”

Reject

Scan “+”

�2:  � → � +∙ �, (0)

�2:  � →∙ �, (2) �2:  � →∙ �, (2)

Scan “d” Scan “d”

�3:  � → � ∙ , (2)Reject

�3:  � → � + � ∙ , (0)

Figure 1. Early parse. This diagram provides a detailed illustration
of the Earley parsing process for the input string ’a + d’ based on
the grammar S → A + B,A → a|c,B → b|d. In the diagram,
red arrows indicate Predict operations; yellow arrows represent
Scan operations; and green arrows denote Complete operations.

3.2. Earley’s Algorithm

The Earley algorithm represents a dynamic programming
approach to parsing context-free grammars, notable for its
linear time and space complexity for all LR(k) grammars
(Leo, 1991), and its polynomial-time O(n3) parsing capabil-
ity for ambiguous grammars. Unlike simpler parsing meth-
ods that might get stuck or fail when encountering complex
grammar structures, the Earley algorithm can handle any
context-free grammar, making it particularly valuable for
real-world applications where grammar complexity varies
significantly. It not only avoids the exponential complex-
ity that plagues many other parsing approaches but also
maintains the capability to parse all context-free grammars.

The algorithm maintains a sequence of state sets
S[0], S[1], . . . , S[n], where each set S[i] contains Earley
items representing all valid partial parses at position i in the
input string. Think of these state sets as snapshots of all
possible ways the parser could interpret the input up to each
position—similar to how a human reader might consider
multiple interpretations of a sentence while reading it word
by word. Each Earley item within these sets takes the form
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(X → α • β, j), where X → αβ is a grammar rule with α
and β being sequences of terminals and non-terminals, the
dot (•) indicates the current parsing position within the rule
and j indicates where in the input string this rule started
being applied. The dot can be understood as a bookmark
showing ”we’ve successfully matched everything before this
point, and we’re looking for what comes after.”

The algorithm parses the input string through three funda-
mental operations:

The prediction operation handles states of the form (X →
α • Y β, j) where Y is a non-terminal symbol; it adds all
rules starting with Y to the current state set S(k), where k
is the current position.

The scanning operation (X → α • aβ, j) where a is a
terminal symbol; if a matches the current input symbol, it
adds the state (X → αa•β, j) to the next state set S(k+1).

The completion operation activates when encountering
states where the dot has reached the end (X → γ•, j),
where γ represents the portion of the rule that has been fully
matched up to this point; it finds all states in S(j) where
the dot precedes X (like Y → α • Xβ, i), and adds the
advanced state (Y → αX •β, i) to S(k). Importantly, each
state set maintains only unique states without duplicates.

Consider a simple grammar: S → AB, A → a, B → b
processing the input ”ab” with the start rule S → •AB.
Through prediction, it adds A → •a. Upon scanning ’a’,
it creates A → a• in S[1], leading to S → A • B. The
process continues until reaching S → AB• in the final state
set, confirming a successful parse. This simple example
demonstrates how the algorithm systematically explores
parsing possibilities: it predicts what could come next, scans
to match actual input, and completes patterns when they’re
fully recognized.

3.3. LLM Constrained Decoding

Large Language Models (LLMs) like GPT-4, Llama, and
Mistral generate text in an auto-regressive manner: at each
step, the model predicts the next token based on previously
generated tokens (or input prompt). Specifically, the model
outputs a logits vector over its vocabulary, which is con-
verted into a probability distribution through the softmax
function for token sampling.

When generating text that must conform to specific syntactic
structures or formats (e.g., JSON, SQL queries, or templated
text), directly sampling from the model’s probability distri-
bution alone may not guarantee valid outputs. Constrained
decoding addresses this challenge by applying a logits mask
before token sampling. This process sets the logits of in-
valid tokens that violate output formats to −∞, effectively
zeroing their probabilities after softmax, ensuring only

Out Token

LLM Inference

Predict Logits

5 15 32 12

2 3 125 15

1 1 00 1

Grammar

Token Mask

Softmax

Figure 2. Constrained decoding. Constrained decoding can be
achieved by masking the illegal tokens at the current step.

valid tokens can be sampled.

To illustrate, consider generating a JSON structure with
a simple CFG JSON -> "{" PairList "}", where
PairList represents key-value pairs. During generation,
after producing ’{’, an Earley parser identifies that only
’"’ (for starting a string) or ’}’ (for empty objects) are
valid next tokens. The constrained decoding step then masks
all other tokens’ logits to −∞, restricting sampling to only
these valid tokens. This ensures the generated text strictly
adheres to the specified grammar.

4. Formatron
4.1. Motivation

Although the Earley algorithm can parse any context-free
grammar and possesses theoretical universality, it often en-
counters significant memory and computational overhead
in practical applications. When the input length is n, the
Earley parser constructs a set S[i] at each position i (from
0 to n). For scenarios involving large inputs or numerous
grammar rules, this scale often leads to excessive memory
consumption.

Furthermore, to perform backtracking and check expandabil-
ity during the Complete steps, the parser typically retains
all previous sets. However, in many cases, certain sets or
items become obsolete in subsequent steps: for instance,
when parsing JSON objects, once a key-value pair has been
fully recognized, there is no need to continue tracking its
associated states. Similarly, terminals are often defined
using regular expressions and implemented as finite state
machines (FSM) for matching; once a terminal’s match is
completed, the corresponding FSM instance has fulfilled
its recognition purpose, and retaining it further only unnec-
essarily occupies memory resources. In modern computer
architectures, these ”dead” or ”idle” states result in numer-
ous ineffective accesses, increasing the probability of cache
misses, thereby slowing down program execution. More
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formally, we can define the rules that can create such ”dead”
states in parser as High-level Regular Rule(HRR) in CFG:
let the rule’s LHS symbol be A, then the rule is HRR if the
rule satisfies one of the following forms:

{A → c, A → Ba, A → ϵ}

where A,B are non-terminal symbols, B is not ambiguous,
a, c are terminal symbols and ϵ denotes the empty string.
Intuitively, HRR creates ”dead” states because after c, ϵ, B
are parsed, we technically no longer need to record the states
before or during c, ϵ or B’s parsing, while existing parsing
algorithms retain them by default.

