

000 001 002 003 004 005 SIMSHIFT: A BENCHMARK FOR ADAPTING NEURAL 006 SURROGATES TO DISTRIBUTION SHIFTS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Neural surrogates for Partial Differential Equations (PDEs) often suffer significant
028 performance degradation when evaluated on unseen problem configurations, such
029 as new initial conditions or structural dimensions. Meanwhile, Domain Adaptation
030 (DA) techniques have been widely used in vision and language processing to
031 generalize from limited information about unseen configurations. In this work, we
032 address this gap through two focused contributions. First, we introduce SIMSHIFT,
033 a novel benchmark dataset and evaluation suite composed of four industrial simulation
034 tasks spanning diverse processes and physics: *hot rolling*, *sheet metal forming*,
035 *electric motor design* and *heatsink design*. Second, we extend established DA
036 methods to state-of-the-art neural surrogates and systematically evaluate them.
037 These approaches use parametric descriptions and ground truth simulations from
038 multiple source configurations, together with only parametric descriptions from
039 target configurations. The goal is to accurately predict target simulations without
040 access to ground truth simulation data. Extensive experiments on SIMSHIFT high-
041 light the challenges of out-of-distribution neural surrogate modeling, demonstrate
042 the potential of DA in simulation, and reveal open problems in achieving robust
043 neural surrogates under distribution shifts in industrially relevant scenarios.
044

1 INTRODUCTION

045 PDE simulations are essential tools for understanding and predicting physical phenomena in engi-
046 neering and science (Evans, 2010). Over recent years, machine learning has emerged as a novel and
047 promising modeling option for complex systems (Brunton & Kutz, 2020), significantly accelerating
048 and augmenting simulation workflows across diverse applications, including weather and climate
049 forecasting (Pathak et al., 2022; Bodnar et al., 2025), material design (Merchant et al., 2023; Zeni
050 et al., 2025) and protein folding (Abramson et al., 2024) to name a few.

051 In practice, however, models are often deployed outside of their training distribution. This *distribution*
052 *shift* (Quionero-Candela et al., 2009; Wang et al., 2023) often leads to a significant performance
053 degradation (Bonnet et al., 2022; Herde et al., 2024). A well known analogue is clinical microscopy:
054 models trained with data collected at a few hospitals often fail when deployed at others because
055 microscopes, staining protocols, and lighting conditions differ (Tellez et al., 2019; Koh et al., 2020).
056 For neural surrogates an analogous “instrument shift” arises from new initial conditions, such as
057 material parameters or mesh geometries not encountered during training. Robustness to distribution
058 shifts is crucial for industrial adoption and deployment also because it is becoming a compliance
059 requirement, as stated by Article 15 of the EU AI Act (European Union, 2024).

060 While methods for increasing out-of-distribution performance have been at the center of research
061 for a long time (Ben-David et al., 2006; Shimodaira, 2000; Sugiyama et al., 2007b), to the best
062 of our knowledge, no benchmark systematically investigates such methods on simulation tasks.
063 Addressing this gap is particularly relevant in scientific and industrial settings, where generating
064 ground truth simulation data is costly, limiting the diversity of training configurations. In contrast,
065 parametric descriptions, such as material types or structural dimensions, are often readily available or
066 easy to generate. This problem is known as *Unsupervised Domain Adaptation (UDA)* (Ben-David
067 et al., 2010), where parametric (input) descriptions and full simulation outputs are available for each
068 *source* configuration, while only input descriptions are provided for *target* configurations, without
069 corresponding outputs.

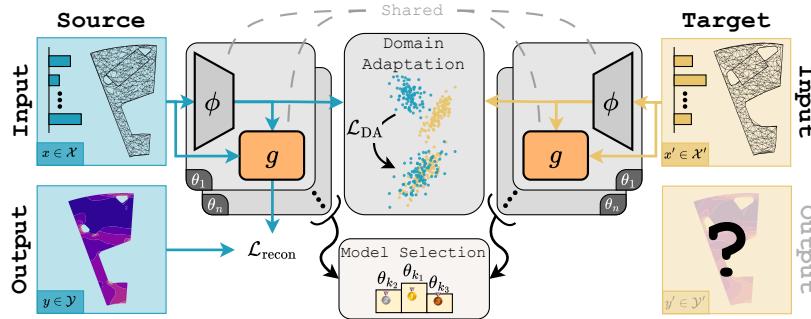


Figure 1: Schematic overview of the SIMSHIFT framework. In training, the model has access to inputs (e.g., parameters and meshes), corresponding outputs (x, y) from the source domain (left, blue), and only inputs x' from the target domain (right, yellow) are available. The neural operator g and the conditioning network ϕ are shared across domains and jointly optimized. Two loss terms are used: $\mathcal{L}_{\text{recon}}$, computed on source labels, and \mathcal{L}_{DA} , which aligns source and target ϕ features. After training, unsupervised model selection strategies choose θ_{k1} , which is expected to perform best on target domain.

To investigate the potential of UDA for neural surrogate modeling, we provide simulation data across a range of realistic tasks from industrial engineering design. We introduce a comprehensive benchmark that evaluates established UDA methods and neural surrogates. An overview of the framework is shown in Figure 1. Our contributions can be summarized as follows:

- We propose four practical datasets with flexible distribution shifts in *hot rolling*, *sheet metal forming*, *electric motor*, and *heatsink* design, based on realistic simulation setups.
- We present, to the best of our knowledge, the first joint study of established neural surrogate architectures and UDA on engineering simulations with unstructured meshes.
- We introduce *SIMSHIFT*, a modular benchmarking suite that complements our datasets with baseline models and algorithms. It allows easy integration of new simulations, machine learning methods, domain adaptation techniques, and model selection strategies.

2 RELATED WORK

Unsupervised Domain Adaptation. UDA research covers a wide spectrum of results from theoretical foundations (Ben-David et al., 2010; Zellinger et al., 2021a) to modern deep learning methods (Liu & Xue, 2021; Zellinger et al., 2019; Zhu et al., 2021; Long et al., 2018). A prominent class of methods, dubbed as *representation learning*, aims to map the data to a feature space, where source and target representations appear similar, while maintaining enough information for accurate prediction. To enforce feature similarity between domains, algorithms often employ statistical (Sun & Saenko, 2016; Gretton et al., 2006; Zhang et al., 2019; Shalit et al., 2017) or adversarial (Ganin et al., 2015; Tzeng et al., 2017) discrepancy measures. One crucial yet frequently overlooked factor in the success of UDA methods is model selection. Numerous studies underline the critical impact of hyperparameter choices on UDA algorithm performance, often overshadowing the adaptation method itself (Musgrave et al., 2021; Zellinger et al., 2021b; Dinu et al., 2023; Yang et al., 2024). Even more, since labeled data is unavailable in the target domain, standard validation approaches become infeasible. Thus, it is essential to jointly evaluate adaptation algorithms alongside their associated unsupervised model selection strategies. In this work, we focus on importance weighting strategies (Sugiyama et al., 2007a; You et al., 2019), which stand out by their general applicability, theoretical guarantees and high empirical performance.

Benchmarks for Unsupervised Domain Adaptation. Numerous benchmark datasets and evaluation protocols have been established for UDA methods across various machine learning domains, including computer vision (Venkateswara et al., 2017; Peng et al., 2018; Arjovsky et al., 2019), natural language processing (Blitzer et al., 2007), timeseries data (Ragab et al., 2022) and tabular data (Gardner et al.,

108 2023). However, to the best of our knowledge, systematic UDA benchmarking for neural surrogates
 109 remains unexplored.
 110

111 **Benchmarks for Neural Surrogates.** Recent years have seen a surge of surrogates belonging to the
 112 group of neural operators (see Appendix A), and benchmarks have grown alongside them. However,
 113 designing a robust and fair benchmark in the realm of PDEs is difficult and the current literature is not
 114 without shortcomings (Brandstetter, 2025). Many focus on solving PDEs on structured, regular grids
 115 (Gupta & Brandstetter, 2022; Takamoto et al., 2022; Ohana et al., 2024), which serve as valuable
 116 platforms for developing and testing new algorithms. However, these overlook the irregular meshes
 117 commonly used in large scale industrial simulations. In that direction, other benchmarks extend to
 118 Computational Fluid Dynamics (CFD) on irregular static meshes for airfoil simulations (Bonnet et al.,
 119 2022), aerodynamics for automotive (Elrefaei et al., 2024a;b), more academic fluid problems (Luo
 120 et al., 2023), and even particle based Smoothed Particle Hydrodynamics simulations (Toshev et al.,
 121 2023; 2024). Finally, and most closely related to our work, recent efforts have explored the application
 122 of Active Learning techniques (Cohn et al., 1996; Ren et al., 2021) to neural surrogates, introducing
 123 a benchmark specifically designed for scenarios where data is scarce (Musekamp et al., 2025).
 124 Despite these contributions, all current benchmarks often fall short when addressing a critical issue:
 125 the significant performance drop models exhibit under distribution shifts, i.e., when encountering
 126 simulation configurations beyond their training setting (Quionero-Candela et al., 2009).
 127

3 DATASET PRESENTATION

128 Our datasets follow three design principles. (i) **Industry relevance:** They reflect practical, real-world
 129 simulation use-cases. The benchmark covers a diverse set of problems, including 2D as well as 3D
 130 cases. (ii) **Parametrized conditions:** The behavior of all simulations depends on the set of initial
 131 parameters only. (iii) **Steady-state scenarios:** We constrain them to time independent problems,
 132 being the standard use case in industry. Take for example design optimization tasks: most rely on
 133 either steady-state or time-averaged solutions rather than detailed transient dynamics. This is not just
 134 a modeling convenience, but reflects how simulation is integrated into design pipelines: numerical
 135 simulations are used to assess candidates by computing scalar objective values. This practice
 136 is well documented established various application areas, including thermal systems (Majumdar,
 137 2021), aerodynamic shape optimization for aircrafts (Martins, 2022), wind turbine design (Martins,
 138 2022), and car aerodynamics (Dumas, 2007). Additionally with this constraint we avoid additional
 139 complexities such as autoregressive error accumulation in neural surrogates (Lippe et al., 2023).
 140

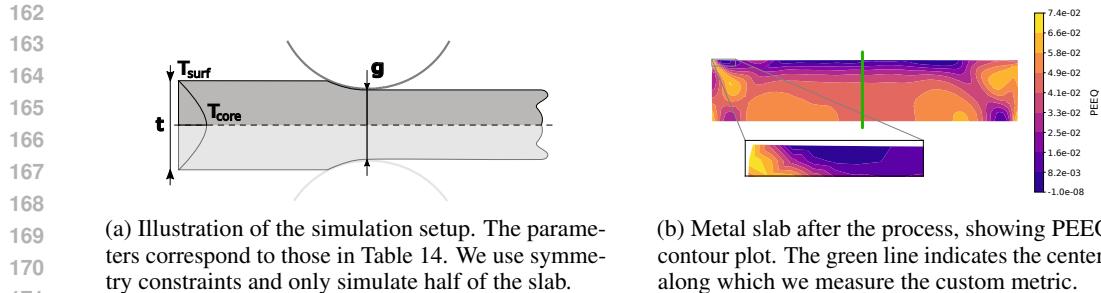
141 The datasets were generated using the commercial Finite Element Method (FEM) software *Abaqus*,
 142 the open-source simulation software *HOTINT* and the open-source CFD package *OpenFoam 9*.¹ An
 143 overview of each dataset together with its most important parameters and a custom metric, motivated
 144 by engineering practice, is presented in Sections 3.1 to 3.4. Additionally, we provide detailed
 145 descriptions of the respective numerical simulations in Appendix G. Since the behavior of each
 146 simulation task is entirely determined by its input parameters, we predefine source and target domains
 147 by partitioning the parameter space into distinct, non-overlapping regions. A detailed explanation of
 148 the domain splitting strategy is provided in Section 3.5. Table 1 summarizes key characteristics of
 149 each dataset, including physical dimensionality, mesh resolution, number of conditioning parameters,
 150 and total dataset size. All datasets are publicly hosted on Hugging Face².
 151

152 Table 1: Overview of the benchmark datasets. Heatsink meshes are subsampled to a fourth of their
 153 original size. Detailed descriptions of the parameter sampling ranges can be found in Appendix G.

154 Dataset	155 Origin	156 Samples	157 Output channels	158 Avg. # nodes	159 Varied simulation parameters	160 Dim	161 Size (GB)
Rolling	Metallurgy	4,750	10	576	4	2D	0.5
Forming	Manufacturing	3,315	10	6,417	4	2D	4.1
Motor	Machinery	3,196	26	9,052	15	2D	13.4
Heatsink	Electronics	460	5	1,385,594	4	3D	40.8

¹Abaqus; HOTINT; OpenFoam 9.

²https://huggingface.co/datasets/simshift/SIMSHIFT_data



(a) Illustration of the simulation setup. The parameters correspond to those in Table 14. We use symmetry constraints and only simulate half of the slab.

(b) Metal slab after the process, showing PEEQ as a contour plot. The green line indicates the center cord, along which we measure the custom metric.

Figure 2: Overview of the *hot rolling* simulation scenario.

3.1 HOT ROLLING

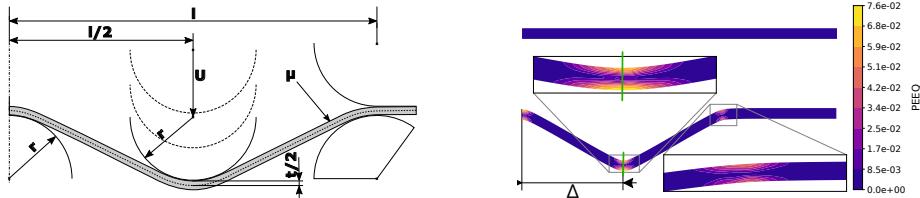
Problem Description. The *hot rolling* process plastically deforms a metal slab into a sheet metal product, as visualized in Figure 2. This complex thermo-mechanical operation involves coupled elasto-plastic deformation and heat transfer phenomena (Gupta, 2021; Galantucci & Tricarico, 1999; Jo et al., 2023). The Finite Element (FE) simulation models the progressive thickness reduction and thermal evolution of the material as it passes through a rolling gap, incorporating temperature-dependent material properties and contact between the slab and the rolls. Among the output fields, the key quantity is Equivalent Plastic Strain (PEEQ), representing the material’s plastic deformation, visualized in Figure 2b. The custom metric measures the relative error of the PEEQ profile along the slab’s vertical center cord (green line in Figure 2b).

Input parameters are the initial slab thickness t , temperature characteristics T_{core} and T_{surf} of the slab, as well as the geometry of the roll gap. To vary the slab deformation we define the thickness reduction as a percentage of the initial thickness: reduction = $\frac{t-g}{t}$, where g is the rolling gap distance. Table 14 in Appendix G.1 shows a detailed overview of the parameter values together with their sampling ranges used to generate the dataset.

