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ABSTRACT

Gradient-regularized value learning methods improve sample efficiency by lever-
aging learned models of transition dynamics and rewards to estimate return gra-
dients. However, existing approaches, such as MAGE, struggle in stochastic or
noisy environments, limiting their applicability. In this work, we address these
limitations by extending distributional reinforcement learning on continuous state-
action spaces to model not only the distribution over scalar state-action value func-
tions but also over their gradients. We refer to this approach as Distributional
Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method uti-
lizes a one-step world model of reward and transition distributions implemented
via a conditional Variational Autoencoder (cVAE). The proposed framework is
sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD)
to instantiate the distributional Bellman operator. We prove that the Sobolev-
augmented Bellman operator is a contraction with a unique fixed point, and high-
light a fundamental smoothness trade-off underlying contraction in gradient-aware
RL. To validate our method, we first showcase its effectiveness on both a con-
trolled supervised-learning task and a simple reinforcement-learning toy problem,
then benchmark its performance on several MuJoCo environments.1

1 INTRODUCTION

Reinforcement learning (RL) tackles sequential decision-making by training agents to maximize
cumulative rewards. Off-policy actor-critic algorithms pair an actor, generating the control policy,
with a critic, estimating expected returns (i.e., the Q-function). This mapping from state-action pairs
to expected returns, known as credit assignment, is typically learned via temporal-difference (TD)
methods (Sutton, 1988) and is critical for policy optimization in continuous-action settings. This
paper is motivated by two lines of work aimed at improving credit assignment:

• The use of action-gradients: In value-based continuous control, the critic’s value is not used
directly to select actions but to provide action-gradients for policy optimization (Lillicrap et al.,
2016; Fujimoto et al., 2018; Haarnoja et al., 2018; D’Oro & Jaskowski, 2020). Conventional
TD learning implicitly learns these gradients via value prediction, but this relies on smoothness
assumptions of the true value function that can degrade performance. To address this limitation,
D’Oro & Jaskowski (2020); Garibbo et al. (2024) incorporate gradient information (Czarnecki
et al., 2017) into critic training by learning a transition–reward world model (i.e. a differentiable
proxy for the environment) and backpropagating through it (Heess et al., 2015).

• Distributional RL: Many environments exhibit irreducible uncertainty in transitions and rewards.
Distributional RL (Morimura et al., 2010; Bellemare et al., 2017; 2023) captures this by modeling
the return distribution rather than just its expectation. Categorical (Barth-Maron et al., 2018) and
quantile-based (Dabney et al., 2018b;a) approaches have provided rich and stable learning signals,
yielding performance gains in a variety of tasks (Barth-Maron et al., 2018; Dabney et al., 2018a;
Hessel et al., 2017).

We argue that randomness also affects action gradients of returns, which can have a detrimental
effect, especially in high-dimensional action spaces. As our experiments show (Section 6), existing

1We will make the code publicly available upon acceptance of the paper.
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methods that use gradient information deterministically (Czarnecki et al., 2017; D’Oro & Jaskowski,
2020) may struggle once the gradient to model becomes noisy or stochastic, losing some of the
sample-efficiency benefits of gradient modeling.

Paper contributions We extend distributional modeling to capture both returns and their gradi-
ents, coining the framework Distributional Sobolev Reinforcement Learning. At its core is a
novel Sobolev Bellman operator that bootstraps both return and gradient distributions. By marrying
gradient-based training with uncertainty modeling, we aim to boost policy and value learning. This
necessitates a generative model that supports differentiation of outputs and their input gradients, so
we introduce Distributional Sobolev Training and detail its implementation. Since most environ-
ments are non-differentiable, we employ a conditional VAE (cVAE (Sohn et al., 2015)) to model
transitions and rewards. This enriches SVG (Heess et al., 2015) with a more expressive neural ar-
chitecture. Finally, we extend previous works on value gradient and introduce the framework of
Sobolev Temporal Difference. We provide the first contraction proofs in this scheme. In this con-
text, we introduce the maximum-sliced MMD metric, as a practical metric that is both a contraction
and tractable to approximate.

2 BACKGROUND

2.1 NOTATION AND RL OBJECTIVE

We consider a Markov Decision Process (MDP) with continuous state and action spaces, S and
A, transition kernel P : S × A → P(S), reward law R : S × A → P(R), and initial distri-
bution µ ∈ P(S). A deterministic policy πθ : S → A induces the γ-discounted occupancy
dπθ
µ = (1 − γ)

∑∞
t=0 γ

t Pr(s′|πθ, µ) (Silver et al., 2014; D’Oro & Jaskowski, 2020). The Q-
function Qπ(s, a) is the expected future return starting from state s and action a, i.e., Qπ(s, a) =
E [
∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a]. It yields the objective

J(θ) = Es∼µ
[
Qπθ (s, πθ(s))

]
. (1)

Under mild conditions (Silver et al., 2014), the Deterministic Policy Gradient theorem gives

∇θJ(θ) =
1

1− γ
Es∼dπθ

µ

[
∇θπθ(s)∇aQπθ (s, a)

]
a=πθ(s)

(2)

2.2 TEMPORAL-DIFFERENCE AS AN AFFINE OPERATOR

In practice the true Qπ is unknown and is approximated by a parameterized critic Qϕ. More gener-
ally, any value-like mapping V : S × A → Y (where Y = R or a space of probability distributions
Bellemare et al. (2017)) admits a temporal-difference update written as a single affine operator:(

TπV
)
(s, a) = b(s, a) + L[V ](s, a). (3)

Here b(s, a) injects the immediate-reward term and L linearly transforms the successor estimate.
The following recovers the Bellman expectation operator where Q is the state-action value function

b(s, a) = E
[
R(s, a)

]
, LExp[Q](s, a) = γ E

[
Q(s′, π(s′)) | s, a

]
(4)

In distributional RL Bellemare et al. (2017), let Zπ(s, a) be the random return with distribution
ηπ(s, a). One gets

b(s, a) = Law
[
R(s, a)

]
, LDist[η](s, a) = Es′∼P (·|s,a)

[
(x 7→ γx)# η

(
s′, π(s′)

)]
, (5)

where (x 7→ γx)#η is the law of γX when X ∼ η, which yields(
T Dist
π η

)
(s, a) = Law

[
R(s, a) + γ Z(s′, π(s′))

]
, where s′ ∼ P (· | s, a). (6)

Using off-policy samples (s, a, r, s′) ∼ B from a replay buffer (Mnih et al., 2013) together with
delayed target networks θ′, ϕ′ (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018),
we define the one-step targets

δtgt(s, a, s
′) = r + γ Qϕ′

(
s′, πθ′(s

′)
)
, ηtgt(s, a) = Law

[
r + γ Zϕ′(s′, πθ′(s

′))
]
. (7)

2
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The critic Vϕ (scalar Qϕ or distribution Zϕ) is then trained by minimizing

L(ϕ) = E(s,a,r,s′)∼B
[
d
(
Vϕ(s, a), T (s, a)

)]
, (8)

where T = δtgt in the expected-value case or T = ηtgt in the distributional case, and d is either
a regression loss (e.g. squared error) or a distributional metric such as the Wasserstein distance
(Bellemare et al., 2017; Sun et al., 2024).

3 A NEW BELLMAN OPERATOR

3.1 LEARNING A USEFUL CRITIC

Many value-based methods (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018) rely
on a learned critic to provide the actor’s training signal, implying that “an actor can only be as good
as allowed by its critic” (D’Oro & Jaskowski, 2020). Unfortunately, typical critics — predicting
only mean returns — cannot capture inherent return uncertainty. Distributional RL addresses this
by modeling the return distribution. However, as noted in D’Oro & Jaskowski (2020), another fun-
damental issue is that minimizing TD-error does not guarantee the critic will be effective at steering
policy optimization. We therefore propose a more principled approach to distributional temporal-
difference learning, which explicitly incorporates the critic’s action-gradient into its training objec-
tive. This aligns critic optimization with policy improvement rather than just fitting returns or their
distribution.
Proposition 1. Let π be an Lπ-Lipschitz continuous policy, and let G(s) =

Law[∇aZπ(s, a) |a=π(s)] and Ĝ(s) = Law[∇aẐ(s, a) |a=π(s)] denote the true and esti-
mated distributions of the action-gradients at a = π(s), respectively. Define the p–Wasserstein
distance between two probability measures µ, ν by

Wp(µ, ν) =
(

inf
γ∈Π(µ,ν)

E(X,Y )∼γ
[
∥X − Y ∥p

])1/p
.

Then, specializing to p = 1, the error between the true policy gradient ∇θJ(θ) and its estimate
∇θĴ(θ) satisfies ∥∥∇θJ(θ)−∇θĴ(θ)∥∥ ≤ Lπ

1− γ
Es∼dµπ

[
W1

(
G(s), Ĝ(s)

)]
.

Proof is in Appendix D. This result generalizes Proposition 3.1 from D’Oro & Jaskowski (2020) to
a distributional setting. The Lipschitz continuity of π typically holds when using neural-network
function approximation.

Following D’Oro & Jaskowski (2020), we induce a critic optimization objective from Proposition 1,
showing that we can approximate the true policy gradient by matching the action gradients in the dis-
tributional sense. Using bootstrapping to approximate the true distribution leads to the optimization
problem

Ẑ ∈ argmin
Ẑ∈Z

E
s∼dπµ(s)

(s′,r)∼p(s′,r|s,πθ(s))

[
W1

(
∇aẐ(s, a),∇ar(s, a) + γ∇aẐ(s′, πθ(s′))

)]
.

(9)

We note that Eq. 9 assumes a known and differentiable dynamics p. We maintain this assumption
for the time being and will relax it in Section 5. Mirroring previous work (D’Oro & Jaskowski,
2020; Garibbo et al., 2024), we introduce this assumption upfront and then lift the constraint.
In the next section we formalize the notions necessary to instantiate a working implementation of
this optimization problem.

3.2 DISTRIBUTIONAL SOBOLEV TRAINING

In this section, we introduce a novel Bellman operator for learning the joint distribution of the
discounted cumulative reward and its action-gradient, and then express it in the affine-transform
form presented earlier.

3
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Random action Sobolev return We extend the random return Z(s, a) to a joint random variable
that captures both the return and its action-gradient. Formally, the random action Sobolev return
is

ZSa(s, a) =
[ ∞∑
t=0

γt r(st, at); ∇a
∞∑
t=0

γt r(st, at)
]
, s0 = s, a0 = a. (10)

Sobolev distributional temporal difference Next, we define the Sobolev distributional Bellman
operator TSa

π over these (|A|+ 1)-dimensional random variables. Let ηSa(s, a) = Law[ZSa(s, a)].
We borrow notation from Zhang et al. (2021); Rowland et al. (2019) and extend the classical distri-
butional operator as follows. Under policy π, sample

s′ ∼ P (· | s, a), a′ = π(s′), r ∼ R(· | s, a), X ′ ∼ ηSa(s′, a′).

Define the full affine transform

fSa
(
x ; r, s′, γ

)
=
[
f return(x); faction(x)

]
. (11)

For readability we hereafter write fSa(x), implicitly carrying the dependence on (r, s′, γ). We define
TSa
π as the operator that, at each (s, a), pushes the next-step law ηSa(s′, a′) forward through this

pointwise affine map: (
TSa
π ηSa

)
(s, a) := Law

[
fSa(X ′)

]
. (12)

Its components are

f return(x) = r + γ xreturn, (13)

faction(x) =
∂r

∂a
(s, a) + γ

(∂f
∂a

(s, a)
)T [

∂sx
return + (∂sπ(s

′))Txaction
]
. (14)

This action-gradient component is novel: it arises by differentiating the Bellman target, capturing
how the return’s gradient transforms under P (s′, r | s, a). The derivation of Eqs. equation 13–equa-
tion 14 appears in Appendix C. Notably, since f , r, and π are differentiable, these updates are im-
plemented automatically via backpropagation through the reparameterized simulator (Baydin et al.,
2018; Paszke et al., 2019; Bradbury et al., 2018). It is worth noting that exactly the same chain-
rule derivation extends to also bootstrap the state-gradient (not just the action-gradient), yielding the
complete Sobolev Bellman operator that no longer requires the on-the-fly differentiation in Eq. 14.
We discuss this operator in more details in Appendix C.

Affine form of the Sobolev Bellman backup As shown in Appendix C, the Sobolev Bellman
backup can be written in a single affine-operator form:

ZSa(s, a) = b(s, a) + LSob(s, a)
[
ZSa(s′, a′)

]
, (15)

where b(s, a) =
(
r(s, a), ∂ar(s, a)

)
∈ R1+|A| collects the immediate reward and its action-

gradient, and LSob(s, a) is a state-action-dependent linear operator (not merely a matrix) encap-
sulating the Jacobian blocks of the transition f and policy π. Importantly, Equation 15 is a strong
departure from recent works using critic gradient information (D’Oro & Jaskowski, 2020; Garibbo
et al., 2024). While these works considered the target action-gradient for regularization, we
consider it as a part of the bootstrapped quantity at equal level with the scalar value. This
formalism allows to hold contraction statements as described in the next section.

4 THEORETICAL RESULTS

The most natural distance for distributional RL is the Wasserstein metric, and we therefore begin by
establishing contraction under this choice. See Appendix D for proof and details.

Theorem 1 (Action-gradient Sobolev contraction). Assume bounded Jacobians for the transition f
and policy π, and a Lipschitz coupling relating state- to return-gradients. Then

W̄p

(
TSa
π η1, T

Sa
π η2

)
≤ γ κ W̄p

(
η1, η2

)
,

where W̄p(η1, η2) = sup(s,a)Wp(η1(s, a), η2(s, a)). If γ κ < 1, TSa
π is a strict contraction.

4
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Towards a tractable metric Both the classical and Sobolev distributional Bellman operators
(Eqs. 6, 12) involve intractable push-forward integrals. While the supremum–p–Wasserstein dis-
tance W̄p is a natural theoretical choice (Bellemare et al., 2017), exact multivariate optimal trans-
port costs O(m3 logm) with m samples and, more broadly, Wasserstein distances are difficult to
estimate and to use directly for training (Appendix E). This motivates a shift to metrics that re-
main faithful to distributional structure yet are easier to compute in practice. One such candidate
is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), a kernel-based divergence that
is tractable, sample-based, and already explored in distributional RL (Nguyen et al., 2020; Killing-
berg & Langseth, 2023; Wiltzer et al., 2024). For laws P,Q ⊂ Rd′ , the squared Maximum Mean
Discrepancy between P and Q is

MMD2(P,Q) = Ex,x′∼P
[
k(x, x′)

]
+ Ey,y′∼Q

[
k(y, y′)

]
− 2Ex∼P, y∼Q

[
k(x, y)

]
, (16)

where k denotes the kernel function. Further properties and empirical estimators are discussed in
Appendix F.2.

Max–Sliced MMD. To obtain provable contraction for our Sobolev operator, we lift MMD via
the max–sliced divergence framework (Deshpande et al., 2019; Nadjahi et al., 2020). For θ ∈ Sd′−1

and Pθ(x) = ⟨θ, x⟩, we define

MSMMD(µ, ν) = sup
θ∈Sd′−1

MMD
(
(Pθ)#µ, (Pθ)#ν

)
.

Approximation. MSMMD can be approximated by gradient-based optimization of the direction θ
on the unit sphere; see Algorithm 1.

Contraction under Max–Sliced MMD.
Theorem 2 (Action–gradient Sobolev contraction under MSMMD). Assume the conditions of The-
orem 1 and the mild additions in Theorem 7. Then

MSMMD
(
TSa
π η1, T

Sa
π η2

)
≤ γ κMSMMD

(
η1, η2

)
,

where MSMMD(η1, η2) = sup(s,a)∈S×A MSMMD(η1(s, a), η2(s, a)) and κ < ∞ depends on
the Jacobian bounds; see Appendix G. If γ κ < 1, TSa

π is a strict contraction with a unique fixed
point.

Trade-off interpretation The condition γ κ < 1 makes the trade-off explicit: either enforce
smoothness (reduce κ via bounded Jacobians and Lipschitz couplings) or shorten the effective hori-
zon (reduce γ). A similar quantity κ governs our contraction results for both Wasserstein (Theo-
rem 1) and max–sliced MMD (Theorem 2), so the trade-off arises in each case. Importantly, κ is
dictated by the environment’s dynamics and policy sensitivities; when the underlying physics yields
large gradients, this effect cannot be eliminated and the only remedy is to lower γ. This obser-
vation is a core contribution of our work and is enabled by the Sobolev Temporal Difference
framework we introduce.

5 APPROACH

To turn our theoretical Sobolev-distributional Bellman operator into a practical algorithm, we need
(i) a critic that produces joint return–gradient samples, (ii) Bellman backups without intractable
integrals, (iii) a tractable metric for comparing predicted and target distributions, and (iv) to relax
the assumption that our environment is differentiable. We address each of these below.

Sobolev inductive bias. We coin the term Sobolev inductive bias for the simple idea of modeling
a gradient by a gradient: using the gradient of our approximator to stand in for the gradient of
the true function. Concretely, let F : Ra → Rb be a differentiable target and fφ a neural network
parameterized by φ. Sobolev training is one concrete instance of this principle (e.g. (Czarnecki
et al., 2017; D’Oro & Jaskowski, 2020)), which implements LS(φ;x) = ∥F (x) − fφ(x)∥2 +
λS ∥∇xF (x) − ∇xfφ(x)∥2. Further mathematical motivation for this inductive bias can be found
in Appendix B.1.
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Reparameterized Sobolev critic. We model the joint return-and-gradient law ηSa
π (s, a) by a gen-

erator
ZSa

ϕ : (s, a, ξ) 7−→
(
Zϕ(s, a, ξ), ∇aZϕ(s, a, ξ)

)
, ξ ∼ N (0, I).

such that Law
[
ZSa

ϕ (s, a)
]

= ηSa

ϕ (s, a) ≈ ηSa
π (s, a). This purely sample-based critic sidesteps

intractable likelihoods and scales naturally to high-dimensional actions. It is similar in spirit to Singh
et al. (2022); Freirich et al. (2019), and is structured as a generative model that deterministically
maps noise to samples (Li et al., 2015; Goodfellow et al., 2014). We discuss further this choice and
why most alternative parametrizations would not fit our scenario in Appendix B.2.

Overestimation bias. Value estimates routinely exhibit overestimation (Hasselt, 2010; van Hasselt
et al., 2015), and even gradient-regularized critics inherit this issue (D’Oro & Jaskowski, 2020;
Garibbo et al., 2024). It biases the policy toward overvalued actions, undermining its performance.
TD3 addresses it by training two critics and setting the target in Equation. 8 to the minimum of the
two (Fujimoto et al., 2018). In our sample-based distributional setting, we follow TQC (Kuznetsov
et al., 2020): train two distributional critics, draw N samples from each, discard the top p% by
magnitude, and concatenate the rest to form the target distribution.

One-step world model. Now we relax the assumption that the environment is differentiable. Un-
like (D’Oro & Jaskowski, 2020; Garibbo et al., 2024), which fit only the conditional expectation
(ŝ′, r̂) = E[s′, r | s, a], we learn a stochastic, differentiable simulator g whose push-forward law
approximates the true transition–reward distribution P (s′, r | s, a). Concretely, we posit

(ŝ′, r̂) = g(s, a, ε), ε ∼ ρw(ε), Law
[
g(s, a)

]
≈ Law

[
s′, r | s, a

]
.

Using g in place of the true environment, our Sobolev Bellman update from Equation 11 becomes

ZSa(s, a) = fSa
(
ZSa(ŝ′, â′); r̂, s′, γ

)
, â′ = π(ŝ′).

We implement g via a conditional VAE (Sohn et al., 2015), which has proven effective for modeling
dynamics in RL (Ha & Schmidhuber, 2018; Zhu et al., 2024), with learned prior pυ(ε | s, a), encoder
qζ(ε | s, a, s′, r), and decoder pψ(s′, r | s, a, ε).
Algorithm summary. We replace the critic in standard off-policy actor–critic (Fujimoto et al.,
2018; Barth-Maron et al., 2018) with our Sobolev distributional critic and train it and the cVAE
world model g(s, a, ε) jointly; this yields the Distributional Sobolev Deterministic Policy Gradi-
ent (DSDPG) algorithm. At each step we sample Sobolev-returns and (ŝ′, r̂), form bootstrapped
Sobolev-Bellman targets, minimize the MSMMD loss on value–gradient pairs, and update the actor
by ascending the gradient of the critic’s estimated expected return. Even though plain MMD is not
showed to be contractive, we also instantiate our framework using it thus proposing two metrics to
train the critics. Fig. 1 (left) illustrates the overall DSDPG workflow, while the right panel shows
how Sobolev-return distributions are sampled and the MMD loss is estimated. The full pseudo-code
can be found in Appendix J.