When the Earley algorithm is employed for constrained de-
coding in conjunction with large language models (LLMs),
the aforementioned issues become even more severe. Un-
like traditional Earley algorithm processing a static input
sequence ”left-to-right”, constrained decoding needs to pro-
cess all tokens in the vocabulary along with already gen-
erated tokens so that we can construct a logits mask at
each decoding step to filter out candidate tokens that vio-
late syntactic constraints. This requires the Earley parser to
real-time update and return viable tokens after each LLM
decoding step; however, if the parser retains numerous irrel-
evant states or sets and fails to promptly clean up ”dead” or
”idle” Earley items, it slows down the decoding process.

To address this, we propose a dynamic pruning strategy
that aims to minimize redundant storage and repeated com-
putations of ineffective sets while preserving the theoretical
completeness of the Earley algorithm. In simple terms, this
strategy ”online” tracks which sets and states may still be
referenced in subsequent steps during the parsing process,
and promptly discard items that no longer contribute, sig-
nificantly reducing memory usage and accelerating parsing
speed.

4.2. ZapFormat

This section introduces ZapFormat, a novel method for track-
ing dependencies among Earley items (Earley, 1970) and
applying a reachability-based pruning strategy in real time.
By maintaining a dependency graph, we can effectively
remove items that will not contribute to any valid parse,
thereby reducing the overall number of states.

4.2.1. DEPENDENCIES

To enable more effective tracking of parsing progress and
dependencies, we extend the traditional Earley item nota-
tion to (A → α • β, i, j) in this enhanced representation,
(A → α • β) denotes a production rule from the grammar,
while the span [i, j] precisely captures α’s coverage of the
input sequence from position i up to (but not including) j.
Based on the extended representation, we proceed to define
dependencies. Three types of inter-item dependencies natu-

rally arise from the Earley algorithm’s operations: Predict,
Scan, and Complete.

Predict Dependency. When an item p = (A → α •
Bβ, i, j) triggers the prediction of all rules B → γ in the
grammar, each new predict item q = (B → • γ, j, j) is
said to depend on p. We then say Dpred(q, p) ⇐⇒ B →
γ ∈ p and p = (A → α • Bβ, i, j).

Scan Dependency. A SCAN operation moves the dot past a
terminal symbol that matches the current input token. If the
next input token is a and we have an item p = (A → α •
aβ, i, j), then scanning yields q = (A → αa • β, i, j+1).
We then say: Dscan(q, p) ⇐⇒ input[j] = a and p =
(A → α • aβ, i, j).

Complete Dependency. The completion operation occurs
when we have fully parsed a nonterminal symbol in the
grammar. Specifically, when an item has its dot at the end,
indicating a complete derivation of a nonterminal B, it can
be used to advance all items whose postdot nonterminal is
its left hand side. Suppose p = (B → γ • , k, j), q =
(A → α • Bβ, i, k), and we form the new item r = (A →
αB • β, i, j). We then say Dcomp(r, p, q) ⇐⇒ p =
(B → γ • , k, j) and q = (A → α • Bβ, i, k).

4.2.2. DEPENDENCY GRAPH

To efficiently track these dependencies, we construct a di-
rected graph

G = (V,E),

where each vertex v ∈ V corresponds to an Earley item,
and each directed edge (x, y) ∈ E indicates that y depends
on x. This graph is maintained dynamically as new items
are created.

The dependency graph construction process operates on
Earley item sets, maintaining vertices V and edges E to
track parsing dependencies. When the parser begins, V is
empty and grows as new items are discovered. For each
item creation through PREDICT, SCAN, or COMPLETE op-
erations, corresponding edges are inserted to record depen-
dencies from source items. The graph updates dynamically
as new Earley item sets (S0, S1, . . .) are formed, ensuring
comprehensive dependency tracking throughout the parsing
process.

4.2.3. REACHABILITY AND DYNAMIC PRUNING

For effective pruning, we first define the reachability closure.
Note that PREDICT, SCAN, and COMPLETE operations all
starts by checking items in the lastly created Earley set.
Intuitively, this means the reachability of an item can be
defined as whether the item depends on any item in the
last set. More formally, given an item in an Earley set,
we determine which items should be retained through the
following definitions:
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�0 �1 �2

A →∙ AB, (0)
A →∙ B, (0)
B →∙ ’a’, (0)

B → ’a’ ∙ , (0)
A → B ∙ , (0)
A → A ∙ B, (0)
B →∙ ’a’, (1)

B → ’a’ ∙ , (1)
A → AB ∙ , (0)
A → A ∙ B, (0)
B →∙ ’a’, (2)

Grammar:
A → AB|B
B → ’a’

Input: “a”

Figure 3. Dynamic pruning. Red parts indicate prunable nodes,
and green dashed lines represent Complete dependency paths.
First,already completed Earley items only lead to modifications
on their residing Earley set. Once their residing Earley set is fully
processed, we can remove them. In addition, after one Earley set
is fully processed, if an Earley set is not referenced by the union
of reference chains of all items in the last Earley set, then it can be
removed.

Reachability Closure: For each item x ∈ V , if there exists
a path from x to an item a in the last earley set, we consider
this item ”reachable”. Formally, we define the reachability
closure as:

Reach(a) = {x ∈ V | x →∗ a},

where →∗ denotes a directed path (potentially multi-step)
from x to a.

Active Item Set: We define the active item set R as the union
of all reachable items:

R =
⋃
a∈V

Reach(a).

Only items within this active set need to be retained.