3.2 SHEET METAL FORMING

Problem Description. The *sheet metal forming* process is a critical manufacturing operation widely used across industries such as automotive and aerospace. FEM simulations are commonly employed to estimate critical quantities such as thinning, local plastic deformation and residual stress distribution (Tekkaya, 2000; Ablat & Qattawi, 2017; Folle et al., 2024). The simulation setup consists of a symmetrical workpiece supported at the ends and center, a holder and a punch that deforms the sheet by applying a displacement (U in Figure 3a). The 2D simulation predicts the sheet’s elasto-plastic deformation, providing quantities such as stress, elastic and plastic strain distributions (shown in Figure 3b). An essential engineering metric used in practice is the transverse stress (xx-component) distribution along the vertical center cord (green line in Figure 3).

Input parameters include the deformed sheet length l , the sheet thickness t , friction coefficient μ and the radii of the holder, punch, and supports r . Table 15 in Appendix G.2 provides the sampling ranges for data generation.



(a) Illustration of the simulation setup. The parameters correspond to those listed in Table 15.

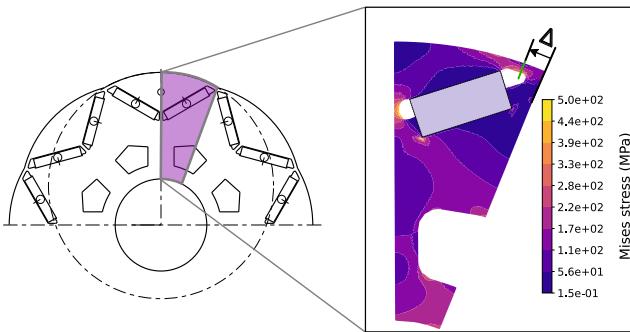
(b) Material before (top) and after (bottom) the process, shown as PEEQ contours. $\Delta = l/2$

Figure 3: Overview of the *sheet metal forming* simulation scenario.

216 3.3 ELECTRIC MOTOR DESIGN
217

218 **Problem Description.** The *electric motor design* dataset encompasses a structural FEM simulation
219 of a rotor in electric machinery, subjected to mechanical loading at burst speed. It is motivated by the
220 conflicting design objectives in rotor development: while magnetic performance favors certain rotor
221 topologies to optimize flux paths and torque generation, structural integrity requires designs capable
222 of withstanding centrifugal loads without plastic deformation (Gerlach et al., 2021; Dorninger et al.,
223 2021). The 2D simulation predicts stress and deformation responses due to assembly pressing forces
224 and centrifugal loads, accounting for the rotor’s topology, material properties, and rotation speed.
225 The custom metric measures the relative error in Mises stress along the cord shown in green Figure 4.

226 **Input Parameters** together with their variations and a detailed technical drawing are omitted from
227 the main body since this case is more complex than the preceding datasets. They are provided in
228 Figure 31 and Table 17, both in Appendix G.3.



241 Figure 4: The *electric motor design* simulation scenario, with a schematic sketch of the motor (left)
242 and zoomed-in detail from the simulated radial portion (right). Mises stress field contour plot is
243 shown. The custom error metric is measured along the green line at $\Delta = \frac{t_{r3b1}}{2} + 1.1 * r_{r2}$.

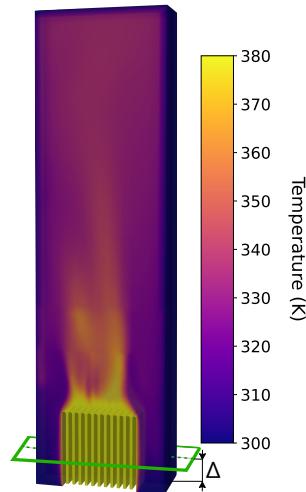
245 3.4 HEATSINK DESIGN

246 **Problem Description.** The *heatsink design* dataset represents a
247 CFD simulation focused on the thermal performance of heat sinks,
248 commonly used in electronic cooling applications (Arularasan &
249 Velraj, 2010; Rahman et al., 2024). It models the convective heat
250 transfer from a heated base through an array of fins to the surrounding
251 air. The simulation captures how geometric fin characteristics,
252 specifically, the number, height, and thickness of fins, affect the
253 overall heat dissipation, along with the temperature of the heat sink.
254 Outputs include steady state temperature, velocity and pressure
255 fields, enabling the assessment of design efficiency and thermal
256 resistance under varying configurations. The main engineering metric
257 measures the relative error in the temperature distribution along the
258 dashed green line in Figure 5.

259 **Input Parameters** and their variations as well as an overview of
260 the setup are provided in Appendix G.4.

263 3.5 DISTRIBUTION SHIFTS

264 SIMSHIFT’s functionality allows for generating arbitrary n-dimensional parametric shifts for each
265 problem, ensuring flexibility and extensibility. For benchmarking, each dataset includes three
266 predefined distribution shifts: *easy*, *medium* and *hard*, which reflect increasing distributional distance
267 in the respective input spaces (see Table 2 for parameter ranges). The source and target domains are
268 constructed by shifting along the dominant input parameter of each simulation scenario, as suggested
269 by domain experts.



265 Figure 5: Slice of the *heatsink*
266 3D temperature field. Custom
267 metric along dashed cord at
268 $\Delta = 0.0025$.

To validate the design of our domain shifts we perform two analyses: (i) **Latent space inspection**: We train models across the full parameter ranges and perform a cluster analysis of their latent representations as the input conditions are varied. The resulting clusters consistently align with the parameters proposed by the experts, indicating that the chosen parameters dominate latent space variation (see visualizations in Figures 25 to 28, Appendix C). (ii) **Transfer difficulty validation**: Scalar parameter differences alone can be misleading regarding the actual shift difficulty experienced by models. We therefore provide the Proxy \mathcal{A} -Distance (PAD), which serves as an upper bound on the model’s maximum transfer error. It works by bounding the \mathcal{H} -divergence, which in turn is an upper bound the maximum transfer error itself (for details see Bouvier et al. (2020), Johansson et al. (2019) and Zellinger et al. (2021b)). We estimate the PAD in the output spaces (ground truth simulation fields) using a PointNet Qi et al. (2017) mesh classifier. The resulting PAD values for each difficulty together with the domain defining parameter splits for all datasets are reported in Table 2.

The PAD values indicate a clear output-space distribution shift across all datasets. To illustrate this more concretely, consider the *hot rolling* dataset: in the *medium* difficulty setting, the range of PEEQ values in the source domain is $[0, 0.19]$, while in the target domain it extends to $[0, 0.28]$. Therefore part of the target solution field lies outside the support of the source field, demonstrating a genuine output-space shift in addition to the parametric input shift.

Beyond the predefined one-dimensional splits, we explore higher-dimensional distribution shifts. In Appendix H.2, we demonstrate that models, adaptation algorithms and model selection strategies exhibit consistent behavior under a two-dimensional shift in the *electric motor design* dataset.

Table 2: SIMSHIFT’s predefined distribution shifts. We show the domain defining parameter and its respective ranges for all difficulty levels together with the corresponding PAD.

Dataset	Parameter	Difficulty	Source range	Target range	PAD
Rolling	Reduction r (-)	easy	$[0.01, 0.13)$	$[0.13, 0.15]$	1.063
		medium	$[0.01, 0.115)$	$[0.115, 0.15]$	1.159
		hard	$[0.01, 0.10)$	$[0.10, 0.15]$	1.210
Forming	Thickness t (mm)	easy	$[2, 4.8)$	$[4.8, 5]$	0.860
		medium	$[2, 4.3)$	$[4.3, 5]$	0.938
		hard	$[2, 4.1)$	$[4.1, 5]$	1.030
Electric Motor	Rotor slot diameter 3 d_{r3} (mm)	easy	$[100, 122)$	$[122, 126]$	0.762
		medium	$[99, 120)$	$[120, 126]$	0.932
		hard	$[99, 118)$	$[118, 126]$	0.955
Heatsink	# fins	easy	$[5, 13)$	$[13, 14]$	1.446
		medium	$[5, 12)$	$[12, 15]$	1.683
		hard	$[5, 11)$	$[11, 15]$	1.861

4 BENCHMARK SETUP

This section outlines the learning problem (Section 4.1), the UDA algorithms considered (Section 4.2), the unsupervised model selection strategies (Section 4.3), and the baseline models used (Section 4.4). Finally, we describe the experimental setup and evaluation metrics in Section 4.5.

4.1 LEARNING PROBLEM

Let \mathcal{X} be an input space containing geometries and conditioning parameters (e.g., thickness and temperatures in Figure 2a) and \mathcal{Y} be an output space containing ground truth solution fields, obtained from a numerical solver (e.g., PEEQ field in Figure 2b). Following (Ben-David et al., 2010), a *domain* is represented by a probability density function p on $\mathcal{X} \times \mathcal{Y}$ (e.g., describing the probability of observing an input-output pair corresponding to the parameter range $r \in [0.01, 0.115]$ in Table 2). UDA has been formulated as follows: Given a source dataset $(x_1, y_1), \dots, (x_n, y_n)$ drawn from a source domain p_S together with an *unlabeled* target dataset x'_1, \dots, x'_m drawn from the (\mathcal{X} -marginal)

324 of a target domain p_T , the problem is to find a model $f : \mathcal{X} \rightarrow \mathcal{Y}$ that has small expected risk on the
 325 target domain:
 326

$$327 \quad \mathbb{E}_{(x,y) \sim p_T} [\ell(f(x), y)], \quad (1)$$

329 with $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ being some loss function. For example, consider the square loss $\ell(f(x), y) =$
 330 $(f(x) - y)^2$. In our setup $f(x) = g(x, \phi(x))$ is composed of a conditioning network ϕ and a surrogate
 331 g (see Figure 1).
 332

333 4.2 UNSUPERVISED DOMAIN ADAPTATION ALGORITHMS

335 Our UDA baseline algorithms are from the class of *domain-invariant representation learning* methods.
 336 These methods are strong baselines, in the sense that their performance typically lies within the
 337 standard deviation of the winning algorithms in large scale empirical evaluations (i.e., no significant
 338 outperformance is observed), see CMD, Deep CORAL and DANN in (Dinu et al., 2023, Tables 12–
 339 14), M3SDA in (Peng et al., 2019), MMDA and HoMM in (Ragab et al., 2022).

340 Following Johansson et al. (2019) and Zellinger et al. (2021b), we express the objective of domain-
 341 invariant learning using two learning models: a *representation* mapping $\phi \in \Phi \subset \{\phi : \mathcal{X} \rightarrow \mathcal{R}\}$,
 342 which in our case corresponds to the conditioning network that maps simulation parameters into
 343 some representation space $\mathcal{R} \subset \mathbb{R}^k$ and a *regressor* $g \in \mathcal{G} \subset \{g : \mathcal{X} \times \mathcal{R} \rightarrow \mathcal{Y}\}$, which is realized
 344 by a neural surrogate. The goal is to find a mapping ϕ under which the source representations
 345 $\phi(\mathbf{x}) := (\phi(x_1), \dots, \phi(x_n))$ and the target representations $\phi(\mathbf{x}') := (\phi(x'_1), \dots, \phi(x'_m))$ appear
 346 similar, and, at the same time, enough information is preserved for prediction by g , see (Quionero-
 347 Candela et al., 2009). This is realized by estimating objectives of the form
 348

$$349 \quad \min_{g \in \mathcal{G}, \phi \in \Phi} \underbrace{\mathbb{E}_{(x,y) \sim p_S} [\ell(g(x, \phi(x)), y)]}_{\mathcal{L}_{\text{recon}}} + \lambda \cdot \underbrace{d(\phi(\mathbf{x}), \phi(\mathbf{x}'))}_{\mathcal{L}_{\text{DA}}}. \quad (2)$$

351 The training objective therefore consists of minimizing both terms: the supervised reconstruction loss
 352 $\mathcal{L}_{\text{recon}}$ and the domain adaptation loss \mathcal{L}_{DA} as shown in Figure 1. A variety of UDA algorithms corre-
 353 spond to different implementations of the distance d . Good choices for d in Equation (2) have been
 354 found to be the Wasserstein distance (Courty et al., 2017), the Maximum Mean Discrepancy (Baktash-
 355 motagh et al., 2013), moment distances (Sun & Saenko, 2016; Zellinger et al., 2019), adversarially
 356 learned distances (Ganin et al., 2015) and other divergence measures (Johansson et al., 2019; Zhang
 357 et al., 2019). We outline the distance measures of all included algorithms in Appendix D. Furthermore,
 358 appropriately choosing the regularization parameter λ is crucial for performance (Musgrave et al.,
 359 2021; Dinu et al., 2023; Yang et al., 2024), making model selection necessary.
 360

361 4.3 UNSUPERVISED MODEL SELECTION STRATEGIES

363 Among all algorithm design choices in UDA, model selection has been repeatedly recognized as one
 364 of the most crucial (Musgrave et al., 2021; Yang et al., 2024), with sub-optimal choices potentially
 365 leading to *negative transfer* (Pan & Yang, 2010). However, classical approaches (e.g., validation set,
 366 cross-validation, information criterion) cannot be used due to missing labels and distribution shifts.
 367 It is therefore a natural benchmark requirement for UDA to provide also unified model selection
 368 strategies in addition to UDA algorithms.
 369

370 In this work, we rely on Importance Weighted Validation (IWV) (Sugiyama et al., 2007a) and Deep
 371 Embedded Validation (DEV) (You et al., 2019) to overcome the two challenges: (i) distribution shift
 372 and (ii) missing target labels. These methods rely on the Radon-Nikodým derivative and the covariate
 373 shift assumption $p_S(y|x) = p_T(y|x)$ to obtain

$$374 \quad \mathbb{E}_{(x,y) \sim p_T} [\ell(f(x), y)] = \mathbb{E}_{(x,y) \sim p_S} \left[\frac{p_T(x)p_T(y|x)}{p_S(x)p_S(y|x)} \ell(f(x), y) \right] = \mathbb{E}_{(x,y) \sim p_S} [\beta(x) \ell(f(x), y)]. \quad (3)$$

375 Equation (3) motivates to estimate the target error by a two step procedure: First, approaching
 376 challenge (i) by estimating the density ratio $\beta(x) = \frac{p_T(x)}{p_S(x)}$ from the input data only, and, approaching
 377 challenge (ii) by estimating target error by the weighted source error using *labeled* source data.
 378

378
379

4.4 BASELINE MODELS

380
381

We provide a comprehensive range of machine learning methods, adapted to our conditioned simulation task, organized by their capacity to model interactions across different spatial scales:

382
383
384
385
386
387
388
389
390
391
392

Global context models such as PointNet (Qi et al., 2017) incorporate global information into local Multi-Layer Perceptrons (MLPs) by summarizing features of all input points by aggregation into a global representation, which is then shared among nodes. Recognizing the necessity of *local information* when dealing with complex meshes and structures, we include GraphSAGE (Hamilton et al., 2017), a proven Graph Neural Network (GNN) architecture (Scarselli et al., 2009; Battaglia et al., 2018) already used in other mesh based tasks (Pfaff et al., 2020; Bonnet et al., 2022). However, large scale applications of GNNs are challenging due to computational expense (Alkin et al., 2024a) and issues like oversmoothing (Rusch et al., 2023). Finally, to overcome these limitations, we employ *attention based models* (Vaswani et al., 2017). These models typically scale better with the number of points, and integrate both global and local information enabling stronger long-range interactions and greater expressivity. We include Transolver (Wu et al., 2024), a modern neural operator Transformer.

