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Abstract

Exploiting partial first-order information in a
cyclic way is arguably the most natural strategy
to obtain scalable first-order methods. However,
despite their wide use in practice, cyclic schemes
are far less understood from a theoretical perspec-
tive than their randomized counterparts. Moti-
vated by a recent success in analyzing an extrap-
olated cyclic scheme for generalized variational
inequalities, we propose an Accelerated Cyclic
Coordinate Dual Averaging with Extrapolation
(A-CODER) method for composite convex op-
timization, where the objective function can be
expressed as the sum of a smooth convex func-
tion accessible via a gradient oracle and a con-
vex, possibly nonsmooth, function accessible via
a proximal oracle. We show that A-CODER at-
tains the optimal convergence rate with improved
dependence on the number of blocks compared
to prior work. Furthermore, for the setting where
the smooth component of the objective function
is expressible in a finite sum form, we introduce
a variance-reduced variant of A-CODER, VR-A-
CODER, with state-of-the-art complexity guaran-
tees. Finally, we demonstrate the effectiveness of
our algorithms through numerical experiments.

1. Introduction

Block coordinate descent methods are broadly used in ma-
chine learning due to their effectiveness on large datasets
brought by cheap iterations requiring only partial access to
problem information (Wright, 2015; Nesterov, 2012). They
are frequently applied to problems such as feature selec-
tion (Wu et al., 2008; Friedman et al., 2010; Mazumder et al.,
2011), empirical risk minimization (Nesterov, 2012; Zhang
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& Lin, 2015; Lin et al., 2015; Allen-Zhu et al., 2016; Ala-
caoglu et al., 2017; Giirbiizbalaban et al., 2017; Diakoniko-
las & Orecchia, 2018), and in distributed computing (Liu
et al., 2014; Fercoq & Richtérik, 2015; Richtarik & Takac,
2016). In the more recent literature, coordinate updates on
either the primal or the dual side in primal-dual settings
have been used to attain variance-reduced guarantees in fi-
nite sum settings (Chambolle et al., 2018; Alacaoglu et al.,
2017; 2020; Song et al., 2020; 2021b).

Most of the existing theoretical results for (block)
coordinate-type methods have been established for algo-
rithms that select coordinate blocks to be updated by ran-
dom sampling without replacement (Nesterov, 2012; Wright,
2015; Chambolle et al., 2018; Alacaoglu et al., 2017; 2020;
Song et al., 2020; 2021b; Zhang & Lin, 2015; Lin et al.,
2015; Allen-Zhu et al., 2016; Diakonikolas & Orecchia,
2018). Such methods are commonly referred to as the ran-
domized block coordinate methods (RBCMs). What makes
these methods particularly appealing from the aspect of
convergence analysis is that the gradient evaluated on the
sampled coordinate block can be related to the full gradi-
ent, by taking the expectation over the random choice of a
coordinate block.

An alternative class of block coordinate methods is the class
of cyclic block coordinate methods (CBCMs), which up-
date blocks of coordinates in a cyclic order. CBCMs are
frequently used in practice due to often superior empirical
performance compared to RBCMs (Beck & Tetruashvili,
2013; Chow et al., 2017; Sun & Ye, 2019) and are also part
of standard software packages for high-dimensional compu-
tational statistics such as GLMNet (Friedman et al., 2010)
and SparseNet (Mazumder et al., 2011). However, CBCMs
have traditionally been considered much more challenging
to analyze than RBCMs.

The first convergence rate analysis of CBCMs for smooth
convex optimization problems, obtained by Beck & Tetru-
ashvili (2013), relied on relating the partial coordinate
blocks of the gradient to the full gradient. For this rea-
son, the dependence of iteration complexity on the number
of coordinate blocks in Beck & Tetruashvili (2013) scaled
linearly and as a square root for vanilla CBCM and its ac-
celerated variant, respectively. Such a high dependence on
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the number of blocks (equal to the dimension in the coordi-
nate case) makes the complexity guarantee of CBCMs seem
worse than not only RBCMs but even full gradient meth-
ods such as gradient descent and the fast gradient method
of Nesterov (1983), bringing into question their usefulness.
This is further exacerbated by a result that shows that such a
high gap in complexity does happen in the worst case (Sun
& Ye, 2019), prompting research that would explain the gap
between the theory and practice of CBCMs. However, most
of the results that improved the dependence on the num-
ber of blocks only did so for structured classes of convex
quadratic problems (Wright & Lee, 2020; Lee & Wright,
2019; Giirbiizbalaban et al., 2017).

On the other hand, a very recent work in Song & Diakoniko-
las (2021) introduced an extrapolated CBCM for variational
inequalities whose complexity guarantee does not involve
explicit dependence on the number of blocks. This result
is enabled by a novel Lipschitz condition introduced in the
same work. While the result from Song & Diakonikolas
(2021) applies to convex minimization settings as a special
case, the obtained convergence rates are not accelerated.
Our main motivation in this work is to close this conver-
gence gap by providing accelerated extrapolated CBCMs
for convex composite minimization.

1.1. Contributions

We study the following composite convex problem

min { f(@) = /(@) + g(@)}, ®)
xR

where f is smooth and convex and g is proper, (possibly
strongly) convex, and lower semicontinuous. This is a stan-
dard and broadly studied setting of structured nonsmooth
optimization; see, e.g, Beck & Teboulle (2009); Nesterov
(2007) and the follow-up work. To further make the prob-
lem amenable to optimization via block coordinate methods,
we assume that g is block separable, with each component
function admitting an efficiently computable prox operator
(see Section 2 for a precise statement of the assumptions).

Similar to Song & Diakonikolas (2021), we define a sum-
mary Lipschitz constant L of f obtained from Lipschitz
conditions of individual blocks. Our summary Lipschitz
condition is similar to that of Song & Diakonikolas (2021)
(although not exactly the same) and enjoys the same favor-
able properties as the condition introduced in that paper; see
Section 2 for more details.

We introduce a new accelerated cyclic algorithm for (P)
whose full gradient oracle complexity (number of full gradi-
ent passes or, equivalently, number of full cycles) is of the

order O(min{\/gnmo —x*||2, ﬁlOg(M})a

where + is the strong convexity parameter of g (equal to
zero if g is only convex, by convention), &* is an optimal

solution to (P), and &y € dom(g) is an arbitrary initial
point. This complexity result matches the gradient oracle
complexity of the fast gradient method (Nesterov, 1983),
but with the traditional Lipschitz constant being replaced
by the Lipschitz constant introduced in our work. In the
very worst case, this constant is no higher than /m times
the traditional one, where m is the number of blocks, giv-
ing an m'/* improvement in the resulting complexity over
the accelerated cyclic method from Beck & Tetruashvili
(2013). Even in this worst case, the obtained improvement
in the dependence on the number of blocks is the first such
improvement for accelerated methods since the work of
Beck & Tetruashvili (2013). We note, however, that for
both synthetic data and real data sets and on an example
problem where both Lipschitz constants are explicitly com-
putable, our Lipschitz constant is within a small constant
factor (smaller than 1.5) of the traditional one (see Figure 1,
Table 1, and the related discussion in Section 2).

Some key ingredients in our analysis are the following.
First, we construct an estimate of the optimality gap we
want to bound, where we replace the gradient terms with
a vector composed of partial, or block, extrapolated gradi-
ent terms evaluated at intermediate points within a cycle.
Crucially, we show that the error introduced by doing so
can be controlled and bounded via our Lipschitz condition.
An auxiliary result allowing us to carry out the analysis
and appropriately bound the error terms resulting from our
approach is Lemma 1, which shows that our Lipschitz con-
dition translates into inequalities of the form

f(y) - f(@) < (Vf(@)y - @)+ 5y~ all
17 w) ~ Vi@ 2L () ~ f(@) ~ (V@) y — ),

similar to the standard inequalities that hold for the tradi-
tional, full-gradient, Lipschitz constant. Finally, we note
that the accelerated algorithm that we introduce is novel
even in the single block (i.e., full-gradient) setting, due to
the employed gradient extrapolation.

We further consider the finite sum setting, where f is ex-
pressible as f(x) = = >°" | fi(x), and where n is typi-
cally very large. We then propose a variance-reduced vari-
ant of our accelerated method, which further reduces the

full gradient oracle complexity to O(min{\/%ﬂwo —

2", (el

that we employ is of the SVRG type (Johnson & Zhang,
2013). While following a similar approach as the basic
accelerated algorithm described above, the analysis in this
case turns out to be much more technical, due to the need
to simultaneously handle error terms arising from variance
reduction as well as the error terms arising from the cyclic
updates. Through utilizing the novel smoothness proper-
ties obtained in Lemma 1 specific to convex minimization,

v/ L Jog . The variance reduction
ny
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we are able to obtain the desired error bounds without us-
ing the additional point extrapolation step in the gradient
estimator as Song & Diakonikolas (2021), but rather only
with an SVRG estimator. This important change paves a
path to achieving accelerated convergence rates while also
simplifying the implementation of our algorithms.

