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ABSTRACT

Anomaly Detection (AD) is a critical task that involves identifying observations
that do not conform to a learned model of normality. Prior work in deep AD is pre-
dominantly based on a familiarity hypothesis, where familiar features serve as the
reference in a pre-trained embedding space. While this strategy has proven highly
successful, it turns out that it causes consistent false negatives when anomalies
consist of truly novel features that are not well captured by the pre-trained encod-
ing. We propose a novel approach to AD using explainability to capture novel
features as unexplained observations in the input space. We achieve strong per-
formance across a wide range of anomaly benchmarks by combining similarity
and novelty in a hybrid approach. Our approach establishes a new state-of-the-art
across multiple benchmarks, handling diverse anomaly types while eliminating
the need for expensive background models and dense matching. In particular, we
show that by taking account of novel features, we reduce false negative anomalies
by up to 40% on challenging benchmarks compared to the state-of-the-art. Our
method gives visually inspectable explanations for pixel-level anomalies.

1 INTRODUCTION

Anomaly detection (AD) is a crucial task that involves identifying abnormal samples in test data
by learning patterns from normal training samples. In real-world applications, the occurrence of
anomalies is often unpredictable and can lead to severe consequences, to the extent that AD has
been identified as a critical component in improving organizational security under Catastrophic AI
Risks. Hendrycks et al. (2023). Anomaly detection is used across diverse domains, including qual-
ity control in manufacturing, medical imaging for early disease diagnosis, enhancing security and
surveillance systems, and improving the robustness of AI models. Across these applications, image
anomalies are broadly classified into two: semantic anomaly, a sample outside the ‘normal’ seman-
tic distribution, and sensory anomaly, caused by unexpected pixel-level aberrations in an otherwise
normal sample. These anomaly types are often handled with specialized approaches Jiang et al.
(2022).

Prior work in deep AD is predominantly based on the familiarity hypothesis, where the anomaly
is identified by the lack of familiar features in them Dietterich & Guyer (2022). Familiar features
are the set of features the neural encoder has learned to represent meaningfully in the representation
space. Inventive methods have been proposed to learn feature spaces where anomaly can be charac-
terized by lack of familiar features, specifically representations of ViT fine-tuned on a related task
have shown to excel in identifying samples out of train distribution Fort et al. (2021). The state-of-
the-art AD method uses feature representation of a pretrained ViT backbone fine-tuned to classify
normal samples from samples generated using a diffusion model prematurely early stopped while
approximating the normal distribution Mirzaei et al. (2023).

Relying solely on the set of familiar features leads to two major issues in deep AD. Firstly, neural
networks show ’unreasonable’ generalize well beyond the training data Zhang et al. (2021), often
showing invariance in representation to even OOD samples Jacobsen et al. (2018). This excessive
invariance of representation well beyond the train distribution can lead to false negatives in familiar-
ity based AD. Secondly, this paradigm does not account for anomalies caused by truly novel features
not being represented meaningfully in the feature space through the learned encoding, also leading
to false negatives.
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Figure 1: Feature learning based AD methods succeed by detecting the presence and absence of
familiar features in the test sample. Familiar features are the features the encoder learns to discrim-
inate the normal samples from the background. The detection method fails for samples with novel
features that the encoder is not trained to represent in the feature space.
While significant work has gone into countering the excessive generalization Mirzaei et al. (2023);
Cohen & Avidan (2022); Tack et al. (2020) the latter issue needs a different modelling and strategy.
In particular, current successful pre-trained embeddings might capture novel features poorly or not
at all. Moreover, solving the excessive generalization often involves making assumptions on the
nature of anomalies Hendrycks et al. (2018) or generating complex distribution Mirzaei et al. (2023)
as background samples to control generalization.

We propose a novel approach for AD that addresses both these key issues by jointly modeling the
lack of familiarity and presence of novelty towards anomaly detection. We use the features extracted
by the encoder to compute familiarity and capture novel features as unexplained observations in the
input space. A faithful explanation of the encoding enables inspection of features that were not
meaningfully interpreted by the encoder. In this work, we use B-cos networks Böhle et al. (2022)
to summarize the encoder into a faithful explanation of the encoding. We show that accounting for
novel features for AD reduces the reliance on a complex background model to control generalization.
While the two scores are not mutually exclusive, our experiments show that the latter adds to AD
performance.