393
394
395
396
397
398
399
400
401
402
403

As an alternative categorization, baselines can also be classified by input-output pairings into *point-to-point* and *latent* approaches. The former explicitly encodes nodes, while the latter represents the underlying fields in a latent space and requires queries to retrieve nodes. While all previously mentioned models are *point-to-point*, we also include Universal Physics Transformer (UPT) (Alkin et al., 2024a; Fürst et al., 2025) and Geometry-Informed Neural Operator (GINO) Li et al. (2023b), as examples of latent field methods. Both methods are designed for large problems and offer favorable scaling on big meshes through latent field modeling. The main difference is that GINO latent space is constrained to a regular grid, where it operates in the *frequency* domain. UPT, in contrast, learns in a standard unconstrained latent domain. Both UPT and GINO are designed for large scale meshes, and therefore we benchmark them on the *heatsink design* dataset.

404
405
406
407
408
409
410
411

We provide detailed explanations of all implemented architectures in Appendix E. Our framework explicitly conditions neural operators on configuration parameters. We first embed them using a sinusoidal (sin-cos) encoding and a shallow MLP ϕ to produce a latent representation and then condition the neural operator g by using either concatenation of the latent conditioning vector, FiLM (Perez et al., 2018) or DiT conditioning layers (Peebles & Xie, 2023). As an alternative, we also evaluate replacing ϕ with a geometric mesh encoder that derives the latent representation directly from the input geometry. On the *electric motor design* dataset, this variant performs worse (see Appendix H.1), supporting our design choice.

412
413

4.5 EXPERIMENTS AND EVALUATION

414
415
416
417
418
419
420
421

Experimental Setup. We benchmark four prominent UDA algorithms (Deep Coral (Sun & Saenko, 2016), CMD (Zellinger et al., 2019), DANN (Ganin et al., 2015) and DARE-GRAM (Nejjar et al., 2023)) in combination with the following four unsupervised model selection strategies: IWV (Sugiyama et al., 2007a), DEV (You et al., 2019), Source Best (SB) (selecting models based on source domain validation performance) and Target Best (TB) (selecting models based on target simulation data, which is not available in UDA but serves as a lower bound for perfect model selection).

422
423
424
425

For the baseline neural surrogate models, we evaluate PointNet, GraphSAGE, and Transolver on the *hot rolling*, *sheet metal forming*, and *electric motor design* datasets. Due to memory and runtime constraints on the large scale *heatsink design* dataset, we omit GraphSAGE and instead benchmark UPT and GINO alongside PointNet and Transolver.

426
427
428
429
430
431

Experimental Scale. We perform an extensive sweep over the critical UDA parameter λ and average across four seeds, resulting in a total of 1,664 training runs (see Table 12). Details on architectures, hyperparameters, training setup and normalization, as well as a breakdown of training times are included in Appendices E and F.

Evaluation Metrics. For each dataset, we report the Normalized Root Mean Squared Error (NRMSE) averaged over all output fields, as well as the per field Root Mean Squared Error (RMSE) values

(computed on denormalized data), the Euclidean error for deformation predictions and the custom error metrics described in Sections 3.1 to 3.4. Additionally we provide physics-based evaluation metrics for all datasets. These metrics are tailored to the underlying PDEs. Detailed metric definitions are provided in Appendix F.2.

5 BENCHMARKING RESULTS

Table 3 overviews our benchmarking results, showing the best UDA and selection combination per model. Across datasets and architectures, UDA applied together with unsupervised model selection generally leads to a target error reduction, measured by NRMSE averaged across all fields. However, when examining the dataset-specific custom metrics introduced in Sections 3.1 to 3.4, the individual fields, and the physics-based metrics, gains are not uniform, and some methods improve the global loss, while performance on particular metrics. This pattern suggests that standard methods are a good starting point, but specialized algorithms tailored to high-dimensional regression tasks are needed. Furthermore, the gap between the best UDA + selection configurations and the TB oracle (lower bound on error) indicates that current unsupervised model selection strategies also leave room for improvement. Despite the clear benefits of UDA, no single UDA algorithm or unsupervised selection strategy dominates across all datasets. In addition to this summary, we report full source and target metrics across architectures, algorithms, and selection strategies in Tables 4 to 10.

Finally, since the presented tables only report performance on the *medium* difficulty setting, we additionally visualize model behavior of the best performing combination (model + UDA algorithm + selection strategy) across all difficulty levels of the *hot rolling* dataset in Figure 6. It illustrates the increase in prediction error as the domain gap widens and highlights the consistent improvements achieved by applying UDA algorithms combined with unsupervised model selection strategies on the *easy* and *medium* settings.

For the *hard* setting, however, the shown unsupervised model selection algorithm fails to identify suitable models, as the mean error matches that of the unregularized baselines with the standard deviation even increasing. Nonetheless, the theoretical lower bound (TB) remains substantially

Table 3: Best performing combination of UDA algorithm and unsupervised model selection for each dataset (*medium* difficulty) and architecture. We also report an oracle with target best (TB) selection, which provides a lower bound on the selection error. Entries show the target domain (N)RMSE or physics-based metric. Promotion on the unregularized baseline are shown in parentheses, with improvement indicated as negative values and asterisks marking unstable unregularized baselines. For each dataset, the best configuration (green) is chosen by the lowest NRMSE across all fields (bold).

Dataset	Model	Best UDA Method + Model Selection	All Fields Normalized Avg (-)	Mises Stress (MPa)	Rel Custom Error (-)	VM Consistency (-)
Rolling	GraphSAGE	DARE-GRAM + IWV	0.192 (-0.172)	12.384 (-7.406)	0.142 (-0.092)	0.049 (+0.003)
	PointNet	CMD + SB	0.387 (-0.082)	27.922 (+0.311)	0.261 (-0.009)	0.055 (-0.001)
	Transolver	CMD + SB	0.781 (*)	71.526 (*)	0.507 (*)	0.086 (*)
	Oracle (GraphSAGE)	DARE-GRAM + TB	0.192 (-0.172)	12.384 (-7.406)	0.142 (-0.092)	0.049 (+0.003)
Motor	GraphSAGE	DARE-GRAM + SB	0.342 (-0.033)	29.088 (-0.370)	0.349 (-0.078)	0.031 (-0.000)
	PointNet	Deep Coral + SB	0.313 (-0.084)	26.229 (-4.425)	0.197 (-0.147)	0.043 (-0.003)
	Transolver	Deep Coral + SB	0.098 (-0.018)	7.269 (-0.729)	0.089 (-0.022)	0.016 (-0.003)
	Oracle (Transolver)	Deep Coral + TB	0.098 (-0.018)	7.266 (-0.732)	0.089 (-0.022)	0.016 (-0.002)
Dataset	Model	Best UDA Method + Model Selection	All Fields Normalized Avg (-)	Mises Stress (MPa)	Rel Custom Error (-)	Plastic Residual (-)
Forming	GraphSAGE	DANN + IWV	0.334 (-0.042)	52.917 (+6.821)	5.384 (+2.888)	0.509 (+0.028)
	PointNet	Deep Coral + SB	0.182 (-0.044)	31.345 (-0.090)	1.154 (+0.273)	0.451 (-0.029)
	Transolver	Deep Coral + DEV	0.154 (-0.014)	24.427 (+1.457)	0.806 (+0.199)	0.581 (+0.098)
	Oracle (Transolver)	CMD + TB	0.131 (-0.037)	20.275 (-2.695)	0.796 (+0.189)	0.506 (+0.022)
Dataset	Model	Best UDA Method + Model Selection	All Fields Normalized Avg (-)	Temperature (K)	Rel Custom Error (-)	BC Violation Velocity (m/s)
Heatsink	PointNet	DARE-GRAM + SB	0.371 (-0.197)	12.343 (-8.783)	0.015 (-0.035)	0.121 (+0.011)
	Transolver	Deep Coral + DEV	0.318 (-0.128)	9.081 (-0.639)	0.009 (-0.001)	0.117 (+0.039)
	UPT	Deep Coral + SB	0.325 (-0.116)	12.414 (-0.619)	0.013 (-0.000)	0.107 (+0.036)
	GINO	Deep CORAL + SB	0.356 (-0.128)	14.031 (+0.136)	0.017 (-0.000)	0.107 (+0.024)
	Oracle (Transolver)	Deep Coral + TB	0.310 (-0.135)	8.718 (-1.002)	0.009 (-0.001)	0.117 (+0.039)

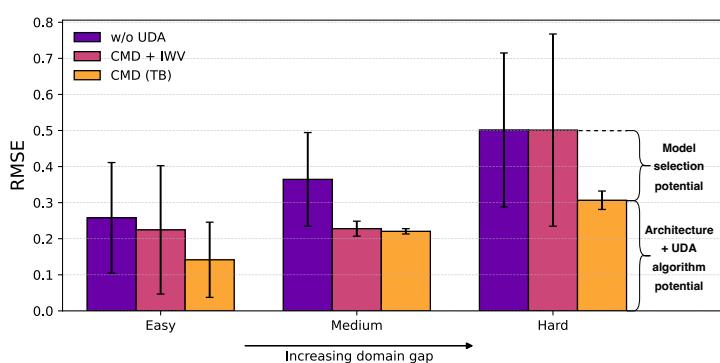


Figure 6: Target error scaling with increasing domain gap. We show the averaged RMSE across all (normalized) fields for the *easy*, *medium*, and *hard* gaps on the *hot rolling* task. We compare models without UDA, the best performing UDA method with unsupervised model selection (CMD + IIV), and the theoretical lower bound (TB). Error bars indicate the standard deviation across four seeds. Furthermore, we highlight potentials of architecture, algorithm and selection improvements on the *hard* task.

below the unregularized error. Figure 6 again highlights the two promising directions for further improvement of the presented baselines: (i) enhancement of neural surrogate architectures and UDA algorithms, and (ii) especially, improvement of unsupervised model selection strategies.

6 DISCUSSION

We presented SIMSHIFT, a collection of industry relevant datasets paired with a benchmarking library for comparing UDA algorithms, unsupervised model selection strategies and neural surrogates in real world scenarios. We adapted available techniques, applied them on physical simulation data and performed extensive experiments to evaluate their performance on the presented datasets. Our findings suggest that standard UDA training methods can improve performance of models in unseen parameter ranges in physical simulations, with improvement margins in line with those seen in UDA literature (Dinu et al., 2023; Ragab et al., 2022). Additionally, we find correct unsupervised model selection to be extremely important in downstream model performance on target domains, with it arguably having as much impact as the UDA training itself, which is also in agreement with other DA works (Musgrave et al., 2021).

Limitations. We acknowledge that our datasets are limited under two main aspects: (i) They only cover *steady-state* problems, which represent a large portion of industrial simulation tasks. However, an extension with *time-dependent* datasets could be valuable for certain application areas. (ii) They cover a wide range of mesh sizes, ranging from roughly $\mathcal{O}(10^2)$ up to $\mathcal{O}(10^6)$ nodes. Nevertheless, many industrial scenarios require substantially larger meshes. These limitations reflect design choices aimed at benchmarking clarity and computational feasibility and leave room for future extensions.

Future Directions. Motivated by our results, we identify several promising research directions: (i) Although we include a diverse and competitive set of UDA algorithms and unsupervised model selection techniques, a wide range of methods remain unexplored in the context of scientific ML. Examples include ensembling based adaptation (Cha et al., 2021), adversarial information bottleneck approaches (Luo et al., 2019; Song et al., 2020) or diffusion based methods (Peng et al., 2024; Liao et al., 2025). In addition, test-time adaptation methods (Wang et al., 2021; Adachi et al., 2025) could be designed and tested using our benchmark. (ii) SIMSHIFT currently evaluates standard UDA algorithms and does not integrate physics constraints (Karniadakis et al., 2021) into training. Our framework and datasets allows to include physics constraints, and we find the direction of a specific physics-inspired UDA method a very interesting and potentially fruitful gap in the current research.

540 REPRODUCIBILITY STATEMENT
541

542 The first step towards reproducibility are the datasets. We provide a download link for all dataset with
543 our predefined domain shifts and a high-level description of each dataset and the splitting strategy in
544 Section 3 and Appendix C. To take transparency a step further, we present detailed descriptions of the
545 respective numerical simulations together with the employed solvers, initial/boundary conditions and
546 the configuration details in Appendix G. Concerning the machine learning parts of the benchmark, we
547 provide detailed descriptions of the architectures, their configurations and training hyperparameters in
548 Appendix F.1. Additionally, we provide an anonymized codebase with pinned dependencies, fixable
549 seeds and a comprehensive README.md along with all necessary configuration files used in our
550 benchmarking pipeline.

551 REFERENCES
552

553 Muhammad Ali Ablat and Ala Qattawi. Numerical simulation of sheet metal forming: a review. *The*
554 *international journal of advanced manufacturing technology*, 89:1235–1250, 2017.

555 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
556 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
557 prediction of biomolecular interactions with alphafold 3. *Nature*, pp. 1–3, 2024.

558 Kazuki Adachi, Shin’ya Yamaguchi, Atsutoshi Kumagai, and Tomoki Hamagami. Test-time adap-
559 tation for regression by subspace alignment. In *The Thirteenth International Conference on*
560 *Learning Representations, ICLR 2025, Singapore, April 24–28, 2025*. OpenReview.net, 2025. URL
561 <https://openreview.net/forum?id=SXt17NRyE5>.

562 Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
563 Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
564 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Ad-
565 vances in Neural Information Processing Systems*, volume 37, pp. 25152–25194. Curran Associates,
566 Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2cd36d327f33d47b372d4711edd08de0-Paper-Conference.pdf.

567 Benedikt Alkin, Tobias Kronlachner, Samuele Papa, Stefan Pirker, Thomas Lichtenegger, and
568 Johannes Brandstetter. Neuraldem - real-time simulation of industrial particulate flows. *CoRR*,
569 abs/2411.09678, 2024b. doi: 10.48550/ARXIV.2411.09678. URL <https://doi.org/10.48550/arXiv.2411.09678>.

570 Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
571 *CoRR*, abs/1907.02893, 2019. URL <http://arxiv.org/abs/1907.02893>.

572 R. Arularasan and R. Velraj. Modeling and simulation of a parallel plate heat sink using computational
573 fluid dynamics. *The International Journal of Advanced Manufacturing Technology*, 51(1):415–419,
574 2010. ISSN 1433-3015. doi: 10.1007/s00170-008-1867-9. URL <https://doi.org/10.1007/s00170-008-1867-9>.

575 Mahsa Baktashmotagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Unsupervised
576 domain adaptation by domain invariant projection. In *Proceedings of the IEEE International*
577 *Conference on Computer Vision and Pattern Recognition*, pp. 769–776, 2013.

578 Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
579 Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
580 Relational inductive biases, deep learning, and graph networks. *arXiv preprint arXiv:1806.01261*,
581 2018.

582 Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
583 domain adaptation. *Advances in neural information processing systems*, 19, 2006.

584 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
585 man Vaughan. A theory of learning from different domains. *Mach. Learn.*, 79(1-2):151–
586 175, 2010. doi: 10.1007/S10994-009-5152-4. URL <https://doi.org/10.1007/s10994-009-5152-4>.