We enhance the original Earley parsing algorithm by intro-
ducing a compact operation after the complete phase and
before prediction phase, evaluating each item’s retention
necessity. This phase ordering eliminates useless computa-
tions on newly predicted items(which always only depend
the items before prediction in the last set). Specifically, the
Compact operation examines all items in the current set,
eliminating those that do not belong to the active item set
R.

To ensure both correctness and efficiency of the pruning op-
erations, we implement an incremental update strategy. The
active item set is updated after each parsing phase, particu-
larly following the completion and compaction phases. This
dynamic maintenance strategy ensures that pruning opera-
tions remain responsive to parsing state changes, avoid re-
searching the whole V repeatedly, and maintain algorithmic
correctness. By combining forward reachability analysis
with dynamic pruning, our algorithm significantly reduces
the number of items requiring processing while preserv-
ing parsing correctness. This forward reachability-based

dynamic pruning approach not only provides theoretical
completeness guarantees but also demonstrates superior per-
formance optimization in practice.

4.3. Context-independent Tokens Mask Cache

Inspired by XGrammar’s (Dong et al., 2024) context-
independent token mask cache, we use a token mask cache
method to enhance decoding efficiency in our constrained
decoding engine. The core of token mask cache mechanism
categorizes tokens into two types: Context-Independent
tokens, whose validity can be determined by examining
postdot terminals of items in the last Earley set, and Context-
Dependent tokens, which require full parsing context. The
token mask cache accelerates the parsing process by pre-
computing valid and invalid context-independent tokens for
each terminal, which are then efficiently stored as bitsets.
Note that unlike XGrammar, we do not consider the pos-
sible suffix strings of terminals when determining invalid
context-independent tokens to save precomputation time. At
runtime, the valid and invalid context-independent tokens
are retrieved directly from the cache, eliminating redundant
computations and thus reducing the overall decoding time.

In scenarios where multiple postdot terminals exist, the
token masks from each terminal are merged into a single
final token mask. By reducing the number of computations
required for token validation through leveraging precom-
pution, the adaptive token mask cache significantly speeds
up the decoding process.

4.4. Rejection Prefix Optimization

We introduce a prefix-based early rejection mechanism that
enhances parsing efficiency by identifying grammatically
impossible input paths at the earliest stage of the parsing
process. The optimization maintains a set of “rejected pre-
fixes” – minimal byte sequences that definitively preclude
valid parses regardless of subsequent input extensions.
These prefixes represent fundamental grammatical viola-
tions that cannot be completion. The optimization operates
by maintaining and continuously updating these sequences
that, when encountered during parsing, immediately indi-
cate the impossibility of a valid parse.

For instance, in a context-free grammar (CFG), if the pre-
fix "aaac" constitutes a rejected prefix according to the
grammar rules. Once this sequence is detected (e.g., in input
"aaacdefrf"), no grammatical derivation can produce
valid parse trees for any extension of this prefix, regardless
of subsequent characters.

When a rejected prefix is detected, the parser can safely
discard all extensions of that prefix without state exploration.
This set is updated whenever a token is rejected at each
decoding step.
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4.5. Grammar Transformation

To optimize constrained decoding efficiency, we use a
grammar transformation framework (Hopcroft & Ullman,
1979a;b). The primary transformation step involves struc-
tural optimization, where we identify and eliminate useless
rules that cannot contribute to valid derivations, thereby
reducing the grammar size without affecting its expressive-
ness. This is particularly helpful for grammar generated
from a high-level format like json schema, where the gener-
ator, potentially built by third parties, may fail to remove all
unreferenced rules.

Another crucial optimization addresses null rules. We
systematically handle rules that can derive empty strings
through a three-phase approach: first identifying all null
symbols, then generating alternative productions, and fi-
nally selectively retaining specific null productions where
necessary. This transformation substantially reduces the
branching factor during parsing.

5. Results
5.1. Experimental Setup

All experiments were conducted on a system equipped
with an NVIDIA GeForce RTX 3090 (24GB VRAM)
and an AMD EPYC 7452 32-core processor. The soft-
ware environment consisted of PyTorch 2.4.0 and CUDA
12.4, with model inference performed using Transformers
v4.48.0. Four pre-trained large language models were em-
ployed in this study: google/gemma-2-9b-it (Gemma Team
& Shreya Pathak, 2024), meta-llama/Llama-3-8B-Instruct
(Dubey et al., 2024), mistralai/Mistral-7B-Instruct-v0.3
(Jiang et al., 2023), and qwen/Qwen2.5-7B-Instruct (Yang
et al., 2024), all utilizing half-precision (FP16) inference.
For more details of Python libraries, see the appendix A.

Baselines. lm-format-enforcer (v0.10.9) (Jiang et al., 2024)
implements incremental validation based on syntax tree
pre-computation, suitable for structured constraints but
with significant memory overhead. outlines (v0.1.13)
(Willard & Louf, 2023) employs finite state machines for
dynamic masking of invalid tokens, excelling in regular
constraints but not directly applicable to context-free gram-
mars. One significant consequence of this limitation is
that they can only support a small subset of json schemas
(dottxt-ai/outlines contributors, 2023). XGrammar (v0.1.10)
(Dong et al., 2024) supports Context-Free Grammars (CFG)
through simulating pushdown automata with tree-structured
stacks, offering high versatility but introducing parsing la-
tency. It also cannot directly handle left-recursive CFGs
(mlc-ai/xgrammar contributors, 2024).

Test Task. Geoquery (Davis & Meltzer, 2007) transforma-
tion converts natural language queries into FunQL, adher-

ing to fixed predicates and finite entity constraints. JSON
Schema (Pezoa et al., 2016) generation produces JSON
instances compliant with type, enumeration, and regular
expression constraints. JSON Grammar generation creates
syntactically valid and semantically coherent nested JSON
structures with cross-field dependencies. Data examples are
shown in Appendix D.