Prior 

Critic network 

Decoder 

Policy network 

Policy network 
(target) 

Critic network 
(target) 

def sample_ms_mmd(critic, critics_tgt, world, policy, s, a):
# draw N predicted Sobolev-return samples from one critic
X = G_phi(critic, s, a, N)
# sample next-state and reward
s2, r2 = world(s, a, N)
# compute next-actions
a2 = policy(s2)
# draw and concat 2N target Sobolev-return samples
T = concatenate([G_phi(c, s2, a2, N) for c in critics_tgt])
# scalar returns from targets
rets = r2 + gamma * T[:, 0]
# per-sample action-gradient of returns
grads = autograd.grad(rets, a2)
# joint return{gradient samples
Z = concatenate([rets, grads])
# prune top-p% returns to reduce overestimation bias
Y = prune_top_percent(Z, p)
# return biased MMD
return MSMMD_b(X, Y, kernel)

Figure 1: Left: block diagram of our DSDPG algorithm, where the critic Zϕ maps noise ξ and
(s, a) to Sobolev-return samples, a cVAE world model generates next-state–reward samples (ŝ′, r̂),
MSMMD or MMD compares predicted and bootstrapped Sobolev-return distributions, and the pol-
icy is updated via the critic’s mean (gradient flows shown as dashed arrows; inspired by Singh et al.
(2022)). Right: pseudocode for estimating the biased MSMMD between predicted and bootstrapped
Sobolev returns.
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6 RESULTS

6.1 TOY REINFORCEMENT LEARNING

We introduce a simple continuous-state, continuous-action 2D point-mass task within a square
bounding box (Figure 2a). At each time step, the agent controls the 2D acceleration of the mass. At
the start of each episode, we randomly draw one of M possible bonus locations arranged uniformly
around the center. Reaching this location ends the episode with a terminal reward. The agent does
not know which location is correct. Instead, each time it visits a location, a binary memory flag
is set. This partial observability makes the task sparse and forces exploration. By varying M , we
tune the number of modes in the return distribution: smallM yields near-deterministic returns, large
M yields multimodal, high-variance returns. This toy task offers a clean, adjustable benchmark for
gradient-aware distributional critics under controlled multimodal uncertainty.

As shown in Figure 2b, Distributional Sobolev (MSMMD Sobolev in pink and MMD Sobolev, or-
ange) consistently outperforms all baselines as we increase the number of bonus locations. This
indicates that our method effectively leverages gradient information and remains robust to the grow-
ing multimodality of the return distribution. By contrast, deterministic Sobolev (Huber Sobolev,
red) offers no clear advantage over gradient-agnostic critics. Interestingly, the provably contractive
MSMMD has a mild advantage over plain MMD. For brevity, we defer the full experimental details
and baseline descriptions to the next section; exact empirical settings can be found in Appendix L.

(a) (b)

Figure 2: (a) Illustration of the 2D point-mass environment with N possible bonus locations. (b)
Evaluation curves (10 means the agent reached the bonus) for our Distributional Sobolev (MMD
Sobolev and MSMMD Sobolev, in orange and pink resp.), deterministic Sobolev (MAGE D’Oro &
Jaskowski (2020), in red), and other baselines asN varies (median over 5 seeds and 25%-75% IQR).

6.2 REINFORCEMENT LEARNING

In this section, we evaluate the complete solution, including the learned world model, on several
standard Mujoco environments (Todorov et al., 2012) from the Gymnasium library Towers et al.
(2024). Our deep learning framework is JAX (Bradbury et al., 2018). Similarly to MAGE (D’Oro &
Jaskowski, 2020), for every exploration step 10 critic updates are taken (UTD ratio = 10). All exper-
iments are ran in Dyna setting (Deisenroth & Rasmussen, 2011) where new samples are drawn from
the world model for every critic update. Thus we evaluate the ability of the Distributional Sobolev
training framework against deterministic Sobolev (Czarnecki et al., 2017; D’Oro & Jaskowski, 2020;
Garibbo et al., 2024). Hence, the results should not be understood as looking for state-of-the-art
performance in the given environments but rather a showcase that in some difficult settings,
distributional methods can perform better.

We compare against four baselines: (i) a TD3 variant trained with a Huber loss (Fujimoto et al.,
2018; D’Oro & Jaskowski, 2020); (ii) deterministic Sobolev (MAGE) trained on both return and
action-gradient via Huber loss (D’Oro & Jaskowski, 2020); and (iii-iv) distributional baselines, IQN
(Dabney et al., 2018a) and standard MMD training (Nguyen et al., 2020). All variants involving
MMD use a multiquadric kernel with h = 100. We use an identical base architecture for every
method, with the distributional approaches sampling by reparameterization (Section 5). Each distri-
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butional variant generates N = 10 samples per transition. Further architectural and hyperparameter
details are in Appendix M.

To evaluate robustness under stochastic dynamics, we use two complementary perturbations in Mu-
JoCo. (i) Multiplicative observation noise: at the start of each episode we sample n ∼ U [0.8, 1.2]
and scale the observation s 7→ n s, following Khraishi & Okhrati (2023); this induces partial observ-
ability and substantially increases task difficulty. (ii) Additive Gaussian dynamics noise: we inject
zero-mean Gaussian noise directly into positions and velocities, adopting the standard deviations
reported by Khraishi & Okhrati (2023). This second perturbation makes control harder while pre-
serving the qualitative structure of the original tasks. Results are summarized in Figure 3, where the
left panels report the final evaluation performance after 150,000 iterations (250,000 for Humanoid-
v2), and the right panels show the normalized area under the evaluation curve (nAUC). All results
are reported as medians with bootstrapped 95% confidence intervals. The full learning curves are
provided in Figure 10.

In the noise-free setting, DSDPG (MSMMD Sobolev and MMD Sobolev) match the performance
of all baselines across five MuJoCo tasks. Under multiplicative observation noise, it outperforms
every competitor in three of the five environments, most notably Ant-v2 and Humanoid-v2, while
deterministic Sobolev (MAGE) suffers severe drops on Walker2d-v2 and Humanoid-v2 and shows
larger variance in the simple InvertedDoublePendulum-v2. Under Gaussian noise, DSDPG again
outperforms the baselines in three of the five environments. Notably, on Ant-v2 the noise scale
borrowed from Khraishi & Okhrati (2023) makes the task substantially more difficult than previously
reported. Additional experiments (varying noise scale, kernel bandwidth, number of samplesN , and
world model size) are presented in Appendix N. We provide a wall-clock time comparison in Table 3.

(a) (b)

Figure 3: Evaluation of DSDPG (MSMMD/MMD Sobolev), deterministic Sobolev/MAGE D’Oro
& Jaskowski (2020), TD3-Huber Fujimoto et al. (2018), IQN Dabney et al. (2018a), standard MMD
Nguyen et al. (2020); Killingberg & Langseth (2023) and MSMMD on six MuJoCo tasks. Results
are reported over 10 random seeds with median and 95% bootstrap confidence intervals. We com-
pare three settings: normal environment, multiplicative observation noise, and Gaussian dynamics
noise (Luo et al., 2021). (a) Final evaluation performance. (b) Normalized AUC over the entire
training curve. Our DSDPG variants (MMD Sobolev and MDMMD Sobolev, red and brown) are on
par or better than competing methods, shining especially on harder tasks and under noisy environ-
ments.

8
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7 RELATED WORKS

Gradient informed training Our work explicitly models gradients in a stochastic manner using
neural networks. As such, it can be seen as a distributional extension of Sobolev training Czar-
necki et al. (2017) which was already adapted to reinforcement learning in D’Oro & Jaskowski
(2020); Garibbo et al. (2024). Gradient modeling in value-based RL dates back to Fairbank (2008).
Additionally, our approach shares connections with Physics Informed Neural Networks (PINNs)
(Raissi et al., 2017), which approximate physical processes via differential constraints. In particu-
lar, uncertainty-aware PINNs (Yang et al., 2020; Zhong & Meidani, 2023) treat random processes
and their derivatives as random variables, akin to our approach of leveraging Sobolev inductive bias
and generative modeling (through reparameterization) while enforcing consistency via a tractable
distributional distance.

Distrbutional RL We extend distributional RL (Bellemare et al., 2017; 2023) by modeling return
gradients for deterministic policies in continuous action spaces, building on distributional DDPG
(Barth-Maron et al., 2018; Lillicrap et al., 2016). Because these gradients are multi-dimensional,
our method aligns with distributional multivariate returns (Zhang et al., 2021; Freirich et al.,
2019; Wiltzer et al., 2024), highlighting the need for tractable discrepancy measures over multi-
dimensional distributions. We treat our distributional critic as a generative model capable of produc-
ing actual samples of the underlying distribution (Freirich et al., 2019; Singh et al., 2022; Doan et al.,
2018), in contrast to approaches that generate only pseudo-samples (Zhang et al., 2021; Nguyen
et al., 2020) or rely on summary statistics (Bellemare et al., 2017; Barth-Maron et al., 2018; Dab-
ney et al., 2018b;a). We measure distributional discrepancy via the Mean Maximum Discrepancy
(MMD) (Gretton et al., 2012; Li et al., 2015; Bińkowski et al., 2021; Oskarsson, 2020), which has
proven effective in distributional RL (Nguyen et al., 2020; Killingberg & Langseth, 2023; Zhang
et al., 2021).

Model-based RL Finally, because environment dynamics and rewards are unknown and non-
differentiable, we adopt a world model akin to SVG(1) (Heess et al., 2015), instantiated as a cVAE
(Kingma, 2013; Sohn et al., 2015). Generating new data through this model places our approach
within model-based RL (Chua et al., 2018; Feinberg et al., 2018), particularly the Dyna family (Sut-
ton, 1991). More specifically, our method is related to approaches that rely on variational techniques
(Ha & Schmidhuber, 2018; Hafner et al., 2020; Zhu et al., 2024) or backpropagate through world
models (Hafner et al., 2019; Clavera et al., 2020; Amos et al., 2021; Henaff et al., 2017; 2019;
Byravan et al., 2020).

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we introduced Distributional Sobolev Deterministic Policy Gradient (DSDPG). Our
main contributions involve modeling a distribution over both the output and the gradient of a ran-
dom function, and deriving a tractable computational scheme to achieve this using Maximum Mean
Discrepancy (MMD) and its max-sliced variant MSMMD. We demonstrated the effectiveness of
the method in leveraging gradient information (Appendix K). We further extended the approach to
reinforcement learning by leveraging a differentiable world model of the environment that infers
gradients from observations. Building on this, we proposed the framework of Sobolev Temporal
Difference, allowing us to provide the first contraction results in gradient-aware RL. We established
contraction for both Wasserstein and the tractable MSMMD divergences, and highlighted smooth-
ness assumptions required for contractive gradient-aware training. Finally, we showed that distribu-
tional gradient modeling improves stability in a controlled toy problem and enhances robustness to
noise in MuJoCo environments, with stronger benefits in high-dimensional tasks.

While our approach shows promise, there remain challenges to address. A primary consideration is
the high computational cost, as both policy evaluation and improvement require multiple samples
from the distributional critic and their input gradients. Future work should explore more efficient
inductive biases.

Finally, we believe that the ideas introduced in this work could benefit other fields where aleatoric
uncertainty in gradient modeling is important, such as Physics-Informed Neural Networks (Yang &
Perdikaris, 2019), Neural Volume Rendering (Lindell et al., 2021) and more generally applications
of double backpropagation (Drucker & Le Cun, 1991).
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learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018b.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen
Zhao, David Forsyth, and Alexander G Schwing. Max-sliced wasserstein distance and its use for
gans. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10648–10656, 2019.

Thang Doan, Bogdan Mazoure, and Clare Lyle. Gan q-learning. arXiv preprint arXiv:1805.04874,
2018.

Pierluca D’Oro and Wojciech Jaskowski. How to learn a useful critic? model-based action-gradient-
estimator policy optimization. In 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, Canada, 2020.

Harris Drucker and Yann Le Cun. Double backpropagation increasing generalization performance.
In IJCNN-91-Seattle International Joint Conference on Neural Networks, volume 2, pp. 145–150.
IEEE, 1991.

Michael Fairbank. Reinforcement learning by value gradients. arXiv preprint arXiv:0803.3539,
2008.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Dror Freirich, Ron Meir, and Aviv Tamar. Distributional multivariate policy evaluation and explo-
ration with the bellman gan. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 2361–2370, Long Beach, California, 2019. PMLR. *Equal contribu-
tion.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Michele Garibbo, Maxime Robeyns, and Laurence Aitchison. Taylor td-learning. Advances in
Neural Information Processing Systems, 36, 2024.
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ney. Statistics and samples in distributional reinforcement learning. In International Conference
on Machine Learning, pp. 5528–5536. PMLR, 2019.

Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equivalence of
distance-based and rkhs-based statistics in hypothesis testing. The annals of statistics, pp. 2263–
2291, 2013.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rahul Singh, Keuntaek Lee, and Yongxin Chen. Sample-based distributional policy gradient. In
Learning for Dynamics and Control Conference, pp. 676–688. PMLR, 2022.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Jan Stanczuk, Christian Etmann, Lisa Maria Kreusser, and Carola-Bibiane Schönlieb. Wasser-
stein gans work because they fail (to approximate the wasserstein distance). arXiv preprint
arXiv:2103.01678, 2021.

Ke Sun, Yingnan Zhao, Wulong Liu, Bei Jiang, and Linglong Kong. Distributional reinforcement
learning with regularized wasserstein loss. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.org/abs/1509.06461.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Harley Wiltzer, Jesse Farebrother, Arthur Gretton, and Mark Rowland. Foundations of multivari-
ate distributional reinforcement learning, 2024. URL https://arxiv.org/abs/2409.
00328.

Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial
networks for stochastic differential equations. SIAM Journal on Scientific Computing, 42(1):
A292–A317, 2020.

Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural
networks. Journal of Computational Physics, 394:136–152, 2019.

Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin, and Tie-Yan Liu. Distributional reinforce-
ment learning for multi-dimensional reward functions. In 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), 2021. *Equal contribution, †Corresponding author.

Ruijie Zheng, Xiyao Wang, Huazhe Xu, and Furong Huang. Is model ensemble necessary?
model-based rl via a single model with lipschitz regularized value function. arXiv preprint
arXiv:2302.01244, 2023.

Weiheng Zhong and Hadi Meidani. Pi-vae: Physics-informed variational auto-encoder for stochastic
differential equations. Computer Methods in Applied Mechanics and Engineering, 403:115664,
2023.

Ting Zhu, Ruibin Ren, Yukai Li, and Wenbin Liu. A model-based reinforcement learning method
with conditional variational auto-encoder. Journal of Data Science and Intelligent Systems, 2024.

14

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2409.00328
https://arxiv.org/abs/2409.00328


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Derivatives of reparameterizable random variables 16

B Sobolev Inductive Bias and Distribution Parametrization 17

B.1 Sobolev inductive bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Distribution parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C Sobolev Bellman operator 17

C.1 Preamble and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2 Derivation of the action-gradient term . . . . . . . . . . . . . . . . . . . . . . . . 18

C.3 Distributional Sobolev Bellman update . . . . . . . . . . . . . . . . . . . . . . . . 19

C.4 Distributional Sobolev Bellman operator . . . . . . . . . . . . . . . . . . . . . . . 20

C.5 Complete Sobolev Bellman operator . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Results with Wasserstein 21

D.1 Proofs of contraction and fixed point . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E Practical difficulties with Wasserstein for training 34

F Background on MMD 35

F.1 Contraction under MMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

F.2 Empirical estimators of MMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

G Results with Max Sliced MMD 39

H Results with Max–Sliced MMD (MSMMD) 39

I Background on the world-model 47

I.1 Conditional variational auto-encoders . . . . . . . . . . . . . . . . . . . . . . . . 47

J Algorithm design, pseudo-code and baseline 48

J.1 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

J.2 Pseudo-codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

J.3 Baseline - MAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

K Toy supervised learning 53

K.1 Common tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

K.2 Adding noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

L Toy Reinforcement Learning 57

L.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

L.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

M Reinforcement learning experiments 57

M.1 Full curves and wall-clock time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

N Additional experiments - RL 58

N.1 Multiquadric kernel bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

N.2 Noise scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

N.3 Number of samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

N.4 World model capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

O LLM usage 64

A DERIVATIVES OF REPARAMETERIZABLE RANDOM VARIABLES

In several places (e.g. Eq. equation 9, Section 3.2) we need to talk about “the gradient of a random
variable with respect to its conditioning variable.” To make this precise and intuitive, we rely on
the common reparameterization trick. We explain that defining a random variable this way leads
to a well-defined random variable. We explain that, under appropriate continuity and measurability
assumptions, this construction yields a well-defined random variable.

Reparameterization view. Suppose Y | x is a conditional random variable, where x ∈ X ⊂ Rn.
We assume there exists a measurable “noise” variable Ξ ∼ p(ξ) on a space Z and a deterministic
map

g : X × Z −→ Y
that is C1 in its first argument, such that

Y = g
(
x,Ξ

)
has the same law as Y | x.

In other words, for each sample ξ, the realization

y(x; ξ) = g
(
x, ξ
)

is a deterministic function of x.

Pathwise derivative. Because g(·, ξ) is differentiable in x, we define the pathwise or reparameteri-
zation derivative by

∂

∂x
Y

def
=

∂

∂x
g
(
x,Ξ

)
,

i.e. for each fixed ξ, ∂xy(x; ξ) = ∂xg(x, ξ). Since Ξ is random, ∂xg(x,Ξ) is itself a random
variable.

Measurability. Because g ∈ C1 in its first argument, for each fixed ξ the map

x 7−→ ∂xg(x, ξ)

is continuous in x. Moreover, by assumption ξ 7→ g(x, ξ) is measurable for each x. It follows from
Lemma 4.51 from Aliprantis & Border (2006) (“Carathéodory functions are jointly measurable”)
that

(x, ξ) 7−→ ∂xg(x, ξ)

is jointly Borel–measurable on X ×Z . Consequently, when Ξ ∼ p(ξ) the composition ∂xg(x,Ξ) is
a well-defined Rn–valued random variable.

Practical computation. In modern autodiff frameworks, once you write your generative model as
Y = g(x, ξ), calling grad(Y, x) automatically returns the sample-wise Jacobian ∂xg(x, ξ). Hence
all “random variable gradients” in our Sobolev Bellman operator are tractable to compute using
standard reparameterization and automatic differentiation techniques.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B SOBOLEV INDUCTIVE BIAS AND DISTRIBUTION PARAMETRIZATION

B.1 SOBOLEV INDUCTIVE BIAS

We discussed the Sobolev inductive bias in Section 5. Recall that given a differentiable target
F : Ra → Rb, Sobolev training (Czarnecki et al., 2017) (originally introduced as “double back-
propagation” by Drucker & Le Cun (1991)) minimizes both value- and gradient-mismatch:

LS(φ;x) = ∥F (x)− fφ(x)∥2 + λS∥∇xF (x)−∇xfφ(x)∥2.
The first term aligns network outputs to F (x), while the second enforces that the input-derivatives
of fφ match those of F . Below, we build on this bias to derive conditions on valid gradient fields
and their relation to Jacobian symmetry.

Using the gradient of a neural network to predict gradients is not the only way to do so. Indeed,
Jaderberg et al. (2017) proposed to generate synthetic gradients directly via the outputs of a neural
network or a single linear layer. However, Czarnecki et al. (2017); Miyato et al. (2017) observed
that predicting synthetic gradients as gradients of a neural network directly improved performance
on decoupled trainings experiments from Jaderberg et al. (2017). A first hint for a justification of
this observation was provided in Proposition 4 from Czarnecki et al. (2017) that gives a necessary
condition for a function fφ(x) : Rn → Rn to produce a valid vector gradient field. It states that
if fφ(x) produces a valid gradient vector field of some potential function ϕ(x) then the Jacobian
matrix ∂fφ

∂x (x) : Rn → Rn × Rn must be symmetric.

This can be readily seen from the observation that if ∂ϕ
∂x is the gradient vector field to be approxi-

mated by fφ(x) then ∂2ϕ
∂ϕ2 (x) is the Hessian matrix that is known to be symmetric.