594 Maurits Bleeker, Matthias Dorfer, Tobias Kronlachner, Reinhard Sonnleitner, Benedikt Alkin, and
 595 Johannes Brandstetter. Neuralcfd: Deep learning on high-fidelity automotive aerodynamics
 596 simulations. *CoRR*, abs/2502.09692, 2025. doi: 10.48550/ARXIV.2502.09692. URL <https://doi.org/10.48550/arXiv.2502.09692>.

598 John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, boom-boxes and blenders:
 599 Domain adaptation for sentiment classification. In Annie Zaenen and Antal van den Bosch (eds.),
 600 *Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics*, pp.
 601 440–447, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL
 602 <https://aclanthology.org/P07-1056/>.

603

604 Cristian Bodnar, Wessel P. Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes Brandstetter,
 605 Patrick Garvan, Maik Riechert, Jonathan A. Weyn, Haiyu Dong, Jayesh K. Gupta, Kit Thambiratnam,
 606 Alexander T. Archibald, Chun-Chieh Wu, Elizabeth Heider, Max Welling, Richard E.
 607 Turner, and Paris Perdikaris. A foundation model for the earth system. *Nat.*, 641(8065):1180–
 608 1187, 2025. doi: 10.1038/S41586-025-09005-Y. URL <https://doi.org/10.1038/s41586-025-09005-y>.

609

610 Florent Bonnet, Jocelyn Ahmed Mazari, Paola Cinnella, and Patrick Gallinari. AirfRANS: High
 611 fidelity computational fluid dynamics dataset for approximating reynolds-averaged navier-stokes
 612 solutions. In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and*
 613 *Benchmarks Track*, 2022. URL <https://arxiv.org/abs/2212.07564>.

614

615 Victor Bouvier, Philippe Very, Clément Chastagnol, Myriam Tami, and Céline Hudelot. Robust
 616 domain adaptation: Representations, weights and inductive bias. In Frank Hutter, Kristian
 617 Kersting, Jefrey Lijffijt, and Isabel Valera (eds.), *Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I*, volume 12457 of *Lecture Notes in Computer Science*, pp. 353–377.
 618 Springer, 2020. doi: 10.1007/978-3-030-67658-2_21. URL https://doi.org/10.1007/978-3-030-67658-2_21.

619

620

621

622 Johannes Brandstetter. Envisioning better benchmarks for machine learning pde solvers. *Nature Machine Intelligence*, 7:2–3, January 2025. doi: 10.1038/s42256-024-00962-z. URL <https://doi.org/10.1038/s42256-024-00962-z>. Published online: 13 December 2024.

623

624

625 Steven L. Brunton and J. Nathan Kutz. Machine learning for partial differential equations: Data-driven
 626 discovery, model reduction, and control. *Journal of Computational Dynamics*, 7(2):343–360, 2020.
 627 doi: 10.3934/jcd.2020015.

628

629

630 Timothy A Burruss, Steven L Campbell, Chester Coomer, Curtis William Ayers, Andrew A
 631 Wereszczak, Joseph Philip Cunningham, Laura D Marlino, Larry Eugene Seiber, and Hua-Tay Lin.
 632 Evaluation of the 2010 toyota prius hybrid synergy drive system. Technical report, Oak Ridge
 633 National Lab.(ORNL), Oak Ridge, TN (United States). Power ..., 2011.

634

635 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
 636 and Sungre Park. SWAD: domain generalization by seeking flat minima. In Marc’Aurelio
 637 Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
 638 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp.
 639 22405–22418, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/bcb41ccdc4363c6848a1d760f26c28a0-Abstract.html>.

640

641 David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.
 642 In *Advances in neural information processing systems*, volume 9, pp. 705–712, 1996.

643

644 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
 645 adaptation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(9):1853–1865,
 2017.

646

647 Marius-Constantin Dinu, Markus Holzleitner, Maximilian Beck, Hoan Duc Nguyen, Andrea Huber,
 648 Hamid Eghbal-zadeh, Bernhard Alois Moser, Sergei V. Pereverzyev, Sepp Hochreiter,

648 and Werner Zellinger. Addressing parameter choice issues in unsupervised domain adap-
 649 tation by aggregation. In *The Eleventh International Conference on Learning Representa-*
 650 *tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=M95oDwJXayG>.

651

652 Alexander Dorninger, Simon Weitzhofer, Markus Schörgenhum, Albert Sorgdrager, and Eike
 653 Janssen. Automated mechanical rotor design assessment based on 2d fea results. In *2021 11th*
 654 *International Electric Drives Production Conference (EDPC)*, pp. 1–8, 2021. doi: 10.1109/
 655 EDPC53547.2021.9684221.

656

657 Laurent Dumas. Chapter 1 cfd-based optimization for automotive aerodynamics. 2007. URL
 658 <https://api.semanticscholar.org/CorpusID:601424>.

659

660 Mohamed Elrefaie, Angela Dai, and Faez Ahmed. Drivaernet: A parametric car dataset for data-
 661 driven aerodynamic design and graph-based drag prediction. volume Volume 3A: 50th Design
 662 Automation Conference (DAC) of *International Design Engineering Technical Conferences and*
 663 *Computers and Information in Engineering Conference*, pp. V03AT03A019. Curran Associates,
 664 Inc., 08 2024a. URL <https://doi.org/10.1115/DETC2024-143593>.

665

666 Mohamed Elrefaie, Florin Morar, Angela Dai, and Faez Ahmed. Drivaernet++: A large-scale
 667 multimodal car dataset with computational fluid dynamics simulations and deep learning bench-
 668 marks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomeczak, and C. Zhang
 669 (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 499–536. Curran
 670 Associates, Inc., 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/013cf29a9e68e4411d0593040a8a1eb3-Paper-Datasets_and_Benchmarks_Track.pdf.

671

672 European Union. Artificial intelligence act (eu regulation 2024/1689), article 15: Accuracy, robustness
 673 and cybersecurity. <http://data.europa.eu/eli/reg/2024/1689/oj>, 2024. OJ L,
 674 2024/1689, 12 July 2024.

675

676 Lawrence C. Evans. *Partial Differential Equations*, volume 19 of *Graduate Studies in Mathematics*.
 677 American Mathematical Society, 2nd edition, 2010.

678

679 Luis Fernando Folle, Tiago Nunes Lima, Matheus Passos Sarmento Santos, Bruna Callegari, Bruno
 680 Caetano dos Santos Silva, Luiz Gustavo Souza Zamorano, and Rodrigo Santiago Coelho. A review
 681 on sheet metal forming behavior in high-strength steels and the use of numerical simulations.
 682 *Metals*, 14(12), 2024. ISSN 2075-4701. doi: 10.3390/met14121428. URL <https://www.mdpi.com/2075-4701/14/12/1428>.

683

684 Nicola Rares Franco, Andrea Manzoni, and Paolo Zunino. Mesh-informed neural networks for
 685 operator learning in finite element spaces. *Journal of Scientific Computing*, 97, 2022. URL
 686 <https://api.semanticscholar.org/CorpusID:258547333>.

687

688 Andreas Fürst, Florian Sestak, Artur P. Toshev, Benedikt Alkin, Nikolaus A. Adams, Andreas Mayr,
 689 Günter Klambauer, and Johannes Brandstetter. UPT++: Latent point set neural operators for
 690 modeling system state transitions. In *ICLR 2025 Workshop on Machine Learning Multiscale*
 691 *Processes*, 2025. URL <https://openreview.net/forum?id=u3sEGcYyqw>.

692

693 L.M. Galantucci and L. Tricarico. Thermo-mechanical simulation of a rolling process with an fem
 694 approach. *Journal of Materials Processing Technology*, 92-93:494–501, 1999. ISSN 0924-0136.
 695 doi: [https://doi.org/10.1016/S0924-0136\(99\)00242-3](https://doi.org/10.1016/S0924-0136(99)00242-3). URL <https://www.sciencedirect.com/science/article/pii/S0924013699002423>.

696

697 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Lavi-
 698 olette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks,
 699 2015.

700

701 Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Benchmarking distribution shift in tabular data
 702 with tableshift. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
 703 Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference*
 704 *on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA*,

702 December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a76a757ed479ale6a5f8134bea492f83-Abstract-Datasets_and_Benchmarks.html.

703

704

705 M.E. Gerlach, M. Zajonc, and B. Ponick. Mechanical stress and deformation in the rotors of high-speed pmstm and im. *Elektrotechnik & Informationstechnik*, 138(2):96–109, 2021. doi: 10.1007/s00502-021-00866-5. URL <https://doi.org/10.1007/s00502-021-00866-5>.

706

707

708 Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method for the two-sample-problem. In B. Schölkopf, J. Platt, and T. Hoffman (eds.), *Advances in Neural Information Processing Systems*, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_files/paper/2006/file/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Paper.pdf.

709

710

711 Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling. *arXiv preprint arXiv:2209.15616*, 2022.

712

713

714 N.K. Gupta. *Steel Rolling: Principle, Process & Application*. CRC Press, 2021. ISBN 9781032022161. URL <https://books.google.at/books?id=w1EgzgEACAAJ>.

715

716

717 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

718

719

720 Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel de Bezenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for PDEs. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=JC1VKK3UXk>.

721

722

723 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J. Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and João Carreira. Perceiver IO: A general architecture for structured inputs & outputs. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=fILj7WpI-g>.

724

725

726 Seo Yeon Jo, Seojun Hong, Heung Nam Han, and Myoung-Gyu Lee. Modeling and simulation of steel rolling with microstructure evolution: An overview. *steel research international*, 94(2):2200260, 2023. doi: <https://doi.org/10.1002/srin.202200260>. URL <https://onlinelibrary.wiley.com/doi/10.1002/srin.202200260>.

727

728

729 Fredrik D Johansson, David Sontag, and Rajesh Ranganath. Support and invertibility in domain-invariant representations. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 527–536. PMLR, 2019.

730

731

732 George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021. ISSN 2522-5820. doi: 10.1038/s42254-021-00314-5.

733

734

735 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Sara Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A benchmark of in-the-wild distribution shifts. *CoRR*, abs/2012.07421, 2020. URL <https://arxiv.org/abs/2012.07421>.

736

737

738 Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. *CoRR*, abs/2108.08481, 2021. URL <https://arxiv.org/abs/2108.08481>.

739

740

741 Donald R Lesuer. Experimental investigations of material models for ti-6al-4v titanium and 2024-t3 aluminum. *DOT/FAA/R-00/25*, 2000.

756 Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
 757 Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 758 differential equations. *CoRR*, abs/2010.08895, 2020a. URL <https://arxiv.org/abs/2010.08895>.

760 Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
 761 Andrew M. Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
 762 differential equations. *CoRR*, abs/2003.03485, 2020b.

764 Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash
 765 Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli,
 766 and Anima Anandkumar. Geometry-informed neural operator for large-scale 3d PDEs. In
 767 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=86dXbqT5Ua>.

769 Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash Otta,
 770 Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, and
 771 Anima Anandkumar. Geometry-informed neural operator for large-scale 3d pdes, 2023b. URL
 772 <https://arxiv.org/abs/2309.00583>.

773 Kang Liao, Zongsheng Yue, Zhouxia Wang, and Chen Change Loy. Denoising as adaptation: Noise-
 774 space domain adaptation for image restoration. In *The Thirteenth International Conference on
 775 Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
 776 <https://openreview.net/forum?id=jsBhmOCKYs>.

778 Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard E. Turner, and Johannes Brandstetter.
 779 Pde-refiner: Achieving accurate long rollouts with neural PDE solvers. In Alice Oh, Tris-
 780 tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Ad-
 781 vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 782 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 783 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/d529b943af3dba734f8a7d49efcb6d09-Abstract-Conference.html.

785 Q. Liu and H. Xue. Adversarial spectral kernel matching for unsupervised time series domain
 786 adaptation. *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*,
 787 30, 2021.

788 M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. *Advances in
 789 Neural Information Processing Systems (NeurIPS)*, 31, 2018.

791 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International
 792 Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*.
 793 OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

795 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 796 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 797 *Nature Machine Intelligence*, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL <http://dx.doi.org/10.1038/s42256-021-00302-5>.

799 Xufei Lu, Xin Lin, Michele Chiumenti, Miguel Cervera, JunJie Li, Liang Ma, Lei Wei, Yunlong Hu,
 800 and Weidong Huang. Finite element analysis and experimental validation of the thermomechanical
 801 behavior in laser solid forming of ti-6al-4v. *Additive Manufacturing*, 21:30–40, 2018.

802 Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Significance-aware information bottleneck
 803 for domain adaptive semantic segmentation. In *2019 IEEE/CVF International Conference on
 804 Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019*, pp. 6777–
 805 6786. IEEE, 2019. doi: 10.1109/ICCV.2019.00688. URL <https://doi.org/10.1109/ICCV.2019.00688>.

808 Yining Luo, Yingfa Chen, and Zhen Zhang. Cfdbench: A comprehensive benchmark for machine
 809 learning methods in fluid dynamics. *CoRR*, abs/2310.05963, 2023. doi: 10.48550/ARXIV.2310.
 05963. URL <https://doi.org/10.48550/arXiv.2310.05963>.

810 P. Majumdar. *Simulation of Thermal Systems*, chapter 9, pp. 528–561. John Wiley Sons, Ltd,
 811 2021. ISBN 9781118956922. doi: <https://doi.org/10.1002/9781118956922.ch9>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118956922.ch9>.

813

814 Joaquim R.R.A. Martins. Aerodynamic design optimization: Challenges and perspectives. *Computers and Fluids*, 239:105391, 2022. ISSN 0045-7930. doi: <https://doi.org/10.1016/j.compfluid.2022.105391>. URL <https://www.sciencedirect.com/science/article/pii/S0045793022000615>.

815

816

817 Florian Menter, M. Kuntz, and RB Langtry. Ten years of industrial experience with the sst turbulence
 818 model. *Heat and Mass Transfer*, 4, 01 2003.

819

820 Amil Merchant, Simon L. Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 821 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nat.*, 624(7990):80–85, 2023.
 822 doi: 10.1038/S41586-023-06735-9.

823

824 Daniel Musekamp, Marimuthu Kalimuthu, David Holzmüller, Makoto Takamoto, and Mathias
 825 Niepert. Active learning for neural PDE solvers. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=x4ZmQaumRg>.

826

827 Kevin Musgrave, Serge J. Belongie, and Ser-Nam Lim. Unsupervised domain adaptation: A reality
 828 check. *CoRR*, abs/2111.15672, 2021. URL <https://arxiv.org/abs/2111.15672>.

829

830 Ismail Nejjar, Qin Wang, and Olga Fink. DARE-GRAM : Unsupervised domain adaptation re-
 831 gression by aligning inverse gram matrices. In *IEEE/CVF Conference on Computer Vision and
 832 Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 11744–11754.
 833 IEEE, 2023. doi: 10.1109/CVPR52729.2023.01130. URL <https://doi.org/10.1109/CVPR52729.2023.01130>.

834

835

836 Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina J. Agocs, Miguel Beneitez,
 837 Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond B. Fielding, Daniel Fortunato,
 838 Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich R. Kerswell, Suryanarayana Maddu,
 839 Jonah Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain Watteaux, Bruno
 840 Régaldo-Saint Blancard, François Rozet, Liam H. Parker, Miles Cranmer, and Shirley Ho. The
 841 well: a large-scale collection of diverse physics simulations for machine learning. In A. Globerson,
 842 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural
 843 Information Processing Systems*, volume 37, pp. 44989–45037. Curran Associates, Inc., 2024.
 844 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/4f9a5acd91ac76569f2fe291b1f4772b-Paper-Datasets_and_Benchmarks_Track.pdf.