Evaluation Metrics. Throughput represents a fundamen-
tal metric in the assessment of LLM constrained decoding
performance, defined as the ratio of constraint-satisfying to-
kens generated to temporal duration, expressed in tokens per
second (Token/s). This measurement provides insights into
computational efficiency and resource utilization efficacy.

5.2. Experimental Results

We conducted a comprehensive evaluation of the forma-
tron engine across four mainstream large language models.
Table 1 presents a performance comparison of different ap-
proaches under various constraint types:

Performance Advantage Analysis. The experimental re-
sults robustly validate the efficacy of formatron. In most
tested scenarios, formatron achieved significant perfor-
mance improvements compared to baseline methods. These
enhancements can be attributed to formatron’s core inno-
vation: dynamically pruning invalid or redundant Earley
states, substantially reducing memory consumption during
constraint parsing. Coupled with an efficient caching mech-
anism, formatron consistently maintains high-throughput
output. These empirical data comprehensively demonstrate
formatron’s performance superiority in constrained decod-
ing tasks.

Robustness Analysis. In terms of model robustness, for-
matron exhibits exceptional cross-architectural adaptability.
By testing across models with different scales and architec-
tures, formatron consistently maintains stable performance,
verifying its characteristic of being generally applicable
across various LLM architectures. From 9B to 7B model
scales, formatron demonstrates consistent high-efficiency
performance.

Regarding task robustness, formatron excels in diverse con-
strained decoding tasks. From JSON generation to JSON
Schema validation and semantic parsing, formatron con-
sistently produces high-precision compliant outputs. This
cross-task stability comprehensively substantiates the reli-
ability and generalizability of the formatron technical ap-
proach.

Comparative Method Analysis. Formatron possesses ad-
vantages compared to existing methods. While outlines only
supports regular grammars through finite state automata,
formatron manages to support full context-free grammar
with Earley algorithm and achieves superior performance
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Table 1. Comparative Throughput Performance of Different Meth-
ods in Constraint Parsing Tasks (tokens/s). Here, ‘-‘ indicates that
the method is not applicable to the task, and bold indicates the best
result. All experimental results were obtained in the same local
environment. lm-format represents lm-format-enforcer. Json s
represents Json Scheam and Json g represents Json Grammar.

Model Method geoquery json s json g

G
em

m
a lm-format - 60.08 22.95

Outlines - 61.32 -
Xgrammar 616.66 1473.99 10245.04
Formatron 12174.68 7943.34 8668.69

L
la

m
a3

lm-format - 120.56 47.79
Outlines - 114.10 -
Xgrammar 2758.98 2796.36 7757.15
Formatron 6700.87 8207.85 8535.64

M
is

tr
al

lm-format - 576.11 372.55
Outlines - 598.98 -
Xgrammar 5926.64 8421.43 15273.72
Formatron 11703.00 10639.87 12046.54

Q
w

en

lm-format - 45.31 21.26
Outlines - 112.10 -
Xgrammar 1725.86 2037.26 7290.30
Formatron 6399.68 9234.08 9811.02

over outlines on regular grammars. Unlike lmformaten-
forcer’s naive input token prefix cache, formatron’s state
cache with dynamic pruning greatly increases cache hit rate
and decreases memory occupation, since multiple different
input token sequences can correspond to the same pruned
Earley states. Notably, XGrammar, developed concurrently
with our work (published within three months of our paper
submission), represents a contemporary approach in this do-
main. By combining our novel algorithm with optimizations
proposed by XGrammar, formatron achieves competitive
performance across most tasks, with XGrammar showing
superior performance in certain specific scenarios (e.g., geo-
query on Gemma and Json s on Mistral), while formatron
excels in the majority of other tasks without incurring more
precomputation costs. These advantages substantially en-
hance formatron’s processing efficiency in constrained de-
coding tasks.

To further validate the effectiveness and reliability of our
proposed method, we conducted two additional experiments
addressing potential concerns about our evaluation method-
ology. First, we performed a comprehensive analysis of
whole pipeline component performance. Second, we eval-
uated output quality using accuracy metrics to ensure that
our efficiency gains do not come at the expense of gener-
ation quality. The detailed results of these supplementary
experiments are presented in Appendix B.

Table 2. Throughput Comparison of Different Models and Meth-
ods Across Multiple Runs. lm-format represents lm-format-
enforcer.

Model Method Number of Runs

1 run 3 run 5 run 10 run

G
em

m
a lm-format 60.08 63.48 66.15 75.84

Outlines 61.62 61.66 62.00 62.13
Xgrammar 1473.99 1577.05 1564.97 1551.51
Formatron 7943.34 10609.08 11323.63 11993.89

L
la

m
a3

lm-format 120.56 121.51 139.99 159.34
Outlines 114.10 104.71 105.13 103.44
Xgrammar 2796.36 2533.45 2578.91 2629.54
Formatron 8207.85 10271.73 11018.91 11945.94

M
is

tr
al

lm-format 576.11 723.72 794.30 796.68
Outlines 598.98 634.63 649.78 641.22
Xgrammar 8421.43 7673.90 7699.77 7885.20
Formatron 10639.87 13522.77 13841.85 14424.69

Q
w

en
lm-format 45.31 41.89 46.65 49.47
Outlines 112.10 89.82 90.13 90.22
Xgrammar 2037.26 2247.04 2299.04 2284.37
Formatron 9234.08 10537.26 11397.31 12202.48

5.3. Multiple Runs

To mitigate the impact of random factors, we conducted
multiple runs of experiments on Json Schema. To con-
duct multiple runs, we utilized LLM for data augmentation.
For further details, please refer to the appendix E. The ex-
perimental results (shown in Table 2) demonstrate that our
proposed Formatron method significantly outperforms ex-
isting baseline approaches in terms of throughput. Through
systematic evaluation across different numbers of runs, we
observed several key trends:

First, Formatron exhibits remarkable performance advan-
tages in single-run scenarios. Across all tested models, For-
matron achieves substantially higher throughput compared
to baseline methods, with particularly notable advantages in
the Mistral and Qwen models. This performance enhance-
ment can be primarily attributed to Formatron’s dynamic
pruning mechanism, which effectively reduces redundant
operations in computation paths.