We evaluate the method across multiple benchmarks, handling both sensory and semantic anomaly
types. We establish new state-of-the-art in most of the evaluated benchmarks. In particular, we
show that by taking account of novel features, we reduce false negative anomalies by up to 40%
across challenging benchmarks. Our experiments show that joint modeling eliminates the need
for expensive background models and dense matching to improve AD performance. For sensory
anomaly, the explanation is traced to the input, giving visually inspectable explanations. Since early
layers of the backbone pre-trained on large datasets are frozen while training for AD tasks, we
compute novelty with respect to these features for detecting high-level semantic novelty. In short,
we make the following contributions:

• We define the idea of familiar and novel features in a test input in the context of anomaly
detection. We propose a joint model for AD that accounts for the lack of familiarity and
the presence of novelty in an input sample.

• We use the lack of encoder explanations to capture the novel features in the test input.
This enables the sensory level and semantic level anomaly detection by detecting novelty
at different hierarchies of the neural network. It gives visually inspectable explanations for
sensory anomalies.

• Our method reduces the reliance on features and, hence the background samples. We show
this effect by comparing the performance using two methods to generate background class
(a) sampling from a normal approximation of normal train samples and (b) using a diffusion
model.

2 RELATED WORK

This section discusses the methods developed to improve deep AD in the prior art. Most deep AD
methods first train an encoder to learn a representation for normal samples and then use this rep-
resentation to compute the anomaly score for a test sample Hojjati et al. (2022); Han et al. (2022).
Hence, we categorize the popular methods as improving feature representation and test time detec-
tion. The survey shows that anomaly detection (though often synonymous with novelty detection)
has often been solved by detecting the absence of familiarity.

2



Under review as a conference paper at ICLR 2024

Figure 2: Illustration of predominant anomaly
types considered in prior work.

Improving feature learning for AD: Perera et
al. notes that using NN’s in AD aims to learn ro-
bust feature space to define normalcy Perera &
Patel (2019). Bergman et al. shows that using
backbone pre-trained on large datasets substan-
tially improves AD performance Bergman et al.
(2020). Fort et al. demonstrates that transform-
ers (pre-trained on large datasets) can signifi-
cantly improve OOD tasks across different data
modalities Fort et al. (2021). Investigating the
trend of finding better representation space for
AD Reiss et al. provides theoretical and empir-
ical evidence to show that AD cannot improve in-
definitely by increasing the expressiveness of net-
works Reiss et al. (2023). In fact, they show that
there is a trade-off between expressiveness of fea-
tures and sensitivity to anomalies.

AD performance has been shown to improve by
controlling the generalization of the NN encoder using fine-tuning with, controlled outlier exposure,
using real outliers, random images from the internet, or other samples from other datasets Hendrycks
et al. (2019); Fort et al. (2021). Using GANs to generate outliersKong & Ramanan (2021); Pourreza
et al. (2021) shows further improvement over real images. Mirzaei et al. Mirzaei et al. (2023) use a
prematurely stopped SDE model to generate background samples at the boundary of the distribution.
A desirable property of AD is a reduced reliance on background class and minimal assumptions on
the nature of anomaly. Our method shows robust performance with simple background approxima-
tion.

Test time detection methods: Popular detection methods for OOD detection and AD are: max-
imum softmax probabilities Hendrycks & Gimpel (2016), Local Outlier Factor Lin & Xu (2019),
Gaussian Discriminant Analysis Xu et al. (2020) or nearest neighbor Bergman et al. (2020) to com-
pute the similarity between the representations of normal samples and the test sample. Reiss et al.
observe that these methods are opaque and non-interpretable. As anomalies are ambiguous, it is nec-
essary to give explicit reasoning behind the criteria for detection. Our method explains the anomaly
score when the anomaly is spatially local.