845

846

847 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on Knowledge
 848 and Data Engineering*, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

849

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 850 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
 851 Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-driven
 852 high-resolution weather model using adaptive fourier neural operators. *CoRR*, abs/2202.11214,
 853 2022. URL <https://arxiv.org/abs/2202.11214>.

854

William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 855 the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4196–4206, 2023. URL
 856 <https://arxiv.org/abs/2212.09748>.

857

Duo Peng, QiuHong Ke, Arulmurugan Ambikapathi, Yasin Yazici, Yinjie Lei, and Jun Liu. Un-
 858 supervised domain adaptation via domain-adaptive diffusion. *IEEE Trans. Image Process.*, 33:
 859 4245–4260, 2024. doi: 10.1109/TIP.2024.3424985. URL <https://doi.org/10.1109/TIP.2024.3424985>.

860

861

Xingchao Peng, Ben Usman, Kuniaki Saito, Neela Kaushik, Judy Hoffman, and Kate Saenko.
 862 Syn2real: A new benchmark for synthetic-to-real visual domain adaptation. *CoRR*, abs/1806.09755,
 863 2018.

864 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 865 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on*
 866 *computer vision*, pp. 1406–1415, 2019.

867

868 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 869 reasoning with a general conditioning layer. In *Proceedings of the Thirty-Second AAAI Conference*
 870 *on Artificial Intelligence (AAAI-18)*, pp. 3942–3951, 2018. URL <https://arxiv.org/abs/1709.07871>.

871

872 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
 873 based simulation with graph networks. *CoRR*, abs/2010.03409, 2020. URL <http://dblp.uni-trier.de/db/journals/corr/corr2010.html#abs-2010-03409>.

874

875 Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
 876 point sets for 3d classification and segmentation. In *2017 IEEE Conference on Computer Vision*
 877 *and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 77–85. IEEE
 878 Computer Society, 2017. doi: 10.1109/CVPR.2017.16. URL <https://doi.org/10.1109/CVPR.2017.16>.

879

880

881 Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. *Dataset*
 882 *Shift in Machine Learning*. The MIT Press, 2009. ISBN 0262170051.

883

884 Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu,
 885 Chee Keong Kwoh, and Xiaoli Li. ADATIME: A benchmarking suite for domain adaptation
 886 on time series data. *CoRR*, abs/2203.08321, 2022. doi: 10.48550/ARXIV.2203.08321. URL
 887 <https://doi.org/10.48550/arXiv.2203.08321>.

888

889 Md Atiqur Rahman, S. M. Mozammil Hasnain, Prabhu Paramasivam, and Abinet Gosaye Ayanie.
 890 Advancing thermal management in electronics: a review of innovative heat sink designs and
 891 optimization techniques. *RSC Adv.*, 14:31291–31319, 2024. doi: 10.1039/D4RA05845C. URL
 892 <http://dx.doi.org/10.1039/D4RA05845C>.

893

894 Zheng Ren, Yongxin Yang, Bingbing Chen, Yaqing Li, Chengzhong Xu, Timothy M Hospedales, and
 895 Tao Wang. A survey of deep active learning. *ACM Computing Surveys (CSUR)*, 54(9):1–36, 2021.

896

897 T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
 898 graph neural networks. *arXiv preprint arXiv:2303.10993*, 2023.

899

900 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 901 graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009.

902

903 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: gen-
 904 eralization bounds and algorithms. In *Proceedings of the International Conference on Machine*
 905 *Learning*, pp. 3076–3085. PMLR, 2017.

906

907 Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
 908 log-likelihood function. *Journal of Statistical Planning and Inference*, 90(2):227–244, 2000.
 909 ISSN 0378-3758. doi: [https://doi.org/10.1016/S0378-3758\(00\)00115-4](https://doi.org/10.1016/S0378-3758(00)00115-4). URL <https://www.sciencedirect.com/science/article/pii/S0378375800001154>.

910

911 Yuxuan Song, Lantao Yu, Zhangjie Cao, Zhiming Zhou, Jian Shen, Shuo Shao, Weinan Zhang, and
 912 Yong Yu. Improving unsupervised domain adaptation with variational information bottleneck. In
 913 Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto
 914 Bugarín, and Jérôme Lang (eds.), *ECAI 2020 - 24th European Conference on Artificial Intelligence*,
 915 *29 August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020*
 916 *- Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020)*,
 917 volume 325 of *Frontiers in Artificial Intelligence and Applications*, pp. 1499–1506. IOS Press,
 918 2020. doi: 10.3233/FAIA200257. URL <https://doi.org/10.3233/FAIA200257>.

919

920 Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by
 921 importance weighted cross validation. *J. Mach. Learn. Res.*, 8:985–1005, 2007a. doi: 10.5555/1314498.1390324. URL <https://dl.acm.org/doi/10.5555/1314498.1390324>.

918 Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, and Motoaki Kawanabe.
919 Direct importance estimation with model selection and its application to covariate shift adaptation.
920 In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis (eds.), *Advances in Neural*
921 *Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural*
922 *Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007*, pp.
923 1433–1440. Curran Associates, Inc., 2007b. URL <https://proceedings.neurips.cc/paper/2007/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract.html>.

925 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation, 2016.
926 URL <https://arxiv.org/abs/1607.01719>.

928 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
929 Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
930 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in*
931 *Neural Information Processing Systems*, volume 35, pp. 1596–1611. Curran Associates, Inc., 2022.
932 URL https://proceedings.neurips.cc/paper_files/paper/2022/file/0a9747136d411fb83f0cf81820d44afb-Paper-Datasets_and_Benchmarks.pdf.

935 A. Erman Tekkaya. State-of-the-art of simulation of sheet metal forming. *Journal of Materials Processing Technology*, 103(1):14–22, 2000. ISSN 0924-0136. doi: [https://doi.org/10.1016/S0924-0136\(00\)00413-1](https://doi.org/10.1016/S0924-0136(00)00413-1). URL <https://www.sciencedirect.com/science/article/pii/S0924013600004131>.

939 David Tellez, Geert Litjens, Péter Bándi, Wouter Bulten, John-Melle Bokhorst, Francesco Ciompi, and
940 Jeroen van der Laak. Quantifying the effects of data augmentation and stain color normalization
941 in convolutional neural networks for computational pathology. *Medical Image Analysis*, 58:
942 101544, 2019. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2019.101544>. URL <https://www.sciencedirect.com/science/article/pii/S1361841519300799>.

945 Artur Toshev, Harish Ramachandran, Jonas A. Erbesdöbler, Gianluca Galletti, Johannes Brand-
946 stetter, and Nikolaus A. Adams. JAX-SPH: A differentiable smoothed particle hydrodynamics
947 framework. In *ICLR 2024 Workshop on AI4DifferentialEquations In Science*, 2024. URL
948 <https://openreview.net/forum?id=8X5PXVmshW>.

949 Artur P. Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus A. Adams. La-
950 grangebench: a lagrangian fluid mechanics benchmarking suite. In *Proceedings of the 37th*
951 *International Conference on Neural Information Processing Systems*, NIPS '23, 2023.

952 Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
953 adaptation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
954 pp. 7167–7176, 2017.

956 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
957 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
958 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
959 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
960 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

962 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
963 hashing network for unsupervised domain adaptation. *CoRR*, abs/1706.07522, 2017. URL
964 <https://arxiv.org/abs/1706.07522>.

965 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent:
966 Fully test-time adaptation by entropy minimization. In *9th International Conference on Learning*
967 *Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL
968 <https://openreview.net/forum?id=uX13bZLkr3c>.

970 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
971 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. *Nature*, 620(7972):47–60, 2023.

972 Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A
 973 fast transformer solver for pdes on general geometries. In *International Conference on Machine*
 974 *Learning*, 2024.

975

976 Jianfei Yang, Hanjie Qian, Yuecong Xu, Kai Wang, and Lihua Xie. Can we evaluate domain adaptation
 977 models without target-domain labels? In *International Conference on Learning Representations*,
 978 2024.

979 Kaichao You, Ximei Wang, Mingsheng Long, and Michael I. Jordan. Towards accurate model
 980 selection in deep unsupervised domain adaptation. In Kamalika Chaudhuri and Ruslan Salakhutdinov
 981 (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019*,
 982 9-15 June 2019, Long Beach, California, USA, volume 97 of *Proceedings of Machine Learning*
 983 *Research*, pp. 7124–7133. PMLR, 2019. URL <http://proceedings.mlr.press/v97/you19a.html>.

984

985 Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne Saminger-
 986 Platz. Central moment discrepancy (cmd) for domain-invariant representation learning, 2019. URL
 987 <https://arxiv.org/abs/1702.08811>.

988

989 Werner Zellinger, Bernhard A Moser, and Susanne Saminger-Platz. On generalization in moment-
 990 based domain adaptation. *Annals of Mathematics and Artificial Intelligence*, 89(3):333–369,
 991 2021a.

992 Werner Zellinger, Natalia Shepeleva, Marius-Constantin Dinu, Hamid Eghbal-zadeh, Hoan Duc
 993 Nguyen, Bernhard Nessler, Sergei V. Pereverzyev, and Bernhard Alois Moser. The balancing
 994 principle for parameter choice in distance-regularized domain adaptation. In Marc’Aurelio
 995 Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
 996 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neu-*
 997 *ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*,
 998 pp. 20798–20811, 2021b. URL <https://proceedings.neurips.cc/paper/2021/hash/ae0909a324fb2530e205e52d40266418-Abstract.html>.

999

1000 Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong
 1001 Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for
 1002 inorganic materials design. *Nature*, pp. 1–3, 2025.

1003

1004 Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
 1005 for domain adaptation. In *Proceedings of the International Conference on Machine Learning*, pp.
 1006 7404–7413, 2019.

1007 Y. Zhu, F. Zhuang, J. Wang, G. Ke, J. Chen, J. Bian, H. Xiong, and Q. He. Deep subdomain adaptation
 1008 network for image classification. *IEEE Transactions on Neural Networks and Learning Systems*,
 1009 32(4):1713–1722, 2021.

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

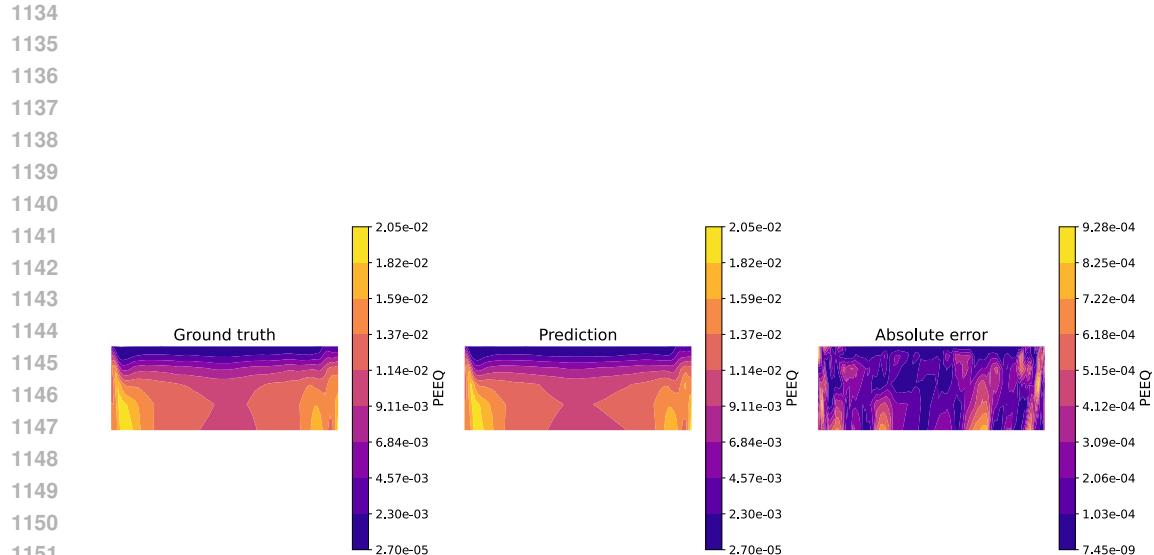
1024

1025

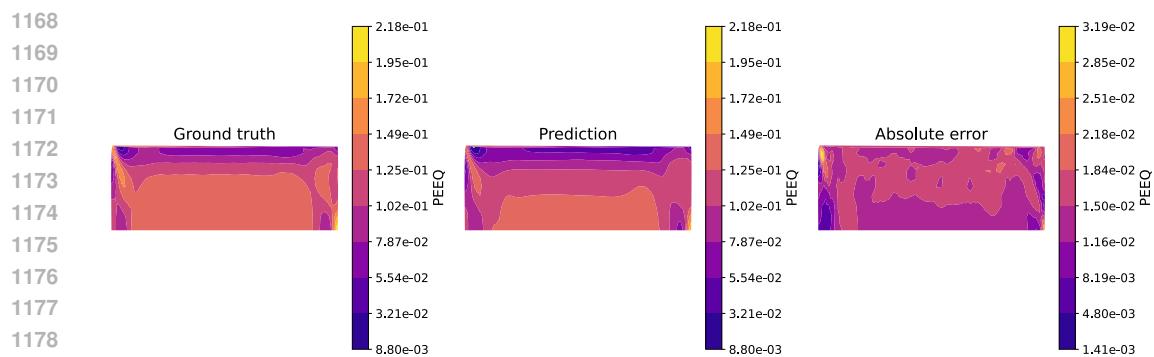
1026 **LLM USAGE DISCLOSURE**
10271028 In general, LLM tools were used to refine writing in parts of the paper. DeepSeek-R1 and GPT-5
1029 were additionally used to make visualizations prettier, speed up the development of plotting functions,
1030 and dump experimental results neatly into latex tabled tables. Beyond that, they were not used to a
1031 significant degree in other parts of the code, as neither Copilot nor Cursor are used by the main author.
1032 AI assistants were strictly editors and decorators, i.e. they were not involved in ideation, reordering
1033 ideas, or at any higher or lower conceptual level.
10341035 **A ON NEURAL OPERATORS**
10361037 One prominent approach in neural surrogate modeling for PDEs is operator learning (Kovachki et al.,
1038 2021; Li et al., 2020a; Lu et al., 2021; Alkin et al., 2024a; Li et al., 2020b). In this setting, an operator
1039 maps input functions, such as boundary or initial conditions, to the corresponding solution of the PDE.
1040 During training, neural operators typically learn from input-output pairs of discretized functions
1041 (Kovachki et al., 2021; Li et al., 2020a; Lu et al., 2021; Alkin et al., 2024a). While some methods
1042 expect regular, grid based inputs (Li et al., 2020a), others can be applied to any kind of data structure
1043 (Alkin et al., 2024a; Li et al., 2020b; 2023b). One notable property is *discretization invariance*, which,
1044 along with the ability to handle irregular data, enables generalization across different resolutions and
1045 mesh geometries. This is a highly desirable property for industrial simulations (Pfaff et al., 2020;
1046 Alkin et al., 2024a; Fürst et al., 2025; Li et al., 2023a; Franco et al., 2022), where non-uniform
1047 meshes are the standard due to the computational and modeling advantages. In this work, we focus on
1048 domain adaptation rather than benchmarking discretization invariance, and include neural surrogates
1049 that may not satisfy this property, such as (Hamilton et al., 2017). Such models have been leveraged
1050 in several large scale industrial contexts, including CFD for automotive (Bleeker et al., 2025) or
1051 Discrete Element Method (DEM) simulations for industrial processes (Alkin et al., 2024b).
10521053 **B DETAILED RESULTS**
10541055 Complementing the summary in Table 3 of the main paper, the following sections present detailed
1056 results for each dataset. For every dataset, we present a complete empirical evaluation of our
1057 benchmark that compares the performance for all combinations of models, UDA algorithms and
1058 model selection strategies across all output fields.
10591060 While these quantitative metrics offer a high level summary of model performance, industry prac-
1061 titioners often need a more fine grained picture to assess the neural surrogate’s capabilities under
1062 distribution shifts. To address this, we include additional analyses and visualizations alongside the
1063 quantitative results. First, we provide error distribution histograms to better illustrate the difficulty of
1064 the domain shift occurring in each dataset. Additionally, we present fringe and scatter plots comparing
1065 model predictions with the respective ground truth numerical solutions.
10661067 **B.1 HOT ROLLING**
10681069 Table 4 presents the complete benchmarking results for the *hot rolling* dataset.
10701071 To gain more insights, we conduct additional analyses on the best performing model, selected based
1072 on having the lowest average normalized target domain error across all fields. Figure 7 shows the
1073 error distribution of this model and clearly highlights the substantial distribution shift between the
1074 source and target domain of the *hot rolling* dataset. Errors in the target domain are noticeably larger,
1075 almost up to an order of magnitude higher than those observed in the source domain.
10761077 To further illustrate the model’s performance, we analyze two representative samples, one from the
1078 source and one from the target domain. Since the most critical field for downstream applications is
1079 PEEQ, we restrict the following analysis on this scalar field only.
10801081 Table 5 presents a summary of the absolute PEEQ prediction errors for the selected source and target
1082 samples. Additionally, Figure 8 and Figure 9 visualize the ground truth, predictions, and absolute
1083 errors for these samples using fringe plots.
1084