Furthermore, in multi-run scenarios, we observed an inter-
esting performance evolution pattern. Formatron demon-
strates progressive throughput improvement as the number
of runs increases, showing consistent performance gains
from three runs to five and ten runs. In contrast, baseline
methods show limited improvement in multi-run scenarios,
exhibiting stability but lacking breakthrough performance.
This phenomenon demonstrates Formatron’s performance
stability and robustness across extended operations.

8
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Table 3. Experimental results of ablation. Here, ”-& cache” in-
dicates the ablation of the cache in addition to the ablation of
pruning.

LLM Method
Number of runs

3 run 5 run 10 run

G
em

m
a Formatron 10609.08 11323.63 11993.89

-pruning 6981.35 6628.69 7674.78

- & cache 3595.48 3038.70 3365.96

L
la

m
a3 Formatron 10271.73 11018.91 11945.94

-pruning 6269.24 7064.69 7619.57

-& cache 3464.36 3438.40 3445.73

m
is

tr
al Formatron 13522.77 13841.85 14424.69

-pruning 9727.00 9824.90 9707.45

-& cache 8845.90 8204.43 7669.42

qw
en

Formatron 10537.26 11397.31 12202.48

-pruning 8635.20 9476.70 10048.19

-& cache 4189.57 4180.18 4196.09

5.4. Ablation Study

To investigate the contribution of each component in Forma-
tron, we conducted ablation experiments by removing the
pruning and caching mechanisms. Table 5.4 presents the
results across different models and run configurations.

The ablation study reveals that removing the pruning mech-
anism (-pruning) results in significant performance degrada-
tion, with throughput reductions of 30-50% for most models,
demonstrating its crucial role in optimization. The further
removal of caching (-& cache) generally leads to additional
performance deterioration.

In addition, even with both pruning and caching ablated,
our method still outperforms several baselines, demonstrat-
ing the substantial contributions of other optimizations dis-
cussed earlier, including prefix rejection and grammar trans-
formation.

On the other hand, in order to validate our claims regarding
memory reduction, we conducted additional experiments
measuring the maximum memory usage (in MB) during
constrained decoding (Table 4). The results show that our
pruning mechanism reduces memory consumption. These
results confirm that our approach successfully reduces mem-
ory footprint by eliminating redundant Earley states.

6. Conclusion
We present Formatron, an efficient LLM constrained decod-
ing engine that achieves 1.5-2× speedup over state-of-the-art
method. Our Formatron contains two core innovations: (1)

Table 4. Maximum memory usage comparison during constrained
decoding.

Model Method Max Memory Usage (MB)

Llama3 Formatron 1635.92
w/o pruning 1655.48

Mistral Formatron 1519.09
w/o pruning 1530.77

The proposed ZapFormat algorithm based on the identifi-
cations of HRR in CFG, which reduces memory usage via
dynamic Earley state pruning based on dependency reacha-
bility analysis; (2) A hybrid optimization framework com-
bining grammar-aware token masking with prefix rejection.
Evaluations across JSON generation and semantic parsing
tasks demonstrate consistent performance improvements
while maintaining 100% structural compliance, establish-
ing new efficiency benchmarks for grammar-guided LLM
decoding.
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J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,
Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,
Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D. W., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Babuschkin, I., Balaji, S., Jain, S., Carr, A.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M. M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish,
S., Sutskever, I., and Zaremba, W. Evaluating large lan-
guage models trained on code. ArXiv, abs/2107.03374,
2021. URL https://api.semanticscholar.
org/CorpusID:235755472.

Chomsky, N. Three models for the description of language.
IRE Transactions on information theory, 2(3):113–124,
1956.

Davis, S. and Meltzer, P. S. Geoquery: a bridge between the
gene expression omnibus (geo) and bioconductor. Bioin-
formatics, 23(14):1846–1847, 2007.

Deutsch, D., Upadhyay, S., and Roth, D. A general-purpose
algorithm for constrained sequential inference. In Pro-
ceedings of the 23rd Conference on Computational Natu-
ral Language Learning (CoNLL), pp. 482–492, 2019.

Dong, Y., Ruan, C. F., Cai, Y., Lai, R., Xu, Z., Zhao, Y.,
and Chen, T. Xgrammar: Flexible and efficient struc-
tured generation engine for large language models. arXiv
preprint arXiv:2411.15100, 2024.

dottxt-ai/outlines contributors. Implement json
schema field constraints 215, August 2023.
URL https://github.com/dottxt-ai/
outlines/issues/215. Accessed: [2025-01-15].

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Earley, J. An efficient context-free parsing algorithm. Com-
mun. ACM, 13(2):94–102, February 1970. ISSN 0001-
0782. doi: 10.1145/362007.362035. URL https:
//doi.org/10.1145/362007.362035.

Fang, H., Balakrishnan, A., Jhamtani, H., Bufe, J., Craw-
ford, J., Krishnamurthy, J., Pauls, A., Eisner, J., An-
dreas, J., and Klein, D. The whole truth and noth-
ing but the truth: Faithful and controllable dialogue re-
sponse generation with dataflow transduction and con-
strained decoding. In Rogers, A., Boyd-Graber, J.,
and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 5682–5700,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
351. URL https://aclanthology.org/2023.
findings-acl.351/.

Gemma Team, M. R. and Shreya Pathak, e. Gemma 2:
Improving open language models at a practical size, 2024.
URL https://arxiv.org/abs/2408.00118.