Last but not least, we demonstrate the practical efficacy
of our novel accelerated algorithms A-CODER and VR-A-
CODER through numerical experiments, comparing against
other relevant block coordinate descent methods. The use
of A-CODER and VR-A-CODER achieves faster conver-
gence in primal gap with respect to both the number of
full-gradient evaluations and wall-clock time.

1.2. Further Discussion of Related Work

As discussed at the beginning of this section, cyclic block
coordinate methods constitute a fundamental class of opti-
mization methods whose convergence is not yet well under-
stood. In the worst case, the full gradient oracle complexity
of vanilla cyclic block coordinate gradient update is worse
than that of vanilla gradient descent, by a factor scaling
with the number of blocks m (equal to the dimension in
the coordinate case) (Sun & Ye, 2019; Beck & Tetruashvili,
2013). Since the initial results providing such an upper
bound (Sun & Ye, 2019), there were no improvements on
the dependence on the dependence on the number of blocks
in the convergence guarantees of cyclic methods until the
very recent work of Song & Diakonikolas (2021), which in
the worst case improves the dependence on m by a factor
/m. Our work further contributes to this line of work by
improving the dependence on m in accelerated methods
from y/m to m*/4 in the worst case.

In the finite-sum settings, variance reduction has been
widely explored; e.g., in Johnson & Zhang (2013); Defazio
et al. (2014); Allen-Zhu (2017); Reddi et al. (2016); Lei
et al. (2017); Song et al. (2020); Schmidt et al. (2017) for
the case of full-gradient methods and in Chen & Gu (2016);
Lei & Shanbhag (2018) for randomized block coordinate
methods. However, variance reduced schemes for cyclic
methods are much more rare, with nonasymptotic guaran-
tees being obtained very recently for the case of variational
inequalities (Song & Diakonikolas, 2021) and nonconvex
optimization (Cai et al., 2022; Xu & Yin, 2014). We are not
aware of any existing variance reduced results for acceler-
ated cyclic block coordinate methods.

1.3. Outline of the Paper

Section 2 introduces the necessary notation and background
and outlines our main problem assumptions. Section 3 in-
troduces the A-CODER algorithm and outlines the analysis.
For space constraints, the full convergence analysis of A-
CODER is provided in Appendix A. Section 4 presents

VR-A-CODER and outlines its convergence analysis, while
the full technical details are deferred to Appendix B. Finally,
Section 5 provides numerical experiments for our results
and concludes the paper with a discussion.

2. Notation and Preliminaries

For a positive integer K, we use [K] to denote the set
{1,2,...,K}. We consider the d-dimensional Euclidean
space (R?, ||-|), where ||-||= /-, -) denotes the Euclidean
norm, (-,-) denotes the (standard) inner product, and d
is assumed to be finite. Throughout the paper, we as-
sume that there is a given partition of the set {1,2,...,d}
into sets S7, j € {1,...,m}, where |Si|= d/ > 0.
For convenience of notation, we assume that sets S’
are comprised of consecutive elements from {1,2,...,d},
that is, S* = {1,2,...,d'}, 8% = {d* + 1,d* +
2, dl +d?,. 8 = (X + LY+
2,..., Z;”zl d’}. This assumption is without loss of gener-
ality, as all our results are invariant to permutations of the
coordinates (though the value of the Lipschitz constant of
the gradients defined in our work depends on the ordering
of the coordinates; see Assumption 2). For a vector « € R4,
we use (/) to denote its coordinate components indexed by
S’. Similarly for a gradient V f of a function f : R — R,
we use V) f to denote its coordinate components indexed
by 7. We use ( - )>; to denote an operator for vectors and
square matrices that replaces the first j — 1 elements of rows
and columns with zeros, i.e., keeping elements with indices
> j the same, otherwise zeros.

Given a proper, convex, lower semicontinuous function
g:R?* = RU {+o0}, we use g(x) to denote the subdif-
ferential set (the set of all subgradients) of g. Of particular
interests to us are functions g whose proximal operator (or
resolvent), defined by

. 1
prox,,(u) := arg min {Tg(w) + §||a: — u||2} (1)
zcR4

is efficiently computable for all 7 > 0 and w € R?. To unify
the cases in which g are convex and strongly convex respec-
tively, we say that g is ~y-strongly convex with modulus
v >0, if forall z,y € R? and ¢'(x) € dg(z),

9(y) > g(2) + (g (2).y — @) + 2]y —z|*.

Problem definition. We consider Problem (P), under the
following assumptions.

Assumption 1. g(x) is y-strongly convex, where v > 0,
and block-separable over coordinate sets {S’ }], : g(x) =
>y ¢ (x)). Each g7 (D)) for j € [m] admits an effi-

ciently computable proximal operator.
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Figure 1. Comparisons of Lipschitz constants for elastic-net prob-
lems on synthetic datasets, where M denotes the commonly known
Lipschitz constant and L is our new Lipschitz constant as defined
in Assumption 2.

Table 1. Comparisons of Lipschitz constants for elastic-net prob-
lems on LibSVM datasets. M is the classical gradient Lipschitz
constant and L is our novel smoothness constant. We use each
coordinate as a block, i.e., m = d.

DATASET #FEATURES M L
SONAR 60 12.5 15.8
COLON 2000 310.6  394.7
A9A 123 6.1 7.7
PHISHING 68 0.60 0.76
MADELON 500 1.2 1.5

Assumption 2. There exist positive semidefinite matrices
{Q,Q?,...,Q™) such that VY f(-) is 1-Lipschitz con-
tinuous w.r.t. the seminorm ||-||gs, i.e., Y&,y € R,

IVOf(@) - VI y)IP< 2 - yllg, @

where ||z — yHQQJ: (x — 9)TQ'(x — y) is the Ma-
halanobis (semi)norm. Moreover, we define a new Lip-
schitz constant L such that L* = 2||Q| < oo where

Q=371 [(Q)2 +(Q)zjn1]-

Observe that when f is M-smooth in a traditional sense
(i.e., when f has M-Lipschitz gradients w.r.t. the Eu-
clidean norm), Assumption 2 can be trivially satisfied using
Q7 = MI for all j € [m], where I is the identity matrix.
Consequently, it can be argued that L < 2,/mM (Song &
Diakonikolas, 2021); however, we show that this bound is
much tighter in practice as illustrated in Figure 1 and in
Table 1. In particular, we follow the experiments in Song &
Diakonikolas (2021) and show empirically that the standard
Lipschitz constant M and our new Lipschitz constant L
scale within the same factor for both synthetic and real data.

3. Accelerated Cyclic Algorithm

In this section, we introduce and analyze A-CODER, whose
pseudocode is provided in Algorithm 1. A-CODER can
be seen as a Nesterov-style accelerated variant of CODER,
previously introduced for solving variational inequalities
by Song & Diakonikolas (2021). A-CODER is related to

other accelerated algorithms in the following sense. In the
case of a single block (m = 1) and when gradient extrap-
olation is not used (i.e., when qr = pi), A-CODER re-
duces to a generalized variant of AGD+ (Cohen et al., 2018;
Diakonikolas & Guzman, 2021) or the method of similar
triangles (Gasnikov & Nesterov, 2018). The analysis of
A-CODER follows the general gap bounding argument (Di-
akonikolas & Orecchia, 2019; Song et al., 2021a) and it
is based on three key ingredients: (i) gradient extrapola-
tion, which enables the use of partial information about the
gradients within a full epoch of cyclic updates, (ii) Lips-
chitz condition for the gradients based on the Mahalanobis
norm as defined in Assumption 2, and (iii) upper and lower
bounds on the difference between the function and its lin-
ear approximation that are compatible with the gradient
Lipschitz condition that we use, as stated in Lemma 1.

Lemma 1. Ler f : RY — R be a convex and smooth
function whose gradients satisfy Assumption 2. Then,
Ve, y € R :

f(y) - f(@) < (VF(@)y— @)+ 5y~ al
I/ y) ~ VI@)< 2L (7 () ~ f(@) ~ (Vf(@).y — ).

We now derive the A-CODER algorithm. We define
{ar}r>1 and {Aj}r>1 to be sequences of positive num-
bers with Ay = Zle a;,ag = Ag = 0. Let {:Bk}kzo be
an arbitrary sequence of points in dom(g). Our goal here
is to bound the function value gap f(yx) — f(u) above for
all w € dom(g). Towards this goal, we define an estimation

sequence 1y, recursively by ¥ (u) = 1|ju — @||? and

Yr(u) == Yp-_1(u) + ax(f(zr) + (qr, u — xx) + g(u))

for £ > 1. Meanwhile, vy and y;, are defined as vy :=
arg min,, cpa () and yy, := A% Zle a;v; respectively.
We start our analysis by characterizing the gap function in

the following lemma.