Table 4: RMSE (mean \pm std over 4 seeds) on the *hot rolling* dataset at *medium* difficulty. Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm + model selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined and shaded green. Asterisks denote unstable runs ($\geq 10 \times$ the column median).

Model	DA Algorithm	Model Selection	All Fields Normalized Avg (s)			Deformation (mm)			Logarithmic Strain ($\times 10^{-3}$)			Equivalent Plastic Strain ($\times 10^{-2}$)			Mises Stress (MPa)			Relative Custom Error (%)			VM Consistency (%)				
			0.016(+0.000)	0.267(+0.130)	0.025(+0.023)	5.715(+1.567)	0.018(+0.000)	0.097(+0.077)	-0.032(+0.000)	2.110(+0.278)	1.972(+0.278)	10.703(+7.186)	0.011(+0.002)	0.221(+0.020)	0.079(+0.000)	0.046(+0.002)	0.221(+0.020)	0.079(+0.000)	0.046(+0.002)	0.221(+0.020)	0.079(+0.000)	0.046(+0.002)	0.221(+0.020)	0.079(+0.000)	0.046(+0.002)
GraphSAGE	DANN	DEV	0.014(+0.000)	1.171(+0.050)	0.599(+0.051)	17.306(+1.802)	0.018(+0.001)	3.451(+0.176)	0.032(+0.001)	7.296(+0.405)	2.076(+0.405)	110.648(+8.205)	0.047(+0.003)	0.730(+0.022)	0.058(+0.001)	0.080(+0.023)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DANN	IWV	0.014(+0.000)	0.289(+0.147)	0.561(+0.032)	5.359(+1.848)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	1.622(+0.306)	1.992(+0.037)	24.471(+22.223)	0.042(+0.002)	0.183(+0.042)	0.059(+0.001)	0.068(+0.042)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DANN	SB	0.014(+0.000)	0.280(+0.146)	0.573(+0.043)	11.040(+1.761)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	4.310(+3.201)	1.991(+0.040)	0.041(+0.002)	0.046(+0.001)	0.066(+0.041)	0.050(+0.001)	0.055(+0.009)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DANN	TB	0.014(+0.000)	0.293(+0.043)	0.486(+0.043)	1.486(+0.168)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	1.290(+0.221)	2.076(+0.037)	1.971(+0.037)	0.042(+0.002)	0.183(+0.042)	0.059(+0.001)	0.068(+0.042)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	DEV	0.015(+0.001)	1.328(+0.050)	0.613(+0.045)	17.690(+1.402)	0.018(+0.002)	3.584(+0.244)	0.030(+0.001)	7.508(+0.555)	2.143(+0.175)	130.494(+23.292)	0.042(+0.005)	0.779(+0.049)	0.059(+0.001)	0.241(+0.172)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	IWV	0.014(+0.000)	5.227(+0.179)	0.581(+0.026)	0.274(+0.082)	0.018(+0.000)	0.843(+0.195)	0.032(+0.001)	1.759(+0.383)	1.970(+0.035)	18.785(+8.449)	0.043(+0.003)	0.194(+0.043)	0.058(+0.000)	0.057(+0.020)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	SB	0.014(+0.000)	0.280(+0.147)	0.561(+0.032)	5.359(+1.848)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	1.622(+0.306)	1.992(+0.037)	24.471(+22.223)	0.042(+0.002)	0.183(+0.042)	0.059(+0.001)	0.068(+0.042)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	TB	0.014(+0.000)	0.221(+0.007)	0.550(+0.033)	4.407(+0.261)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	1.507(+0.045)	1.992(+0.021)	14.288(+1.040)	0.044(+0.001)	0.167(+0.033)	0.058(+0.001)	0.048(+0.001)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	DEV	0.014(+0.000)	0.022(+0.168)	0.538(+0.018)	15.744(+2.392)	0.018(+0.001)	3.199(+0.500)	0.032(+0.001)	6.573(+1.071)	1.965(+0.035)	86.703(+31.972)	0.042(+0.002)	0.671(+0.111)	0.059(+0.001)	0.156(+0.051)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	IWV	0.014(+0.000)	0.192(+0.029)	0.535(+0.046)	1.274(+0.168)	0.018(+0.000)	0.843(+0.195)	0.032(+0.001)	12.284(+1.191)	1.965(+0.035)	0.042(+0.002)	0.147(+0.022)	0.068(+0.042)	0.050(+0.001)	0.049(+0.001)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	SB	0.014(+0.000)	0.280(+0.147)	0.550(+0.026)	4.082(+0.597)	0.018(+0.000)	0.616(+0.103)	0.032(+0.001)	1.297(+0.221)	2.005(+0.018)	12.384(+1.900)	0.042(+0.000)	0.147(+0.022)	0.058(+0.001)	0.049(+0.001)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	TB	0.014(+0.000)	0.221(+0.007)	0.550(+0.033)	4.407(+0.261)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	1.507(+0.045)	1.992(+0.021)	14.288(+1.040)	0.044(+0.001)	0.167(+0.033)	0.058(+0.001)	0.048(+0.001)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	-	-	0.023(+0.001)	2.240(+0.055)	0.538(+0.018)	11.474(+0.290)	0.026(+0.001)	1.255(+0.165)	0.032(+0.001)	2.519(+0.385)	2.860(+0.188)	27.611(+6.569)	0.057(+0.002)	0.270(+0.049)	0.063(+0.001)	0.056(+0.011)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
PointNet	DANN	DEV	0.020(+0.003)	1.126(+0.130)	0.237(+0.002)	18.207(+0.312)	0.027(+0.001)	3.377(+0.405)	0.052(+0.004)	7.181(+0.218)	1.955(+0.180)	108.747(+6.649)	0.060(+0.003)	0.727(+0.025)	0.064(+0.002)	0.088(+0.020)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DANN	IWV	0.020(+0.003)	0.238(+0.141)	0.561(+0.032)	5.359(+1.848)	0.018(+0.000)	2.982(+0.186)	0.032(+0.001)	1.622(+0.306)	1.992(+0.037)	24.471(+22.223)	0.042(+0.002)	0.183(+0.042)	0.059(+0.001)	0.068(+0.042)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DANN	SB	0.019(+0.000)	0.951(+0.347)	2.239(+0.334)	16.497(+3.331)	0.027(+0.001)	2.906(+1.015)	0.052(+0.003)	6.165(+2.173)	1.986(+0.135)	85.396(+36.553)	0.063(+0.002)	0.632(+0.213)	0.063(+0.000)	0.105(+0.049)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DANN	TB	0.020(+0.003)	0.230(+0.003)	11.137(+0.200)	2.239(+0.022)	0.027(+0.001)	1.902(+0.206)	0.052(+0.002)	2.132(+0.241)	2.084(+0.188)	22.461(+2.073)	0.060(+0.004)	0.240(+0.047)	0.064(+0.001)	0.053(+0.005)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	DEV	0.021(+0.000)	1.880(+0.050)	0.538(+0.026)	17.029(+0.290)	0.026(+0.002)	3.780(+0.227)	0.058(+0.004)	7.279(+0.251)	1.963(+0.037)	12.780(+2.027)	0.076(+0.012)	0.380(+0.066)	0.081(+0.001)	0.107(+0.041)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	IWV	0.019(+0.000)	0.881(+0.440)	2.240(+0.001)	14.879(+0.406)	0.027(+0.001)	2.067(+0.830)	0.051(+0.002)	4.147(+1.607)	2.878(+1.116)	98.547(+57.223)	0.059(+0.006)	0.487(+0.249)	0.062(+0.001)	0.240(+0.083)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	SB	0.019(+0.000)	0.778(+0.452)	2.241(+0.002)	14.879(+0.406)	0.026(+0.001)	1.963(+0.830)	0.051(+0.001)	3.948(+5.429)	2.878(+1.116)	94.934(+55.248)	0.058(+0.003)	0.479(+0.201)	0.062(+0.001)	0.117(+0.121)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	CMD	TB	0.019(+0.000)	0.232(+0.007)	0.550(+0.033)	4.407(+0.261)	0.018(+0.000)	0.792(+0.186)	0.032(+0.001)	1.507(+0.045)	1.986(+0.021)	11.074(+1.420)	0.042(+0.002)	0.183(+0.042)	0.059(+0.001)	0.068(+0.042)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	DEV	0.024(+0.000)	1.122(+0.311)	0.615(+0.399)	16.889(+3.999)	0.037(+0.001)	3.344(+0.794)	0.078(+0.002)	7.127(+1.619)	3.573(+0.097)	107.289(+44.373)	0.085(+0.008)	0.716(+0.151)	0.059(+0.004)	0.119(+0.041)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	IWV	0.024(+0.000)	2.034(+0.317)	0.582(+0.040)	78.602(+30.758)	0.037(+0.002)	4.817(+4.473)	0.078(+0.003)	12.726(+14.421)	3.506(+0.107)	351.111(+53.157)	0.083(+0.007)	0.730(+0.163)	0.062(+0.004)	0.302(+0.046)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	SB	0.024(+0.000)	0.778(+0.452)	2.239(+0.002)	16.889(+3.999)	0.036(+0.002)	2.028(+0.830)	0.078(+0.002)	4.817(+4.473)	2.878(+1.116)	94.934(+55.248)	0.058(+0.003)	0.479(+0.201)	0.062(+0.001)	0.117(+0.121)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	DARE-GRAM	TB	0.024(+0.000)	0.827(+0.112)	0.556(+0.016)	12.936(+1.844)	0.035(+0.002)	2.619(+0.476)	0.070(+0.004)	5.681(+0.082)	3.415(+0.082)	12.308(+11.098)	0.077(+0.004)	0.570(+0.069)	0.063(+0.002)	0.095(+0.020)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)	0.296(+0.020)	0.079(+0.000)	0.046(+0.002)
	Deep Coral	DEV	0.023(+0.000)	3.242(+0.897)	0.596(+0.014)</																				



1152
 1153 Figure 8: Fringe plot of the *hot rolling* dataset (representative source sample). Shown is the ground
 1154 truth (left) and predicted (middle) PEEQ, as well as the absolute error (right).



1180 Figure 9: Fringe plot of the *hot rolling* dataset (representative target sample). Shown is the ground
 1181 truth (left) and predicted (middle) PEEQ, as well as the absolute error (right).

1182
 1183
 1184
 1185
 1186
 1187

1188
1189

B.2 SHEET METAL FORMING

1190
1191
1192

In contrast to the substantial shift observed in the hot rolling dataset, the distribution shift in the *sheet metal forming* dataset is moderate. Table 6 presents the detailed performance across all models, algorithms, and selections for this dataset.

1193
1194
1195
1196
1197

Table 6: RMSE (mean \pm std over 4 seeds) on the *sheet metal forming* dataset at *medium* difficulty. Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm + model selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined and shaded green.

1198

Model	DA	Algorithm	Model	All Fields Normalized Avg (-)			Deformation (mm)			Logarithmic Strain ($\times 10^{-3}$)			Equivalent Plastic Strain ($\times 10^{-3}$)			Mean Stress (MPa)			Rel Custom Error (-)			VM Consistency (-)			Violation Elastic ($\times 10^{-3}$)			Residual Plastic (-)		
				0.020 \pm 0.001	0.226 \pm 0.009	1.039 \pm 0.009	0.021 \pm 0.001	0.021 \pm 0.001	0.021 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001		
GraphSAGE	DANN	DEV	0.050 \pm 0.004	-	1.347 \pm 0.043	16.190 \pm 21.097	0.021 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001		
	DANN	WVN	0.050 \pm 0.003	0.234 \pm 0.008	1.490 \pm 0.075	2.136 \pm 0.082	0.021 \pm 0.002	0.014 \pm 0.002	0.042 \pm 0.003	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009			
	DANN	TD	0.057 \pm 0.003	0.322 \pm 0.010	1.416 \pm 0.053	2.021 \pm 0.156	0.021 \pm 0.001	0.042 \pm 0.001	0.025 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001			
	CMD	DEV	0.050 \pm 0.003	0.234 \pm 0.007	1.490 \pm 0.075	2.136 \pm 0.082	0.021 \pm 0.001	0.017 \pm 0.001	0.042 \pm 0.002	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009	0.020 \pm 0.009				
	CMD	WVN	0.052 \pm 0.003	0.309 \pm 0.008	1.432 \pm 0.024	2.108 \pm 0.266	0.022 \pm 0.000	0.047 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001				
	CMD	TD	0.052 \pm 0.003	0.309 \pm 0.008	1.432 \pm 0.024	2.108 \pm 0.266	0.022 \pm 0.000	0.047 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001				
	Deep Coral	DEV	0.055 \pm 0.004	0.241 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001				
	Deep Coral	WVN	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	TD	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	DEV	0.054 \pm 0.003	0.241 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	WVN	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	TD	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	DEV	0.054 \pm 0.003	0.241 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	WVN	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	TD	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	DEV	0.054 \pm 0.003	0.241 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001					
	Deep Coral	WVN	0.052 \pm 0.003	0.221 \pm 0.008	1.396 \pm 0.129	9.925 \pm 11.711	0.022 \pm 0.000	0.048 \pm 0.001	0.020 \pm 0.001	0.020 \pm 0.001	0.																			