A more in depth discussion is provided in Chaudhari et al. (2024) where a necessary and sufficient
condition is given in Lemma 1 that states that a differentiable function f : Rn → Rn has a scalar-
valued anti-derivative if and only if its Jacobian is symmetric everywhere, i.e., ∀x ∈ Rn ∂f∂x (x) =(
∂f
∂x (x)

)T
. This suggests a good inductive bias should be to restrict fφ(x) to the class of func-

tion with symmetric Jacobian.. This condition is directly satisfied via the Sobolev inductive bias
as well as gradient networks proposed in Chaudhari et al. (2024). As pointed out in Czarnecki et al.
(2017), this is a very unlikely condition to be met by a regular feedforward neural network that
would predict the gradient directly as its output.

B.2 DISTRIBUTION PARAMETRIZATION

The Sobolev inductive bias introduced in Section 5 and B.1 requires a generative model where
both the output and its input-gradient are treated as random variables. While the reparameterization
trick (Kingma, 2013) could be used with a conditional Gaussian distribution, determining how to
distribute the gradient of the samples with respect to the conditioners is less straightforward. To
address this, we employ a method that relies solely on sampled data and does not assume tractable
density estimation of Sobolev random variables.

Moreover, we found that the most common distribution parametrizations, namely discrete categor-
ical (Bellemare et al., 2017; Barth-Maron et al., 2018) and quantile-based (Dabney et al., 2018b;a)
do not scale tractably to higher dimensions, specifically in the way they instantiate Eq.8. These
considerations further motivated us to adopt a sample-based approach for the distributional Sobolev
critic, similar in spirit to Singh et al. (2022); Freirich et al. (2019). As a result, our distributional
critic is structured as a generative model that deterministically maps noise to samples (Li et al.,
2015; Goodfellow et al., 2014).

C SOBOLEV BELLMAN OPERATOR

In this section we first specify our smoothness and boundedness assumptions on the return, transi-
tion, reward, and policy functions in the Preamble and assumptions (Section C.1). Then derive how
differentiating the distributional Bellman equation yields the action-gradient update in the Deriva-
tion of the action-gradient term (Section C.1). Next, we show how to bundle the return and its
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gradient into a single affine update rule in the Distributional Sobolev Bellman update (Eq. 17).
We follow and give both the pathwise and integral forms of the full operator in the Distributional
Sobolev Bellman operator (Eqs. 19 and 20). Finally, we explain how to include state-gradients for a
fully Sobolev-compliant backup in the Complete Sobolev Bellman operator (Section C.5).

C.1 PREAMBLE AND ASSUMPTIONS

Unlike traditional Bellman operators acting on scalar- or fixed-dimensional vector-valued functions,
our operator acts on the space of continuously differentiable, bounded functions with bounded first
derivatives over the compact domain S ×A. Concretely, we assume the return-distribution admits a
reparameterization

Z
(
s, a; εZ

)
∈ C1

b

(
S ×A

)
,

where εZ ∼ p(εZ) is exogenous noise, so that each sample Z(s, a; εZ) and its gradients
∇s,aZ(s, a; εZ) are bounded and continuous on S ×A.

Let εf ∼ p(εf ), εr ∼ p(εr), and επ ∼ p(επ) be independent noise variables on Z , and let

f : S ×A×Z → S, (reparameterized transition)
r : S ×A×Z → R, (reparameterized reward)
π : S × Z → A, (reparameterized policy)

be C1 maps such that, for each draw εf , εr, επ, εZ ,

s′ = f(s, a; εf ), r = r(s, a; εr), a′ = π(s′; επ), Z = Z(s, a; εZ).

Importantly, we assume that the gradients of all these C1 mappings (Z, f , r, and π) are
tractable to compute in practice (e.g., via automatic differentiation).

We further assume these maps have uniformly bounded Jacobians: there exist constants
Lf,s, Lf,a, Lr, Lπ, LZ <∞ such that

sup
(s,a,εf )

∥∥∥∂f∂s (s, a; εf )∥∥∥ ≤ Lf,s, sup
(s,a,εf )

∥∥∥∂f∂a (s, a; εf )∥∥∥ ≤ Lf,a,
sup

(s,a,εr)

∥∥∥ ∂r∂a (s, a; εr)∥∥∥ ≤ Lr, sup
(s,επ)

∥∥∥∂π∂s (s; επ)∥∥∥ ≤ Lπ,
sup

(s,a,εZ)

∥∥∥∇s,aZ(s, a; εZ)∥∥∥ ≤ LZ .
C.2 DERIVATION OF THE ACTION-GRADIENT TERM

Starting from the distributional Bellman equation for each noise draw (εf , εr, εZ , επ):

Z(s, a; εZ) = r(s, a; εr) + γ Z
(
s′, a′; ε′Z

)
,

where s′ = f(s, a; εf ), a′ = π(s′; επ), and ε′Z ∼ p(εZ) independently. Differentiate w.r.t. a:

∂

∂a
Z(s, a; εZ) =

∂

∂a
r(s, a; εr) + γ

d

da

[
Z
(
s′, a′; ε′Z

)]
.

By the chain-rule,

d

da
Z(s′, a′; ε′Z) =

(
fa(s, a; εf )

)T︸ ︷︷ ︸
∂s′/∂a

∂

∂s
Z(s′, a′; ε′Z) +

(
fa(s, a; εf )

)T (
πs(s

′; επ)
)T︸ ︷︷ ︸

∂a′/∂a

∂

∂a
Z(s′, a′; ε′Z),

where we have introduced the shorthand

fa(s, a; εf ) =
∂f

∂a
(s, a; εf ), πs(s

′; επ) =
∂π

∂s
(s′; επ).
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Plugging back (and evaluating at s′ = f(s, a; εf ), a′ = π(s′; επ)) yields

∂

∂a
Z(s, a; εZ) =

∂

∂a
r(s, a; εr) +

γ
(
fa(s, a; εf )

)T [ ∂
∂s
Z(s′, a′; ε′Z) +

(
πs(s

′; επ)
)T ∂

∂a
Z(s′, a′; ε′Z)

]
,

which becomes the action-gradient component in our subsequent block-affine formulation.

C.3 DISTRIBUTIONAL SOBOLEV BELLMAN UPDATE

In Section 3.2 we introduced a Bellman-style update that propagates both the random return and its
action-gradient. We now rephrase it in our block-affine form.

Define the stacked random-vector, which by definition coincides with the joint Sobolev return intro-
duced in the main text:

ZSa(s, a; εZ) :=

 Z(s, a; εZ)

∂

∂a
Z(s, a; εZ)

 = H(s, a; εZ) ∈ R1+m.

where εZ ∼ p(εZ), and let εf , εr, επ be independent noise variables for transition, reward, and
policy. For each draw (εf , εr, επ, εZ) define

s′ = f(s, a; εf ), r = r(s, a; εr), a′ = π(s′; επ).

Then the sample-wise update is

H(s, a; εZ) =

 r(s, a; εr)

∂

∂a
r(s, a; εr)


︸ ︷︷ ︸

b(s,a;εr)

+

 γ 01×m

0m×1 γ
(
∂f
∂a (s, a; εf )

)T (∂π
∂s (s

′; επ)
)T


︸ ︷︷ ︸
A(s,a;εf ,επ)

H
(
s′, a′; ε′Z

)

+

(
01×n

γ
(
∂f
∂a (s, a; εf )

)T
)

︸ ︷︷ ︸
N(s,a;εf )

∂

∂s
Z
(
s′, a′; ε′Z

)
,

(17)

where for the next-step noise we write (εf , επ, ε
′
Z) ∼ p(εf ) p(επ) p(εZ) independently. We abbre-

viate

b(s, a; εr) =

(
r(s, a; εr)

∂ar(s, a; εr)

)
as above.

Next, introduce the state-gradient operator

Ds : H 7→ ∂

∂s

[
eT1H

]
=

∂Z

∂s
.

where eT1 = (1, 0, . . . , 0) selects the return component. For each (s, a; εf ), define the combined
linear map

L
(
s, a; εf , επ

)
= A

(
s, a; εf , επ

)
+N

(
s, a; εf

)
Ds
∣∣
(s′,a′;ε′Z)

Then the distributional Sobolev Bellman update can be written as the single (pseudo) affine trans-
form

H
(
s, a; εZ

)
= b
(
s, a; εr

)
+ L

(
s, a; εf , επ

)[
H(s′, a′; ε′Z)

]
. (18)

Remark (i). In this form, the computation of the next-state gradient ∂
∂s Z(s

′, a′; ε′Z) is not an exter-

nal “on-the-fly” step but is captured by the linear operator L(s, a; εf , επ) via Ds. Thus computing
the state-gradient of the distributional return is an integral part of the Bellman operator itself.
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Remark (ii). Although we write the update in a single “block-affine” line, strictly speaking it does
not close on the 2-vector (Z, ∂aZ) alone so we refer to it as pseudo-affine. Indeed, there is still an
N ∂sZ term lurking outside of H . We therefore call it affine only in a loose, not literal, sense; the
genuine finite-dimensional affine form appears once we lift to the full Sobolev vector (Z, ∂aZ, ∂sZ)
in Section C.5.

Measurability. By the same argument used in Appendix A, the map (s, a, ε) 7→ ∂sZ(s, a; ε) is
jointly Borel-measurable.

C.4 DISTRIBUTIONAL SOBOLEV BELLMAN OPERATOR

Let η : S × A −→ P(R1+m) be the law of H(s, a; εZ) =
[
Z(s, a; εZ), ∂aZ(s, a; εZ)

]
, and

assume three independent noise variables εf ∼ pf , εr ∼ pr, επ ∼ pπ generate

s′ = f(s, a; εf ), r = r(s, a; εr), a′ = π
(
s′; επ

)
.

We define the Sobolev distributional Bellman operator TSa
π in two equivalent ways:

Pathwise (law-equality) form:(
TSa
π η

)
(s, a) = Law

[
b
(
s, a; εr, επ

)
+ L

(
s, a; εf

)[
X ′]], (19)

where X ′ ∼ η(s′, a′) after sampling εf , εr, επ and setting s′ = f(s, a; εf ), a′ = π(s′; επ).

Explicit-noise integral (pushforward) form:(
TSa
π η

)
(s, a) =

∫
εf

∫
επ

∫
εr

(
b(s, a; εr) + L(s, a; εf )

)
#
η
(
f(s, a; εf ), π(f(s, a; εf ); επ)

)
× pr(dεr)× pπ(dεπ)× pf (dεf ).

(20)

C.5 COMPLETE SOBOLEV BELLMAN OPERATOR

In Section 3.2 and above we developed the action-gradient Sobolev Bellman backup, in which our
bootstrapped object is the pair

ZSa(s, a) =
(
Z(s, a), ∂aZ(s, a)

)
∈ R1+m.

Because the Bellman operator needs the next-step state-gradient ∂sZ(s′, a′), which is not included
in ZSa , we must recover it “on-the-fly” by differentiating the map Z. Equivalently, we have to own
the differentiable function Z itself at implementation time and thus rely on a Sobolev inductive bias
as introduced in Appendix B.1.

Lifting to a full Sobolev return. Nothing prevents us from treating the state-gradient as a third
component of our bootstrapped vector. Define

ZSs,a(s, a) =

 Z(s, a)

∂aZ(s, a)

∂sZ(s, a)

 ∈ R1+m+n.

Then, just as before, we obtain a single affine update

ZSs,a(s, a) = b(s, a) + Lfull(s, a)
[
ZSs,a(s′, a′)

]
, (21)

where b(s, a) ∈ R1+m+n collects (r, ∂ar, ∂sr) and Lfull(s, a) is a bounded linear operator on
R1+m+n.

Using similar derivations as for the action-gradient version we got the vector b and linear operator
Lfull (which is just a matrix in this case) such that

b(s, a; εr) =

 r(s, a; εr)

∂ar(s, a; εr)

∂sr(s, a; εr)


20
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and

Lfull(s, a; εf , επ) = γ

1 0 0

0 f⊤a (s, a; εf )π
⊤
s (s

′; επ) 0

0 f⊤s (s, a; εf )π
⊤
s (s

′; επ) f⊤s (s, a; εf )

 .

With s′ = f(s, a; εf ) and a′ = π(s′; επ) we denote the complete Sobolev Bellman operator by(
TSs,a
π η

)
(s, a) = Law

[
bfull

(
s, a; εr, επ

)
+ Lfull

(
s, a; εf

)[
X ′]], X ′ ∼ η(s′, a′). (22)

Consequences for implementation. In this complete form, the second and third blocks of ZSs,a

need not be tied to the derivatives of the scalar head. One may simply design a network with three
output heads

(s, a) 7→
(
Zθ(s, a), G

a
θ(s, a), G

s
θ(s, a)

)
,

and train it against the Sobolev-affine targets in Eq. equation 11. Of course, in practice on can still
exploit the Sobolev inductive bias and thus ensuring Ga = ∂aZ and Gs = ∂sZ.

D RESULTS WITH WASSERSTEIN

Proof of Proposition 3.1: We derive the upper bound on the policy gradient error in Section D.2.

Theorem 3 shows that the complete Sobolev Bellman operator TSa
π contracts by the uniform

operator norm ∥L∥d in the supremum–p–Wasserstein metric.

Theorem 4 shows a similar result to the incomplete operator that backs up only (Z, ∂aZ),
yielding the contraction coefficient γ κeff .

Corollary 5.1 then applies Banach’s fixed-point theorem to conclude that the Sobolev iterates
ηn+1 = TSπ ηn converge geometrically to the unique fixed point ηπ identified in Lemma 8.

D.1 PROOFS OF CONTRACTION AND FIXED POINT

Section overview. In this section we prove that the Sobolev Bellman operator admits a unique fixed
point and that iterating the operator converges to that solution. We begin by recalling the defini-
tions of the p–Wasserstein distance (Def. 1) and its supremum–p variant (Def. 2), and then show in
Lemma 2 that the distributional Sobolev backup can be written as an affine push-forward. Two key
transport estimates follow: the affine push-forward contraction in any normed space (Lemma 3) and
the mixture non-expansion property under conditioning (Lemma 4).
Definition 1 (p-Wasserstein distance Villani et al. (2009)). Let (X, d) be a metric space and let
Pp(X) be the set of all probability measures on X with finite pth moment. For any α, β ∈ Pp(X),
the p–Wasserstein distance between α and β is

Wp(α, β) =

(
inf

π∈Π(α,β)

∫
X×X

d(x, y)p dπ(x, y)

)1/p

,

where Π(α, β) is the set of all couplings of α and β, i.e. Borel probability measures on X × X
whose marginals are α and β, respectively.
Definition 2 (Supremum-p–Wasserstein distance Zhang et al. (2021), eq. (12)). Let (X, d) be a
metric space, let S be the set of states and A the set of actions, and let µ1, µ2 : S × A → Pp(X)
assign to each state–action pair (s, a) a probability measure on X with finite pth moment. The
supremum-p–Wasserstein distance between µ1 and µ2 is

W̄p(µ1, µ2) = sup
(s,a)∈S×A

Wp

(
µ1(s, a), µ2(s, a)

)
,

where Wp is the p–Wasserstein distance on (X, d) as in Definition 1.
Lemma 1 (Push-forward law identity). Let Z be a random variable with distribution µ, and let f
be any measurable function. Then

f#µ = Law
(
f(Z)

)
.
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Proof. For any Borel set A,

Pr
(
f(Z) ∈ A

)
= Pr

(
Z ∈ f−1(A)

)
= µ

(
f−1(A)

)
= f#µ(A).

Since this holds for all A, we conclude f#µ = Law(f(Z)).

Lemma 2 (Affine form of the Sobolev Bellman operator). Fix (s, a). Draw independent exogenous
noise

εr ∼ p(εr), εf ∼ p(εf ), επ ∼ p(επ),
and set

r = r(s, a; εr), s′ = f(s, a; εf ), a′ = π(s′; επ), X ′ ∼ ηSa(s′, a′).

Define the random affine map

Φs,a
(
x; εr, εf , επ

)
= b

(
s, a; εr

)
+ L

(
s, a; εf , επ

)
[x ], where b =

(
r
∂ar

)
, L = A+N Ds

as in Eq. equation 18. Then (
TSa
π ηSa

)
(s, a) = Law

(
Φs,a(X

′)
)
.

In other words, the Sobolev Bellman update is an affine pushforward of the joint return–gradient
under exogenous noise.

Proof. Fix a Borel set A ⊂ R1+m. Writing out the randomness explicitly in terms of εr, εf , επ , we
have

Pr
(
Φs,a(X

′) ∈ A
)
= Eεr,εf ,επ

[
Pr
(
Φs,a(X

′) ∈ A
∣∣ εr, εf , επ)].

Conditioning on (εr, εf , επ) turns Φs,a into the fixed affine map x 7→ b+ L[x], so

Pr
(
Φs,a(X

′) ∈ A
∣∣ εr, εf , επ) = Pr

(
b+ L[X ′] ∈ A

)
.

Since X ′ ∼ ηSa(s′, a′), an application of Lemma 1[
( b+ L )# ηSa(s′, a′)

]
= Law

(
b+ L(X ′)

)
gives

Pr
(
b+ L[X ′] ∈ A

)
=
[
( b+ L )# ηSa(s′, a′)

]
(A).

Putting these together,

Pr
(
Φs,a(X

′) ∈ A
)
= Eεr,εf ,επ

[
( b+ L )# ηSa(s′, a′)(A)

]
.

Finally, by the explicit-noise integral form equation 20, this expectation is exactly the definition of(
TSa
π ηSa

)
(s, a)(A). Hence

Pr
(
Φs,a(X

′) ∈ A
)
=
(
TSa
π ηSa

)
(s, a)(A),

and since this holds for every Borel A, we conclude Law
(
Φs,a(X

′)
)
=
(
TSa
π ηSa

)
(s, a).

Lemma 3 (Affine push-forward contraction in a normed space). Let (X, d) be a normed vector
space equipped with the metric d induced by its norm, and let

F : X → X, F (x) = b+ L[x],

where b ∈ X is fixed and L : X → X is a bounded linear operator. Define its Lipschitz constant

∥L∥d = sup
x̸=y

d
(
L[x], L[y]

)
d(x, y)

< ∞.

Then for any two probability measures α, β on X with finite pth moment,

Wp

(
F#α, F#β

)
≤ ∥L∥d Wp(α, β)

In particular, when L = γI this recovers Lemma 3 of Zhang et al. (2021).
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Proof. Fix any ε > 0, and choose a coupling

π ∈ Π(α, β)

that is ε-optimal, i.e. π is within ε of the infimum:(∫
X×X

d(x, y)p dπ(x, y)
)1/p

< Wp(α, β) + ε.

Push this coupling forward under F × F to obtain

π′ = (F × F )#π ∈ Π
(
F#α, F#β

)
.

Then

Wp

(
F#α, F#β

)p ≤ ∫
X×X

d(u, v)p dπ′(u, v) (by definition of Wp)

=

∫
X×X

d
(
F (x), F (y)

)p
dπ(x, y) (π′ = (F × F )#π)

=

∫
X×X

d
(
L[x], L[y]

)p
dπ(x, y) (F (x)− F (y) = L[x− y])

≤ ∥L∥pd
∫
X×X

d(x, y)p dπ(x, y)
(
d(L[x], L[y]) ≤ ∥L∥d d(x, y)

)
< ∥L∥pd

(
Wp(α, β) + ε

)p
(π is ε-optimal).

Taking the pth root and letting ε→ 0 yields

Wp

(
F#α, F#β

)
≤ ∥L∥d Wp(α, β).

Lemma 4 (Mixture non-expansion, conditional form Zhang et al. (2021) - Lemma 4). Let C be a
random variable on (Ω,F , ρ), and let Z1, Z2 be Rd-valued random variables. Let’s have p ≥ 1 and
suppose there exists δ ≥ 0 such that for every c ∈ Ω,

Wp

(
Law(Z1 | C = c), Law(Z2 | C = c)

)
≤ δ.

Then the marginal distributions satisfy

Wp

(
Law(Z1), Law(Z2)

)
≤ δ.

Equivalently,

sup
c∈Ω

Wp

(
Law(Z1 | C = c), Law(Z2 | C = c)

)
≤ δ

=⇒
Wp

(
Law(Z1), Law(Z2)

)
≤ δ

In other words, integrating (averaging) over the conditioning index preserves, and never increases,
the worst-case Wasserstein distance.

