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a b s t r a c t

Rubensson suggested in his Comment that the 9th-order function is an optimal purification degree if one
uses a Paterson–Stockmeyer method to evaluate the Holas polynomials, unlike our earlier conclusion that
the 5th-order is optimal. Here we show that the Paterson–Stockmeyer factorization to evaluate the
9th-order Holas polynomial is numerically significantly less stable than the 5th-order symmetric form
due to the large expansion coefficients involved. When numerical truncation is introduced as is necessary
for linear scaling SCF calculations, we show that this numerical error indeed leads to a higher computa-
tional cost for the 9th-order purification as compared to the 5th-order function, leaving our previous con-
clusion unchanged.

� 2012 Elsevier B.V. All rights reserved.
Recently, we derived analytically that an optimal scheme for
density matrix purification is to use the 5th-order Holas polyno-
mial throughout all iterations [1]. In a Comment by Rubensson
[2], he concludes instead that the 9th-order function is optimal if
one uses a Paterson–Stockmeyer (PS) polynomial evaluation method
for Holas functions. In this Reply, we show that the 9th-order Holas
polynomial evaluated using the PS method causes a significant
numerical instability due to the large expansion coefficients in-
volved in the PS scheme, when dealing with truncated sparse
matrices for linear scaling self-consistent field (SCF) calculations.
This numerical error leads to a higher computational cost for the
9th-order function compared to the 5th-order function for real
applications. We then demonstrate several ways to reduce numer-
ical errors associated with evaluating the 9th-order Holas polyno-
mial by reducing the magnitudes of the expansion coefficients, but
show that the 5th-order polynomial is still a more efficient scheme.

We begin by proving that our Theorem 2 in Ref. [1] still holds
when the PS factorization is used to evaluate the purification poly-
nomials gn(Po). That is, if the purification function is required to
purify P at each iteration, the optimal purification scheme is when
the polynomials at all iterations are of the same degree. The num-
ber of matmuls needed to evaluate gn(Po) using the PS scheme [3]
is asymptotically 2
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for large n, roughly n P 10. The cost func-
tion would then be approximately proportional to
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Again we use the inequality of arithmetic and geometric means,
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where k � Gm
i¼1ni is a measure of target accuracy, the exponent of er-

ror after m iterations. As before, the equality in Eq. (2) holds true
when all ni are the same, proving that Theorem 2 is still valid even
if the PS method is used. In addition, it is not difficult to prove ana-
lytically that the optimal purification scheme is then to use the low-
est order polynomial throughout all iterations with roughly n P 10.
For smaller n before this asymptotic behavior 2
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is reached,
however, one needs to test the optimal purification order only
numerically.

Rubenssen in his Comment demonstrated by numerical experi-
ments for a toy problem that n = 5 (the 9th-order Holas function)
leads to a faster convergence to a desired step function than
n = 3 (the 5th-order Holas function) if the PS method of polynomial
evaluation [3] is used in a particular sequence as shown in Eq. (3)

gPS
5 ðxÞ ¼ ð126x2 þ ð�420þ 540x� 315x2 þ 70x3Þx3Þx3 ð3Þ

When using purification algorithm for linear scaling SCF calcu-
lations, the essence is the sparsity of Hamiltonian and density
matrices whose multiplications after numerical truncation can be
performed much faster than the exact matrix multiplications with-
out truncation. Here, we focus on how these matrix truncation er-
rors accumulate during the evaluation of purification functions
depending on the degree of polynomial and its form, and how they
affect the total computational cost. Thus, we explored the numeri
cal stability of the PS method to evaluate the Holas 9th-order poly-
nomial. To show it in a toy problem, we perturbed every operation
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Fig. 1. Accumulation of numerical errors associated with (a) the evaluation of 9th-order Holas purification function using the Paterson–Stockmeyer method, Eq. (3), and (b)
the evaluation of 5th-order function using the symmetry property. To introduce numerical noise, every operation was perturbed by 10�3. The upper and lower bounds are
calculated as twice the standard deviation of errors for each point.
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of addition and multiplication by adding a uniform random num-
ber in the interval [�10�3, 10�3], during the evaluation of gPS

5 ðxÞ,
Eq. (3).