Lemma 2. For any u € R and any sequence of vectors
{qi}i>1, we have

Ar(f(yr) — f(u)) 3)

14 Apy

k
1
<D Eiw) + gl — @l u — v, @)
i=1

where

Ei(u) = Ai(f(yi) — f(xi)) — Aim1 (f(yi—1) — f(=4))

—a; (qi,v; —x;) +a; (Vf(x;) — qi,xi —u)
14+ A;_
_ %H’Uz‘ v (5)

Lemma 2 applies to an arbitrary algorithm that satisfies its
assumptions. From now on, we make the analysis specific
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Algorithm 1 Accelerated Cyclic cOordinate Dual avErag-
ing with extRapolation (A-CODER)

€ dom(g), v > 0, L > 0, m,

1: Input: =g
{st,..., 8™}
2. Imitialization: x| = 9 = v_1 = vg = Yo; P9 =
Vf((lto); zZy) = 0; ag = AO =0
3: for k =1to K do
: Set ar > 0 be largest value s.t.
where Ay, = Ag_1 + ag

ap < 2(14+Ak_17)
A — 5L

500 xp = Aﬁjyk_l + k-1
6: forj_:mtoldo
7 V(j)f(:cg) w;cj)7yl(€j+1)7 ”’y](cm))
o) —pl) +E (VO fmen) -
9. ]EJ) (J)1 +a q]EJ) |
10 'u,(f) = proxy,, (:E(()j) (J))
j A
11: ,y](fj) k— 1:’!19)1 + Ak ,v](c )
12:  end for
13: end for

14: return vy, yx

to A-CODER (Algorithm 1). In Lemma 2, { E;(u)} are the
error terms that we need to bound above. If -7 F;(u) <
%Hu — vy||?, then we get the desired 1/ A, rate. To
this end, we bound each term Fj(u) in Lemma 3 by using
the extrapolation direction gy, the definition of y, ) and
the parameter setting of ay.

Lemma 3. Let ¢ € dom(g) be an arbitrary initial point

and consider the updates in Algorithm 1. If, for k > 1,

2 9(1+Ak_17v)
ag k—17
A < S then Yu,

Ep(u) < ap (Vf(xk) — pr,vr — u)

—ap—1 (Vf(®r-1) — Pr—1,Vp—1 — u)

1+ A
- = ok — v |
1 +Ak_
+ Tw”vk—l - 'Uk72||2-

We are now ready to state the main convergence result of
this section.

Theorem 1. Let xy € dom(g) be an arbitrary initial point
and consider the updates in Algorithm 1. Then, Vk > 1 and
any u € dom(g):

o_ |lu—

[l — v [|<

Fluw) — 3(14 Ax—17)

C130||2
104, '

Flw) + oA,

In particular, if x* = arg min,, f(x) exists, then

Flye) = f(=") <

2 —o|*
2Ax

Further, in this case we also have:

5
* 112 *1|2
Vi — & — ||y — T y

) o — 2.
gl

k
) a;
_p¥2< | v
e = =< <3Ak ; 1+ Ais

Finally, in all the bounds we have

k
2 27y k2
> — — ).
= max{5L<1+\/5L) ’ 1OL}

Adaptive A-CODER. The Lipschitz parameter L used
in the statement of A-CODER (Algorithm 1) is usually
not readily available for typical instances of convex com-
posite minimization problems; however, as we argue in
Appendix A, this parameter can be adaptively estimated
using the standard backtracking line search. A variant of
A-CODER implementing this adaptive estimation of L is
provided in Algorithm 3. This is enabled by our analysis,
which only requires the stated Lipschitz condition to hold
between the successive iterates of the algorithm. Notably,
unlike randomized algorithms which estimate Lipschitz con-
stants for each of the coordinate blocks (see, e.g., Nesterov
(2012)), we only need to estimate one summary Lipschitz
parameter L.

4. Variance Reduced A-CODER

In this section, we assume that the problem (P) has a finite
sum structure, i.e., f(x) = 31" fi(x), where n may
be very large. For this case, we can further reduce the
per-iteration cost and improve the complexity results by
combining the well-known SVRG-style variance reduction
strategy (Johnson & Zhang, 2013) with the results from the
previous section to obtain our variance reduced A-CODER
(VR-A-CODER). From another perspective, VR-A-CODER
can be seen as a cyclic gradient-extrapolated version of the
recent VRADA algorithm for finite-sum composite convex
minimization (Song et al., 2020).

For this finite-sum setting, we need to make the following

stronger assumption for each fi(x).

Assumption 3. For all t € [n], fi(x) is convex. Moreover
for all t € [n], there exist positive semidefinite matrices
{Q",Q?,...,Q™) such that VY f,(-) is 1-Lipschitz con-
tinuous w.r.t. the norm ||-||gs i.e., V&, y € R% t € [n),

IV fi(@) = VO f)IP< llz —ylig -

Lemma 4. If f(x) = 1 37 | fi(x) satisfies Assumption
3, then it satisfies Assumption 2 and thus Lemma 1 holds.
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Algorithm 2 Variance Reduced A-CODER (Implementable
Version)
1: Input: x

€ dom(g), v > 0, L > 0, m,

(SL,...,8™
2: Initialization: ’go = V10 = Y10 = 11 = Xo,
z10=0

3: a():AO:O;Alzal:ﬁ
4: zZ11 = Vf(wo), V1,1 = pI’OXalg(l‘o — 21,1)
5 Y1 = Y11 = V1,1

1 i )+1
6: wi 1= (w§7i> e 71"&],%’ ygj,l ), R y%?ll))
7

V2,0 = V1,1, W20,5

Yi1,15 22,0 = 21,1

8: for s = 2to S do

9: asz\/W;As:Asfl—’—as

10: Qg0 = As—1,0As1 = As2 = **° = Qg K = Qg

I wsp Vs—1,K; Ws,0,j = Ws—1,K,j5 Ts,0
Ls—1,K:Ys,0 = Ys—1,K5 25,0 = Zs—1,K

12: s = Vf(ys_1)

13:  fork=1to K do

= Wi,1,5, 20 = T1,1> Y2,0 =

14: Ts ) = Aflﬂsﬂ + 3 Vs k-1
15: for j =mtoldo
1 j j+1
16: Wy = (a:i,i,,mgji,yijk ),...,ygz))
17: Choose t in [n] uniformly at random
18: VY = VO fuwe i g) = VD folGsor) + pt
9 = VI S @) -
V(?)ft(wg,kfl,j)) 4
o e el
21: 'vgjz =DProX 4 | egkyg (w((f) — zgjlz/K)
N A0 el
2yl =gl ey
23: end for
24:  end for
_ K
25: Ys = % E}czl Ys,k
26: end for

27: return vg g, Ys

With this assumption, we can now derive the VR-A-CODER
algorithm. Similar to Section 3, we define {a,}s>1 and
{A;}s>1 to be sequences of positive numbers with A, =
> _aisap = Ag = 0. Let {g,}s>0 be a sequence of
points in dom(g) which will be determined by the VR-A-
CODER algorithm. Our goal here is to bound the function
value gap f(9s) — f(u) above (u € dom(g)). To attain
this, we define the estimate sequence {9s 1 }s>1 re[K] Te-

cursively by ¢r.0(u) = £ ju — o],
V1,1(u) = Y10(uw) + Kai(f(zo) (6)

+(Vf(®o), u — o) + g(u)),

and ¢p o = 91 1;fors > 2,1 <k < K,

%,k(u) = ¢‘s,k—1(u) + as(f(a:s,k) @)
+ <qs,k7 u — ms,k) + g(u))a

and Y5410 = ¥s k. In Egs. (6) and (7), x¢ is the initial
point, & j and Yy ; are computed as convex combinations
of two points, which is commonly used in Nesterov-style
acceleration, and g, j, = (qgllz, qu, el qsz)) is a variance
reduced stochastic gradient with éxtrapolatfon, which is the
main novelty in our algorithm design. Meanwhile, we define
Vs DY Vg i := arg min,, cpa ¥ 1 (w) and note that due to
the specific choice of g, 1, v, 1 is updated in a cyclic (block)
coordinate way. Furthermore, in VR-A-CODER, for s > 2,

_ K
we define g, = % Dok Ysk-

We start our analysis by characterizing the gap function,
in the following lemma, similar to Lemma 2 in Section 3,
although the proof is much more technical in this case. Due
to space constraints, we include the full analysis of Variance
Reduced A-CODER in Appendix B.