Anomaly detection methods for sensory anomalies: According to the different distribution shifts
that cause them, anomalies are divided into sensory and sensory anomalies and semantic AD (Figure
2) Yang et al. (2022)Jiang et al. (2022). As sensory anomalies contain dense familiar features, its
challenging to tackle via familiarity hypothesis Bergmann et al. (2019). Most methods use locally
sensitive dense feature extractors such that a novelty in input can come only at the cost of lost
familiarity Roth et al. (2021); Cohen & Hoshen (2020). With the increasing number of normal
samples, the memory bank becomes exceedingly large, with it both the inference time and memory
required. Roth et al. uses a coreset sub-sampling to reduce this effect Roth et al. (2021). Jiang et
al. surveys methods for visual sensory anomalies and notes that most methods tuned for sensory
anomalies perform poorly in detecting semantic outliersJiang et al. (2022). Accounting for novelty
in input could be key in bridging this gap in performance.

The familiarity hypothesis: For a regular NN, activation in the last layer for a novel class sample
is usually much smaller than samples from training data. Vaze et al. suggests that this difference
can be a good open-set-recognition Vaze et al. (2022). Neural encoders give dense representations
when familiar features are present in the input and fail to give an equally dense representation for
samples with novel features Tack et al. (2020). Dietterich et al. formulates this as the familiarity
hypothesis and argues that familiarity-based detection is an inevitable consequence of representation
learning in AD Dietterich & Guyer (2022). Previous efforts to create a hybrid model for AD unifies
the approaches of generative modelling for regular training data and discriminating with respect to
negative training data Grcić et al. (2022). We propose augmenting the feature familiarity score with
a score that accounts for novelty in the input for AD.
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3 FAMILIAR AND NOVEL FEATURES FOR ANOMALY DETECTION

In this section, we formally introduce the concept of familiar features in the context of AD. We show
how most existing state-of-the-art methods are predominantly reliant on familiar features. We then
define novel features in AD and argue that leveraging novel features can open up new potential in
AD.

Consider the domain of an AD task, set S. Unlike a discriminative task, by defining a generative
mechanism for normalcy, the AD task divides the set S into two mutually exclusive and exhaustive
subsets. The first subset is the samples generated by the generative mechanism: normal samples
N , the complementary set is the background B, S = N ∪B. Note that, background samples are
not to be confused with background pixels within images. In the case of image AD, B contains all
pixel configurations that are not generated by normal mechanism, hence containing all semantic and
sensory anomalies.

We useˆoperator to denote the set of all features that can be extracted from a sample/set. For
instance, the set of all features that can be derived from the domain S is Ŝ. Also, the set of all
features that a function f can meaningfully encode is f̂ .

Feature representation based AD: Consider an ideal general model for AD, where for a hypothesis
F , the parameter θ∗ learns a representation space over which a single layer discriminates all samples
in N from a portion of samples in B used for training, say b. Let the features that the encoder can
now detect from S be the set F̂ (θ∗). The hypothesis class F learns a representation where a linear
classifier shatters the space F (θ∗, N) ∪ F (θ∗, b). It is important to note that even under these
strong assumptions, there is no guarantee that F̂ (θ∗) can give representations that can discriminate
samples of N from the set [B − b]. Even with an oracle training (all features that discriminate
samples of N and b are in F̂ (θ∗)), the elements in [ ˆB − b] that are not in F̂ (θ∗) are not captured in
the representation. The potential error in the representation of elements in [ ˆB − b]− F̂ (θ∗) explains
a significant failure mode of AD.

Furthermore, it is tempting to believe that increasing the size of the hypothesis class and feature
representation layer increases the size of F̂ for AD using the neural encoder. Theoretical and em-
pirical observation in Reiss et al. (2023) reveals that an increase in F̂ affects the sensitivity of the
familiarity based AD methods. This shows the importance of going beyond improving F̂ for AD.

Familiar features: In realistic scenarios, a network F (θ) is learned to discriminate a subset of N
say n, with b. Elements of F̂ (θ) are the familiar features. For a test input xtest in [B − b], the part
of familiar features used to derive anomaly score in current AD methods (FAD) is given by:

FAD = F̂ (θ, xtest) ∪ F̂ (θ, ni)∀ni ∈ n (1)

FAD, are the set of all features used by current familiarity based methods. FAD is a subset of familiar
features F̂ (θ).