Geng, S., Josifoski, M., Peyrard, M., and West, R. Grammar-
constrained decoding for structured nlp tasks without fine-
tuning. In The 2023 Conference on Empirical Methods
in Natural Language Processing.

Geng, S., Josifoski, M., Peyrard, M., and West, R. Grammar-
constrained decoding for structured NLP tasks without
finetuning. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 10932–10952,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
674. URL https://aclanthology.org/2023.
emnlp-main.674/.

Hopcroft, J. E. and Ullman, J. D. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1st edition, 1979a. remove useless rules.

Hopcroft, J. E. and Ullman, J. D. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1st edition, 1979b. remove nullable rules.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, X., Li, X., Ma, W., Fang, X., Yao, Y., Yu, N.,
Meng, X., Han, P., Li, J., Sun, A., et al. Sketch: A
toolkit for streamlining llm operations. arXiv preprint
arXiv:2409.03346, 2024.

Koo, T., Liu, F., and He, L. Automata-based constraints
for language model decoding. In First Conference on
Language Modeling.

10

https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://github.com/dottxt-ai/outlines/issues/215
https://github.com/dottxt-ai/outlines/issues/215
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://aclanthology.org/2023.findings-acl.351/
https://aclanthology.org/2023.findings-acl.351/
https://arxiv.org/abs/2408.00118
https://aclanthology.org/2023.emnlp-main.674/
https://aclanthology.org/2023.emnlp-main.674/


Earley-Driven Dynamic Pruning for Efficient Structured Decoding

Kuchnik, M., Smith, V., and Amvrosiadis, G. Validating
large language models with relm. Proceedings of Ma-
chine Learning and Systems, 5:457–476, 2023.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Leo, J. M. A general context-free parsing algorithm
running in linear time on every lr(k) grammar
without using lookahead. Theoretical Computer
Science, 82(1):165–176, 1991. ISSN 0304-3975.
doi: https://doi.org/10.1016/0304-3975(91)90180-A.
URL https://www.sciencedirect.com/
science/article/pii/030439759190180A.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. Llm+p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Lundberg, S., Ribeiro, M. T. C., et al. Guidance-ai/guidance:
A guidance language for controlling large language mod-
els. URL https://github. com/guidance-ai/guidance, 2023.

mlc-ai/xgrammar contributors. Support left recursive gram-
mars. currently going into infinite loop 126, Decem-
ber 2024. URL https://github.com/mlc-ai/
xgrammar/issues/126. Accessed: [205-01-15].

Opedal, A., Zmigrod, R., Vieira, T., Cotterell, R., and Eis-
ner, J. Efficient semiring-weighted Earley parsing. In
Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 3687–3713, Toronto, Canada, July 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.204. URL https://aclanthology.
org/2023.acl-long.204/.

OpenAI. Function calling - OpenAI API, 2024.
URL https://platform.openai.com/docs/
guides/function-calling. [Accessed 26-10-
2024].

OpenAI, Josh Achiam, S. A. and Sandhini Agarwal, e. Gpt-
4 technical report, 2024. URL https://arxiv.org/
abs/2303.08774.

Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., and
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A. Appendix: Python Library Versions
This appendix provides a comprehensive list of Python libraries and their respective versions used in our project. Docu-
menting the exact versions of these dependencies is crucial for ensuring the reproducibility of our work. By maintaining a
consistent environment with the specified versions, readers can accurately replicate our experiments and avoid potential
issues arising from version discrepancies. Below, we present the libraries and their versions in a tabular format for easy
reference.

Table 5. Python Libraries and Versions
Package Version Package Version Package Version
accelerate 1.2.1 aiohappyeyeballs 2.4.4 aiohttp 3.11.11
aiosignal 1.3.2 airportsdata 20241001 annotated-types 0.7.0
astunparse 1.6.3 attrs 24.3.0 cloudpickle 3.1.1
datasets 3.2.0 dill 0.3.8 diskcache 5.6.3
dnspython 2.6.1 einops 0.8.0 expecttest 0.2.1
flash-attn 2.7.3 frozendict 2.4.6 frozenlist 1.5.0
fsspec 2024.6.1 general sam 1.0.1 huggingface-hub 0.27.1
hypothesis 6.108.4 iniconfig 2.0.0 interegular 0.3.3
jsonpointer 2.1 jsonschema 4.23.0 jsonschema-specifications 2024.10.1
lark 1.2.2 lintrunner 0.12.5 lm-format-enforcer 0.10.9
mkl-service 2.4.0 multidict 6.1.0 multiprocess 0.70.16
nest-asyncio 1.6.0 ninja 1.11.1.1 numpy 1.26.4
optree 0.12.1 outlines 0.1.13 outlines core 0.1.26
pandas 2.2.3 pluggy 1.5.0 propcache 0.2.1
protobuf 5.29.3 pyarrow 19.0.0 pybind11 2.13.6
pycountry 24.6.1 pydantic 2.10.5 pydantic core 2.27.2
pytest 8.3.4 python-dateutil 2.9.0.post0 python-etcd 0.4.5
referencing 0.36.1 regex 2024.11.6 rpds-py 0.22.3
safetensors 0.5.2 sentencepiece 0.2.0 sortedcontainers 2.4.0
tiktoken 0.8.0 tokenizers 0.21.0 torch 2.4.0
torchaudio 2.4.0 torchelastic 0.2.2 torchvision 0.19.0
transformers 4.48.0 triton 3.0.0 types-dataclasses 0.6.6
typing extensions 4.12.2 tzdata 2024.2 xgrammar 0.1.10
xxhash 3.5.0 yarl 1.18.3

B. Additional Experimental Results
To address potential concerns about the completeness of our evaluation and to provide a more comprehensive analysis of our
proposed method, we conducted two additional experiments that examine different aspects of performance measurement
and output quality assessment.