Lemma 5. For any u € R and any sequence of vectors
{q&k}szz’ke[K],fOr all S > 2, we have
KAs(f(gs) — f(u))

12— K(1+ Agv)
2

K S K
= o = violl*+> > Eoxl(u),

s=2 k=1

K
<5 2o — u lvs,x — ul?

where

Esk(uw) = As(f(Ys,i) — f(@s5))
- As—l(f(QS—l) - f(‘ES,k))
+ as <Vf(ws,k) — sk, Ts k — u>

(8)

+ as <qs,k7 Tsk — Us,k>

K(1+ A,_
_ %Hvs,k — g

In the following lemma, we bound the expected error terms
Zf:z Zle E [E; k(u)] arising from the gap bound stated
in the previous lemma. This bound is then finally used in
Theorem 2 to obtain the claimed convergence results.

Lemma 6. With a? < W, ask = as and
A = As fork € [K], aso = as—1 and Asg = As_q,
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Figure 2. Performance comparisons between implemented algorithms in terms of the number of full-gradient evaluations and wall-clock
time for logistic regression with ridge regularized problems. The top row contains plots against the number of full-gradient evaluations,
and the bottom row contains plots against the wall-clock time. The left column is for the sonar dataset, the middle column is for the ala
dataset and the rightmost column is for the a9a dataset, all obtained from LIBSVM (Chang & Lin, 2011).

then for any fixed u € dom(g) we have

] =

>

s =2

E [Es,k(u)]

>
Il

1

NE

< - a <V(j)f(m171) _ V(j)f(wlg,j)vvg% — u(j)>

J

+ Y asE [(VO S @sixe) = VO f(wse ), vk
j=1

B K
— u(j)>] + o1 [lv1,1 — ’U1,0||2

5K (14 AS’W)E
32

[lvs.x = vs.x-al]

where €1 1,v1 9 € dom(g) can be chosen arbitrarily and
wy,1,; is defined in Algorithm 4.

Our main result for this section is summarized in the follow-
ing theorem.

Theorem 2. Let xy € dom(g) be an arbitrary initial point.
Fix K > 1 and consider the updates in Algorithm 4. Then
Sfor S > 2 andVu € dom(g), we have

9(1+ As_17)

E [[(gs) ~ flw)] + =57 [fos.x — ull’]

2
< — —
< SAs leo — u|

In particular if £* = arg min,, f(x) exists, then we have

B [7(gs) - F(a")] < gy oo @'

and

40
E [|losx — =]

%112
<— ||y — x*||”.
= 9(1+ As_17) o I

Finally in all the bounds above we have

S—1
K 1 (| [Ky
64L " 4L 8L

Note that in Theorem 2, we can set the number of in-
ner iterations K to be any positive integer. However,
in order to balance the computational cost between the
outer loop of each epoch and the inner loops, it is op-
timal to set K = ©O(n) and for simplicity we can set
K = n. Therefore, the total number of arithmetic oper-
ations required to obtain an e-accurate solution yg by ap-

plying Algorithm 2 such that E[f(gs) — f(z*)] < eis at

most O (nd 1/ W) for the general convex case when

_ ndlog(eL/||lwo—x"||)
v =0, and O( log(1/m L) ) for the strongly convex
case when v > 0.

Ag > max

Adaptive VR-A-CODER. Similar to A-CODER, VR-A-
CODER can adaptively estimate the Lipschitz parameter.
For completeness, we have included the adaptive version of
VR-A-CODER in Algorithm 5 (Appendix B).
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Figure 3. Performance comparisons between implemented algorithms in terms of the number of full-gradient evaluations and wall-clock
time for logistic regression with elastic net regularized problems. The top row contains plots against the number of full-gradient evaluations,
and the bottom row contains plots against the wall-clock time. The left column is for the sonar dataset, the middle column is for the ala
dataset and the rightmost column is for the a9a dataset, all obtained from LIBSVM (Chang & Lin, 2011).

5. Numerical Experiments and Discussion

To verify the effectiveness of our proposed algorithms, we
conducted a set of numerical experiments to demonstrate
that both A-CODER (Algorithm 1) and VR-A-CODER (Al-
gorithm 2) almost completely outperform other comparable
block-coordinate descent methods in terms of both itera-
tion count and wall-clock time. In particular, we compare
against a number of representative methods: CODER (Song
& Diakonikolas, 2021), RCDM, ACDM (Nesterov, 2012),
ABCGD (Beck & Tetruashvili, 2013) and APCG (Lin et al.,
2015). For all the methods, we use the function value gap
f(x) — f(x*) as the performance measure and we plot our
results against the total number of full-gradient evaluations
and against wall-clock time in seconds. We implement our
experiments in Julia, a high performance programming lan-
guage designed for numerical analysis and computational
science, while optimizing all implementations to the best of

our ability. Our code can be found at https://github.

com/ericlincc/Accelerated-CODER.We set the
block size to one in all the experiments, i.e., each block
corresponds to one coordinate. We discussed in Section 4
that in theory it is optimal to choose K = ©(n) in order
to balance the computational costs of outer loop and inner
loop in VR-A-CODER. We observed in our experiments
that it is beneficial to choose K to be slightly smaller than
n (K =~ n/10) to balance the computational time and the
number of full-gradient evaluations.

We consider instances of /{3-norm (Ridge), ¢;-norm
(LASSO) (v = 0) and elastic net (y > 0) regularized lo-

gistic regression problems using three LIBSVM datasets:
sonar, ala and a9a. In the ridge regularized logistic regres-
sion problem ( (Figure 2), we use Ay = 10~ for sonar
dataset and A\, = 10~ * for ala and a9a datasets. In the elas-
tic net regularized logistic regression problem (Figure 3), we
use \; = Ao = 1075 for sonar dataset and A\ = Ay = 10~*
for ala and a9a datasets. In the ¢;-norm regularized logistic
regression problem (Figure 4), we use A\; = 10~° for sonar
dataset and \; = 10~* for ala and a9a datasets. Figures 3
and 4 provide performance comparisons between algorithms
considered in terms of the number of full-gradient evalua-
tions and wall-clock time for the elastic net regularized logis-
tic regression problems. We search for the best L or M for
each algorithm individually at intervals of 2! for i € Z, and
display the best performing runs in the plots. As predicted
by our theoretical results, A-CODER and VR-A-CODER
exhibit accelerated convergence rates and improved depen-
dence on the number of blocks m even in the worst case,
outperforming all other algorithms. In terms of wall-clock
time, due to different per-iteration cost of each algorithm
in practice, we see a mildly different set of convergence
behaviors. However, A-CODER and VR-A-CODER still
both perform significantly better than comparable methods.

Combined with the best known theoretical convergence
rates guarantee, we believe that this work provides strong
supporting arguments for cyclic methods in modern machine
learning applications.
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Figure 4. Performance comparisons between various algorithms in terms of number of full-gradient evaluations and wall-clock time for
logistic regression with LASSO regularized problems. The top row contains plots against the number of full-gradient evaluations, and
the bottom two contains plots against wall-clock time. The left column is on sonar dataset, the middle column is on ala dataset and the

rightmost column is on a9a dataset.
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Supplementary Material for Accelerated Cyclic Coordinate Dual
Averaging with Extrapolation for Composite Convex Optimization

QOutline. The appendix of the paper is organized as follows:

* Section A presents the proofs related to the A-CODER algorithm in the main body of the paper, as well as the
implementable and adaptive versions of A-CODER.

» Section B presents the proofs related to the A-CODER-VR algorithm in the main body of the paper. We also include
the implementable and adaptive versions of A-CODER-VR in this section.

A. Omitted Proofs and Pseudocode for A-CODER
Lemma 1. Let f : R® — R be a convex and smooth function whose gradients satisfy Assumption 2. Then, Y,y € R? :
L
fy) = f(@) < (Vf(@@)y - @) + Slly — =
IVf(y) = V(@)|°< 2L(f(y) - f(z) = (Vf(2),y — ).

Proof. Letz; = (zM), ... 20) yU+D . 4(™)) and observe that z,, = = and z; = y. Then we have
Fly) = f@) = (f(zj-1) = f(z)). ©)
j=1

As f is continuously differentiable and z; and z;_; only differ over the 41 block, we further have, by Taylor’s theorem,

1
f(zj—1) — f(z)) = /0 (Vf(zj +t(zj-1 — 25)), 2j-1 — z5)dt

1
=/ <V(j)f(zj + (21— 2)),yY) - w(j)>dt

0
= <V(J)f(x)7y(ﬂ — w(])> +/ <V(])f(zj +t(zj_1 — 2;)) — VI f(x),y) — $(3)> dt. (10)
0
Using Young’s inequality, we have, for any o > 0,

<V<j>f(zj izt — 2;)) — VO ),y — x(j)>

o . 1 ,
< gllv(”f(zj +H(zio1 — 25)) = VO f(@)|” + £I|y(” —z0)?
« 1 P .
< gllzs +t(zi-1 = 2) — |5, + %Hy(” —zW)|?
« 1 . .
< 5 [A=Dll= - ®|5s +tlzi -l | + glly(” — 2|2,

where the second inequality is by our block Lipschitz assumption from Assumption 2 and the last line is by Jensen’s inequality.
Now observe that z; and x agree on the first j blocks. Thus, we can write z; —x = (Y —&)>,41 and z;_1 —x = (Y —x) >,

. . 2 2 2 2 . .
while noting that we have [|(y — )l = ly — zl(q,)., ad [[(y — )+l = lly — zl(g,).,,,- So by combining
with Eq. (10) and integrating over ¢, we have, Vo > 0,

) . . 1 . .
) — , (4) (7)) _ @) @) — 2W))2
f(zi1) = f(z) < (VO f(@),y9) —aV)) + [y — 20| "

a 2
+ 5 Iy = @i, + ly = =lligs, ., )

12
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Summing Eq. (11) over j € [m] and using the definition of Mahalanobis norm, we finally get

fly Z (zj-1) — f(2))
j=1
g<vmmm—ww+%w—wﬁéw—m»+%ﬂy—ﬂﬁ
< (Viehy—a)+ (50 + ) ly—al?.

where we used Holder’s inequality and the definition of L in Assumption 2. Letting o = % now completes the proof of the

first part.