Novel features: We define the novel features in input as the set of features in a test input that are
not in F̂ (θ). We define a function G to capture all novel features in a test sample. The features in the
input xtest that are not familiar to the encoder is a subset of x̂test. Also, the novel features captured
by G, i.e. Ĝ are not in the familiar feature set: Ĝ ⊈ F̂ (θ). Hence the novel feature set given an
input xtest and a trained encoder F (θ) is given by,

Ĝ(xtest, F (θ)) = (x̂test − F̂ (θ)) (2)

In summary, the x̂test can contain features outside FAD that might be causing the anomaly. Cap-
turing these features can help reduce false negatives. We present a method to capture features in
Ĝ(xtest, F (θ)) using explanations and propose a joint model for AD using both familiar and novel
features. We define normal and familiar features within the AD context, deferring a formal analysis
of this phenomenon for future investigation.
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Figure 3: Figure shows the proposed pipeline. The top portion computes Explanation-based Novelty
Score (ENS) and the bottom branch computes Familiar Feature based anomaly Score (FFS). The
final score, novelty accounted anomaly score is a combination of both.

4 JOINT MODEL FOR FAMILIARITY AND NOVELTY BASED ANOMALY
DETECTION

In this section, we present our method to capture novel features and account for them to compute
anomaly scores for a test sample. We describe the proposed method to jointly model the lack of
familiarity and presence of novelty for anomaly detection. The pipeline of the proposed AD method
is shown in Figure 3. The feature extractor and the binary classifier are trained together to discrim-
inate the normal class from the background class. The figure shows how, given a test sample, the
familiarity and novelty scores are computed using the train features and the encoder explanation
respectively.

Familiar Feature based anomaly Score (FFS) In order to detect an anomaly by the lack of fa-
miliar features in a test sample, we use a mechanism similar to prior art. We first train an encoder
F to discriminate a subset of normal data n from a subset of background data b to get parameter
θ. Using F (θ) as encoder, we compute the distance between features of the test sample (F̂ (xtest))
and the train normal samples (F̂ (θ, ni)∀ni ∈ n). We call this measure a Familiar Feature based
anomaly Score (FFS). We compute F (θ, ni)∀ni ∈ n and store them as the rows of matrix M . The
FFS (Fs) for input xtest is computed as the sum of distances of the test feature to the two nearest
train features ( following Mirzaei et al. (2023), details in Appendix 3). FFS score increases with the
lack of familiar features in the test sample.

Fs(xtest) = ∥F (θ, xtest)−M0∥+ ∥F (θ, xtest)−M1∥ (3)

where M0 and M1 corresponds to the rows in M closest to the test feature vector. This method
requires the computation and storing of all train normal sample representations.

Explanation Based Novelty Score (ENS) To capture the novel feature in a test input
Ĝ(xtest, F (θ)) we use the explanation of a B-cos network. An encoder built with B-cos opera-
tor generates a reliable explanation of its computation. B-cos networks are neural networks where
the linear layers are replaced by B-cos layers. For more details on the formulation and training of
the networks, we refer the reader to Böhle et al. (2022). Operation of a B-cos layer at a node for an
input x and parameters w leading to the node is given by

B-cos(x;w) = ∥x∥ · ∥w∥ · cos(∠(x,w))B · sign(cos(∠(x,w))) (4)

Where B is a hyper-parameter that influences the extent to which alignment between x and w con-
tributes to the magnitude of the output. Using the B-cos transforms instead of linear transform
removes the need for other explicit non-linearity while training the network. Hence, the only non-
linearity in the network is dependent on the input. Given an input, B-cos network collapses into
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a single linear transform that faithfully summarises the entire model computations. Moreover, the
B-cos transform introduces alignment pressure on the weights during optimization. For the output
of a node to be high, it requires that the input is aligned to the incoming parameters of the node
(cos(∠(x,w)) is high). When the output of the network is high, the summarized linear layer is
highly aligned to the input. Hence, using a B-cos network help generate a faithful explanation of the
decision aligned to the parts of the image that contribute to activating the network’s output.