B.1. Pipeline Component Analysis: Parsing and Masking Throughput

In response to questions about whether our reported throughput results reflect the performance of the entire generation
pipeline, we clarify that the main results presented in our paper focus specifically on the parsing and mask generation stages
to provide precise performance analysis of our key technical innovations. However, to address this concern, we conducted
additional experiments measuring throughput for the complete pipeline, including throughput without constrained decoding
(w/o CD).

Table 6 presents the detailed throughput measurements (JSON objects per second) across different models and methods.
While the complete pipeline results show lower throughput due to the inclusion of LLM calls and generation processes,
our proposed Formatron method maintains competitive efficiency compared to other constrained decoding approaches,
performing nearly as well as the unconstrained baseline (w/o CD).
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Table 6. Throughput comparison for parsing and masking stages across different models and methods (JSON objects per second)

Model Method JSON/s

Gemma

w/o CD 18.16
lm-format 11.75
Outlines 13.56
Xgrammar 17.72
Formatron 18.02

Llama3

w/o CD 31.75
lm-format 20.51
Outlines 23.71
Xgrammar 30.42
Formatron 30.42

Qwen

w/o CD 35.40
lm-format 16.23
Outlines 25.98
Xgrammar 34.34
Formatron 34.46

B.2. Output Quality Assessment: Accuracy Metrics

While a single schema is compatible across multiple constrained decoding libraries, currently no standardized interpretation
exists across implementations. JSON Schema, for instance, does not define allowed whitespace patterns or positions within
valid JSON structures. Given that most models’ tokenizers are sensitive to whitespace character position and type, identical
schemas may yield different outputs when processed through different libraries.

To provide a more comprehensive evaluation beyond throughput measurements, we conducted additional experiments to
assess output quality using accuracy metrics. This addresses the important question of whether performance gains come at
the cost of generation quality.

Table 7 shows the accuracy results for different models and methods across two evaluation scenarios: json schema
and json grammar. The results demonstrate that our proposed method achieves competitive performance compared to
existing approaches while maintaining the efficiency advantages shown in the main results.

Table 7. Accuracy comparison across different models and methods for JSON schema and grammar tasks

Model Method json schema json grammar

Gemma

baseline 0.73 -
lm-format 0.74 0.71
Outlines 0.80 -
Xgrammar 0.76 0.71
Formatron 0.73 0.74

Llama3

baseline 0.47 -
lm-format 0.60 0.40
Outlines 0.73 -
Xgrammar 0.69 0.47
Formatron 0.67 0.48

Mistral

baseline 0.09 -
lm-format 0.53 0.10
Outlines 0.44 -
Xgrammar 0.53 0.09
Formatron 0.52 0.11
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These additional experiments confirm that our method maintains competitive accuracy while achieving superior efficiency,
thus validating both the effectiveness and reliability of our approach.

C. Notation and Terminology
To improve the readability of this paper, we provide a comprehensive notation table for reference. The following table
contains the key symbols and concepts used throughout our work.

Symbol Description
A,B,X, Y Non-terminal symbols in context-free grammar
a, c Terminal symbols in context-free grammar
α, β, γ Sequences composed of terminal and non-terminal symbols
ε Empty string
S[i], . . . , S[n] Sequence of Earley state sets, where S[i] contains items at position i
(X → α • β, j) Earley item notation, where • indicates current parsing position and j indicates starting position
(A → α • β, i, j) Extended Earley item notation, where span [i, j] captures β’s coverage range

D. Task Examples
Below are input-output examples for the three constrained generation tasks:

Geometry

1 I n p u t : name a l l t h e r i v e r s i n c o l o r a d o .
2 Outpu t : answer ( r i v e r ( l o c 2 ( s t a t e i d ( ’ c o l o r a d o ’ ) ) ) )

JSON Schema and JSON Grammar

1 I n p u t :
2 [
3 {
4 ” c o n t e n t ” : ”You a r e a h e l p f u l a s s i s t a n t t h a t answer s i n JSON . Here ’ s t h e

↪→ j s o n schema you must a d h e r e t o :\ n<schema>\n{ ’ t i t l e ’ : ’
↪→ W i r e l e s s A c c e s s P o i n t ’ , ’ type ’ : ’ o b j e c t ’ , ’ p r o p e r t i e s ’ : { ’ s s i d ’ : { ’
↪→ t i t l e ’ : ’ SSID ’ , ’ type ’ : ’ s t r i n g ’} , ’ s e c u r i t y P r o t o c o l ’ : { ’ t i t l e ’ : ’
↪→ S e c u r i t y P r o t o c o l ’ , ’ type ’ : ’ s t r i n g ’} , ’ bandwidth ’ : { ’ t i t l e ’ : ’
↪→ Bandwidth ’ , ’ type ’ : ’ s t r i n g ’}} , ’ r e q u i r e d ’ : [ ’ s s i d ’ , ’
↪→ s e c u r i t y P r o t o c o l ’ , ’ bandwidth ’ ]}\ n</ schema>\n ” ,

5 ” r o l e ” : ” sys tem ”
6 } ,
7 {
8 ” c o n t e n t ” : ” I ’m c u r r e n t l y c o n f i g u r i n g a w i r e l e s s a c c e s s p o i n t f o r our

↪→ o f f i c e ne twork and I need t o g e n e r a t e a JSON o b j e c t t h a t a c c u r a t e l y
↪→ r e p r e s e n t s i t s s e t t i n g s . The a c c e s s p o i n t ’ s SSID s h o u l d be ’
↪→ O f f i c e N e t S e c u r e ’ , i t u s e s WPA2− E n t e r p r i s e a s i t s s e c u r i t y p r o t o c o l ,
↪→ and i t ’ s c a p a b l e o f a bandwid th o f up t o 1300 Mbps on t h e 5 GHz
↪→ band . Th i s JSON o b j e c t w i l l be used t o document our ne twork
↪→ c o n f i g u r a t i o n s and t o a u t o m a t e t h e s e t u p p r o c e s s f o r a d d i t i o n a l
↪→ a c c e s s p o i n t s i n t h e f u t u r e . P l e a s e p r o v i d e a JSON o b j e c t t h a t
↪→ i n c l u d e s t h e s e d e t a i l s . ” ,