1242
 1243
 1244
 1245
 1246 Table 7: Absolute error of PEEQ predictions for the best and worst samples from the source and
 1247 target domain of the *sheet metal forming* dataset. Lowest value per metric is bold.
 1248

Metric	Source		Target	
	Best	Worst	Best	Worst
Mean	5.47e-05	1.68e-04	1.72e-04	1.86e-03
Std	1.35e-04	3.80e-04	4.52e-04	5.97e-03
Median	1.96e-05	4.35e-05	5.58e-05	2.85e-04
Q ₀₁	2.43e-07	6.52e-07	1.03e-06	6.66e-06
Q ₂₅	7.49e-06	1.84e-05	2.60e-05	1.53e-04
Q ₇₅	4.05e-05	1.05e-04	9.10e-05	4.67e-04
Q ₉₉	7.37e-04	1.96e-03	2.56e-03	3.40e-02

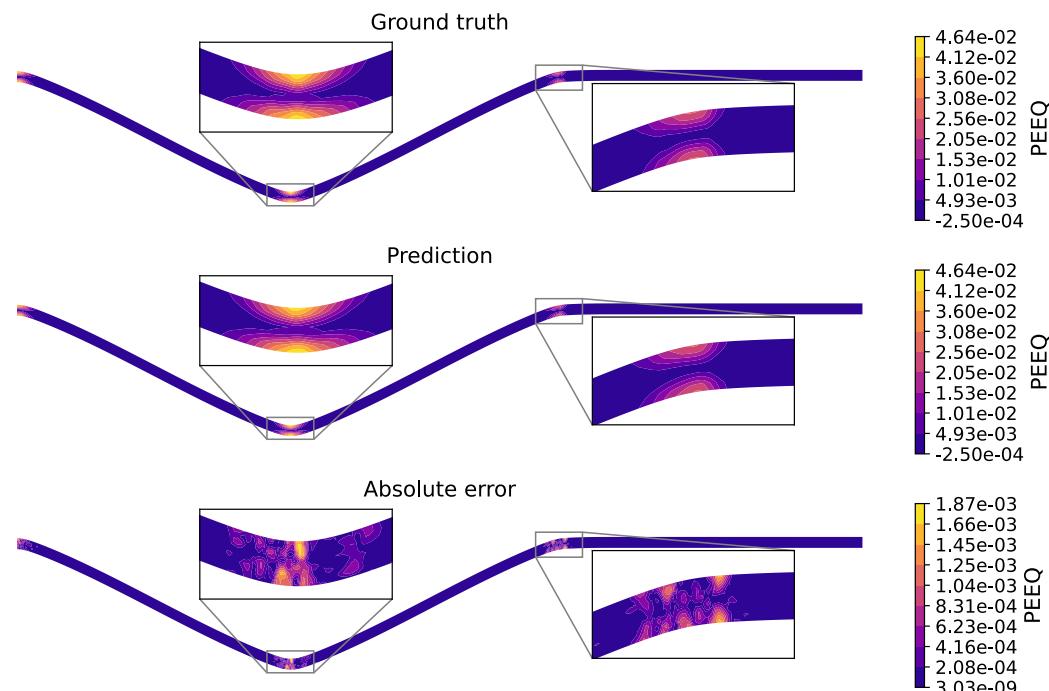
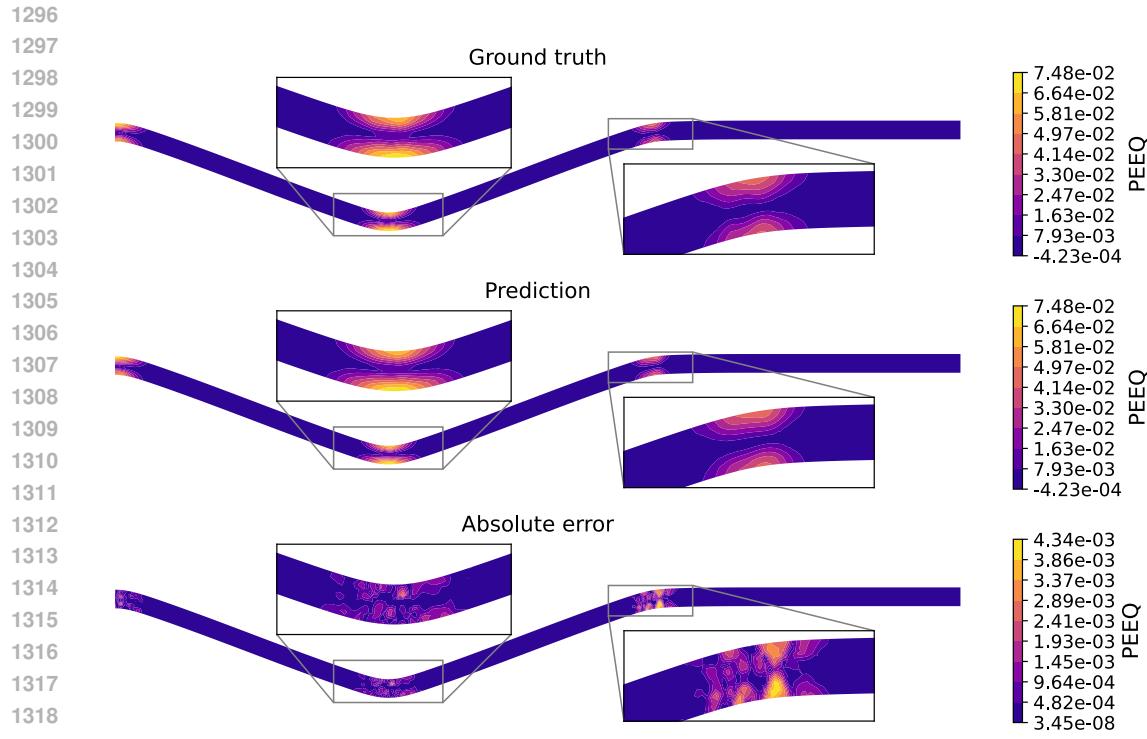
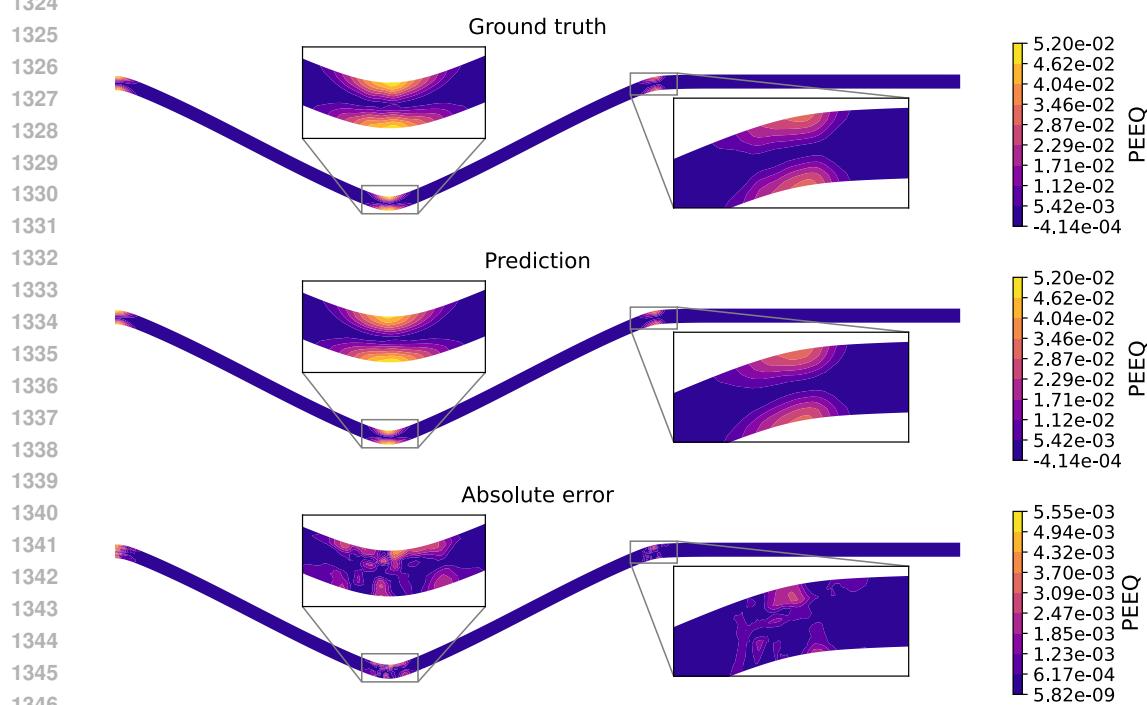


Figure 11: Fringe plot of the *sheet metal forming* dataset (best source sample). Shown is the ground truth (top) and predicted (middle) PEEQ, aswell as the absolute error (bottom).



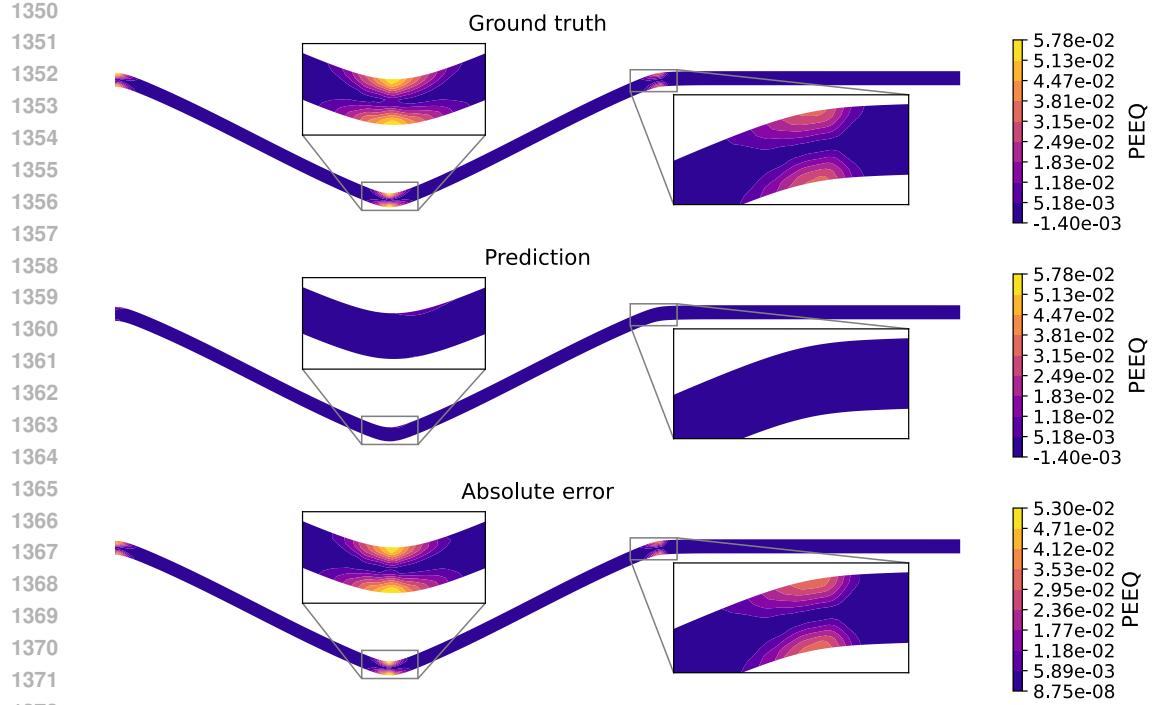


Figure 14: Fringe plot of the *sheet metal forming* dataset (worst target sample). Shown is the ground truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).

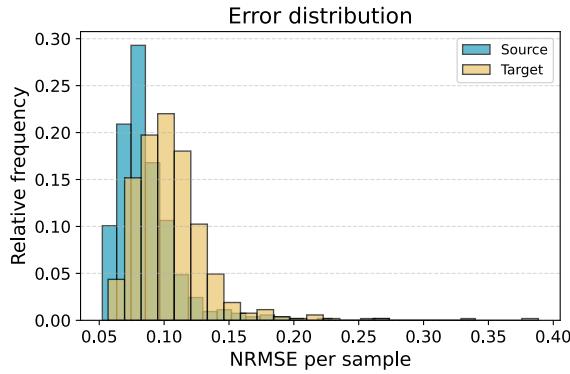
B.3 ELECTRIC MOTOR DESIGN

Table 8 presents the complete benchmarking results for the *electric motor design* dataset. For this dataset the relative degradation in model performance in the target domain is in general smaller than in the previous two presented above.

Table 8: RMSE (mean \pm std over 4 seeds) on the *electric motor design* dataset at *medium* difficulty. Values are target domain errors (lower is better). **Bold** marks the overall best model + UDA algorithm + model selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined and shaded green.