Proof. This proof follows exactly Zhang et al. (2021). Fix any ε > 0. By assumption, for every
c ∈ Ω,

Wp

(
Law(Z1 | C = c), Law(Z2 | C = c)

)
≤ δ,

so there exists a coupling

πc ∈ Π
(
Law(Z1 | C = c), Law(Z2 | C = c)

)
such that ∫

Rd×Rd

d(x, y)p dπc(x, y) ≤ (δ + ε)p.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

By the law of total probability, the marginals are

Law(Z1)(·) =
∫
Ω

Law(Z1 | C = c)(·) ρ(dc),

Law(Z2)(·) =
∫
Ω

Law(Z2 | C = c)(·) ρ(dc).

Define a global coupling Π on Rd × Rd by

Π(U) =

∫
Ω

πc(U) ρ(dc), U ⊆ Rd × Rd.

Then for any measurable A ⊂ Rd,

Π(A× Rd) =
∫
Ω

πc(A× Rd) ρ(dc) =
∫
Ω

Law(Z1 | C = c)(A) ρ(dc) = Law(Z1)(A),

and similarly Π(Rd ×A) = Law(Z2)(A), so Π ∈ Π(Law(Z1),Law(Z2)).

Wp

(
Law(Z1), Law(Z2)

)p ≤ ∫
Rd×Rd

d(x, y)p dΠ(x, y) (by definition of Wp)

=

∫
Ω

[∫
d(x, y)p dπc(x, y)

]
ρ(dc) (by definition of Π)

≤
∫
Ω

(δ + ε)p ρ(dc) (πc is ε-optimal)

= (δ + ε)p.

Therefore,
Wp

(
Law(Z1), Law(Z2)

)
≤ (δ + ε),

and since ε > 0 was arbitrary, we conclude

Wp

(
Law(Z1), Law(Z2)

)
≤ δ.

Lemma 5 (Mixture p-convexity forWp). Let (X, d) be a metric space, p ∈ [1,∞), and let (Ω,F , ρ)
be a probability space. Let (µc)c∈Ω, (νc)c∈Ω ⊂ Pp(X) be measurable families. Then

Wp

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
≤

(∫
Ω

Wp(µc, νc)
p ρ(dc)

)1/p

.

Proof. Step 1: ε-optimal couplings for each c.
Fix ε > 0. For each c ∈ Ω, pick an ε-optimal coupling πεc ∈ Π(µc, νc) such that∫

X×X
d(x, y)p πεc(dx, dy) ≤ Wp(µc, νc)

p + ε.

(At this step we only use existence for each fixed c; no measurability in c is needed yet.)

Step 2: Measurable selection and mixed coupling.
Assume the family (πεc)c∈Ω can be chosen measurably, so that c 7→ πεc is a probability kernel. We
then define the mixed coupling

Πε(U) :=

∫
Ω

πεc(U) ρ(dc), U ⊆ X ×X Borel.

For any measurable A ⊆ X ,

Πε(A×X) =

∫
Ω

πεc(A×X) ρ(dc) =

∫
Ω

µc(A) ρ(dc) =
(∫

Ω

µc ρ(dc)
)
(A),
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and similarly

Πε(X ×A) =
∫
Ω

πεc(X ×A) ρ(dc) =
∫
Ω

νc(A) ρ(dc) =
(∫

Ω

νc ρ(dc)
)
(A).

Hence Πε has the mixed marginals
∫
Ω
µc ρ(dc) and

∫
Ω
νc ρ(dc), i.e.

Πε ∈ Π
(∫

Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
.

Step 3: Bound the transport cost of the mixed coupling.
Since (c, x, y) 7→ d(x, y)p is nonnegative and measurable and c 7→ πεc is a probability kernel,
Tonelli’s theorem allows us to exchange the order of integration in (c, x, y):∫

X×X
d(x, y)pΠε(dx, dy) =

∫
X×X

d(x, y)p
(∫

Ω

πεc(dx, dy) ρ(dc)
)

=

∫
Ω

(∫
X×X

d(x, y)p πεc(dx, dy)
)
ρ(dc)

≤
∫
Ω

(
Wp(µc, νc)

p + ε
)
ρ(dc)

=

∫
Ω

Wp(µc, νc)
p ρ(dc) + ε.

Step 4: Take the infimum over couplings and pass to the limit.
By definition of Wp,

Wp

(∫
µc dρ,

∫
νc dρ

)p
≤
∫
X×X

d(x, y)pΠε(dx, dy) ≤
∫
Ω

Wp(µc, νc)
p ρ(dc) + ε.

Taking pth roots and letting ε ↓ 0 yields

Wp

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)
)
≤

(∫
Ω

Wp(µc, νc)
p ρ(dc)

)1/p

.

Lemma 6 (Spectral norm of a block-triangular matrix). Let A ∈ Rm×m, B ∈ Rn×m, and C ∈
Rn×n. Then ∥∥∥∥∥∥∥

1 0 0

0 A 0

0 B C


∥∥∥∥∥∥∥
2

≤ max{ 1, ∥A∥2, ∥C∥2} + ∥B∥2.

Proof. Split

M =

1 0 0

0 A 0

0 B C

 =

1 0 0

0 A 0

0 0 C


︸ ︷︷ ︸

D

+

0 0 0

0 0 0

0 B 0


︸ ︷︷ ︸

E

.

By the triangle inequality for the operator-2 norm,

∥M∥2 ≤ ∥D∥2 + ∥E∥2.

Since D is block-diagonal, ∥D∥2 = max{1, ∥A∥2, ∥C∥2}, and E has only the single nonzero block
B, so ∥E∥2 = ∥B∥2. Substitution gives the claimed bound.
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Theorem 3 (Supremum-p–Wasserstein contraction of the complete Sobolev Bellman operator). Let

TSs,a
π :

(
S ×A → P(R1+m+n)

)
−→

(
S ×A → P(R1+m+n)

)
,

be the complete Sobolev Bellman operator bootstrapping the vector (Z, ∂aZ, ∂sZ).

The distributional Sobolev Bellman operators are defined by the reparameterized policy π(s′; επ),
the transition f(s, a; εf ) and reward r(s, a; εr). By assumptions from Section C.1 we write

∥L∥d = sup
s,a

sup
εf ,επ

∥∥L(s, a; εf , επ)∥∥2 ≤ γ max{1, Lf,aLπ, Lf,s}+ Lf,sLπ
}

= γ κfull,

then for any two Sobolev return-distribution functions η1, η2,

W̄p

(
TSs,a
π η1, T

Ss,a
π η2

)
≤ ∥L∥d W̄p

(
η1, η2

)
≤ γ κfull W̄p

(
η1, η2

)
.

In particular, TSs,a
π is a ∥L∥d–contraction whenever ∥L∥d < 1, and a sufficient condition for this is

γ κfull < 1.

Proof. We show that the Sobolev Bellman map T
Ss,a
π is a ∥L∥d–contraction in the

supremum–p–Wasserstein metric.

By definition have,

W̄p

(
TSs,a
π η1, T

Ss,a
π η2

)
= sup

s,a
Wp

(
TSs,a
π η1(s, a), T

Ss,a
π η2(s, a)

)
.

Let’s fix an arbitrary pair (s, a). Then we draw the same exogenous noises for both updates

εr ∼ p(εr), εf ∼ p(εf ), επ ∼ p(επ),

set
r = r(s, a; εr), s′ = f(s, a; εf ), a′ = π(s′; επ),

and sample
X ′

1 ∼ η
Ss,a

1 (s′, a′), X ′
2 ∼ η

Ss,a

2 (s′, a′).

Define the random affine map

Φs,a
(
x; εr, εf , επ

)
= b

(
s, a; εr

)
+ L

(
s, a; εf , επ

)
[x ],

where b =

 r

∂ar

∂sr

 , L = γ

1 0 0

0 f⊤a π
⊤
s 0

0 f⊤s π
⊤
s f⊤s


as in Eq.21.

By Lemma 2, we have

TSs,a
π ηi(s, a) = Law

(
Φs,a(X

′
i)
)
, i = 1, 2,

so
Wp

(
TSs,a
π η1(s, a), T

Ss,a
π η2(s, a)

)
=Wp

(
Law(Φs,a(X

′
1)), Law(Φs,a(X

′
2))
)
.

Since Law(X ′
i) = η

Ss,a

i (s′, a′), define

C = sup
u,v

Wp

(
η
Ss,a

1 (u, v), η
Ss,a

2 (u, v)
)
,

so that for every (s′, a′),

Wp

(
Law(X ′

1), Law(X
′
2)
)
=Wp

(
η
Ss,a

1 (s′, a′), η
Ss,a

2 (s′, a′)
)
≤ C.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Condition on the full noise triple (εr, εf , επ), so that Φs,a is a deterministic affine map. By Lemma 3,

Wp

(
Law(Φs,a(X

′
1) | εr, εf , επ), Law(Φs,a(X ′

2) | εr, εf , επ)
)

≤ ∥L(s, a; εf , επ)∥d Wp

(
η
Ss,a

1 (s′, a′), η
Ss,a

2 (s′, a′)
)

≤ ∥L(s, a; εf , επ)∥d C.

Taking the supremum over εf , επ and then applying Lemma 4 yields

Wp

(
Law(Φs,a(X

′
1)), Law(Φs,a(X

′
2))
)
≤ sup

εf ,επ

∥L(s, a; εf , επ)∥d C.

Using TSs,a
π ηi(s, a) = Law(Φs,a(X

′
i)), we conclude

Wp

(
TSs,a
π η1(s, a), T

Ss,a
π η2(s, a)

)
=Wp

(
Law(Φs,a(X

′
1)), Law(Φs,a(X

′
2))
)

≤
(
sup
εf ,επ

∥L(s, a; εf , επ)∥d
)
C.

Finally, taking the supremum over (s, a) yields

W̄p

(
TSs,a
π η1, T

Ss,a
π η2

)
= sup

s,a
Wp

(
TSs,a
π η1(s, a), T

Ss,a
π η2(s, a)

)
≤ sup

s,a

(
sup
εf ,επ

∥L(s, a; εf , επ)∥d
)
C

= ∥L∥d C
= ∥L∥d W̄p

(
η1, η2

)
.

so TSs,a
π is a contraction with coefficient ∥L∥d.

By Section C.1, we have

∥fa(s, a; εf )∥2 ≤ Lf,a, ∥fs(s, a; εf )∥2 ≤ Lf,s, ∥πs(s′; επ)∥2 ≤ Lπ.

Hence for each (s, a, εf , επ) and applying Lemma 6 we have

∥∥L(s, a; εf , επ)∥∥2 = γ

∥∥∥∥∥∥∥
1 0 0

0 f⊤a π
⊤
s 0

0 f⊤s π
⊤
s f⊤s


∥∥∥∥∥∥∥
2

≤ γ
(
max

{
1, ∥f⊤a π⊤

s ∥2, ∥f⊤s ∥2
}︸ ︷︷ ︸

diagonal blocks

+ ∥f⊤s π⊤
s ∥2︸ ︷︷ ︸

off-diagonal blockB

)

≤ γ
(
max

{
1, ∥fa∥2∥πs∥2, ∥fs∥2

}
+ ∥fs∥2∥πs∥2

)
≤ γ

(
max{1, Lf,aLπ, Lf,s}+ Lf,sLπ

)
= γ κfull.

Since the last inequality holds for every choice of (s, a, εf , επ), taking the supremum gives

∥L∥d = sup
s,a,εf ,επ

∥∥L(s, a; εf , επ)∥∥2 ≤ γ κfull.

Lemma 7 (Fixed-point law of the complete Sobolev Bellman operator). Define the infinite-horizon
return and its full action- and state-gradients under policy π by

Z(s, a) =

∞∑
t=0

γt rt, Ga(s, a) = ∂a

∞∑
t=0

γt rt, Gs(s, a) = ∂s

∞∑
t=0

γt rt,
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and let
ηπ(s, a) = Law

(
Z(s, a), Ga(s, a), Gs(s, a)

)
.

Then ηπ is a fixed point of the complete Sobolev Bellman operator:

TSs,a
π ηπ = ηπ.

Proof. Recalling the one-step affine update

Φs,a(x; εr, εf , επ) = bfull(s, a; εr) + Lfull(s, a; εf , επ)[x ],

the Bellman recursion and its derivatives combine to(
Z(s, a), Ga(s, a), Gs(s, a)

)
= Φs,a

(
Z(s′, a′), Ga(s′, a′), Gs(s′, a′)

)
.

By Lemma 2 we have

Law
(
Z(s, a), Ga(s, a), Gs(s, a)

)
= Law

(
Φs,a

(
Z(s′, a′), Ga(s′, a′), Gs(s′, a′)

))
=
(
TSs,a
π ηπ

)
(s, a).

Since this holds for every (s, a), we conclude TSs,a
π ηπ = ηπ .

Theorem 4 (Contraction coefficient of the action–gradient (incomplete) Sobolev Bellman operator).
Let

TSa
π :

(
S ×A → P(R1+m)

)
−→

(
S ×A → P(R1+m)

)
be the action–gradient Sobolev Bellman operator updating only H(s, a) = (Z(s, a), ∂aZ(s, a)).

Let’s have p ≥ 1. Fix any two return–gradient laws η1, η2 : S ×A → P(R1+m). Assume

∥fa∥2 ≤ Lf,a, ∥πs∥2 ≤ Lπ,
and that there is a constant LDs ≥ 0 such that for every (s′, a′), if

ζ∗ ∈ arg inf
ζ∈Γ(η1(s′,a′), η2(s′,a′))

E(H′
1,H

′
2)∼ζ

[
∥H ′

1 −H ′
2∥
p
2

]
is an optimal coupling, then, when (Z ′

i, ∂aZ
′
i) are the first and second components of H ′

i ,(
Eζ∗∥∂sZ ′

1 − ∂sZ ′
2∥
p
2

)1/p
≤ LDs

(
Eζ∗∥(Z ′

1, ∂aZ
′
1)− (Z ′

2, ∂aZ
′
2)∥

p
2

)1/p
. (23)

Here Γ(µ, ν) is the set of all couplings of µ and ν. In practice, neural networks with bounded
weights and Lipschitz activations make both outputs and gradients Lipschitz, so LDs

<∞.

Set
κeff = max{1, Lf,aLπ}+ Lf,a LDs

.

Then
W̄p

(
TSa
π η1, T

Sa
π η2

)
≤ γ κeff W̄p(η1, η2).

If γ κeff < 1, TSa
π is a strict contraction.

Proof. Here and below, all norms ∥ · ∥ denote the Euclidean norm on vectors, and when applied to
any bounded linear operator they denote the corresponding induced operator norm; moreover, every
Wp is taken with respect to the ground metric d(x, y) = ∥x− y∥.
Fix (s, a) and draw one sample (εr, εf , επ). Write

s′ = f(s, a; εf ), a′ = π(s′; επ),

and define

Φ(H ′) = b(s, a; εr) +A(s, a; εf , επ)H
′(s′, a′) +N(s, a; εf ) ∂sZ

′(s′, a′).

By the uniform Jacobian bounds of Section C.1,

sup
s,a,εf

∥fa(s, a; εf )∥ ≤ Lf,a, sup
s′,επ

∥πs(s′; επ)∥ ≤ Lπ,
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so

∥A(s, a; εf , επ)∥2 = γmax
{
1, ∥fa(s, a; εf )∥2 ∥πs(s′; επ)∥2

}
≤ γmax{1, Lf,aLπ},

and similarly
∥N(s, a; εf )∥2 = γ ∥fa(s, a; εf )∥2 ≤ γ Lf,a.

Under an optimal coupling ζ of η1(s′, a′) and η2(s′, a′), let (X ′
1, X

′
2) ∼ ζ be the paired vectors in

R1+m and (G′
1, G

′
2) their state-gradients. Then

∥Φ(X ′
1)− Φ(X ′

2)∥ =
∥∥A(X ′

1 −X ′
2) +N(G′

1 −G′
2)
∥∥ (definition of Φ)

≤ ∥A(X ′
1 −X ′

2)∥+ ∥N(G′
1 −G′

2)∥ (triangle inequality)

≤ ∥A∥2 ∥X ′
1 −X ′

2∥2 + ∥N∥2 ∥G′
1 −G′

2∥2 (operator-norm bound)

We begin by expressing the expected pth power of the output difference in terms of Φ:

Eζ
[
∥Φ(X ′

1)− Φ(X ′
2)∥p

]
= Eζ

[
∥ b+AX ′

1 +NG′
1 − (b+AX ′

2 +NG′
2)∥p

]
= Eζ

[
∥A(X ′

1 −X ′
2) + N(G′

1 −G′
2)∥p

]
.

Applying the triangle inequality inside the expectation and using that x 7→ xp is order-preserving
yields

Eζ
[
∥Φ(X ′

1)− Φ(X ′
2)∥p

]
≤ Eζ

[
(∥A(X ′

1 −X ′
2)∥+ ∥N(G′

1 −G′
2)∥)p

]
.

Taking the pth root and using Minkowski’s inequality gives(
Eζ∥Φ(X ′

1)− Φ(X ′
2)∥p

)1/p
≤
(
Eζ∥A(X ′

1 −X ′
2)∥p

)1/p
+
(
Eζ∥N(G′

1 −G′
2)∥p

)1/p
.

We use the following chain,(
E∥MX∥p

)1/p ≤ (
E[∥M∥p ∥X∥p]

)1/p
= ∥M∥

(
E∥X∥p

)1/p
.

to factor out the operator norms of A and N(
Eζ∥Φ(X ′

1)− Φ(X ′
2)∥p

)1/p
≤ ∥A∥

(
Eζ∥X ′

1 −X ′
2∥p
)1/p

+ ∥N∥
(
Eζ∥G′

1 −G′
2∥p
)1/p

.

Invoking the derivative–coupling bound from Equation 23 then gives(
Eζ∥Φ(X ′

1)− Φ(X ′
2)∥p

)1/p
≤
(
∥A∥+ ∥N∥LDs

) (
Eζ∥X ′

1 −X ′
2∥p
)1/p

.

Recognizing that, because ζ is an optimal coupling, the latter expectation equals the p-Wasserstein
distance, we have(

Eζ∥Φ(X ′
1)− Φ(X ′

2)∥p
)1/p

=
(
∥A∥+ ∥N∥LDs

)
Wp

(
η1(s

′, a′), η2(s
′, a′)

)
.

Define, to induce a valid coupling between the transformed measures,

ξ = (Φ× Φ)# ζ.

Then for any measurable B ⊂ R1+m × R1+m,

ξ(B) = ζ
(
(Φ× Φ)−1(B)

)
.

Hence ξ has marginals Φ#η1 and Φ#η2, so ξ is indeed a coupling of the push-forward measures,
i.e.

ξ ∈ Γ
(
Φ#η1,Φ#η2

)
.

By definition of Wp,

Wp

(
Φ#η1,Φ#η2

)
≤
(
E(U,V )∼ξ∥U − V ∥p

)1/p
=
(
Eζ∥Φ(X ′

1)− Φ(X ′
2)∥p

)1/p
.
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Replacing the left side we have

Wp

(
Φ#η1,Φ#η2

)
≤
(
∥A∥+ ∥N∥LDs

)
Wp

(
η1(s

′, a′), η2(s
′, a′)

)
.

Substituting the operator-norm bounds ∥A∥ ≤ γmax{1, Lf,aLπ} and ∥N∥ ≤ γLf,a yields

Wp

(
Φ#η1,Φ#η2

)
≤ γ

(
max{1, Lf,aLπ}+ Lf,aLDs

)
Wp

(
η1(s

′, a′), η2(s
′, a′)

)
.

Noting that for each noise draw c = (εr, εf , επ), with s′ = f(s, a; εf ) and a′ = π(s′; επ), we have
the pointwise bound

Wp

(
Φc#η1(s

′, a′), Φc#η2(s
′, a′)

)
≤ γ κeff Wp

(
η1(s

′, a′), η2(s
′, a′)

)
.

By Lemma 5 (mixture p-convexity),

W p
p

(
TSa
π η1(s, a), T

Sa
π η2(s, a)

)
=W p

p

(
Ec
[
Φc#η1(s

′, a′)
]
, Ec

[
Φc#η2(s

′, a′)
])

≤ Ec
[
W p
p

(
Φc#η1(s

′, a′),Φc#η2(s
′, a′)

)]
≤ (γ κeff)

p Ec
[
W p
p

(
η1(s

′, a′), η2(s
′, a′)

)]
≤ (γ κeff)

p W̄ p
p (η1, η2).

Taking pth roots yields

Wp

(
TSa
π η1(s, a), T

Sa
π η2(s, a)

)
≤ γ κeff W̄p(η1, η2).