We use the lack of this explanation as evidence of the presence of novel features. Equation 2 defines
the novel features as the features in the test sample (x̂test) that are not familiar feature set (F̂ (θ)).
We quantify the size of this set using the cosine distance between xtest and the explanation of the
encoder explanation and use this to compute novelty score. B-cos encoder explanation gives a
reliable summarization of network computation.

We approximate novel features (Ĝ(x)) as that portion of the input features that the pre-trained B-cos
encoder cannot align to. It corresponds to the feature in the input that the encoder fails to explain in
the context of the decision. For a given input x Böhle et al. denotes the explanation of an L layer
neural network as θ1→L(x). We compute the Explanation based Novelty Score (ENS) denoted by
Gs for a test input xtest, for an encoder with parameters θ as

Gs(xtest) = cos(∠(θ1→L(xtest), xtest)) (5)

Note that the Fs score is computed using features alone while Gs does not rely on the encoded
normal features. Finally, we compute the joint anomaly score as the sum of normalized familiarity
and novelty score: Anomaly score for a given test sample xtest = Gs(xtest) + Fs(xtest).

4.1 ADAPTING TO ANOMALY TYPES

Since we use a backbone pre-trained on large data, the initial layers derive a wide range of features.
With frozen initial layers, it becomes meaningful to check for novel features higher up in the neural
layer hierarchy with respect to these features. For a test sample, Böhle et al. uses θ1→L(xtest) to
visualize the explanation of the decision. The layers are collapsed from the input to the output node
of a classifier of L layers. We modify this formulation to capture the the portion of features that
are explained given the final encoding, instead of computing the portion of input that explains the
decision. That is, we compute Wl→L where l is the layer at which we evaluate the novelty and L is
the final layer. Novelty of feature Fi, output by layer i is computed as,

Gs(fi) = 1− cos(∠(θ(i+1)→L(fi), fi)) (6)

For sensory anomalies, the value of i is one, and Equation 6 becomes similar to the formulation
in the prior art. Here, the choice of layer is a hyper-parameter to adapt to anomalies at different
semantic levels.

5 EXPERIMENTS AND RESULTS

This section discusses the four experiments to evaluate the effect of accounting for novel features for
computing anomaly scores. The first experiment evaluates the performance of the proposed novelty
capture method in case of sensory anomalies. In the second experiment, we demonstrate the efficacy
of the proposed framework on different AD benchmarks. We benchmark our method on eight dif-
ferent datasets to evaluate its overall effectiveness. The benchmark shows the efficacy of the method
across different anomaly types, the sensory anomaly, and visually near and far semantic anomaly.
In the third experiment, we show the effectiveness of the joint model in reducing false negatives. In
the final experiment, we showcase how our method helps reduce reliance on background class.

5.1 EXPLAINING AT INPUT LEVEL FOR SENSORY ANOMALIES

In the first experiment, we evaluate the efficacy of using the explanation of the input for sensory AD.
For this experiment, we use the MVtec dataset Bergmann et al. (2019), which has anomaly at the
pixel level. The prior art that considers only feature familiarity without dense matching has reported
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Figure 4: Test samples from MVTecAD dataset, and the explanation for being classified as normal
using a B-cos model.

Method Datasets

Semantic near AD Semantic far AD Sensory AD

CIFAR-10 CIFAR-100 Flowers Birds FGVC Cars C10-100 MVTec Average

CSI Tack et al. (2020) 94.3 89.6 60.8 52.4 64.6 66.5 76.1 63.6 71.0
MSAD(ViT) Reiss & Hoshen (2023) 94.1 93.0 98.6 93.3 81.3 85.7 79.5 85.5 88.8
Transformaly Cohen & Avidan (2022) 98.3 97.3 99.9 97.8 84.0 86.7 82.5 87.9 91.8
PANDA Reiss et al. (2021) 96.2 94.1 94.1 95.3 77.7 87.6 76.8 86.5 88.5
PatchCore Roth et al. (2021) 67.2 64.1 74.8 58.1 67.8 78.3 67.2 99.1 72.1
FITYMI Mirzaei et al. (2023) 99.1 98.1 99.9 98.5 88.7 90.8 89.4 86.4 93.8

Our method 99.3 98.5 99.9 98.7 89.3 90.5 91.1 89.3 95.3

Table 1: The performance of the proposed method for semantic anomaly detection methods (AU-
ROC) in the AD setting on different datasets. The best performance of the best-performing model is
bold, and the second-best method is underlined.

relatively lower performance in this task compared to its performance on other benchmarks. The
MVtec dataset has pixel-precise annotations of all anomalies to compare the explanations.