As shown in Fig. 1, the evaluation of gPS
5 ðxÞ using the PS method

is unstable, and errors get amplified at around one. One can expand
gPS

5 ðxÞ with the power of (x � a)n for some a to reduce errors, but
only to a limited extent. As in Fig. 1b, the 5th-order Holas function,
however, does not show such instability. Introducing (more realis-
tic) smaller perturbations in the interval [�10�9, 10�9] also shows
the same behavior: average error for the PS method is approxi-
mately 10�7 while for the 5th-order function the error is about
10�9.

The reason for this numerical instability in the PS form of 9th-
order Holas polynomial is due to the large coefficients involved.
When the density matrix is idempotent, gps

5 ðPÞ can be written as
(126P + (�125P0)P3)P3, where we emphasized P0 such that it has
a different error from P. Therefore the calculation results may con-
tain numerical errors that can be 100 times larger than the true
density matrix. Since the sparse matrix multiplication truncates
all elements below a certain threshold (thresh) value as in linear
scaling SCF calculations, one cannot purify density matrix with er-
rors below 100 � thresh. Even if no truncation is used, since the
matrix multiplications or additions have an intrinsic numerical er-
ror, the magnitudes of errors accumulated using Eq. (3) would be
larger than those using the functional forms with smaller coeffi-
cients as described below.

There are several ways to remove or at least reduce these large
coefficients in Eq. (3). One method is to use the particle–hole
expansion (PH) of Mazziotti [4]. Defining h as in Eq. (4a), the
9th-order Holas function can be written as Eq. (4b)

xð1� xÞ ¼ h ð4aÞ
gPH

5 ðxÞ ¼ xþ ð2x� 1Þ½hþ 3h2 þ 10ðhþ 3:5h2Þh2� ð4 bÞ
Table 1
The number of matrix multiplications in the last SCF cycle for a linear alkane
by the maximum absolute element of Pn � Pn�1 to be smaller than 100 � thre
small matrix elements.

Polynomial order Multiplication method

3rd-order McWeeny
5th-order Holas symmetric

Kim–Jung (optimized)a

9th-order Holas symmetric (HS)
Kim–Jung (KJ)
Paterson–Stockmeyer (PS)
Holas symmetric + Paterson–Stockmeyer (HS/P
Particle–Hole (PH)

a Generalized optimized purification function is used [7].
The gPH
5 ðxÞ in this form can be evaluated using four matmuls, the

same number as in the SP scheme but with much smaller coeffi-
cients. Alternatively, one can use the symmetry property of g5(x)
as in Holas [5] or Eqs. (5a) and (5b). We denote it as the Holas sym-
metric (HS) scheme in this Letter. The number of matmuls to eval-
uate gHS

5 ðxÞ using this symmetry property is five. One can also
combine the Holas Symmetric formula and the Paterson–Stock-
meyer method in a hybrid fashion, denoted as gHS=PS

5 ðxÞ, where
the PS scheme is used to evaluate the terms in square bracket in
Eq. (5b) to reduce the number of matmuls to four.
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To investigate how numerical truncation errors evolve in prac-
tical calculations of molecular systems using these various polyno-
mial evaluation methods and how they affect the total cost, we
implemented these algorithms (PS, PH, HS, and HS/PS) in Q-CHEM
[6] and performed the BLYP/STO-3G calculations for a C60H122 al-
kane chain. The results are summarized in Table 1. The conver-
gence criterion is set by the maximum absolute element of
Pn � Pn�1 to be smaller than 100 � thresh, where thresh = 10�8 or
10�11 was used for truncating matrix elements. Under this mea-
sure, the 5th-order function in a symmetric Holas form indeed
shows a much faster convergence (lower cost) to the density ma-
trix of desired accuracy than the 9th-order Holas polynomial with
various evaluation methods. On the other hand, using the Pater-
son–Stockmeyer scheme, the error in density matrix never reaches
below 100 � thresh, which is consistent with the large coefficients
chain C60H122 at the BLYP/STO-3G level. The convergence criterion is set
sh, where thresh = 10�8 or 10�11 was used as a threshold for truncating