Finally, taking the supremum over (s, a),

W̄p

(
TSa
π η1, T

Sa
π η2

)
≤ γ κeff W̄p(η1, η2).

Theorem 5 (Contraction coefficient of the action–gradient (incomplete) Sobolev Bellman operator
— local regularity version). Let

TSa
π :

(
S ×A → P(R1+m)

)
−→

(
S ×A → P(R1+m)

)
be the action–gradient Sobolev Bellman operator updating only H(s, a) = (Z(s, a), ∂aZ(s, a)).
Fix p ≥ 1 and two return–gradient laws η1, η2 : S ×A → P(R1+m). Assume

∥fa∥2 ≤ Lf,a, ∥πs∥2 ≤ Lπ,

and suppose there exists LDs ≥ 0 such that for every (s′, a′) and every pair of value functions
Z1, Z2 in the model class, writing h := Z1 − Z2,

∥∂sh(s′, a′)∥2 ≤ LDs

∥∥(h(s′, a′), ∂ah(s′, a′))∥∥2. (24)

(In practice, this holds if the architecture or modeling constraints ensure that ∂sZ is a bounded
linear functional of (Z, ∂aZ) at each (s′, a′).)

Set
κeff = max{1, Lf,aLπ}+ Lf,a LDs

.

Then
W̄p

(
TSa
π η1, T

Sa
π η2

)
≤ γ κeff W̄p(η1, η2) .

In particular, if γ κeff < 1, then TSa
π is a strict contraction on (S ×A → P(R1+m), W̄p).

Proof. All vector norms ∥ · ∥ are Euclidean norms; operator norms are the corresponding induced
norms. All Wp distances use the ground metric d(x, y) = ∥x− y∥.
Fix (s, a) and a realization c = (εr, εf , επ) of the exogenous noise. Let

s′ = f(s, a; εf ), a′ = π(s′; επ).
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The one–step backup of H can be written in the affine form
Φ(H ′) = b(s, a; εr) +A(s, a; εf , επ)H

′(s′, a′) +N(s, a; εf ) ∂sZ
′(s′, a′),

where H ′ = (Z ′, ∂aZ
′). By the uniform Jacobian bounds (Section C.1),

∥A(s, a; εf , επ)∥ = γ max
{
1, ∥fa(s, a; εf )∥ ∥πs(s′; επ)∥

}
≤ γ max{1, Lf,aLπ},

and
∥N(s, a; εf )∥ = γ ∥fa(s, a; εf )∥ ≤ γ Lf,a.

Let ζ∗ be an optimal coupling between η1(s
′, a′) and η2(s

′, a′). Draw (X ′
1, X

′
2) ∼ ζ∗, where

X ′
i = (Z ′

i, ∂aZ
′
i) ∈ R1+m, and write G′

i = ∂sZ
′
i(s

′, a′). Then

∥Φ(X ′
1)− Φ(X ′

2)∥ =
∥∥A(X ′

1 −X ′
2) +N(G′

1 −G′
2)
∥∥ (definition of Φ)

≤ ∥A(X ′
1 −X ′

2)∥+ ∥N(G′
1 −G′

2)∥ (triangle inequality)

≤ ∥A∥ ∥X ′
1 −X ′

2∥+ ∥N∥ ∥G′
1 −G′

2∥ (operator-norm bound).

Applying the local regularity bound equation 24 pointwise to h := Z ′
1 − Z ′

2 at (s′, a′) gives
∥G′

1 −G′
2∥ = ∥∂sh(s′, a′)∥ ≤ LDs ∥(h(s′, a′), ∂ah(s′, a′))∥ = LDs ∥X ′

1 −X ′
2∥.

Hence, for every paired draw (X ′
1, X

′
2),

∥Φ(X ′
1)− Φ(X ′

2)∥ ≤
(
∥A∥+ ∥N∥LDs

)
∥X ′

1 −X ′
2∥.

Raising to the pth power, taking expectations under ζ∗, and then taking pth roots yields(
Eζ∗∥Φ(X ′

1)− Φ(X ′
2)∥p

)1/p
≤
(
∥A∥+ ∥N∥LDs

) (
Eζ∗∥X ′

1 −X ′
2∥p
)1/p

.

By optimality of ζ∗, (
Eζ∗∥X ′

1 −X ′
2∥p
)1/p

= Wp

(
η1(s

′, a′), η2(s
′, a′)

)
.

Define, to induce a valid coupling between the transformed measures,
ξ = (Φ× Φ)# ζ

∗.

Then for any Borel B ⊂ R1+m × R1+m,
ξ(B) = ζ∗

(
(Φ× Φ)−1(B)

)
.

Hence ξ has marginals Φ#η1(s
′, a′) and Φ#η2(s

′, a′), i.e. ξ ∈ Γ
(
Φ#η1(s

′, a′),Φ#η2(s
′, a′)

)
. By

the definition of Wp,

Wp

(
Φ#η1(s

′, a′), Φ#η2(s
′, a′)

)
≤
(
E(U,V )∼ξ∥U − V ∥p

)1/p
=
(
Eζ∗∥Φ(X ′

1)− Φ(X ′
2)∥p

)1/p
.

Combining the previous two inequalities and inserting the bounds on ∥A∥ and ∥N∥ gives, for this
fixed noise realization,
Wp

(
Φ#η1(s

′, a′), Φ#η2(s
′, a′)

)
≤ γ

(
max{1, Lf,aLπ}+ Lf,aLDs

)
Wp

(
η1(s

′, a′), η2(s
′, a′)

)
.

Finally, TSa
π ηi(s, a) is the mixture (over εr, εf , επ) of the pushforwards Φc#ηi(s

′, a′) with
(s′, a′) = (f(s, a; εf ), π(s

′; επ)). By Lemma 5 (mixture p-convexity) and the fixed–noise bound
above,

W p
p

(
TSa
π η1(s, a), T

Sa
π η2(s, a)

)
=W p

p

(
Ec[Φc#η1(s′, a′)], Ec[Φc#η2(s′, a′)]

)
≤ Ec

[
W p
p

(
Φc#η1(s

′, a′), Φc#η2(s
′, a′)

)]
≤ (γ κeff)

p Ec
[
W p
p

(
η1(s

′, a′), η2(s
′, a′)

)]
≤ (γ κeff)

p W̄ p
p (η1, η2).

Taking pth roots yields

Wp

(
TSa
π η1(s, a), T

Sa
π η2(s, a)

)
≤ γ κeff W̄p(η1, η2).

Taking the supremum over (s, a) completes the proof:

W̄p

(
TSa
π η1, T

Sa
π η2

)
≤ γ κeff W̄p(η1, η2).
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Lemma 8 (Fixed-point law of the incomplete Sobolev Bellman operator). Define the infinite-
horizon return and its full action-gradient under policy π by

Z(s, a) =

∞∑
t=0

γt rt, G(s, a) = ∂a

∞∑
t=0

γt rt,

and let ηπ(s, a) = Law
(
Z(s, a), G(s, a)

)
. Then ηπ is a fixed point of the Sobolev Bellman operator:

TSa
π ηπ = ηπ.

Proof. Recalling the one-step affine update

Φs,a(x; εr, εf , επ) = b(s, a; εr) + L(s, a; εf , επ)[x ],
the Bellman recursion and its derivative combine to(

Z(s, a), G(s, a)
)
= Φs,a

(
Z(s′, a′), G(s′, a′)

)
.

By Lemma 2 we have

Law
(
Z(s, a), G(s, a)

)
= Law

(
Φs,a(Z(s

′, a′), G(s′, a′))
)
= (TSa

π ηπ)(s, a).

Since this holds for every (s, a), we conclude TSa
π ηπ = ηπ .

Corollary 5.1 (Convergence of Sobolev evaluation iterates). Under the conditions of Theorem 3,
let κ denote the contraction constant with κ = κeff for the incomplete operator or κ = κfull for the
complete one and suppose γ κ < 1. For any initial Sobolev return–distribution function η0, define
the sequence

ηn+1 = TSπ ηn,

where TSπ may be either the incomplete (Sa) or complete (Ss,a) Sobolev operator. Then by Banach’s
fixed-point theorem the iterates converge to the unique fixed point ηπ (cf. Lemmas 7, 8):

W̄p

(
ηn, η

π
)
≤ (γ κ)n W̄p

(
η0, η

π
)
−−−−→
n→∞

0.

In particular, ηn → ηπ in the supremum–p–Wasserstein metric.

D.2 PROOF OF PROPOSITION 3.1

Lemma 9 (Mean-difference bound via W1). Let X,Y be Rd-valued random variables with distri-
butions µ = Law(X) and ν = Law(Y ), and assume E∥X∥ <∞, E∥Y ∥ <∞. Then∥∥E[X]− E[Y ]

∥∥ ≤ W1(µ, ν),

Here, ∥ · ∥ denotes the Euclidean norm on Rd, and W1 is taken with respect to the ground metric
d(x, y) = ∥x− y∥.

Proof. Let
mX = E[X], mY = E[Y ].

If mX ̸= mY , define the unit vector

u =
mX −mY

∥mX −mY ∥
.

Then the scalar function f(x) = u⊤x satisfies

|f(x)− f(y)| = |u⊤(x− y)| ≤ ∥u∥ ∥x− y∥ = ∥x− y∥,
so ∥f∥Lip ≤ 1. By Kantorovich–Rubinstein duality Villani et al. (2009),

W1(µ, ν) = sup
∥g∥Lip≤1

∣∣E[g(X)]− E[g(Y )]
∣∣ ≥ ∣∣E[f(X)]− E[f(Y )]

∣∣.
But E[f(X)] − E[f(Y )] = u⊤(mX −mY ) = ∥mX −mY ∥, hence ∥mX −mY ∥ ≤ W1(µ, ν). If
mX = mY , the inequality is trivial.
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Proposition 2. Let π be an Lπ-Lipschitz continuous policy, and let G(s) =

Law(∇aZπ(s, a) |a=π(s)) and Ĝ(s) = Law(∇aẐ(s, a) |a=π(s)) denote the true and esti-
mated distributions of the action-gradients at a = π(s), respectively. Then the error between the
true and estimated policy gradients is bounded by∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπ

1− γ
Es∼dµπ

[
W1

(
∇aZπ(s, a)

∣∣
a=π(s)

, ∇aẐ(s, a)
∣∣
a=π(s)

)
]
.

This proposition is a distributional extension of Proposition 3.1 from D’Oro & Jaskowski (2020).

Proof.

Step 1: True and Estimated Policy Gradients

The true policy gradient is given by:

∇θJ(θ) =
1

1− γ
Es∼dµπ

[
E
[
∇aZπ(s, a)

∣∣
a=π(s)

]
∇θπ(s)

]
,

The estimated policy gradient is:

∇θĴ(θ) =
1

1− γ
Es∼dµπ

[
E
[
∇aẐ(s, a)

∣∣
a=π(s)

]
∇θπ(s)

]
.

Step 3: Policy Gradient Error

The L2 norm of the difference between the true and estimated policy gradients is:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ =
∥∥∥ 1

1− γ
Es∼dµπ

[(
E
[
∇aZπ(s, a)

∣∣
a=π(s)

]
− E

[
∇aẐ(s, a)

∣∣
a=π(s)

])
×∇θπ(s)

]∥∥∥.
Step 4: Applying the Triangle Inequality and Lipschitz Continuity

Using the triangle inequality and the Lipschitz continuity of the policy (∥∇θπ(s)∥ ≤ Lπ), we have:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ 1

1− γ
Es∼dµπ

[∥∥∥E [∇aZπ(s, a)∣∣a=π(s)]− E
[
∇aẐ(s, a)

∣∣
a=π(s)

]∥∥∥
× ∥∇θπ(s)∥

]
≤ Lπ

1− γ
Es∼dµπ

[∥∥∥E [∇aZπ(s, a)∣∣a=π(s)]− E
[
∇aẐ(s, a)

∣∣
a=π(s)

]∥∥∥] .
Step 5: Bounding the mean-difference by W1

Let
X = ∇aZπ(s, a)

∣∣
a=π(s)

, Y = ∇aẐ(s, a)
∣∣
a=π(s)

.

By Lemma 9, we immediately have∥∥E[X]− E[Y ]
∥∥ ≤ W1

(
X, Y

)
= W1

(
∇aZπ(s, a)

∣∣
a=π(s)

, ∇aẐ(s, a)
∣∣
a=π(s)

)
.

Step 6: Conclusion

Combining the results from the previous steps, we established that the L2 norm of the difference
between the true and estimated policy gradients can be bounded as follows:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπ

1− γ
Es∼dµπ

[
W1

(
∇aZπ(s, a)

∣∣
a=π(s)

, ∇aẐ(s, a)
∣∣
a=π(s)

)]
.
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E PRACTICAL DIFFICULTIES WITH WASSERSTEIN FOR TRAINING

AdversarialW1 is a loose proxy for true Wasserstein. Some works have directly applied WGAN
training to distributional RL, for example Freirich et al. (2019), who cast return distributions as
targets for adversarial matching. In practice, WGAN training replaces the exact Kantorovich–
Rubinstein dual (Arjovsky et al., 2017; Gulrajani et al., 2017) with a parametric discriminator plus
approximate Lipschitz control (weight clipping or gradient penalties). This induces three sources
of deviation from the true distance: finite-capacity approximation error, imperfect Lipschitz en-
forcement, and optimization error. Systematic analyses show that the resulting WGAN losses can
correlate poorly with the actual Wasserstein metric and need not be meaningful approximations of
it, undermining proofs that presume access to the exact W1. See both the empirical and theoretical
analysis of Mallasto et al. (2019) and the critique by Stanczuk et al. (2021).

Computational cost of exact OT in multiple dimensions. Even ignoring estimator issues, com-
puting multivariate Wp exactly on mini-batches is costly: building the pairwise cost matrix requires
O(m2) memory, and solving the discrete OT problem takes O(m3 logm) time (Genevay et al.,
2019). This makes per-update calls prohibitive in distributional RL.

Sample complexity. Beyond runtime, OT also suffers from poor statistical efficiency: the em-
pirical Wasserstein distance converges to its population value at rate O(n−1/d) in dimension d,
compared to O(n−1/2) for MMD (Genevay et al., 2019). This slow convergence further limits its
practicality in high-dimensional RL.
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F BACKGROUND ON MMD

Definition 3 (Maximum Mean Discrepancy as an IPM). Let k : X × X → R be a symmetric,
positive-semi-definite reproducing kernel with RKHSH and feature map

ϕ : X → H, ϕ(x) = k(x, ·).

For probability measures P,Q on X , define their mean embeddings

µP =

∫
X

ϕ(x) dP (x), µQ =

∫
X

ϕ(x) dQ(x).

Then the Maximum Mean Discrepancy is

MMDk(P,Q) := ∥µP − µQ∥H,

whose square admits the kernel expansion

MMD2
k(P,Q) = ∥µP − µQ∥2H

=

∫∫
k(x, x′) dP (x) dP (x′) +

∫∫
k(y, y′) dQ(y) dQ(y′)

− 2

∫∫
k(x, y) dP (x) dQ(y)

=

∫∫
k(x, y) d

(
P −Q

)
(x) d

(
P −Q

)
(y).

Moreover, MMDk coincides with the integral probability metric (IPM) over the unit ball of H,
namely

MMDk(P,Q) = sup
f∈H

∥f∥H≤1

{
Ex∼P [f(x)] − Ey∼Q[f(y)]

}
= ∥µP − µQ∥H,

as shown in Gretton et al. (2012).

Remark (Euclidean densities). Working in Rd, if P and Q admit densities p(x) and q(x) with
respect to Lebesgue measure dx, then

dP (x) = p(x) dx, dQ(x) = q(x) dx, d
(
P −Q

)
(x) =

(
p(x)− q(x)

)
dx,

and each of the above integrals becomes an ordinary Lebesgue integral in x, y.

Definition 4 (Conditionally positive definite (CPD) kernel — integral form). LetX be a measurable
space and let k : X ×X → R be symmetric. We say that k is conditionally positive definite (CPD)
if ∫∫

X×X
k(x, x′) dµ(x) dµ(x′) ≥ 0 for all finite signed measures µ on X with µ(X) = 0.

If the inequality is strict for every nonzero such µ, then k is conditionally strictly positive definite
(CSPD).

Proposition 3 (Equivalence of γk and RKHS–MMD for CPD kernels). Let k : X × X → R be
conditionally positive definite (CPD) and define

ρk(x, y) := k(x, x) + k(y, y)− 2k(x, y).

Fix z0 ∈ X and set the distance–induced (one–point centered) kernel

k◦(x, y) := 1
2

[
ρk(x, z0) + ρk(y, z0)− ρk(x, y)

]
= k(x, y)− k(x, z0)− k(z0, y) + k(z0, z0).
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Then k◦ is positive definite and admits an RKHSHk◦ . For any P,Q with finite integrals,

γk(P,Q)2 :=

∫∫
k(x, y) d(P −Q)(x) d(P −Q)(y)

=

∫∫
k◦(x, y) d(P −Q)(x) d(P −Q)(y)

=
∥∥µk◦(P )− µk◦(Q)

∥∥2
Hk◦

= MMDk◦(P,Q)2.

Justification. This follows from the distance–induced kernel construction and equivalence results in
Sejdinovic et al. (2013).
Proposition 4 (MMD as a Metric on P(X)). Let k : X ×X → R be a symmetric kernel. We say
that MMDk defines a metric on P(X) iff k is conditionally strictly positive definite (CSPD), i.e.,
for every nonzero finite signed Borel measure ν with ν(X) = 0,∫∫

X×X
k(x, y) dν(x) dν(y) > 0.

Then MMDk satisfies the metric axioms on P(X):

1. Nonnegativity: MMDk(P,Q) ≥ 0.

2. Symmetry: MMDk(P,Q) = MMDk(Q,P ).

3. Identity of indiscernibles: MMDk(P,Q) = 0⇒ P = Q.

4. Triangle inequality: for any P,Q,R ∈ P(X), MMDk(P,Q) ≤ MMDk(P,R) +
MMDk(R,Q).

Justification. This is the standard correspondence between negative-type distances, distance-
induced kernels, and RKHS MMD metrics as outlined in Sejdinovic et al. (2013).

Examples of kernels inducing a metric.

• Gaussian RBF kernel: for any bandwidth σ > 0,

kRBF
σ (x, y) = exp

(
−∥x− y∥22/(2σ2)

)
,

which is characteristic on Rd and hence induces a metric on P(Rd) via MMDkRBF
σ

.
• Multiquadric kernel (Killingberg & Langseth (2023)):

kMQ
h (x, y) = −

√
1 + h2 ∥x− y∥22, h > 0,

which is conditionally strictly positive-definite and thus induces a metric on distributions
via MMDkMQ

h
.

F.1 CONTRACTION UNDER MMD

Contraction guarantees under MMD can be established in much the same way as in Appendix
D. This first requires defining the notion of the supremum-MMD, which, as with the supremum-
Wasserstein distance, is a worst-case bound over the entire state–action space:

MMD∞(η, ν) := sup
(s,a)∈S×A

MMD
(
η(s, a), ν(s, a)

)
.

As Nguyen et al. (2020) first introduced MMD-based distributional reinforcement learning, they
provided criteria under which a kernel induces a contraction in this sup-MMD metric with the stan-
dard distributional Bellman operator. We first recall the univariate distributional Bellman operator
Bellemare et al. (2017):(

T Dist
π η

)
(s, a) = Law

[
R(s, a) + γ Z(s′, π(s′))

]
, s′ ∼ P (· | s, a).
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Sufficient conditions. Let k(x, y) =
∑
i∈I ci ki(x, y) be a positive-definite kernel on R. If each

component ki satisfies:

1. Shift-invariance: ki(x+ c, y + c) = ki(x, y) for all c ∈ R,
2. Scale-sensitivity of order αi: ki(c x, c y) = |c|αi ki(x, y) for all c ∈ R,

then for any policy π,

MMD∞
(
T Dist
π η, T Dist

π ν
)
≤ γα∗/2 MMD∞(η, ν),

where α∗ = mini∈I αi.

Contraction under the multiquadric kernel. Another work, whose kernel we use, Killingberg &
Langseth (2023) proposed the multiquadric kernel discussed above. They showed a contraction in
MMD2 for that specific kernel. More precisely, this holds for any pair of distributions µ, ν ∈ P(R),
letting (fr,γ)#µ denote the pushforward of µ by z 7→ r + γz, they show

MMD2
(
(fr,γ)#µ, (fr,γ)#ν; k

MQ
h

)
≤ γ MMD2

(
µ, ν; kMQ

h

)
.