For every normal class in the dataset, we fine-tune a B-cos ViT backbone pre-trained on the
ImageNet-1K dataset, with a two-class classification head (one for normal and the other for back-
ground). Unless mentioned otherwise, the value of B used in B-cos network across all experiments
is 1.5. We use data samples from the normal approximation of the normal class as the background.
Images of the class follow a complex distribution, and a normal distribution cannot capture this
complexity. The classifier is trained to discriminate this error in approximation. More details of this
choice are discussed in the section 5.3. We use standard training procedures as in Mirzaei et al.
(2023) without any augmentation for fine-tuning the classifier.

For a test input xtest, explanation for the classification is computed as described in Section 4:
(θ1→L(xtest)). Figure 4 shows the explanation in the input generated by the B-cos model for the
anomaly branch of the classification head. This is the explanation computed for the decision that
the input sample is an anomaly. This shows how the method can not only detect but also explain
the anomaly. We compute the ENS score on MVTec and report the same as the anomaly score for
comparison with other familiarity based methods (Figure 7(a)). This improved performance comes
without using feature representations of normal samples. That is, the performance improvement
comes with a reduced memory (the memory to store train normal features) and computation cost (of
computing the K nearest neighbor).

5.2 BENCHMARKING ACROSS DIFFERENT AD TASKS

For benchmarking on different types of anomalies, like in the previous experiment, for every normal
class of every dataset, we fine-tune a B-cos ViT backbone pre-trained on the ImageNet-1K dataset
with a two-class classification head. We use data samples from the normal approximation of the
normal class as the anomaly. The proposed method gives a hyper-parameter to control the semantic
level at which the anomaly is computed (variable i in Section 4.1). We do not tune this for each
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Novelty as lack of explanationFamiliar features Novelty accounted familiar features

Figure 5: The PCA plot shows the normal test and anomaly test samples plotted on the two principal
components. The first plot is the PCA using familiar features and the second is with novelty score
added to the features. The contour shows the sum of distances to the two nearest train normal
samples. The samples shown are the ones that give maximum deviation from train normal on adding
novelty score.
dataset to optimize the performance. For a fair comparison across benchmarks, we use i = 0 for
the sensory anomaly (the anomaly is in pixel level), i = 6 for all far anomaly (the anomaly is at
low-level visual features), and i = L − 1 for semantic near anomaly (the anomaly is at high-level
semantics). The further exploration of this parameter is left for future work.

Table 1 shows the performance of various prior-art benchmarked against the proposed method. The
performance of some of the datasets like CIFAR-10 and Flowers are saturated (above 99%). On
average, our model outperforms the next best model by more than 2.5%.

Figure 6: Comparing the false positives across dif-
ferent datasets with and without accounting for
novelty. Y-axis: left shows the rate of FP, and the
right side shows the % reduction in FP.

On the more challenging benchmark of near se-
mantic AD (CIFAR-10 vs CIFAR-100 Mirzaei
et al. (2023), where the closest classes of
CIFAR-100 corresponding to each class of
CIFAR-10 is picked for test), our method out-
performs the familiarity based method by 1.0%
establishing the new SOTA (details in Ap-
pendix 2. Furthermore, the table shows an in-
teresting trade-off of performance across the
two challenging tasks of near semantic AD and
sensory anomaly the best-performing meth-
ods are different. While PathCore outper-
forms FITYMI by a margin of more than 13%
on MVTec, FITYMI outperforms PathCore by
more than 22% on near-semantic AD. This
shows how one method is tuned for semantic
anomalies and the other for sensory anomalies.
Using novelty on the familiarity gives a more
consistent performance across the two tasks.
The gap in performance across the two tasks
shows a scope for improvement in computing
novelty.