The second part of the proof is standard and is provided for completeness. Let x, y be any two points from R?. Define
he(y) = f(y) — (Vf(x),y) . Observe that h(y) is convex (as the sum of a convex function f(y) and a linear function
—(Vf(z),y)) and is minimized at y = x (as for any y € R, hy(y) — he(z) = f(y) — f(z) — (Vf(z),y —x) >0,
by convexity of f). Observe further that for any ¥y, z € R?, we have

he(y) — ha(2) = (Vha(2),y — 2) = f(y) — f(2) = (Vf(2),y — 2)
<Dy -1

where the last inequality is by the first part of the proof. The last inequality and the fact that & minimizes h, now allow us
to conclude that

he () < hy (y - %Vh:,,.(y))

1
< ha(y) ~ 5= [ Vha(y)|.
To complete the proof, it remains to plug the definition of &, (-) into the last inequality, and rearrange. O

Lemma 2. For any u € R? and any sequence of vectors {qi}i>1, we have

Ar(f(yr) = f(u)) 3)
1 1+ A
<3 Bilw) + gl = P @

where

Ei(u) = Ai(f(ys) — f (i) — Aiea (f (yi-1) — [ (=)
—a; (g, vi — @;) + a; (Vf(x:) — qi, @i — u)
_ MHW — w2 (5)
2
Proof. Asyy = Aik Zf:l a;v; and g is convex, we have g(yi) < Aik Zle a;g(v;) and thus,
B k
A f(yr) < Arf(yr) + ) aig(vy)

i=1

k k
Z (Aif(y) — A f(yi1)) + D aig(vy), (12)

i=1
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where the equality is by Ag = 0. Then, as f is convex and f = f + g, we have, Vu,

k
Apf(u) > ai(f(xi) + (Vi) u—x) + g(w))

i=1

k
ai(f(®i) + (qi,uw — ) + g(u)) + Zai (Vf(x:) — qi,u—x;)

1 i=1

I

s
Il
—

I

K2

k
Ui (w) = do(w) + Y ai (Vf(@) — giu — )

i=1
1+ Ay 1
> e(on) + 5 = o= 5l — ol
k
+) a4 (Vi) - giu— ),
i=1

where the first inequality is by the convexity of f, the third equality is by the recursive definition of v (u), and the last
inequality is by the (1 + Aj~y)-strong convexity of ¢y (u), vy = argmin,, ¢, (uw) which implies ¢, (u) > Vi (vy) +
LE2T |4y — vy |2, and the definition of g ().

Then as ¥ (vo) = 0, using the recursive definition of 1, we have

k

Ur(vr) = Y (Wi(vi) = i1 (vi1))

i=1

> (0 (00) = Yima(wie2)) + aulF (@) + (@000 — @) + 9(v1)))

k
i=1

(2

k
Z (1 + A 17 s — vi1||? + as(f () + (g, v; — x;) + g('Ui)))a (13)

i=1

\ \

where the last inequality is by the (1 + A;_1)-strong convexity of ¥;_; and the optimality of v;_;. Combining Egs. (12)
and (13), we have

k
_ 1+ A 1
A Fye) = fl) < 3 Bifw —— " = g2+ flu = o, (14)

where F;(u) is defined in (5). O

Lemma 3. Let xy € dom(g) be an arbitrary initial point and consider the updates in Algorithm 1. If, for k > 1,

2 9(1+Ak_179)
ag k—17
A < s then Yu,

Ex(u) < ap (Vf(xr) — pr,vr — u)
—ap—1 (Vf(Tr_1) = Pr—1,V%—1 — u)

14+ A

_ %”vk v |?
1+ Ag_

+ 1752’7||ka1 — ’Uk,2||2.

Proof. By the convexity of f, we have
FYe-1) = f(@r) 2 (Vf(@k), yo1 — @) -

14
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Then by applying Lemma 1, we have

A(F ) = F(@0)) = A1 (F@e1) — F@n)) < (V) v — A1 — ) + 25 e —

akQL
2A

=ap (Vf(xr),vi — ) + v — vi—1]%, (15)

where we used the definitions of y; and xj, from Algorithm 1 in the last equality. Combining Eq. (5) (with ¢ = k) in
Lemma 2 and Eq. (15), we have

ap’L 1+ Aj_
Ep(u) < ( F= - : 17) [or = vi—1[*+ar (Vf(2r) — qr, vk —u) - (16)
2Ax 2
Thus by rewriting the second term as the sum of inner products over the m blocks and by using the definition of q,(cj ) in
Algorithm 1, we have
ax(VF(@r) = @ vk —u) = ap Y <V<j>f(mk) ORNON u<j>>
j=1
= Z [ak <V(j)f($k) - p;(j),v;(ﬁj) - U(j)> — Qk—1 <v(j)f($k—1) - Pi.jzp U;i]zl - U(j)>17
j=1 7)
+ap—1 Z <V(j)f(:nk,1) - p,@l, v,@l — v,ij)> .

j=1

Notice that the first two inner product terms in the first line of Eq. (17) telescope when summed over k, therefore it remains

to bound ag—1 Y7, <V(j)f(:nk,1) —p? ol - v,(le>. In particular we let wy, ; = (zh, ..., @, yi ..., y) so
that p,(j) = VU f(wy ;), then we have
<v(f)f(mk,1) PP D vff)> — <v(j)f(:ck,1) — V9 f(wp1,), 0P, — v<j>>
« : . 21 , 12
< 9 HV(J)f(mk—l) - v(j)f('wk—l,j)H + % HU;(CJ_)l - U;(C])

a 9 1 . 112
e = wi-1l, + 5 [0 - 0f

IN

(18)

where the first inequality holds for any o > 0 by Young’s inequality and the second inequality is by Assumption 2. Notice
that x;_, and wy_, ; agree on the first j blocks, so similar to the proof of Lemma 1 we can write ;1 — wWr_1; =
(Yr—1 — ®x—1)>;+1. Therefore by applying similar arguments as Lemma 1, we get

m

m
2 2
Dol —willgs = D Iy =zl (g,
j=1 Jj=1 B

m m
2 2
<> llyk-r - -1l T > llyk-1 - Ti-1ll(gi).,
j=1 B j=1 B
= lyr—1 — ze1llg

2 2

ay_
o vk — vl (19)
k—1
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where we used the non-negativity of Mahalanobis norm w.r.t. semi-positive definite matrix in the first inequality and the
definition of x, y; and L in the last inequality. Lastly, by combining Egs. (16), (17), (18) and (19), we have

Ep(u) < ap (Vf(zr) — pr,vi —w) — ap—1 (Vf(Tp—1) — Pr—1, V%1 — u)

2 3 12
apl 14+ A1y | ak— 2 (oap_ L7 2
+ <2Ak 5 + % ) lvr — vi—1]|” + ( 142 lvr_1 —vr_al]”.