Taking square–roots on both sides gives the pointwise MMD bound

MMD
(
(fr,γ)#µ, (fr,γ)#ν; k

MQ
h

)
≤ √γ MMD

(
µ, ν; kMQ

h

)
.

Define the supremum–MMD over state–action pairs by

MMD∞(η, ν) := sup
(s,a)∈S×A

MMD
(
η(s, a), ν(s, a)

)
.

Then for any two return–distribution mappings η, ν,

MMD∞
(
T Dist
π η, T Dist

π ν
)
= sup

(s,a)

MMD
(
(fR(s,a),γ)#η(s, a), (fR(s,a),γ)#ν(s, a)

)
≤ sup

(s,a)

√
γMMD

(
η(s, a), ν(s, a)

)
=
√
γMMD∞(η, ν).

Thus the distributional Bellman operator is a
√
γ–contraction in MMD∞.

Contraction in the multivariate setting. To the best of our knowledge, the only MMD-contraction
result in a multivariate setting is from Wiltzer et al. (2024). They show that when you push each sam-
pled return vector Z ∈ Rd through the affine map z 7→ R(s, a) + γz, the same two requirements,
shift-invariance and homogeneity of the kernel, guarantee a γα/2 contraction in the supremum-
MMD metric. In other words, by treating each component of the return vector uniformly and ap-
plying the identical homogeneity-based argument from the univariate case, one obtains exactly the
same geometric shrinkage factor.

This, however, falls short of the setting we require for the distributional Sobolev Bellman operator
in Appendix C, where the pushforward is the more general (pseudo)-affine map

x 7→ Φs,a(x) = b(s, a) + L(s, a)[x ],
and L(s, a) need not be a simple diagonal scaling. Characterizing the precise conditions on both
the kernel and the (pseudo-)linear operator L(s, a) under which this general Φs,a yields a
contraction in supremum-MMD remains an open problem.

F.2 EMPIRICAL ESTIMATORS OF MMD

In practice, the expectations in Eq. 16 cannot be computed exactly and must be approximated from
samples. Given two sets of m samples {xi}mi=1 ∼ P and {yi}mi=1 ∼ Q, one commonly used
estimator is the biased form (Gretton et al., 2012):

M̂MD
2

b =
1

m2

m∑
i,j=1

k(xi, xj) +
1

m2

m∑
i,j=1

k(yi, yj)−
2

m2

m∑
i,j=1

k(xi, yj). (25)
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An alternative is the unbiased estimator proposed in (Gretton et al., 2012):

M̂MD
2

u =
1

m(m− 1)

m∑
i,j=1
i̸=j

k(xi, xj) +
1

m(m− 1)

m∑
i,j=1
i̸=j

k(yi, yj)−
2

m2

m∑
i,j=1

k(xi, yj). (26)

The biased estimator given above is commonly preferred over the unbiased one in works involving
MMD for distributional RL (Nguyen et al., 2020; Killingberg & Langseth, 2023).
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G RESULTS WITH MAX SLICED MMD

H RESULTS WITH MAX–SLICED MMD (MSMMD)

Corollary 6.2 shows that the complete Sobolev Bellman operator TSs,a
π contracts by c1(∥L∥d)

under the supremum–max–sliced MQ–MMD metric.

Theorem 7 establishes contraction for the incomplete action–gradient operator TSa
π , with co-

efficient ck(L̄) where L̄ = γ κeff .
Lemma 10 (Affine Bellman update = affine pushforward). Fix (s, a). Let C collect all environ-
ment/policy randomness, and let (S′, A′) = g(s, a;C). Let η map each (x, u) to a law η(x, u) on
Rd, and let X ′ ∼ η(S′, A′) (conditionally on C). Given an offset bs,a : supp(C) → Rd and a
measurable matrix map Ls,a : supp(C)→ Rd×d, define

Φs,a(x;C) = bs,a(C) + Ls,a(C)x.

Then
(Tπη)(s, a) = Law

(
Φs,a(X

′;C)
)
.

Proof. Fix a Borel set A ⊂ Rd. Using the definition of pushforward laws,

Pr
(
Φs,a(X

′;C) ∈ A
)
= EC

[
Pr
(
bs,a(C) + Ls,a(C)X

′ ∈ A
∣∣C)]

= EC
[ (
x 7→ bs,a(C) + Ls,a(C)x

)
#
η(S′, A′)(A)

]
.

By definition of the distributional Bellman operator with affine update z 7→ bs,a(C)+Ls,a(C)z and
next index (S′, A′), the right-hand side equals (Tπη)(s, a)(A). Since this holds for all Borel A, the
laws coincide.

Lemma 11 (Scale–Lipschitz property of (squared) MMD with MQ kernel). Let kh(x, y) =

−
√

1 + h2∥x− y∥2 with h > 0.

For probability measures µ, ν on Rd with finite second moments, define the population MMD2 by

MMD2
kh
(µ, ν) = E kh(X,X ′) + E kh(Y, Y ′)− 2E kh(X,Y ),

for X,X ′∼ µ i.i.d. and Y, Y ′∼ ν i.i.d.

For the scaling map Ss : x 7→ sx with s ≥ 0, we have

MMD2
kh

(
(Ss)#µ, (Ss)#ν

)
≤ c2(s)MMD2

kh
(µ, ν), c2(s) := max{ s, s2 }.

Consequently, the (unsquared) MMD satisfies

MMDkh
(
(Ss)#µ, (Ss)#ν

)
≤ c1(s)MMDkh(µ, ν), c1(s) := max{

√
s, s }.

In particular, for s < 1 the map Ss is a contraction for both MMD2
kh

and MMDkh .

Proof. Set
ϕ(r) =

√
1 + h2r2.

With this notation,

MMD2
kh
(µ, ν) = 2Eϕ(∥X − Y ∥)− Eϕ(∥X −X ′∥)− Eϕ(∥Y − Y ′∥).

When 0 ≤ s ≤ 1, note that ϕ(0) = 1 and ϕ is convex, as we have

ϕ′(r) = h2r√
1+h2r2

, ϕ′′(r) = h2

(1+h2r2)3/2
≥ 0.

By convexity, for any a, b ∈ R and s ∈ [0, 1],

ϕ((1− s)a+ sb) ≤ (1− s)ϕ(a) + sϕ(b).
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Taking a = 0, b = r, and recalling ϕ(0) = 1, this gives
ϕ(sr) ≤ (1− s) + s ϕ(r), 0 ≤ s ≤ 1.

Applying this inequality inside each expectation, the constants cancel in the linear combination since
(2− 1− 1)(1− s) = 0. Therefore

MMD2
kh

(
(Ss)#µ, (Ss)#ν

)
≤ sMMD2

kh
(µ, ν).

When s ≥ 1, consider f(u) =
√
1 + h2u for u ≥ 0; it is concave as

f ′(u) = h2

2
√
1+h2u

, f ′′(u) = − h4

4(1+h2u)3/2
≤ 0.

By definition, ϕ(r) = f(r2). For any u ≥ 0 and λ ≥ 1, concavity gives

f(u) = f
(
(1− 1

λ ) · 0 +
1
λ · (λu)

)
≥ (1− 1

λ ) f(0) +
1
λ f(λu),

hence
f(λu) ≤ λf(u)− (λ− 1)f(0).

Taking u = r2, λ = s2, and recalling that f(0) = 1, we obtain

ϕ(sr) =
√
1 + h2s2r2 ≤ s2ϕ(r)− (s2 − 1).

Again inserting this inequality into the definition of MMD2, the constants cancel as before, and we
obtain

MMD2
kh

(
(Ss)#µ, (Ss)#ν

)
≤ s2 MMD2

kh
(µ, ν).

Combining both cases, the multiplicative factor is s for 0 ≤ s ≤ 1 and s2 for s ≥ 1. Hence
c2(s) = max{s, s2}.

Taking square roots gives the corresponding bound for the unsquared MMD,
c1(s) = max{

√
s, s}.

Lemma 12 (Mixture p–convexity of MMDk in an RKHS). Let k : X × X → R be a symmetric
positive–semidefinite reproducing kernel with RKHS (H, ⟨·, ·⟩) and feature map ϕ(x) = k(x, ·). Let
(Ω,F , ρ) be a probability space, and let (µc)c∈Ω and (νc)c∈Ω be measurable families of probability
measures on X for which the mean embeddings µµc :=

∫
X
ϕdµc and µνc :=

∫
X
ϕdνc exist in

H. Define the mixtures µ̄ :=
∫
Ω
µc ρ(dc) and ν̄ :=

∫
Ω
νc ρ(dc). Assume all mean embeddings and

integrals below are well defined. Then for every p ≥ 1,

MMDk(µ̄, ν̄) ≤
(∫

Ω

MMDk(µc, νc)
p ρ(dc)

)1/p
.

Proof. By linearity of mean embeddings,

µµ̄ =

∫
Ω

µµc
ρ(dc), µν̄ =

∫
Ω

µνc ρ(dc),

where µµc
=
∫
X
ϕ(x) dµc(x) and µνc =

∫
X
ϕ(x) dνc(x) are elements ofH. Thus,

µµ̄ − µν̄ =

∫
Ω

v(c) ρ(dc), v(c) := µµc − µνc ∈ H.

Hence

MMDk(µ̄, ν̄) = ∥µµ̄ − µν̄∥H =
∥∥∥∫

Ω

v(c) ρ(dc)
∥∥∥
H

≤
∫
Ω

∥v(c)∥H ρ(dc) (triangle inequality inH)

≤
(∫

Ω

∥v(c)∥pH ρ(dc)
)1/p

(L1 ≤ Lp on a probability space).

Finally, ∥v(c)∥H = ∥µµc
− µνc∥H = MMDk(µc, νc), which gives the claim.
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Lemma 13 (Mixture p–convexity for CPD kernels via the distance–induced RKHS). Let k : X ×
X → R be conditionally positive definite (CPD) and let k◦ be the associated distance–induced
(one–point centered) kernel from Proposition 3, so that for all probabilities P,Qwith finite integrals,

γk(P,Q) = MMDk◦(P,Q).

Let (Ω,F , ρ) be a probability space, and let (µc)c∈Ω and (νc)c∈Ω be measurable families of prob-
ability measures on X with finite embeddings for k◦. Define the mixtures µ̄ :=

∫
Ω
µc ρ(dc) and

ν̄ :=
∫
Ω
νc ρ(dc). Then for every p ≥ 1,

γk(µ̄, ν̄) ≤
(∫

Ω

γk(µc, νc)
p ρ(dc)

)1/p
.

Proof. By Proposition 3, γk = MMDk◦ . Applying Lemma 12 to the PSD kernel k◦ and the families
(µc), (νc) yields

MMDk◦(µ̄, ν̄) ≤
(∫

Ω

MMDk◦(µc, νc)
p ρ(dc)

)1/p
.

Replacing MMDk◦ by γk via Proposition 3 gives the claim.

Lemma 14 (Max–sliced affine push-forward contraction — anisotropic linear case). Let ∆ be a
divergence on P(R). Assume that for all µ, ν ∈ P(R):

(T) Translation invariance: for every t ∈ R,

∆
(
(x 7→ x+ t)#µ, (x 7→ x+ t)#ν

)
= ∆(µ, ν).

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞) → [0,∞) such that for every
s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

Define the max–sliced lift of ∆ by

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Let F (x) = Ax + b with an arbitrary matrix A ∈ Rd×d and b ∈ Rd, and denote L := ∥A∥op =
sup∥v∥=1 ∥Av∥. Then, for all µ, ν ∈ P(Rd),

MS∆
(
F#µ, F#ν

)
≤ c(L)MS∆(µ, ν).

Proof. Fix θ ∈ Sd−1 and set wθ := A⊤θ.

Case 1: wθ = 0. Then (Pθ ◦ F )(x) = ⟨θ, b⟩ is constant, hence

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
= 0 (27)

≤ c(0)∆
(
(Pϕ)#µ, (Pϕ)#ν

)
for any unit ϕ, (28)

so the desired bound holds trivially.

Case 2: ∥wθ∥ > 0. Write rθ := ∥wθ∥ and ϕθ := wθ/rθ ∈ Sd−1. For any X ∼ µ and Y ∼ ν,

(Pθ ◦ F )(X) = ⟨θ,AX + b⟩ = ⟨θ, b⟩+ rθ ⟨ϕθ, X⟩,
and similarly for Y . By (T) and (S) we obtain

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
= ∆

(
Law(rθ⟨ϕθ, X⟩), Law(rθ⟨ϕθ, Y ⟩)

)
(29)

≤ c(rθ)∆
(
(Pϕθ

)#µ, (Pϕθ
)#ν

)
. (30)

Taking the supremum. Now take the supremum over θ ∈ Sd−1:

sup
θ

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
≤ sup

θ
c(rθ) sup

ϕ
∆
(
(Pϕ)#µ, (Pϕ)#ν

)
. (31)
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Since rθ = ∥A⊤θ∥ ≤ ∥A⊤∥op = ∥A∥op = L and c is nondecreasing,

sup
θ

∆
(
(Pθ)#F#µ, (Pθ)#F#ν

)
≤ c(L)MS∆(µ, ν). (32)

The left-hand side is exactly MS∆(F#µ, F#ν), which proves the claim.

Lemma 15 (Max–sliced mixture p-convexity). Let ∆ be a divergence on P(R) that is mixture
p-convex for some p ∈ [1,∞): for every probability space (Ω,F , ρ) and measurable families
(µc), (νc) ⊂ P(R),

∆

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

∆(µc, νc)
p ρ(dc)

)1/p

.

Define the max–sliced lift on P(Rd) by

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Then MS∆ is also mixture p-convex:

MS∆

(∫
Ω

µc ρ(dc),

∫
Ω

νc ρ(dc)

)
≤

(∫
Ω

MS∆(µc, νc)
p ρ(dc)

)1/p

.

Proof. Fix θ ∈ Sd−1 and set

µθc := (Pθ)#µc, νθc := (Pθ)#νc ∈ P(R).

Pushforward commutes with mixtures:

(Pθ)#

( ∫
µc dρ

)
=
∫
µθc dρ, (Pθ)#

( ∫
νc dρ

)
=
∫
νθc dρ.

By mixture p-convexity of ∆ in one dimension,

∆
(
(Pθ)#

∫
µc dρ, (Pθ)#

∫
νc dρ

)
≤
(∫

∆(µθc , ν
θ
c )
p dρ

)1/p
. (33)

Taking the supremum over θ on the left-hand side of equation 33 gives

sup
θ

∆
(
(Pθ)#

∫
µc dρ, (Pθ)#

∫
νc dρ

)
≤ sup

θ

(∫
∆(µθc , ν

θ
c )
p dρ

)1/p
. (34)

Define f(θ, c) := ∆(µθc , ν
θ
c ) and h(c) := supϕ f(ϕ, c) = MS∆(µc, νc). Since f(θ, c) ≤ h(c)

pointwise in c, we obtain for every θ,(∫
f(θ, c)p dρ(c)

)1/p
≤
(∫

h(c)p dρ(c)
)1/p

.

Taking supθ yields

sup
θ

(∫
∆(µθc , ν

θ
c )
p dρ

)1/p
≤
(∫

MS∆(µc, νc)
p dρ

)1/p
. (35)

Combining equation 34 and equation 35 shows

MS∆

(∫
µc dρ,

∫
νc dρ

)
≤

(∫
MS∆(µc, νc)

p ρ(dc)

)1/p

,

as claimed.
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Lemma 16 (Supremum–max–sliced contraction of the multivariate distributional Bellman operator
(anisotropic linear map)). Let ∆ be a divergence on P(R) and define the max–sliced lift on P(Rd)
by

MS∆(µ, ν) := sup
θ∈Sd−1

∆
(
(Pθ)#µ, (Pθ)#ν

)
, Pθ(x) = ⟨θ, x⟩.

Assume ∆ satisfies:

(T) Translation nonexpansion: ∆
(
(x 7→ x+ t)#µ, (x 7→ x+ t)#ν

)
≤ ∆(µ, ν) for all t ∈ R.

(S) Scale–Lipschitz: there exists a nondecreasing c : [0,∞)→ [0,∞) such that, for all s ≥ 0,

∆
(
(x 7→ sx)#µ, (x 7→ sx)#ν

)
≤ c(s)∆(µ, ν).

(Mp) Mixture p-convexity: for every probability space (Ω,F , ρ0) and measurable families
(µc), (νc) ⊂ P(R),

∆

(∫
µc ρ0(dc),

∫
νc ρ0(dc)

)
≤
(∫

∆(µc, νc)
p ρ0(dc)

)1/p
, p ∈ [1,∞).

Bellman update (anisotropic linear map). Fix (s, a). Gather all environment/policy randomness
into a single random element C, which determines the successor index through a measurable map-
ping g:

(S′, A′) := g(s, a;C).

At (s, a), apply an affine transformation with a C-dependent translation and an arbitrary C-
dependent linear map:

bs,a(C) ∈ Rd, As,a(C) ∈ Rd×d.
Conditioned on C, the next sample is drawn from the law at the successor index,

X ′ | C ∼ η(S′, A′),

and the Bellman update is the push-forward of X ′ by this affine map:

(Tπη)(s, a) := Law
(
bs,a(C) +As,a(C)X

′).
Define, for each C,

L(C) := ∥As,a(C)∥op,
and the global envelope

L̄ := sup
(s,a)

sup
C

L(C).

Also define the supremum metric

MS∆(η1, η2) := sup
(s,a)

MS∆
(
η1(s, a), η2(s, a)

)
.

Then, for all η1, η2,

MS∆
(
Tπη1, T

πη2
)
≤ c(L̄)MS∆

(
η1, η2

)
.

Proof. Fix (s, a) and condition on C. Set

Φs,a(x;C) := bs,a(C) +As,a(C)x, Zi := Φs,a(X
′
i;C),

with X ′
i | C ∼ ηi(S′, A′). By Lemma 10,

(Tπηi)(s, a) = Law
(
Φs,a(X

′
i;C)

)
= Law(Zi).

Affine push-forward at fixed C. Applying Lemma 14, which relies on (T) and (S), to the condi-
tional laws Law(X ′

i | C) gives

MS∆
(
Law(Z1 | C), Law(Z2 | C)

)
≤ c
(
L(C)

)
MS∆

(
Law(X ′

1 | C), Law(X ′
2 | C)

)
(36)

= c
(
L(C)

)
MS∆

(
η1(S

′, A′), η2(S
′, A′)

)
. (37)
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Averaging over C. Lemma 15, which relies on (Mp), together with equation 36 yields

MS∆
(
Law(Z1), Law(Z2)

)
≤

(∫
MS∆

(
Law(Z1 | C),Law(Z2 | C)

)p
ρ(dC)

)1/p

(38)

≤

(∫ (
c
(
L(C)

)
MS∆

(
η1(S

′, A′), η2(S
′, A′)

))p
ρ(dC)

)1/p

(39)

≤ c(L̄)

(∫
MS∆

(
η1(S

′, A′), η2(S
′, A′)

)p
ρ(dC)

)1/p

, (40)

since c is nondecreasing and L(C) ≤ L̄ for all C.

Supremum bound. For any realization of C, by definition of the supremum metric,

MS∆
(
η1(S

′, A′), η2(S
′, A′)

)
≤ sup

(u,v)

MS∆
(
η1(u, v), η2(u, v)

)
= MS∆(η1, η2).

Combining this with the previous inequality,

MS∆
(
(Tπη1)(s, a), (T

πη2)(s, a)
)
= MS∆

(
Law(Z1), Law(Z2)

)
(41)

≤ c(L̄)

(∫
MS∆(η1, η2)

p ρ(dC)

)1/p

(42)

= c(L̄)MS∆(η1, η2). (43)

Taking the supremum over (s, a) completes the proof:

MS∆(Tπη1, T
πη2) ≤ c(L̄)MS∆(η1, η2).

Lemma 17 (Fixed-point law of the distributional Bellman operator (general linear discount)). Define
the infinite–horizon return under policy π recursively by

Z(s, a)
d
= Φs,a

(
Z(S′, A′); C

)
,

where C collects the one–step randomness, (S′, A′) = g(s, a;C) is the successor pair, and

Φs,a(x; C) := r(s, a;C) + Γ(s, a;C)x, r(s, a;C) ∈ Rd, Γ(s, a;C) ∈ Rd×d.

Equivalently, along a trajectory (St, At) with one–step randomness (Ct)t≥0, set

rt := r(St, At;Ct), Γt := Γ(St, At;Ct), Π0:t−1 := Γ0Γ1 · · ·Γt−1 (Π0:−1 := Id),

and, whenever the series converges,

Z(s, a) =

∞∑
t=0

Π0:t−1 rt.