Number of
matmuls
per iteration

Total number
of matmuls
(thresh = 10�8)

Total number
of matmuls
(thresh = 10�11)

2 28 28
3 24 27
3 22 22
5 35 35
5 divergent divergent
4 divergent divergent

S) 4 28 28
4 28 28
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in Eq. (3) of the order of 100. One can tighten the truncation
threshold (i.e., less aggressive truncation) or/and loosen the con-
vergence criterion of purification (1000 � thresh, for example) to
make sure that the PS scheme is also converged, but any of the lat-
ter changes will undoubtedly increase the computational cost to
achieve a given target accuracy.

Other 9th-order polynomial evaluation methods that reduce the
magnitudes of the coefficients, such as Particle–Hole, Holas sym-
metric, and the hybrid of Holas symmetric/Paterson–Stockmeyer
method, are numerically more stable and thus do converge with
cost comparable to the 5th-order purification. Since the 9th-order
HS and HS/PS methods still have relatively larger coefficients than
the symmetric form of the 5th-order function, the converged den-
sity matrix using the 9th-order HS and HS/PS methods have larger
errors than the 5th-order HS method. The fact that using the 5th-
order function converges slightly faster (by 1–4 matmuls) than
the 9th-order function is also related to the flexibility of using
the 5th-order function (in multiples of three matmuls) than using
the 9th-order function (in multiples of four matmuls).

In the above examples, we introduced the truncation after each
matrix multiplication (truncation scheme I), but there is another
way to truncate, namely, truncation only after each purification
(truncation scheme II). As Rubensson offered some discussions in
his Comment, truncation after each matrix multiplication (introduc-
ing more zeros) will save computational cost further than the trun-
cation scheme II but at the expense of potentially larger truncation
error which is also related to the numerical stability of polynomial
evaluation methods. We therefore additionally experimented the
truncation scheme II.

We calculated the absolute energy of C60H122 at BLYP/STO-3G
using the 9th-order PS vs. 5th-order Holas methods and introduc-
ing truncation scheme II. For a given target accuracy (the same
converged absolute energy), we find that the total number of mat-
muls required for the converged density matrix using the 9th-or-
der PS method is 32 while that using the 5th-order Holas is 30.
Incidentally, the total number of matmuls using the 5th-order Ho-
las is 30 using both truncation schemes I and II. Therefore, the 5th-
order Holas is more efficient than the 9th-order PS method for al-
kane chains under both truncation schemes I and II. We also
counted the total number of actual floating point operations
(FLOPs) between nonzero elements, and still found that the 5th-or-
der Holas takes 1.2 times less FLOPs than the 9th-order PS using
the truncation scheme II.

In summary, we have shown that the Paterson–Stockmeyer
method of polynomial evaluation for the 9th-order Holas function
is numerically significantly less stable than the 5th-order polyno-
mial due to the large coefficients involved. We have confirmed in
our numerical experiments for a real molecule that, when numer-
ical truncation is introduced as is essential for linear scaling SCF
calculations, the latter fact indeed leads to a higher computational
cost for the 9th-order purification function to achieve a given tar-
get accuracy as compared to the 5th-order function. We note [7]
that this 5th-order Holas purification function can also be general-
ized to nonpurifying functions to accelerate the convergence even
further by removing the stability conditions in Holas [5] that the
functions have fixed points and vanishing derivatives at 0 and 1.
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