Ap_1 Li < 2(1+Ar_17v)

. k
It remains to choose a = -~ and some sequence {a;}; such that 1 < =T . O

Theorem 1. Let x¢ € dom(g) be an arbitrary initial point and consider the updates in Algorithm 1. Then, Vk > 1 and any
u € dom(g):

= 7 3(1+ Ap-17) o_ |lu— ol
- DT LR gy — |2 2200
f(yr) — fu) + 104, lu — v "< A,
In particular, if ** = arg min,, f(x) exists, then
z R | A 1
— < -
flyr) — f(z¥) < A,
Further, in this case we also have: .
* 12 *|2
v — < ——— ||y — =¥,
|| k H = 3(1+Ak717)” 0 ||

k
5 a;
¥ 2< T ¥ 2.
el i e ) I

i=1

k
2 2 k2
A > Sl D 0 R
’“—max{5L< + 5L) : 10L}

Proof. By Lemma 3, and using the fact Ag = ag = 0 and vy = v_1, we have

Finally, in all the bounds we have

1+ A
> Eilu) <~ o, — v | +an (VF (@) prve— ). 0)

Same as in the proof of Lemma 3, we can bound ay, (V f(xx) — pk, vr — u) using Young’s inequality and the definition of
smoothness for f. In particular, for any o > 0,

al? 9 1 9
ar (9 f (i) = P o — w) < a( S e — @l ol = o)

OzLQCLkQ 2 1 2
—ak(muvrmn 5ol —well?).
Choosing o = (:—’“L and using % < W , we get
14+ A 14+ Ay
e (V@) — piooy — ) < LT oy e Ay e e
Then combining Lemma 2, Eq. (21) and Eq. (20) with the fact Ay_; < Ay, we have
2 = 3(1+ Ax-17) o 1 2
_ ST RN 0y [|P< —— [l — o ||, 22
(Flwn) = Flu)) + Z D = o< = ol 2)

Assume now that z* = arg min,, f(x) exists. As f(yx) — f(z*) > 0, Eq. (22) implies

o, — =" * laco — ™|, (23)

<5
3(14 Ar—17v)
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Algorithm 3 Adaptive Accelerated Cyclic cOordinate Dual avEraging with extRapolation (Ada-A-CODER)
1: Input: zy € dom(g),y >0, Lo > 0,m, {St,..., 5™}
2: Initialization: L1 =xy)=V_-1 =Yy =Yo,Po = Vf($0)7 zZ0 = O, apg = Ao =0
3: fork=1to K do

4 L, = Lk_1/2
5 repeat
6: L =21,
2
7 Set a;, > 0 be largest value s.t. %2 < 2(1%’:”) where A, = A,_1 + ay,
8 _ Ak—l Q.
Tk = —g Yk-1 1 Z, Vk-1
9: for j =mto1ldo
, _ . , . .
10: p,(cj‘):V(‘J)f(a:,(c),...,:c,(j),y,(j'%),..‘.,y,(C ))
11: q](j) = pl(j) 4 LZZI (VO f(xp_1) _p](Cle)
12: z,?) = z,(cjjl + akq,(f)
13: v,g{) = Proxy, g (m((]]) — z,(;))
o g A L
15: end for
16:  until f(yx) < fzr) + (VF(@r), ye — 1) + 2 |lye — ]|
17: end for

18: return vy, Yx

Using Jensen’s inequality, as yi = A% Zle a;v;, we also have from Eq. (23)

k
) a;
*1(12 0 * |12
— < — —_— rog— & .
||y]€ H = <3Ak Z 1 +Ai—1’}/> || 0 ||

=1

Finally, recall once again that {as}x>1 is chosen so that % = W. When ~ = 0, this leads to the standard

A > £ growth of accelerated algorithms by choosing ay = % for k£ > 1. When v > 0, we have AZ’i - > g—z, and

10L
k—1
it remains to use that A, = A‘:: e ﬁ—f A = Ay (1 + 1/?%) where a1 = A, = 5% using the choice of ay, in
Algorithm 1 and Ag = a¢ = 0, completing the proof. O

A.1. (Lipschitz) Parameter-Free A-CODER

Similar to CODER, it is possible to adaptively estimate the Lipschitz parameter L for A-CODER. Note that in the case
of A-CODER, all that is needed for the analysis from Section 3 to apply is that the quadratic bound from Lemma 1 holds
between x; and yj. A variant of A-CODER that implements this adaptive estimation is provided in Algorithm 3.

B. Omitted Proofs and Pseudocode for ACODER-VR
Lemmad. If f(x) = L 3°0 | fi(x) satisfies Assumption 3, then it satisfies Assumption 2 and thus Lemma 1 holds.

T n

Proof. By using Jensen’s inequality and Assumption 3, we have

|99 (@) - v )| < %Z |99 (@)~ 99 )| < e~ wils
t=1

Lemma 5. For any u € R? and any sequence of vectors {qS,k}SZZkE[K] ,forall S > 2, we have

KAs(f(gs) - f(u))

17



Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization

Algorithm 4 Variance Reduced A-CODER (Analysis Version)

1: Input: zy € dom(g),y > 0,L > 0,m,{S',..., 8™}

2: Imitialization: yo = v10 = Y10 = T1,1 = To

3 a0 =Ao=0; A = a1 = 7~

4 o) = %H.' — @2

5t v = afgmlnv{¢1,1(v) = 1/)1,0(’0) + Kay(f(zo) + (Vf(xo), v — o) + g(v))}
1 j i

6: w1 = ($57%7 e ,wg{%, y(.7+1)1,17 ey yg’:’ll))

7y = V2,0 = Y1,1 = V1,1, W20,; = W1i,,j5; 7//2,0 = 1/)1,1

8: for s = 2to S do

9:  Setas >0s.t a2 = W; Ay = A1 +ag

10: Qg0 = As—1,0As1 = As2 = - = Qg K = Qg

11: X0 =Ts—1,K; Ys,0 = Ts—1,K; Ws,0,j = Ws—1,K,j5 Vs,0 = Vs—1,K} Vs,0 = Ys—1,K
12: s =V f(Ys—1)

13:  fork=1to K do

14: Ts = %@5—1 + F Vs k-1
15: for j =mto1ldo
1 j j+1 m
16: wiiy = (@ el yd )
17: Choose t in [n] uniformly at random
18: VU = VO fy(wigg) = VD fu(Gaor) + pd
19: gy = VI S (VO f@apn) = VO filwaon )
200wy =angmingg g (81 (00) = 01 (09) + (g f@ar) + (g vyl + ¢ (00))
A () G
2L ygjli = Aslyij—)l + ,T'Ugjlz
22: end for
23:  end for
_ K
24: Ys = % Zkzl Ys.k
25: end for

26: return vgs 1, Ys

K(l + As’y)

K
< =
-2 2

K S K
lvs i — ul® - 7 v = viol* + YD Eaxlw),
s=2 k=1

o — ul|® —

where

Es,k(u) == A?(f(ye,k) - f(ms,k)) - As—l(f(’gs—l) - f(ms,k)) + as <v.f(m9,k) - qs,ka ms,k - u'>

K(]. + Asfl’y)

9 ||Us,k *vs,k—1”2~

+ as <QS,k7 Ts k — vs,k> -

Proof. As fis convex and f = f + ¢, we have: Vu,

— S K —
KAsf(u) =) asf(u)

Jr
)=
]

Q

I3
=

8

I3
=

_|_

<]
=

8

Iy
Z

IS

|

8

w
=

Jr
=N
g

(8)
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K1+A K
> e (os10) + AT oy 2 By g2 o
S K
+Zzas vf wsk QS,k'yu_ws,k>a
s=2 k=1

where the first inequality is by the convexity of f, the second equality is by the recursive definition of g i (u), the second

inequality is by the K (1 4+ Ag~y)-strong convexity of ¢s  (u) and vs g = argmin,, g x(u) leading to s x (u) >
K(1+Asv) _ 2

Vs (vsk) + =5 |lu—vskl*

Then using our recursive definition of the estimate sequences again, we have

s K (Vs i)

s
=v1,1(vi +Z

S

ws k vs k:) '(/}s,kfl(vs,kfl))

=Y11(vi) +

s

s=2

[v11 — viol?+Kai(f(z1,1) + (Vf(x11), 01,0 — @11) + g(v1,1))
s K

K(]- + Asfl"/)
+Y > — sk~ LY

[ L
Nglcilngle

(d}s,k—l ('vs,k) - d)s,k—l ('vs,k—l))

S

I|
N
B
Il
-

Mw

as ws,k) + <QS,ka Vs k — ms¢k> + g(vs,k))

ol
Il
-

+
K
>
-2

o
||
N
El
Il
-

n
(]|
] >

as(f(ms,k) + <q5,k7 Vs, k — ws,k) + g(vs,k)); (25)

V)
Il
N
=~
Il
_

where the first equality is by 1,410 = ¥,k and vs11,0 = Vs i, the second equality is by the definition of v; 1, the last
inequality is by the definition of ¢ 1(v1,1) and the K (1 + A,_17y)-strong convexity of ¥, ,_1(s > 2,k € [K]). Then by
Lemmas 4 and 1, we have

L
f(’Ul,l) < f(wl,l) + <Vf(331,1),1)1,1 - ﬂ31,1> + §||U1,1 - 331,1||2

1
— |11 — 10l (26)

< flei1) H(Vi(®11),v1,0 —x11) + 1
a1

where the last inequality is by a3 < ﬁ and v1 9 = @1 1.