Set
ηπ(s, a) := Law

(
Z(s, a)

)
∈ P(Rd).

Tπ η
π = ηπ.

Proof. By definition,

Z(s, a)
d
= Φs,a

(
Z(S′, A′); C

)
, (S′, A′) = g(s, a;C).
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Conditioning on C gives
Z(S′, A′)

∣∣C ∼ ηπ(S′, A′).

By the push–forward law (Lemma 1),

Law
(
Z(s, a)

)
= Law

(
Φs,a(X

′;C)
)
, X ′ ∣∣C ∼ ηπ(S′, A′).

By definition of the distributional Bellman operator, (Tπηπ)(s, a) = Law
(
Φs,a(X

′;C)
)
, hence

(Tπη
π)(s, a) = ηπ(s, a) for all (s, a).

Theorem 6 (Supremum–max–sliced MMD contraction via the generic lemma). Let k : R → R be
a 1D kernel and let MMDk be its 1D maximum mean discrepancy. Assume:

(T) Translation nonexpansion (1D). For all t ∈ R and α, β ∈ P(R), MMDk
(
(x 7→ x +

t)#α, (x 7→ x+ t)#β
)
≤ MMDk(α, β).

Scale–Lipschitz (1D). There exists a nondecreasing ck : [0,∞)→ [0,∞) such that for all
s ≥ 0 and α, β, MMDk

(
(x 7→ sx)#α, (x 7→ sx)#β

)
≤ ck(s)MMDk(α, β).

(Mp) Mixture p–convexity. MMDk is mixture p–convex on P(R).

Define the max–sliced divergence MSMMDk(µ, ν) := supθ∈Sd−1 MMDk
(
(Pθ)#µ, (Pθ)#ν

)
and

the supremum metric MSMMDk(η1, η2) := sup(s,a) MSMMDk(η1(s, a), η2(s, a)).

Consider the anisotropic affine Bellman update (Tπη)(s, a) = Law
(
bs,a(C) + As,a(C)X

′) with
X ′ | C ∼ η(S′, A′), L(C) := ∥As,a(C)∥op, and L̄ := sup(s,a),C L(C). Then, for all η1, η2,

MSMMDk
(
Tπη1, T

πη2
)
≤ ck(L̄)MSMMDk

(
η1, η2

)
.

In particular, if ck(L̄) < 1, then Tπ is a contraction on
(
S ×A → P(Rd), MSMMDk

)
.

Proof. Assumption (T) is exactly the 1D translation nonexpansion for MMDk. gives the 1D
scale–Lipschitz control with c = ck. (Mp) supplies the mixture p–convexity.

Applying Lemma 16 with ∆ = MMDk then yields

MSMMDk(T
πη1, T

πη2) ≤ ck(L̄)MSMMDk(η1, η2).

Corollary 6.1 (Supremum–max–sliced contraction for MQ–MMD). Let kh(x, y) =

−
√
1 + h2∥x− y∥2 with h > 0 (the multiquadric kernel). Assume the Bellman update is

X ′ | C ∼ η(S′, A′) and (Tπη)(s, a) = Law
(
bs,a(C) + As,a(C)X

′), with L(C) := ∥As,a(C)∥op
and L̄ := sup(s,a) supC L(C). Then, for all return–law maps η1, η2,

MSMMDkh
(
Tπη1, T

πη2
)
≤ c1(L̄)MSMMDkh

(
η1, η2

)
,

c1(s) := max{
√
s, s}.

Proof. Since kh is radial it depends only on ∥x−y∥, hence MMDkh is translation–nonexpansive (T).
By Lemma 11, MMDkh satisfies the 1D scale–Lipschitz property with factor c1(s) = max{

√
s, s}.

Moreover, kh is conditionally positive definite (CPD) by Theorem 3.1 of Killingberg & Langseth
(2023), so mixture p–convexity (Mp) for MMDkh follows from Lemma 13. Applying Lemma 16
with ∆ = MMDkh yields the stated contraction with constant c1(L̄).

Corollary 6.2 (Supremum–max–sliced contraction of the (complete) Sobolev Bellman operator).
Let TSs,a

π be the complete Sobolev Bellman operator defined in Theorem 3, bootstrapping the vector
(Z, ∂aZ, ∂sZ). Equip P(R1+m+n) with the max–sliced MMD metric based on the MQ kernel
kh(x, y) = −

√
1 + h2∥x− y∥2. Then, for all Sobolev return–law maps η1, η2,
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MSMMDkh
(
TSs,a
π η1, T

Ss,a
π η2

)
≤ c1(∥L∥d)MSMMDkh

(
η1, η2

)
,

c1(s) = max{
√
s, s}.

Proof. The proof follows the same structure as Corollary 6.1, except that the affine map now arises
from the Sobolev Bellman operator rather than the standard distributional Bellman update. The only
difference is that the linear component of the affine map is now L(s, a; εf , επ) defined in Theorem 3.
By the argument there, its operator norm is bounded by ∥L∥d, hence the contraction factor becomes
c1(∥L∥d).

Lemma 18 (Triangle inequality for MMD (PSD) and γk (CPD)). Let X be a measurable space.
For probability measures P,Q,R on X , the following triangle inequalities hold:

MMDk(P,Q) ≤ MMDk(P,R) +MMDk(R,Q) if k is PSD,

and
γk(P,Q) ≤ γk(P,R) + γk(R,Q) if k is CPD.

Proof. When k is positive semi-definite with RKHSH, we have

MMDk(P,Q) = ∥µP − µQ∥H
≤ ∥µP − µR∥H + ∥µR − µQ∥H
= MMDk(P,R) +MMDk(R,Q),

by the triangle inequality for the norm inH.

When k is conditionally positive definite, one may fix z0 ∈ X and form the distance-induced kernel

k◦(x, y) = k(x, y)− k(x, z0)− k(z0, y) + k(z0, z0),

which is positive semi-definite. Proposition 3 ensures that γk(P,Q) = MMDk◦(P,Q), so applying
the previous argument to k◦ yields the desired inequality.

Theorem 7 (Supremum–max–sliced MMD contraction of the incomplete Sobolev Bellman opera-
tor). Let TSa

π : (S×A → P(R1+m))→ (S×A → P(R1+m)) be the action–gradient (incomplete)
Sobolev Bellman operator that updates H = (Z, ∂aZ) as in Eq. equation 17.

Assumptions on the 1D base divergence. Let the one–dimensional base divergence be ∆ = MMDk
for a CPD, shift–invariant kernel k on R. Assume:

(T) Translation nonexpansion: MMDk((x 7→ x + t)#µ, (x 7→ x + t)#ν) ≤ MMDk(µ, ν)
for all t ∈ R.

Scale–Lipschitz: There exists a nondecreasing ck : [0,∞) → [0,∞) such that
MMDk((x 7→ sx)#µ, (x 7→ sx)#ν) ≤ ck(s)MMDk(µ, ν) for all s ≥ 0.

(Mp) Mixture p–convexity (with p = 1): Lemma 13 holds, and its max–sliced lift Lemma 15
applies.

Jacobian bounds. Assume
∥fa∥2 ≤ Lf,a, ∥πs∥2 ≤ Lπ.

For the linear blocks in equation 17,

A(s, a; εf , επ) = γ

(
1 0

0 f⊤a π⊤
s

)
, N(s, a; εf ) = γ

(
0

f⊤a

)
.

Set

∥A∥op ≤ γ max{1, Lf,aLπ}, ∥N∥op ≤ γ Lf,a, L̄ := sup
s,a,εf ,επ

∥[A N ]∥op.
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Distributional lifting assumption. For each (s′, a′), there exists a measurable lifting map

Js′,a′ : P(R1+m) −→ P(R1+m+n),

sending a law µ of H ′ = (Z ′, ∂aZ
′) to a joint law Js′,a′(µ) of

(
H ′, ∂sZ

′(s′, a′)
)
, whose first

marginal is µ and whose second marginal matches the true ∂sZ ′-law under µ. Assume there is a
constant Laug ≥ 1 such that

MSMMDk
(
Js′,a′(µ), Js′,a′(ν)

)
≤ Laug MSMMDk(µ, ν), ∀µ, ν.

Conclusion. Define MSMMDk(η1, η2) = sup(s,a) MSMMDk(η1(s, a), η2(s, a)). Then, for all
return–gradient maps η1, η2,

MSMMDk
(
TSa
π η1, T

Sa
π η2

)
≤ Laug ck(L̄) MSMMDk

(
η1, η2

)
.

In particular, if Laug ck(L̄) < 1, then TSa
π is a strict contraction.

Remark (MQ kernel). For the multiquadric kernel kh(x, y) = −
√
1 + h2(x− y)2, Lemma 11 gives

ck(s) = max{
√
s, s}. Hence the sufficient condition is Laug

√
L̄ < 1 when L̄ ≤ 1, and LaugL̄ < 1

when L̄ ≥ 1.

Proof. Fix (s, a) and a noise draw C = (εr, εf , επ). Set

s′ = f(s, a; εf ), a′ = π(s′; επ).

By Lemma 10, the update is an affine pushforward:

(TSa
π ηi)(s, a) = Law

(
Φs,a(X

′
i;C)

)
, Φs,a(x) = b+Ax+N u,

with X ′
i ∼ ηi(s′, a′) and u the corresponding ∂sZ ′.

Augmented variable. Let X̃ ′
i = (H ′

i, U
′
i) ∈ R(1+m)+n with law η̃i = Js′,a′(ηi(s′, a′)). Then,

conditionally on C,
⟨θ, Φs,a(H ′

i)⟩ = ⟨θ, b⟩+
〈
[A N ]⊤θ, X̃ ′

i

〉
.

Apply affine–anisotropic lemma. By Lemma 14, with (T) and ,

MSMMDk

(
Law(Φs,a(H

′
1) | C), Law(Φs,a(H ′

2) | C)
)
≤ ck(∥[A N ]∥op) MSMMDk(η̃1, η̃2).

Lift back to (Z, ∂aZ). By the lifting assumption,

MSMMDk(η̃1, η̃2) ≤ Laug MSMMDk(η1(s
′, a′), η2(s

′, a′)).

Average over noise. Using mixture convexity for max–slice,

MSMMDk
(
(TSa
π η1)(s, a), (T

Sa
π η2)(s, a)

)
≤ Laug ck(sup

C
∥[A N ]∥op) MSMMDk(η1, η2).

Taking the supremum over (s, a) yields the claim.

I BACKGROUND ON THE WORLD-MODEL

I.1 CONDITIONAL VARIATIONAL AUTO-ENCODERS

A principled invertible generative model can be obtained from a Variational Auto-Encoder (VAE)
(Kingma, 2013). More interestingly for us are conditional VAE Sohn et al. (2015) which we briefly
introduce.

A Conditional Variational Autoencoder (cVAE) is a generative model that learns to generate new
samples from a distribution conditioned on given input information. In our case, the cVAE models
the distribution of next states and rewards conditioned on current states and actions.

Formally, the cVAE consists of two components:
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• Encoder: The encoder qζ(ε | s′, r; s, a) maps the observed next state s′ and reward r,
conditioned on the current state-action pair (s, a), to a latent variable ε, typically modeled
as a Gaussian distribution with diagonal covariance matrix:

qζ(ε | s′, r; s, a) = N (ε;µζ(s
′, r, s, a), σ2

ζ (s
′, r, s, a)⊙ I). (44)

• Decoder: The decoder pψ(s′, r | ε; s, a) reconstructs the next state s′ and reward r from
the latent variable ε, conditioned on the current state-action pair (s, a).

• Prior: The prior pυ(s′, r | ε; s, a) allows more flexibility in the latent space than a simple
standard Gaussian N (0; I) It is also parametrized as a multivariate diagonal Gaussian:

qυ(ε | s, a) = N (ε;µυ(s, a), σ
2
υ(s, a)⊙ I). (45)

The objective of a cVAE is to maximize the Evidence Lower Bound (ELBO), which balances accu-
rate reconstruction of the input with a regularization term that ensures the learned posterior distribu-
tion remains close to the prior distribution. The objective is as follows

LcVAE(ζ, ψ) = Eqζ(ε|s′,r;s,a) [log pψ(s
′, r | ε; s, a)]

−λKL ×DKL (qζ(ε | s′, r; s, a) ∥ pυ(ε | s, a)) .
(46)

The first term encourages faithful reconstruction of the next state and reward, while the second term
regularizes the posterior distribution to remain close to a standard Gaussian prior. Assuming the
decoder pψ(s′, r | ε; s, a) is Gaussian with a fixed variance, the reconstruction term reduces to an
L2 loss, which can be estimated using the difference between the reconstructed samples and the true
samples.

Assuming the encoder parametrizes a Gaussian with diagonal covariance and that the prior is also
Gaussian with identity covariance and zero mean, the KL divergence can be estimated from encoded
input samples as

DKL(ζ) = E(s,a)

1
2

d∑
j=1

(
1 + log(σ2

ζ,j(s, a))− µ2
ζ,j(s, a)− σ2

ζ,j(s, a)
) . (47)

J ALGORITHM DESIGN, PSEUDO-CODE AND BASELINE

In this section we describe the motivation for some design choices of our method. Section J.1 sets
the design for the toy reinforcement learning experiment of Section 6.1 and the Mujoco experiments
from Section 6.2. We follow by providing the pseudo-code in Section J.2. Finally in Section J.3 we
discuss our implementation of our primary baseline MAGE D’Oro & Jaskowski (2020).

J.1 DESIGN CHOICES

Firstly, most experiments are conducted in the data-efficient setting, where the number of updates per
interaction with the environment (UTD ratio) is larger than one, making stability and overestimation
bias critical concerns. MAGE adds gradient regularization on top of TD3 (Fujimoto et al., 2018),
which itself incorporates several modifications to DDPG (Lillicrap et al., 2016). Below, we describe
each modification and whether it was retained in our implementation.

Target policy smoothing: this technique applies random noise to the policy’s action when esti-
mating the TD learning target. It is the only TD3 (and MAGE) modification we retained, as other
changes cluttered the implementation and introduced noise that could interact poorly with distribu-
tional modeling. It is worth noting that omitting target policy smoothing in similar settings is not
uncommon (Singh et al., 2022; Kuznetsov et al., 2020).

Delayed policy update: the policy is updated once for every two critic updates, which helps stabilize
learning by preventing premature policy shifts.

Double estimation: an ensemble of two critics, Q1, Q2 or Z1, Z2, is used, with the bootstrapped
target taken as the minimum of the two estimates at the next state (including policy smoothing noise).
This modification introduces an underestimation bias to counteract the well-known overestimation
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issue in value-based methods (Van Hasselt et al., 2016). We observed double estimation to be critical
for stable performance in the data-efficient setting: without it, average Q-values quickly diverged.
Overestimation bias can also be addressed in the distributional setting, as demonstrated by TQC
(Kuznetsov et al., 2020). A straightforward approach to induce underestimation is to truncate the
top p% of values in the critic’s target distribution; in our setup, truncating as few as 25% of values
proved highly effective. Following both TQC (Chen et al., 2021), we employ an ensemble of two
distributional critics whose samples are concatenated.
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J.2 PSEUDO-CODES

In this subsection, we present the pseudo-code for the MSMMD estimation procedure, the MMD
estimation procedure, and the full algorithm for policy evaluation and improvement.

• Algorithm 1 (Estimation of MSMMD): approximates the supremum over projection di-
rections by gradient ascent on the unit sphere, yielding an empirical max–sliced MMD
between two sets of samples.

• Algorithm 2 (MMD Estimation of Sobolev samples): leverages the world model to generate
differentiable Sobolev-return samples, and applies truncation to mitigate overestimation
bias as in Kuznetsov et al. (2020).

• Algorithm 3 (Full DSDPG algorithm): integrates our Sobolev-MMD components into the
DDPG framework Lillicrap et al. (2016).

Algorithm 1 Estimation of MSMMD from empirical samples
Input: Empirical samples X = {xi}Ni=1 ⊂ Rd, Y = {yi}Ni=1 ⊂ Rd
Input: Kernel k defining the MMD; gradient steps T ; step size η

Initialize a unit direction: w ∼ N (0, Id); θ ← w/∥w∥ // random unit direction

Project–optimize over directions: for t = 1, . . . , T do
ui ← ⟨θ, xi⟩, vi ← ⟨θ, yi⟩ for i = 1, . . . , N // project to 1D along θ

J(θ)← MMDk
(
{ui}Ni=1, {vi}Ni=1

)
// maximize MMD over θ

g ← ∇θJ(θ) // gradient w.r.t. direction
w ← w + η g // ascent step in unconstrained space
θ ← w/∥w∥ // re-normalize onto the unit sphere

θ̄ ← stop grad(θ) // stop gradient on the final direction

Output: ̂MSMMD(X,Y ) ← MMDk
(
{⟨θ̄, xi⟩}Ni=1, {⟨θ̄, yi⟩}Ni=1

)
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Algorithm 2 Estimation of MMD2 loss via imagination of transition samples with Sobolev samples

1: Require: Number of samples M , kernel k, discount factor γ ∈ (0, 1)
2: Require: Truncation percentage p ∈ [0, 100]
3: Require: Distributional critic Zϕ(s, a, ε)
4: Require: Policy network πθ(s)
5: Require: Conditional VAE (cVAE) with prior pυ(ε) and decoder pψ(s′, r | s, a, ε)
6: Input: Transition sample (s, a)
7: Input: Online critic parameter ϕ, target critic parameters ϕ′1 and ϕ′2
8: Input: Target policy parameter θ′
9: Input: Boolean flag use action gradient

10: Output: Gradient estimation of MMD with respect to ϕ
11: Draw ε ∼ pυ(ε) {Sample latent variable from the prior}
12: (ŝ′, r̂) ∼ pψ(s′, r | s, a, ε) {Generate transition using the decoder}
13: a′ ← πθ′(ŝ

′) {Action from target policy on ŝ′}
14: Sample Z1:M

i.i.d.∼ Zϕ(s, a) {Samples from online critic}
15: Sample Z(1)

next,1:M
i.i.d.∼ Zϕ′

1
(ŝ′, a′),

16: Sample Z(2)
next,1:M

i.i.d.∼ Zϕ′
2
(ŝ′, a′) {Samples from each target critic}

17: Znext,1:2M ← concat
(
Z

(1)
next, Z

(2)
next
)

{Concatenate target-critic samples}
18: if use action gradient then
19: for each 1 ≤ i ≤ 2M do
20: Yi ← fSr̂,ŝ′,γ

(
Znext,i

)
{Bellman target Sobolev samples}

21: ∇aYi ← ∇afSr̂,ŝ′,γ
(
Znext,i

)
{Action gradient of Bellman target}

22: Yi ← concat(Yi,∇aYi)
23: end for
24: for each 1 ≤ i ≤M do
25: ∇aZi ← ∇aZϕ(s, a) {Action gradient of online critic}
26: Zi ← concat(Zi,∇aZi)
27: end for
28: else
29: for each 1 ≤ i ≤ 2M do
30: Yi ← fSr̂,ŝ′,γ

(
Znext,i

)
31: end for
32: end if
33: Prune top p% of {Yi}2Mi=1 by return magnitude {Low-bias target set}
34: Compute MMD2:
35: MMD2←

∑
i̸=j
[
k(Zi, Zj)− 2k(Zi, Yj) + k(Yi, Yj)

]
36: Return: MMD2
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Algorithm 3 Distributional Sobolev Deterministic Policy Gradient (DSDPG)

1: Require: Number of samples M , number of policy samples Mpolicy, kernel k, discount factor
γ ∈ (0, 1), learning rates αθ, αϕ

2: Require: Two distributional critics Zϕ1(s, a) and Zϕ2(s, a) with targets Zϕ′
1
(s, a), Zϕ′

2
(s, a)

3: Require: Actor network πθ(s) with target πθ′(s)
4: Require: Replay buffer D
5: Require: Boolean flag use action gradient
6: Require: Parameters of cVAE: Encoder (ζ), Decoder (ψ), Prior (υ)
7: Input: Initial parameters θ, ϕ1, ϕ2 and target parameters θ′ ← θ, ϕ′1 ← ϕ1, ϕ

′
2 ← ϕ2

8: Input: Policy update frequency d
9: for each episode do

10: Initialize a random process N for action exploration
11: Observe initial state s0
12: for each step in the episode do
13: at ← πθ(st) +Nt {Select action with exploration noise}
14: Execute at, observe (st+1, rt)
15: Store (st, at, rt, st+1) in replay buffer D
16: ζ, ψ, υ ← train world model(st, at, st+1, rt) {Train cVAE world model and update

parameters}
17: end for
18: for each gradient step do
19: Sample mini-batch {(si, ai)}Ni=1 ∼ D {Replay buffer sampling}
20: Compute Distributional Loss via MMD (cf. Alg. 2):
21: NB. Samples are concatenated and top p% are removed as in TQC (Kuznetsov et al., 2020)

22: LZ1 ← MMD Sobolev(Zϕ1 , (Zϕ′
1
, Zϕ′

2
), si, ai, πθ′ , γ,use action gradient)

23: LZ2
← MMD Sobolev(Zϕ2

, (Zϕ′
1
, Zϕ′

2
), si, ai, πθ′ , γ,use action gradient)

24: Update critics:
25: ϕ1 ← ϕ1 − αϕ∇ϕ1LZ1

26: ϕ2 ← ϕ2 − αϕ∇ϕ2LZ2

27: if gradient step mod d = 0 then
28: Sample Mpolicy values from critic for each state in the batch:

29: Z
(i)
policy,1:Mpolicy

i.i.d.∼ Zϕ1(si, πθ(si)) for each i ∈ {1, . . . , N}
30: Compute actor loss using double summation:
31: Lπ = − 1

N

∑N
i=1

1
Mpolicy

∑Mpolicy
j=1 Z

(i)
policy,j

32: Update actor: θ ← θ − αθ∇θLπ
33: Update target networks:
34: ϕ′1 ← τϕ1 + (1− τ)ϕ′1
35: ϕ′2 ← τϕ2 + (1− τ)ϕ′2
36: θ′ ← τθ + (1− τ)θ′
37: end if
38: end for
39: end for

J.3 BASELINE - MAGE

The primary baseline of this work is MAGE D’Oro & Jaskowski (2020), as they were the first to
propose to use the action gradient to steer policy evaluation. The primary difference with our work
is they did so deterministically. Hence our MMD setup collapses to a simple regression setting.
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As a primary baseline, we consider the deterministic counterpart of the Sobolev-distributional
backup. Define

fdet(s, a) =

[
f retdet(s, a)

factdet(s, a)

]
,

f retdet(s, a) = r(s, a) + γ Qϕ(s
′, π(s′)),

factdet(s, a) = ∇ar(s, a) + γ∇aQϕ(s′, π(s′)).
LSa(ϕ; s, a) =

∣∣f retdet(s, a)−Qϕ(s, a)
∣∣2 + λS

∥∥factdet(s, a)−∇aQϕ(s, a)
∥∥2.