9 ” r o l e ” : ” u s e r ”
10 }
11 ]
12 Outpu t :
13 {
14 ” s s i d ” : ” O f f i c e N e t S e c u r e ” ,
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15 ” s e c u r i t y P r o t o c o l ” : ”WPA2− E n t e r p r i s e ” ,
16 ” bandwid th ” : ”1300 Mbps”
17 }

E. Data Augmentation Workflow
Text Generation We use five models (deepseek-chat, gemini-2.0-flash-exp, gemini-exp, gpt-4, and
gpt-4o) to generate text variations. Each model generates 25 variations, resulting in a total of 125 data points. The
following prompt is used for text generation:

1 G e n e r a t e 25 v a r i a t i o n s o f t h e u s e r message . Fol low t h e s e g u i d e l i n e s :
2 1 . MUST i n c l u d e a l l r e q u i r e d f i e l d s and m a i n t a i n d a t a a c c u r a c y .
3 2 . Vary s e n t e n c e s t r u c t u r e s u s i n g t h e s e t e c h n i q u e s :
4 − Use d i f f e r e n t ve rb forms ( a c t i v e / p a s s i v e ) .
5 − Apply p a r a p h r a s i n g w h i l e k e e p i n g t h e same meaning .
6 − Change word o r d e r when p o s s i b l e .
7 − Use synonyms f o r non −key t e r m s .
8 3 . Vary t h e s e p r o p e r t i e s c r e a t i v e l y : { c h r ( 1 0 ) . j o i n ( f i e l d i n s t r u c t i o n s ) } .
9 4 . Keep key t e r m i n o l o g y c o n s i s t e n t ( names / IDs / e t c ) .

10 5 . Sound n a t u r a l and c o n v e r s a t i o n a l .
11 6 . Answer i n E n g l i s h .
12 7 . Outpu t MUST be pu re JSON on ly − no t e x t , comments , o r markdown .
13

14 R e q u i r e d JSON f o r m a t :
15 {
16 ” c o n t e n t ” : [
17 {
18 ” c o n t e n t ” : ” Example message 1 . . . ” ,
19 ” r o l e ” : ” u s e r ”
20 } ,
21 {
22 ” c o n t e n t ” : ” Example message 2 . . . ” ,
23 ” r o l e ” : ” u s e r ”
24 }
25 ]
26 }
27

28 C r i t i c a l R e q u i r e m e n t s :
29 − F i n a l JSON MUST NOT be t r u n c a t e d .
30 − L a s t a r r a y i t em MUST end wi th }} ]}} w i t h o u t a comma .
31 − Escape a l l dou b l e q u o t e s i n s i d e c o n t e n t .
32 − Ensure a l l b r a c k e t s a r e p r o p e r l y c l o s e d .
33

34 O r i g i n a l Message S t r u c t u r e R e f e r e n c e : { o r i g i n a l m e s s a g e }

Data Processing The content field is extracted from the generated JSON data. Incomplete or malformed data points are
removed during initial filtering.

Quality Evaluation We use o1 to evaluate the filtered data. The evaluation prompt is as follows:

1 You a r e an e x p e r t t e x t q u a l i t y e v a l u a t o r .
2 For each i n p u t t e x t , p r o v i d e a JSON o b j e c t w i th a ” r e s u l t s ” a r r a y c o n t a i n i n g

↪→ e v a l u a t i o n o b j e c t s .
3 Each e v a l u a t i o n o b j e c t must c o n t a i n e x a c t l y f o u r f i e l d s :
4 − ” tex tNumber ” : The i n d e x of t h e t e x t ( s t a r t i n g from 1) .
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5 − ” r e l e v a n c e ” : A r e l e v a n c e s c o r e between 0 and 100 ( based on schema keywords )
↪→ .

6 − ” u n i q u e n e s s ” : A u n i q u e n e s s s c o r e between 0 and 100 ( based on s e n t e n c e
↪→ s t r u c t u r e ) .

7 − ” c o h e r e n c e ” : A c o h e r e n c e s c o r e between 0 and 100 ( based on s e m a n t i c f low ) .
8

9 Response f o r m a t :
10 {
11 ” r e s u l t s ” : [
12 { ” tex tNumber ” : 1 , ” r e l e v a n c e ” : 94 , ” u n i q u e n e s s ” : 85 , ” c o h e r e n c e ” : 90 } ,
13 { ” tex tNumber ” : 2 , ” r e l e v a n c e ” : 95 , ” u n i q u e n e s s ” : 88 , ” c o h e r e n c e ” : 92 } ,
14 { ” tex tNumber ” : 3 , ” r e l e v a n c e ” : 93 , ” u n i q u e n e s s ” : 82 , ” c o h e r e n c e ” : 89 }
15 ]
16 }
17

18 I m p o r t a n t r u l e s :
19 1 . Each t e x t must be e v a l u a t e d i n d i v i d u a l l y .
20 2 . The ” tex tNumber ” must match t h e o r d e r o f t h e i n p u t t e x t s ( s t a r t i n g from 1)

↪→ .
21 3 . S c o r e s must be i n t e g e r s be tween 0 and 1 0 0 .
22 4 . Do n o t i n c l u d e any a d d i t i o n a l f i e l d s o r comments i n t h e JSON r e s p o n s e .
23 5 . Ensure t h e r e s p o n s e i s v a l i d JSON and can be p a r s e d d i r e c t l y .

The data is sorted based on evaluation scores (relevance, uniqueness, and coherence). For each schema, the top 100
highest-scoring data points are retained. The final filtered data is saved as a JSON file for downstream use.
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