Using y; = % ZkK:1 Ys,k = %gs—l + % ZkK:1 Vs, the convexity of g, and Ay = 0, we have

S K S 1 K S
Zzasg(vs,k) > ZKG’SQ<? sz,k) > Z KAsg ys KAsflg(gsfl))
s=2 k=1 s=2

s=2 k=1
= KAs9(ys) — KAig(91)
= KAs9(ys) — KAig(vi1). @7)
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Thus, combining Egs. (24)—(27), we have

K1+ As’y)

- K K
KAgf(u) > lu—vs k* — ngBo —ul®+ ZHULI — 10l + Kay f(v11)

2
S K K(1+ A, 17) 28
+Y> (as (VI(@sk) = Qs — Ts ) + %IIUM - vs,k71ll2) (28)
s=2 k=1
s K
)Y as(f(@ok) + (@sks Vs — o)) + KAsg(Fs)-
s=2 k=1
Then with Ay = 0 and g, = + Zle Ys.k» We also have
s
KAsf(gs) = KAf (1) + K Y (A f(8s) — A1 f(Gs-1))
s=2
s K s
< Kalf(vl,l) + Z ZAsf(ys,k) - KZAsflf(’gsfl)y (29)
s=2 k=1 s=2

where the last equality is by A; = a1, 91 = v1,1. Subtracting Eq. (28) from (29) and noting that f(gs) = f(¥s) + 9(¥s)
now completes the proof. O

Lemma 7. The error sequence { E 1 (u)}s>2 ke (k] in Lemma 5 satisfies

Es,k(u) S *As—l(f(gs—l) - f(msk) - <vf(ms,k)a gs—l - ms,k’>)

Las2 K(1+ A,
+ as<vf(ms,k) —qs,k, Vs k — u> + ( 24 - ( 2 17)) ”vs,k - vs,k—1||2'

Proof. Using Assumption 3, Lemma 4, and Lemma 1, and applying the definition of y; ;, we have
FWor) = f(s k)

‘ 2

L
S <vf(ws,k)u ys,k - ws,k> + §||ys,k‘ - ws,k

A, s La,?
= <vf(ws,k)7 Tsl'gsfl + %S'Uk,s - ws,k> + 2252 Hvs,k - 'Us,k71||2
AS— S L 52
= VI @ak)sGomt = Tor) + GHVI@0k) Vs = Bor) + 57 00 = v (30)
It remains to plug Eq. (30) into the definition of E ;(u), and rearrange. [

The definition of the variance reduced extrapolation point g; j is crucial for bounding the error terms {E; 5 (u)} from

Lemma 5. The next three auxiliary lemmas apply the definition of qgj,z to bound the inner product term (V f(x, 1) —
Qs k> Vs, — u) in Es i (u) when we take the expectation over all randomness in the algorithm. We will use 7, s,k,i to denote
the natural filtration, containing all randomness up to and including epoch s, outer iteration k, and inner iteration ¢. Note
that in Algorithm 4, the index of the inner iteration goes from j = m to 1, therefore inner iteration ¢ corresponds to when
index of the inner iteration is j = m — ¢ + 1. This detail however does not play a important role in our analysis.
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Lemma 8. Forall s > 2, k € [K] and u € dom(g), we have
asEva(ms k) qs.k,Usk — >]

:ZGSE[<V(j)f(ws,k) VO f(w, )0 (k_u(]) —Zas,qu[(V(j)f(ws,kq)—V(j)f(ws,kq,j)?vg,i_l—u(j)ﬂ
j=1 j=1
- Zas,k—lEKv(j)ftj (Ts—1) — V(j)ftj (Ws,k—1,5), ”ijli - vif}l_ﬁ]

j=1
m

+ Z asE[(VD f(w ;) — (VO fo, (wsreg) — VO fo, (@s-1) + ui),00) 09,

Proof. Using the definition of qgj ,:7 we have

a, (VO f(aon) — )
= as (VY f(zs ) — VO flw ;) + as(VO f(ws ) — qV))

= GS(v(j)f(w&k) - v(j)f('w&k,j)) + QS(v(j)f(ws,hj) - (V(j)ftj (ws,k,j) - V(j)ftj ('gs—l) + Ngj))) (31)
- as,kfl(v(j)ftj (Ts—1) — V(j)ftj (Ws,k-1,5))-

First, for j € [m] and any fixed u(?), we have

Elas(VD f(w ;) — (VO fr) (ws o) — VO fo, (1) + 1), 0Y) — uld)]
= Elas (VY f(w ;) — (VO fi, (wer ) — VO i, (Gs-1) + p), 0 —0l)_ )

+ aE[E[VD f(we ;) — (VO fy, (we ) — VO fo (s 1>+u<f>>|fs,k,jfﬂ,v§?,2,1—u<f>>]

= E[a5<v(j)f(w57k7j) - (V(j)ftj (ws.,k,j) j)ft (Ys—1) + N(j))a k iJ)_1>] (32)

where the first equality follows from v(],z 1 € Fs k,j—1 and the second equality follows from E[V(j)ft (Ws )| Fs b j—1] =

VO f(ws ;) and EVD f, (§s-1)|Fspj-1] = VO f(Gso1) = 1. Meanwhile, for j € [m] and any fixed u(?), we
have

Elas -1 (VO fi (@som1) — VO fi (w0, 4m1,5), 0] — u)]

= Elaw k-1 (VO fy, (2o jo1) = VO fy, (wi i ), 09— 0Y)_)]
+E[Elas k-1 (VD fi, (@sh-1) — VO i, (wsgom13), 0] — w9 Fop o]

= Elas o1 (VO fi, (o p-1) = VO fi (we-1,5), 09 — ) _1)] (33)
+ Elag -1 (VO f(@o k1) — VO flws o), 00 —uld)],

where the last equality is by v}, € Fypj—1, B[V fo, (s k1)|Fokjo1] = VO f(@s 1) and
E[V(j)ft]. (Ws,k—1,5)|Fsk,j—1] = V(j)f(ws,k,lyj). Combining Egs. (31)—(33) completes the proof. O

In the following two lemmas, we will bound the third and the fourth terms of the R.H.S. in Lemma 8 by above using our
novel Lipschitz Assumption 2 and Assumption 3.
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Lemma9. For s > 2 and k € [K], we have

- Zas,k—lE [<V(j)ftj (Ts—1) — V(j)ftj (Ws k—14), Usj;l - vif,l,lﬂ
j=1

i

K(l + AS—I’Y)
8

4 2
as,k—lL

<E Vs k—1 — Vs k-2 2 )
KAzjk_l(l + As—17) | |

Vs — Vst +

where as g = as_1, Aso = As_1and as ), = as, As ), = A fork € [K].
Proof. Using Cauchy—Schwarz and Young’s inequalities, we have

—ask—1E [<V(j)ftj (s p—1) — V(j)ftj (Ws,k—1,5), vijll - vi{271>}

2a2, . ) 2 K14+ A4s17) 2

<E ;H D f, (@gp1) = VD F, (wyp H —S*‘ () _ 40) H
= _K(1+As—1’}/) VP fi (@5 k—1) = VY fi,(ws p—15)|| + 3 Voh— Uk

[ 203, s K(1+ A1)
SB[ g, B A ) )
— _K(1+As—1’y) HZB k—1 Ws K 17J||Q] + 3 V1

[ 2 2 (1+A4-17)
=E _m @, k—1 *ys,k—1||(Qj)2H1 +f‘ sk 1” (34)

where we used Assumption 3 in the first inequality and the definitions of &, 1 and ws ;_1 ; in the last equality. Finally by
including the summation and using the definition of L, & j,—1 and y, ,—1, the first term of the above expression becomes

I

E|_——>t o1 — Ys ko1l o N I s ko1 — Ys kel 2m (o
=1 K (1 + Asflﬁy) ' ’ Q)41 K (1 + Asfl’y) ’ ’ i (Q7)> 541

4 2
sk 1L

2
< s,k—1 7 YUs,k— ) 35
KAfk1(1+AS1)HU’k1 Vak 2”] (55)

where as0 = as_1, As0 = As—1 and a5, = a5, Asp = As for k € [K]. Taking summation over j and combining
Egs. (34) and (35) give the lemma statement.