In practice, s′ and r are sampled from the stochastic world model (cVAE) as in DSDPG. Further-
more, the above L2 terms are replaced by Huber losses, with the gradient-term weight set to 5 just
as in D’Oro & Jaskowski (2020).

K TOY SUPERVISED LEARNING

To motivate our algorithm, we demonstrate its ability to learn the joint distribution over both the
output and gradient of a random function in a supervised setup. We compare deterministic Sobolev
training Czarnecki et al. (2017) against our Distributional Sobolev training and show that only the
latter can capture the full variability of both outputs and gradients.

(a) (b) (c)

Figure 4: (a) Samples of the marginals of the full Sobolev distribution [f(x; a);∇xf(x; a)]: output
(left) and gradient (right). Blue: samples from the true distribution; red: samples from the Distri-
butional Sobolev model trained via MMD; green: samples from the deterministic Sobolev baseline
Czarnecki et al. (2017). (b) Biased MMD score (lower is better) on the joint variable. (c) L2 error
between predicted sample mean and true mean. NB. Predicted (red and green) and true (blue)
samples are highly overlapping.

The task involves learning a one-dimensional conditional distribution p(y|x), defined as a mixture of
sinusoids f(x; a) = a× sin(x), where the latent variable a is uniformly drawn from {0, 1, 2, 3, 4}.
The distributions over outputs f(x; a) and their gradient ∇xf(x; a) are depicted in Figure 4a. It
compares an MMD-based model and a regression-based model, trained using stochastic gradient
descent with identical architectures. In an unlimited data regime, new pairs of x and a were drawn
for each batch, and for each x, four a values were sampled with replacement, yielding samples
(x, y1:4).

As expected, the MMD-based model captures the full joint distribution [f(x; a); ∇xf(x; a)],
whereas the regression baseline collapses to the conditional mean Ea[f(x; a);∇xf(x; a)]. Fig-
ure 4b plots the MMD score (lower is better) on this joint variable using an evaluation kernel, and
Figure 4c shows the L2 error between the regression model and the sample mean of the Sobolev
generator. As a result, the MMD model better matches the entire distribution, the regression model
slightly outperforms on the mean, and both methods effectively exploit the gradient signal (blue
curves).

The distributional variant via MMD and the regression one via L2 used the same architecture except
for some noise of dimension 10 drawn from N (0; I) concatenated to the input for the distributional
generator. For each pair (x, y1:4), four samples were drawn from the generator. Both were trained
using Rectified Adam Liu et al. (2019) optimizer with a learning rate of 1 × 10−3 and (β0, β1) =
(0.5, 0.9). Neural network is a simple MLP with 2 hidden layers of 256 neurons and Swish non-
linearities (Ramachandran et al., 2017).
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Maximum Mean Discrepancy (MMD) was estimated using a mixture of RBF kernels with band-
widths σi from the set {σ1, σ2, . . . , σ7} = {0.01, 0.05, 0.1, 0.5, 1, 10, 100}. We used the biased
estimator from Eq. 25.

The equation for a mixture of RBF kernels is given by:

kmix(x, y) =

7∑
i=1

exp

(
−∥x− y∥

2

2σ2
i

)
. (48)

The evaluation kernel we used was the Rational Quadratic kRQ
α with α = 1 with

kRQ
α (x, y) =

(
1 +
∥x− y∥2

2α

)−α

(49)

Regarding the dataset, the (x, y1:4) pairs were drawn with x ∼ U [0; 5] and a was draw from
{0, 1, 2, 3, 4} with replacement. In the limited data regime, the pairs (x, y1:4) were drawn once
and stayed fix. The batch size was thus equal to the number of points in the dataset. In the unlimited
data regime 256 new pairs were drawn for each batch. Every experiment was ran for 25 000 batch
sampled and thus the same number of SGD steps.

Limited data regime In both supervised and reinforcement learning tasks, the assumption of un-
limited data is unrealistic. Here, we explore how the performance of the two methods, MMD-based
and the regression-based model, diverges when the amount of available data is restricted. We use the
same setup as before, but with a fixed number of (x, y1:4) pairs. Several aspects of the learnt models
can be inspected. In order to assess stability, we report the average norm of the second-order deriva-
tive over the input space. For accuracy, we measure the average L2 losses between the true expected
gradient and the predicted gradient. Results are shown in Figure 5. As can be seen, the deter-
ministic model tends to overfit rapidly, while the distributional variant (MMD) proves more robust,
maintaining better performance even with constrained data. Notably, the second-order derivative for
the deterministic model escalates sharply as data becomes constrained, indicating instability in its
approximation. In Appendix K.1, we discuss different common tricks to mitigate overfitting and
related issues in RL.

(a) (b)

Figure 5: Toy supervised learning problem. Comparison between MMD-based or L2 based model-
ing. Left panel: training curve of L2 loss (logscale) on gradient between true conditional expectation
with regression prediction and with empirical mean from MMD-based model. Sobolev (blue) used
gradient information to train either using MMD (full line) or L2 regression (dashed line). Right
panel: average over the input space of the second order derivative (logscale) of predicted gradient
from deterministic model (blue), MMD / stochastic (yellow) and with gradient information / Sobolev
(dashed). Metrics averaged over 5 seeds.

K.1 COMMON TRICKS

Overfitting with limited data is a common issue in regression tasks. Early stopping seems an obvious
solution in this case but we emphasize that it requires an evaluation criterion that is not always
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available (i.e in policy evaluation). Other solutions include weight regularization Krogh & Hertz
(1991), dropout Srivastava et al. (2014), Bayesian neural networks Blundell et al. (2015), ensembling
Chua et al. (2018), and spectral normalization Zheng et al. (2023), all of which often reduce network
capacity. To address similar issues, Fujimoto et al. (2018) proposed adding noise to the target to
match, effectively smoothing the critic. As argued by Ball & Roberts (2021), this method can be
seen as indirectly acting like spectral normalization, encouraging smoother gradients and effectively
reducing the magnitude of the second derivative. Appendix K.2 shows how noise scale impacts
overfitting by inducing bias. On the other hand, we propose avoiding such assumptions by using
generative modeling to add latent freedom.

K.2 ADDING NOISE

Inspired by Fujimoto et al. (2018), we added some independent noise on x for each (x, y1:4). Noise
scale σ was in {0.01, 0.1, 0.5}. For each new batch sampled it was sampled from a standard Gaus-
sian η ∼ N (0;σ2) and added as x̃ = x+ η

In Figure 6-7, we can see the impact of the various noise scales on the predictions of the determin-
istic regression. As can be seen, adding noise on x as a positive effect in terms of stabilizing the
gradient but it induces an bias that grows with the scale of the noise. Moreover, this noise depend
on the application and makes strong assumption about the function to learn. The stabilizing effect
of additive noise can further be seen in Figure 8-9 where both the L2 loss and average second order
derivative are displayed as function on the number of sampled locations.

Figure 6: Toy supervised learning problem. Comparison of samples from the true five-mode dis-
tribution with predictions made by a deterministic model trained with L2 loss (green). The output
space is shown on the left, and the gradient space on the right. Results obtained after 25,000 training
steps.

Figure 7: Toy supervised learning problem. Comparison between true samples from the distribution
of five modes and deterministic models trained with varying levels of additive noise on their input
data. Low level of noise (green), medium level of noise (orange), high level of noise (red). Results
obtained after 25,000 training steps.
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Figure 8: Toy supervised learning problem. Comparison of the L2 loss between the predicted gra-
dient and the conditional expectation of the true distribution. Different scales of additive noise on
the input are compared: low noise (light blue), medium noise (medium blue), and high noise (dark
blue), alongside Sobolev training (dashed). Results are shown after 25,000 training steps.

Figure 9: Toy supervised learning problem. Comparison of the average second order derivative
norm over the input space. Different scales of additive noise on the input are compared: low noise
(light blue), medium noise (medium blue), and high noise (dark blue), alongside Sobolev training
(dashed).
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L TOY REINFORCEMENT LEARNING

L.1 ENVIRONMENT

In this appendix we provide full details of our custom toy environment, summarized in Table 1.

Environment Dynamics. A point mass moves in a two-dimensional continuous state space, and
the agent controls its acceleration in [−1, 1] per axis (Acceleration range). At each step the mass’s
velocity is updated via Euler integration with friction (Friction coefficient) and then its position
is advanced by the new velocity (Integration time step). The mass has unit mass (Mass of agent)
and radius 0.5 (Agent radius), and if its center leaves the square of half-width 3 (Bounding box
half-width) the episode ends with no reward (Reward for leaving bounding box).

Partial Observability via Memory. At the start of each episode the mass is placed uniformly in
a square of half-width 1 (Initialization area half-width). We then sample one of M ∈ {3, 4, 5, 6}
hidden bonus locations arranged radially around the center. Reaching the correct location of radius
0.5 (Bonus radius) yields a terminal reward (Reward for reaching bonus). The agent does not know
which location is active, but each visit to a location sets a binary memory flag, making the MDP
partially observable and forcing exploration.

Controlling Distributional Modes via M . By sweeping M ∈ {3, 4, 5, 6} we directly tune the
number of modes in the return distribution across episodes, from concentrated when M is small to
highly multimodal when M is large.

Parameter Value
Maximum episode length 25 steps
Reward for reaching bonus 10
Reward for leaving bounding box 0
Acceleration range [−1, 1] per axis
Mass of agent 1
Agent radius 0.5
Bonus radius 0.5
Bounding box half-width 3
Initialization area half-width 1
Friction coefficient 0.1
Integration time step 0.5

Table 1: Summary of the toy environment’s key parameters.

L.2 EXPERIMENTAL DETAILS

The settings were similar to Section M appart from the TQC Kuznetsov et al. (2020) truncation
parameter p which was set to 5%.

M REINFORCEMENT LEARNING EXPERIMENTS

Here we describe the architectures, optimizers and other hyperparameters of the full Distributional
Sobolev Deterministic Policy Gradient algorithm.

Policy network Policy network is a MLP with 2 hidden layers of 400 neurons. The non-linearity
was Swish (Ramachandran et al., 2017). Final activations are mapped to the output space using a
linear transformation followed by a tanh non-linearity. The policy network was optimized using the
Rectified Adam Liu et al. (2019) with a learning rate of 1× 10−4.

Crtic network Critic network architecture is almost the same as for the policy network. Im-
portantly, it is kept constant for experiments using normal DDPG and DSDPG apart from noise
concatenated on the input [s; a]. The network is a MLP with 400 neurons, skip connections from the
input and Swish activations. No non-linearity was applied on the output after the last linear layer.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameters for the DDPG and DSDPG experiments on Mujoco environments

Item Value
Discount γ 0.99
Polyak averaging τ 0.005
Buffer size 106

Batch size 256
Exploration noise scale 0.1
Critic learning rate 1× 10−4

Policy learning rate 1× 10−4

cVAE learning rate 3× 10−4

cVAE KL weight 0.1
cVAE latent dim |S|+ 1
Critic input noise dim 64
Number of samples dist. 10
%p truncation (TQC) 25%
maximum slicing optimization steps 100
maximum slicing LR 1e-4
maximum slicing optimizer Adam (Kingma, 2014)

The critic network is optimized using Rectified Adam Liu et al. (2019) with (β1, β2) = (0.9, 0.999)
and a learning rate of 1× 10−4.

Conditional VAE world model The encoder, decoder and prior networks are MLPs with 3 hidden
layers, each containing 1024 neurons. Skip connections are applied from the input to each hidden
layer. The cVAE was optimized using Adam, as we observed using RAdam to systematically di-
verge, (β1, β2) = (0.9, 0.999) and a learning rate of 3× 10−4.

The prior is a learnt diagonal multivariate GaussianN (ε;µυ(s, a), σ
2
υ(s, a)⊙I) with a latent dimen-

sion equal to the size of the random variable being modeled, which is |S|+ 1 for (s′, r). Following
D’Oro & Jaskowski (2020); Zhu et al. (2024), the cVAE predicts the difference between the current
and next observation, δs = s′ − s which is then added back to s, along with the reward r.

Conditional Generative Moment Matching For the distributional critic, noise vectors were con-
catenated with the state-action pairs (s, a) and passed through the same architecture as the deter-
ministic critic. The noise dimension was set to 64. Noise was transformed by an independant 2
layers small MLP of width 64 with Swish activation before being passed to the critic. For each
state-action pair, 10 samples were drawn to update both the critic and the policy. The multiquadratic
kernel kMQ

h (x, y) = −
√
1 + h2∥x− y∥22 Killingberg & Langseth (2023) was used, with the kernel

parameter h set to 100.

M.1 FULL CURVES AND WALL-CLOCK TIME

The full evaluation curves on the 6 environments are reported in Figure 10. The wall-clock time of
the different methods is displayed in Table 3.

N ADDITIONAL EXPERIMENTS - RL

In this section we provide futher experiments along three axis : kernel bandwidth (Section N.1),
noise scale (Section N.2), number of samples in the distributional methods (Section N.3) and capac-
ity of the world model (Section N.4).

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Figure 10: Evaluation of DSDPG (MMD Sobolev), deterministic Sobolev/MAGE D’Oro &
Jaskowski (2020), TD3-Huber Fujimoto et al. (2018), IQN Dabney et al. (2018a), and standard
MMD Nguyen et al. (2020); Killingberg & Langseth (2023) on six MuJoCo tasks. Results are re-
ported over 10 random seeds. The median is displayed with 25%-75% IQR. Window smoothing
with window size 3.
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Method Time for 1000 iterations (s)
MSMMD Sobolev 62.5
MSMMD 45.5
MMD Sobolev 40.0
MMD 35.7
IQN 35.7
Huber Sobolev 31.3
Huber 30.3

Table 3: Wall-clock time to perform 1000 iterations of each method under Humanoid-v2. Experi-
ments were run on a single Nvidia H100 GPU.

N.1 MULTIQUADRIC KERNEL BANDWIDTH

We recall the multiquadric kernel

kMQ
h (x, y) = −

√
1 + h2∥x− y∥22.

As shown in Killingberg & Langseth (2023), selecting a proper value for h is critical as it affects
both the expressiveness of the kernel and the numerical stability of its MMD estimator: a too–small
h yields a nearly constant kernel, reducing its discrimination power, while a too–large h increases
the gradient magnitude, scaling on the order of h, which can lead to exploding gradients and training
oscillations unless mitigated by techniques such as kernel rescaling or gradient clipping.

In Section 6.2, the default value for h was 100 which worked reliably. Here we test the values
h = 10 and h = 250. The results are depicted in Figure 12 and 11 where we display the final
evaluation performance and the evaluation curves. The comparison is made on the environments
with and without multiplicative noise (as in Section 6.2). As can be seen, overall, the performance
of MMD and DSDPG (MMD Sobolev) seems to be quite insensitive to the kernel bandwidth. Our
choice of h = 100 seems to be robust.

Figure 11: Full curves of DSDPG against baselines on 5 Mujoco environments.

N.2 NOISE SCALE

As the noise scale we exposed in the Section 6.2, which we called medium, already allowed to
observe a gap between DSDPG and the baseline, we tried to increase the noise scale. We moved
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Figure 12: Comparison of bandwidths under the multiquadric kernel for MMD distributional RL
and Sobolev MMD distributional RL. Bar plots of the final averaged evaluation reward. Mean over
5 seeds.
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from n ∼ U [0.8, 1.2] to n ∼ U [0.7, 1.3]. This changes already made the tasks harder. The results are
displayed in Figure 13. As can be seen the good performance of DSDPG (MMD Sobolev) depicted
in Section 6.2 can be extended to the larger noise scale, as our method maintains a consistent gap
against the baselines (especially MAGE).

Figure 13: Comparison of multiplicative noise scales. Averaged evaluation sum of rewards over 5
seeds.

N.3 NUMBER OF SAMPLES

Sensitivity to the number of samples is an important design question as the cost of generating sam-
ples will scale linearly and the cost of estimating MMD will scale quadratically. It is also intersting
to verify how sensitive our method is to that parameter. The results displayed in Section 6.2 used
10 samples to model the Sobolev distributions. Here we additionally test with 5 and 25 samples.
In Figure 15 and 14 we display the final evaluation returns and evaluation curves while varying the
number of samples. As can be seen, there is no clear trend to be found. The Ant-v2 environment
seems to be particularly sensitive to this parameter. Apart from this example we observe our method
is robust to the number of samples as at least two different values maintained performance.

N.4 WORLD MODEL CAPACITY

The world model size is, along the number of samples, one of the primary parameter driving the
overall cost of our method. As for MAGE D’Oro & Jaskowski (2020), we backpropagate through
the world model to infer the gradients of the target. Here we change the width of each neural network
in the cVAE world model from 1024 to 256. We observe in Figure 16, on the single Walker2d-v2
environment we tested, that more than insensitive to model size, it seems the choice of 1024 was sub-
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Figure 14: Comparison of number of samples used in the MMD methods (usual MMD an DSDPG
denoted as MMD Sobolev). Evaluation curves are mean over 5 seeds.

Figure 15: Comparison of number of samples used in the MMD methods (usual MMD an DSDPG
denoted as MMD Sobolev). Final evaluation performance as mean over 5 seeds.
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optimal for this environment. This suggests our method is robust to this design choice. This should
be evaluated on more demanding (higher dimensional) environments (Ant-v2, Humanoid-v2).

Figure 16: Comparison of world model size for MMD distributional RL and Sobolev MMD distri-
butional RL. Bar plots of the final averaged evaluation reward. Mean over 5 seeds.

O LLM USAGE

We used an LLM-based assistant to support the preparation of this paper. In particular, it was
employed to (i) rephrase draft paragraphs for clarity and suggest alternative framings of related
work, (ii) format proofs, explore directions, and verify intermediate steps, (iii) assist in debugging
code, (iv) suggest LaTeX equation formatting, and (v) help identify relevant theoretical results in
preceding works. All core research contributions, including the development of theoretical results,
algorithms, and experiments, were carried out by the authors.
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