Reduced False negatives: Methods that use only familiar features will have issues with anomalies
caused by truly novel features and hence produce false negative predictions. In this experiment we
ablate familiarity and novelty branch to evaluate the role of incorporating novelty into the scoring
mechanism in the false positive rate on three benchmarks: Stanford-Cars (semantic far AD), Cifar10-
100 (semantic near AD), and MVTec (sensory AD). Note that FFS scoring is simlar to Mirzaei et al.
(2023) and compared with addition of ENS to compute novelty. Furthermore, False Negative rate is
an important characterization of an AD method in high-risk applications. To compute the same, we
convert the anomaly score into classification. We use an oracle to find the optimum threshold for
each class of each dataset. The results show that (Figure 6) accounting for novelty in input reduces
the number of false positives by about 40% across the different anomaly types. This validates the
hypothesis in Dietterich & Guyer (2022) that AD by relying solely on familiar features can lead to
missing the anomalies caused by novel features.
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Figure 7: (a) Performance of AD models tuned
for semantic AD on MVTec AD dataset com-
pared against novelty based scoring (ENS).

(b) Difference in absolute AUROC using dif-
fusion model and normal approximation for
background class on near semantic AD.

Figure 5 shows further analysis of the reduction of false negatives in a challenging class of the
MVTec AD dataset. It shows the features of normal test samples and test anomalies in their princi-
pal component space. The second plot is the features added with the sign-corrected novelty score.
The color of the contour at each point shows the sum of the distances to the two nearest normal train
samples. The samples and explanation are the ones that showed the highest difference by incorpo-
ration of novelty into the computation. The evidence of novel features is captured by Equation 5.
The PCA plots show how accounting for novelty moves the anomaly samples further away from the
normal train compared to the normal test samples. The figure shows how accounting for novelty as
lack of explanation helps reduce such false negatives.

5.3 REDUCING THE ROLE OF BACKGROUND CLASS IN ANOMALY CLASSIFICATION

The impact of background class needs to be minimal for AD to be robust to the diverse set of anoma-
lies encountered in the real world. Hence it is useful to have non-discriminative learning in AD.
Mirzaei et al. (2023) uses a score-based generative model trained and prematurely early stopped
on the normal samples. Appendix 1 shows evidence for the need to reduce reliance on the back-
ground class. Furthermore, recent work shows adding generated images improves ID performance
on standard benchmarks Azizi et al. (2023). Generated images even show promising performance
in replacing real images for training image classification tasks Sariyildiz et al. (2023). Stopping the
generator training at the right point is vital to ensure the background samples are not part of the
distribution.

We use a simple normal approximation of the normal class. That is, we compute the mean and
co-variance of the normal dataset and sample from that distribution to generate an anomaly. Fig-
ure 7 shows how the model trained with normal approximation matches and almost outperforms the
model trained with a diffusion model-based generation of the background class. Using normal ap-
proximation actually gives a mean improvement of about 0.2%, making it the preferred alternative.
This reduced complexity can also come in handy when deploying AD in practice.

6 CONCLUSION

This paper highlights the need for Anomaly Detection (AD) to go beyond familiar features and
incorporate novel features into the model. We are inspired by the ‘familiarity hypothesis’: AD
methods that rely solely on familiar features cause consistent false negatives when anomalies are
caused by truly novel features that are not well captured by the pre-trained encoding. Hence, we
have proposed a method to capture truly novel features as unexplained observations and show that
accounting for them reduces false negatives in AD. The proposed method establishes state-of-the-art
results on multiple benchmarks across different anomaly types. The method also reduces the reliance
on background class, allowing the use of simpler approximation in future work. We believe further
research to capture novel features in test input will continue to improve anomaly detection and
related tasks like Novel Class Discovery, Out-of-Class detection, and Out-of-Distribution Detection.
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REPRODUCIBILITY STATEMENT

We will release the code for our experiment and code for background data generation, and all trained
models. The experiment details for familiar feature based AD are similar to the state-of-the-art
method Mirzaei et al. (2023). The B-cos model implementations are taken from the official reposi-
tory of Böhle et al. (2022).
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