Lemma 10. For s > 2 and k € [K], we have

m

>0 E [(VO f(wong) = (VO e, o) = VO iy (o) + VO FGem) ) o) = 00|
j=1

2L2%a% K(1+4 As—17) 9
< E : - s - Us,k—
= KKAE(l Ay 8 ) P2k = Dol ]

2
g B o) — (@) = (V@) G = 200

Proof. Using similar arguments in the proof of Lemma 9, we have
E[(VO f(wsrs) ~ (VO f, (ars) = VO fi, (Fa) + VS (G1)) 08— 00

<E {ufiw |99 fawas) — (VO 1, i) = 99 fo (@) + )|

K(1+A3717) 2
P ek v
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E 2a3 E %) Dt (e ) D\ |I?
- {K (1 + Asfl’Y) |: (V ftj (wS,k,j) +V ftj (ys—l)) - (v f(wS«,kJ) - Mg )H |]:S,7€7j—1:|:|
K1+ A,_ 2
+E{(+8W) vi{}l_vijg 1H ]
2a; j K (14 A4,-17) 2
—E|l———5 T G, (wgp) — V) H i E s— ) _ ) H
B 7 s =90, e ]| + ] A
4a? 2
<E| gir Ay UV ers) = VO fry (@) 4 [V f, @) - VO, ()
K14 A1) (36)
K(1+ A, 1v)
+ 8 ‘ ’Uijlz U k IH

where the first equality comes from E [V f, (w, ;) — V) f, (§s-1)|Fspj—1] = VO f(ws ;) — VO f(g,-1) since
the only randomness is in ¢; when conditioned at F j ;_1, and the last inequality comes from (a + b)? < 2(a? + b?). In
order to bound the second term in Eq. (36), we will include the outer summation with respect to 7 and apply the results from
Lemma 1 to get

f: E |:HV(J')ftj (o) — VO £, (gs_l)m - iE {IE [vaftj (@) — VO f,. (Qs_l)Hz fs,k,()”
j=1

j=1

n

2|33 99 e - v |

j=11=1

=F Z% IV fi(xs k) — Vﬁ(?]s-l)ﬂ

Li=1

< E [QL (f(gsfl) - f(ws7k> - <Vf<ws7k)7 'gsfl - ws,k>)} s (37)

where the second equality comes from @, 1, Ys—1 € Fs 0 and the last inequality is by applying Lemma 1 and the definition
of f(x) = L 31", fi(). To bound the first term of Eq. (36), we apply similar arguments as in Lemma 9 and get

m ) ) 2 2L2
S E [Hv@ftj(ws,k,j) — vy, (w&k)H } <E [ saz Ios — v (38)
j=1

Combining Egs. (36) — (38) gives the lemma statement.
O

Lemma 6. With a? < W, ask = asand Ag , = A fork € (K], aso = as—1 and As g = As_1, then for

any fixed u € dom( ) we have

s =2k =1

Z <v<ﬂ)f 11) = VO f(wy 1), 00) u<a>> +3 asE [<V<j>f(scs,;<) — VO f(ws i), v — u(ﬁﬂ
: j:l
5K (1 +Asf17)E

Z ||U1,1 - U1.,0|| 39

2
[Ilos.xc = vs.ic117]

where 11,19 € dom(g) can be chosen arbitrarily and wy 1,5 is defined in Algorithm 4.

23



Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization

. A,
and using =5 L < 1, we have

Proof. Combining Lemma 7, 8, 9, 10, setting a4 such that ag = W

E[Esk(u)] < Em: asE {<V(j)f(ms7k) — V9w j), v — u(j)ﬂ

<.
I
—

5K (1+ A5-17) 2 ay g L? 2
- (32 E {”'Us,k — Vs k1| } + RAZ, (1§ A1) E {Hvs,kq — Vs k2| } :

Next, by setting a9 = as—1 and a; = a, for k = [K], we can telescope the error terms and get

s K m S K
>SS EE@ <Y DD 0B [(VO S @) ~ VO fwgp), 00— ul))]
5 =2k =1 j=1s=2 k=1
m S K A ‘ 4 |
3 S sk B[V f(ap 1) = VO flawagr), 00— u)]
j=1s=2k=1
S K
5K (1+ Ay
_ Z Z ME {”,U&k _ vs,k—1||2}
32
s=2 k=1
K1+ Ay a) K K14+ Ay 1)
s—2 2 o1 )
Y 1 lvso—vs "+ > —a1 wsp1 —vspa ]
s=2 s
< asE (VO f(ms k) ~ VO f(ws e 5), 05 — ul))]
Jj=1
-3 aE [<V(J’)f(a;1)1) — VO fwy ;) 0Y) — umﬂ
j=1
K(1+ A 5K (1+ Ag_
+ 02 [fog = va 2] - 2O o — v ]
64 39
The lemma follows by setting Ag = 0, vo,_1 = vy, T2,0 = T11 and wa g j = Wy 1 ;- -

Theorem 2. Let xy € dom(g) be an arbitrary initial point. Fix K > 1 and consider the updates in Algorithm 4. Then for
S > 2 and Yu € dom(g), we have

o 9(1+ Ag_ 5
B [7(5s) - 7] + SR [fog i — ] < - oo - wlf

In particular if £* = arg min,, f(x) exists, then we have

E[7(gs) - Fla")] < g5 o - 2"

and
40

%112
<————— g —x .
T 91+ As—17) o |

E [|losx — =]

Finally in all the bounds above we have

S—1
S?K 1 K~
>
As 2 max 64L " AL (1 V8L
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Proof. Combining Lemma 5 and Lemma 6, and by setting y1,0 = ®1,1 = Tg and y1,; = v1,1, we have

_ _ K K(1+A4
KASE [f(gs) = f(w)] < 5 o — ul” - %E [Ilvs,K - ulﬂ
15K 2 5K (1 + As_l’)/) 2
— 1 lora = oll® = =L [os.k — sl
n | (39)
S <v(ﬂ)f(m1,1) — VO flawy g 5), 0] — u<a>>
j=1
m ) ) .
+) asE [<V(J)f(ws,1<) — VD f(ws ke j), 08k — v 1>} :
j=1
Using the same approach as Lemma 9 and Lemma 10, we can upper bound the first inner product term by
s , 1 K
_;al (V9 fl@1,2) = V9 flan15), o) —ul) < g o = ol + S ows —ul?
15K K
< o1 — 2ol +*||930*U|| ; (40)
64
where we used (a + b)? < 2(a® 4 b?), a; < - and K > 2 in the last inequality. Similarly, we have
> asE [<V(j)f($s,1<) — V9D f(ws ke 5), v ) — v 1>}
—~ (4D
j=
K1+ As_ K1+ Ag_
< ME {HUS,K _ 'US,K71||2] + ME [”'US,K _ u||2] ’
8 64
KAs_1(

;;AS =19 here. Combining Egs. (39)—(41) gives us our main bounds in the theorem.
Lastly, recall that {a,},>1 is chosen so that a,? = %A1 (EA217) \When 4 = 0, this leads to the standard A, > &

where we also used a% <

64L

growth of accelerated algorithms by choosing as = and it remains to

32L

SL’

k—1

use that A, = A’:ﬁl S % A= Ay (1 + 4/ ﬁ) where a1 = A1 = E using the choice of ay in Algorithm 1 and
Ao = ag = 0, completing the proof. O
B.1. Adaptive Variance Reduced A-CODER

Similar to A-CODER, VR-A-CODER can adaptively estimate the Lipschitz parameter by checking the quadratic bounds
between y, and x,; as well as between gy, and x, ;. For completeness, we have included the adaptive version of
VR-A-CODER in Algorithm 5 below.
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Algorithm 5 Variance Reduced A-CODER (Adaptive Version)

1: Input: xy € dom(g),y >0, Lo > 0,m,{S',..., 8™}

2: Initialization: yo = vi 90 =vy1,0 = 21,1 = To; 21,0 =0
3: L1 = L0/2
4: repeat
5: L1 = 2L1
6: (IOZAO:O;Alialiﬁ
7. z11 = Vf(zo); v11 = prox,, ,(zo — 21,1)
8: until f(v1,1) < f(@o) + (Vf(xo),v1,1 — o) + % [lv1,1 — @
9 Y1 =yY1,1 = V11
1 +1
10: wy 15 = (w§7iv .- ngi’ ygjl )7 ) y§n11))

11: vo 0 = v1,1; W20, = W11, T20 = T1,15 Y2,0 = Y1,1> 22,0 = 21,1
12: for s =2to S do
13: LS = LS_1/2

14:  repeat
15: L, =2L,
16: Setas > 0s.t. a§ = W; Ay = A, + ag
17: Us 0 = As—1;0s,1 = Gs2 =+ = s K = Gs
138: Vs,0 = Vs—1,K> Ws,0,j = Ws—1,K,j5 Ls,0 = Ls—1,K>Ys,0 = Ys—1,K; 25,0 = Zs—1,K
19: s =Vf(Ys_1)
20: forkzltXKdo
21: Tok = "5 Ys—1+ F Vs k1
22: for j =mto1ldo
1

5w = (@0 g0
24: Choose t in [n] mformly at random
25: ngk = VO fi(wy 1) — VO fi(Goor) + pt
26: a0} = VI + 22 (VO fu@apor) = VO fulwaion )
27: zi,l = ziﬂifl + abq(J)
28: EJZ fprox( 52k gi (:c(()j) Ejli/K)
o = Ayl el
30: end for
31: end for

_ K
32: Ys = % Zkzl Ys.k

33 until f(y ) < f(@ar) + (V(@Toh), Ysk — Tok) + 5 ([ Yk — s ||°

and % Z?:l HVft(ws’k) - Vft(gsfl)||2 < 2Ls(f(,gsfl) - f(ws,k) - <vf(ms,k3)7 QS,I - ws,k>)
34: end for
35: return vs i, Ys
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