Model	DA Algorithm	Model Selected	All Fields Normalized Avg \pm d	Deformation (m)	Logarithmic Strain ($\times 10^{-3}$)	Principal Strain ($\times 10^{-3}$)	Cauchy Stress (MPa)	Mean Stress (MPa)	Total Strain ($\times 10^{-3}$)	Rel Customer Error (%)	VM Consistency (%)	
			TGT	SRC	TGT	SRC	TGT	SRC	TGT	SRC	TGT	
DANN	DEV	0.317 \pm 0.041	0.375 \pm 0.096	0.0021 \pm 0.001	0.0011 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.430 \pm 0.050	0.026 \pm 0.001	0.021 \pm 0.002
DANN	IWR	0.296 \pm 0.021	0.443 \pm 0.020	0.0021 \pm 0.001	0.0012 \pm 0.001	0.0012 \pm 0.002	0.0008 \pm 0.001	0.0012 \pm 0.002	11.447 \pm 0.778	25.642 \pm 0.162	0.026 \pm 0.001	0.017 \pm 0.002
DANN	SB	0.295 \pm 0.041	0.347 \pm 0.096	0.0021 \pm 0.001	0.0012 \pm 0.001	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.434 \pm 0.050	0.027 \pm 0.001	0.021 \pm 0.002
DANN	TD	0.295 \pm 0.041	0.347 \pm 0.096	0.0021 \pm 0.001	0.0012 \pm 0.001	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.400 \pm 0.053	0.031 \pm 0.017	0.021 \pm 0.001
CMD	DEV	0.298 \pm 0.013	0.405 \pm 0.056	0.0021 \pm 0.000	0.0012 \pm 0.001	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.473 \pm 0.048	0.032 \pm 0.031	0.020 \pm 0.003
CMD	SB	0.304 \pm 0.014	0.405 \pm 0.056	0.0021 \pm 0.000	0.0012 \pm 0.001	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.431 \pm 0.048	0.032 \pm 0.031	0.020 \pm 0.002
CMD	TD	0.295 \pm 0.009	0.346 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.430 \pm 0.050	0.027 \pm 0.001	0.021 \pm 0.002
Dense-GRAM	DEV	0.288 \pm 0.003	0.346 \pm 0.094	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.432 \pm 0.050	0.027 \pm 0.001	0.021 \pm 0.002
Dense-GRAM	IWR	0.288 \pm 0.003	0.346 \pm 0.094	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.432 \pm 0.050	0.027 \pm 0.001	0.021 \pm 0.002
Dense-GRAM	SB	0.288 \pm 0.003	0.342 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.466 \pm 0.050	0.029 \pm 0.001	0.021 \pm 0.002
Dense-GRAM	TD	0.288 \pm 0.003	0.342 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.349 \pm 0.023	0.027 \pm 0.001	0.020 \pm 0.002
Deep Conv.	DEV	0.1201 \pm 0.001	0.358 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.472 \pm 0.048	0.032 \pm 0.031	0.020 \pm 0.003
Deep Conv.	SB	0.1201 \pm 0.001	0.358 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.452 \pm 0.048	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	TD	0.1201 \pm 0.001	0.358 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.424 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	IWR	0.1201 \pm 0.001	0.358 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.427 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	TD	0.1201 \pm 0.001	0.358 \pm 0.095	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.420 \pm 0.049	0.034 \pm 0.032	0.020 \pm 0.002
PointNet	DEV	0.319 \pm 0.001	0.405 \pm 0.056	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.457 \pm 0.049	0.034 \pm 0.034	0.020 \pm 0.002
PointNet	IWR	0.319 \pm 0.001	0.405 \pm 0.056	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.457 \pm 0.049	0.034 \pm 0.034	0.020 \pm 0.002
PointNet	SB	0.319 \pm 0.001	0.405 \pm 0.056	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.457 \pm 0.049	0.034 \pm 0.034	0.020 \pm 0.002
PointNet	TD	0.319 \pm 0.001	0.405 \pm 0.056	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.457 \pm 0.049	0.034 \pm 0.034	0.020 \pm 0.002
DANN	DEV	0.297 \pm 0.048	0.472 \pm 0.075	0.0021 \pm 0.001	0.0012 \pm 0.002	0.0007 \pm 0.001	0.012 \pm 0.002	10.412 \pm 1.731	17.591 \pm 3.004	22.771 \pm 0.572	41.444 \pm 0.245	0.027 \pm 0.005
DANN	IWR	0.284 \pm 0.051	0.443 \pm 0.091	0.0021 \pm 0.001	0.0012 \pm 0.001	0.0007 \pm 0.001	0.012 \pm 0.002	16.412 \pm 0.513	26.760 \pm 8.960	0.027 \pm 0.001	0.021 \pm 0.002	0.021 \pm 0.002
DANN	SB	0.284 \pm 0.051	0.443 \pm 0.091	0.0021 \pm 0.001	0.0012 \pm 0.001	0.0007 \pm 0.001	0.012 \pm 0.002	10.308 \pm 1.757	16.412 \pm 0.513	0.027 \pm 0.001	0.021 \pm 0.002	0.021 \pm 0.002
DANN	TD	0.284 \pm 0.051	0.443 \pm 0.091	0.0021 \pm 0.001	0.0012 \pm 0.001	0.0007 \pm 0.001	0.012 \pm 0.002	10.130 \pm 1.791	12.476 \pm 1.041	22.144 \pm 4.215	26.391 \pm 3.982	0.027 \pm 0.001
Dense-GRAM	DEV	0.288 \pm 0.045	0.353 \pm 0.073	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.431 \pm 0.050	0.032 \pm 0.031	0.020 \pm 0.002
Dense-GRAM	IWR	0.288 \pm 0.045	0.353 \pm 0.073	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.432 \pm 0.050	0.032 \pm 0.031	0.020 \pm 0.002
Dense-GRAM	SB	0.288 \pm 0.045	0.353 \pm 0.073	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.432 \pm 0.050	0.032 \pm 0.031	0.020 \pm 0.002
Dense-GRAM	TD	0.288 \pm 0.045	0.353 \pm 0.073	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.0008 \pm 0.000	0.432 \pm 0.050	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	DEV	0.2508 \pm 0.017	0.320 \pm 0.017	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0007 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.486 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	IWR	0.2508 \pm 0.017	0.320 \pm 0.017	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0007 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.486 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	SB	0.2508 \pm 0.017	0.320 \pm 0.017	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0007 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.486 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	TD	0.2508 \pm 0.017	0.320 \pm 0.017	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0007 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.486 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	IWR	0.2508 \pm 0.017	0.320 \pm 0.017	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0007 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.486 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
Deep Conv.	TD	0.2508 \pm 0.017	0.320 \pm 0.017	0.0021 \pm 0.000	0.0012 \pm 0.000	0.0007 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.486 \pm 0.047	0.032 \pm 0.031	0.020 \pm 0.002
DANN	DEV	0.0852 \pm 0.001	0.116 \pm 0.006	0.0021 \pm 0.001	0.0012 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.111 \pm 0.009	0.006 \pm 0.001	0.016 \pm 0.001
DANN	IWR	0.0852 \pm 0.001	0.116 \pm 0.004	0.0021 \pm 0.001	0.0012 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.0006 \pm 0.000	0.111 \pm 0.009	0.006 \pm 0.001	0.016 \pm 0.001
DANN	SB	0.0852 \pm 0.001	0.116 \pm 0.004									

1404
 1405 To assess the effect of the domain shift on prediction accuracy in the *electric motor design* dataset
 1406 further, Figure 15 shows the distribution of NRMSEs for the best performing model, selected by
 1407 lowest average error in the target domain, in the source and target domain.



1420
 1421 Figure 15: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
 1422 and target (yellow) domains in the *electric motor design* dataset. Bar height indicates the relative
 1423 frequency of samples within each bin.

1424 In this task, the Mises stress is used as a scalar summary of the multi-axial stress state and is
 1425 particularly interesting for downstream analysis and optimization. We therefore focus our closer
 1426 inspection on this field.

1427 Table 9 presents a comparison of absolute Mises stress errors for the best and worst samples from
 1428 both the source and target test sets. The corresponding fringe plots are shown in Figures 16 to 19,
 1429 comparing the ground truth and predicted fields alongside their absolute errors. They show that the
 1430 best samples are predicted very well, whereas the worst sample of the source domain visually appears
 1431 slightly worse than the one of the target domain. On average, however, it is still predicted more
 1432 accurately than the worst sample of the target domain, as shown in Table 9.

1434 Table 9: Absolute error (MPa) of Mises stress predictions for the best and worst samples from the
 1435 source and target domain of the *electric motor design* dataset. Lowest value per metric is bold.

Metric	Source		Target	
	Best	Worst	Best	Worst
Mean	2.00	20.50	2.67	23.21
Std	2.73	39.50	3.13	23.32
Median	1.26	13.63	1.68	13.09
Q_{01}	0.02	0.18	0.03	0.11
Q_{25}	0.60	5.08	0.75	2.87
Q_{75}	2.24	24.05	3.50	41.97
Q_{99}	13.43	140.17	15.05	78.28

1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

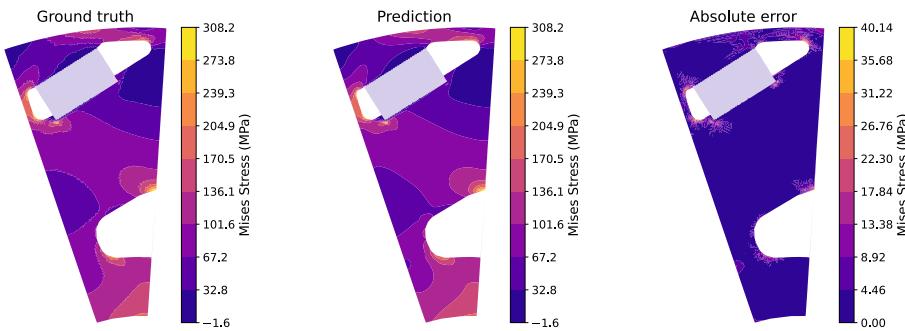


Figure 16: Fringe plot of the *electric motor design* dataset (best source sample). Shown is the ground truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).

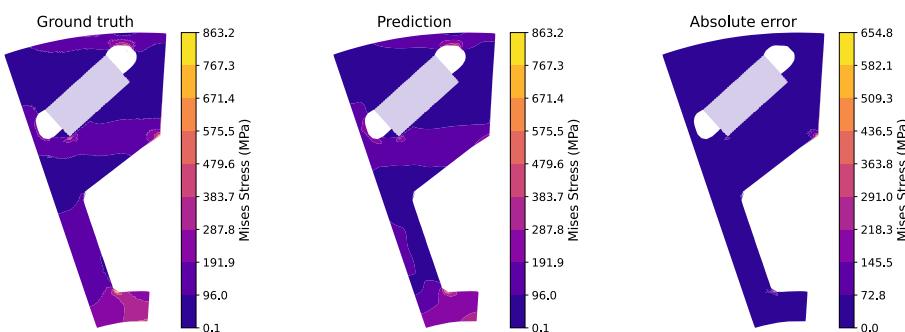


Figure 17: Fringe plot of the *electric motor design* dataset (worst source sample). Shown is the ground truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).

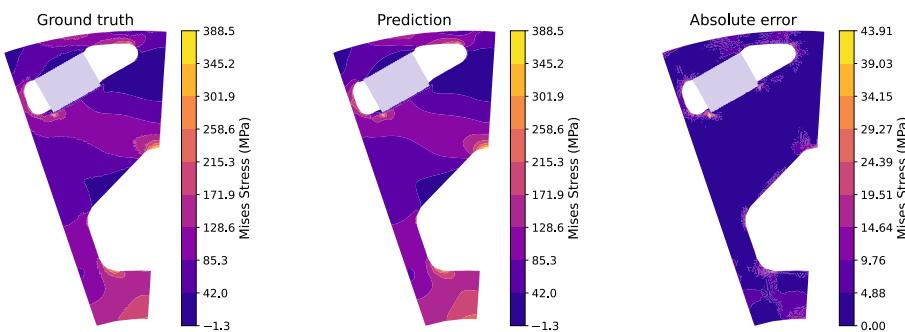


Figure 18: Fringe plot of the *electric motor design* dataset (best target sample). Shown is the ground truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

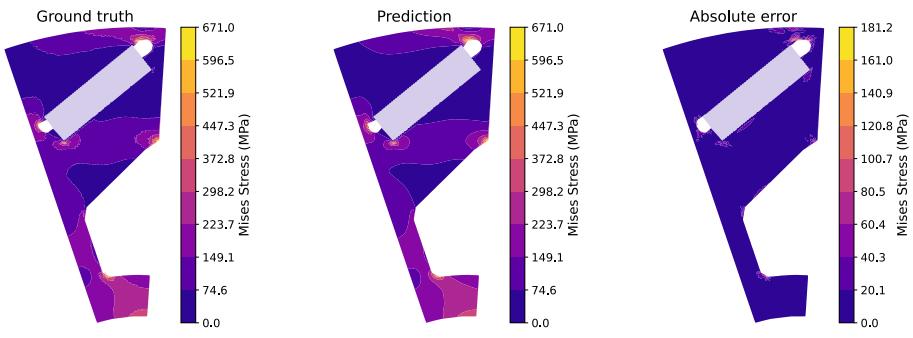


Figure 19: Fringe plot of the *electric motor design* dataset (worst target sample). Shown is the ground truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).

B.4 HEATSINK DESIGN

Table 10 presents the complete benchmarking results for the *heatsink design* dataset.

Table 10: RMSE (mean \pm std over 4 seeds) on the *heatsink* dataset at *medium* difficulty. Values are target domain errors (lower is better). **Bold** marks the overall best model + UDA algorithm + model selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined and shaded green.

Model	DA Algorithm	Model Selection	All Fields Normalized Avg (•)			Temperature (K)		Velocity (m/s)		Pressure (kPa)		Rel Custom Error (•)		BC Violation Temperature (•)		BC Violation Velocity (m/s)	
			SRC	TGT	•	SRC	TGT	•	SRC	TGT	•	SRC	TGT	•	SRC	TGT	•
PointNet	-	-	0.525 \pm 0.020	0.568 \pm 0.030	0.250 \pm 0.020	12.078 \pm 1.555	19.408 \pm 3.391	0.042 \pm 0.009	0.047 \pm 0.007	811.988 \pm 102.338	199.070 \pm 1.359	0.206 \pm 0.009	0.257 \pm 0.020	0.265 \pm 0.020	0.105 \pm 0.007	0.110 \pm 0.008	
	DANN	DEV	0.330 \pm 0.101	0.442 \pm 0.050	0.054 \pm 0.002	0.044 \pm 0.001	0.042 \pm 0.001	258.245 \pm 14.177	246.476 \pm 1.377	0.050 \pm 0.009	385.062 \pm 34.377	187.920 \pm 2.239	0.050 \pm 0.009	0.257 \pm 0.020	0.265 \pm 0.020	0.105 \pm 0.007	0.110 \pm 0.008
	DANN	IVW	0.228 \pm 0.020	0.349 \pm 0.020	0.031 \pm 0.002	0.031 \pm 0.002	0.031 \pm 0.002	20.129 \pm 0.380	20.129 \pm 0.380	0.010 \pm 0.002	207.063 \pm 13.650	20.129 \pm 0.380	0.010 \pm 0.002	0.240 \pm 0.020	0.240 \pm 0.020	0.128 \pm 0.007	
	DANN	TB	0.304 \pm 0.036	0.370 \pm 0.019	0.106 \pm 0.013	0.101 \pm 0.001	0.043 \pm 0.001	321.307 \pm 140.774	190.673 \pm 2.322	0.150	0.029 \pm 0.006	0.158 \pm 0.027	0.211 \pm 0.021	0.069 \pm 0.011	0.114 \pm 0.010		
	CMD	DEV	0.424 \pm 0.003	0.443 \pm 0.003	0.042 \pm 0.001	0.042 \pm 0.001	0.042 \pm 0.001	258.245 \pm 14.177	246.476 \pm 1.377	0.042 \pm 0.000	0.048 \pm 0.001	0.272 \pm 0.002	0.286 \pm 0.000	0.089 \pm 0.002	0.109 \pm 0.003		
	CMD	IVW	0.228 \pm 0.020	0.349 \pm 0.020	0.031 \pm 0.002	0.031 \pm 0.002	0.031 \pm 0.002	20.129 \pm 0.380	20.129 \pm 0.380	0.010 \pm 0.002	207.063 \pm 13.650	20.129 \pm 0.380	0.010 \pm 0.002	0.240 \pm 0.020	0.240 \pm 0.020	0.128 \pm 0.007	
	CMD	TB	0.302 \pm 0.086	0.442 \pm 0.018	0.181 \pm 0.078	0.037 \pm 0.004	0.046 \pm 0.004	756.393 \pm 1076.860	228.916 \pm 14.062	0.021 \pm 0.014	0.036 \pm 0.009	0.150 \pm 0.087	0.234 \pm 0.033	0.068 \pm 0.014	0.121 \pm 0.010		
	DARE-GRAM	DEV	0.219 \pm 0.009	0.235 \pm 0.027	0.061 \pm 0.003	0.030 \pm 0.001	0.040 \pm 0.003	201.857 \pm 6.192	147.438 \pm 3.372	0.009 \pm 0.001	0.052 \pm 0.030	0.210 \pm 0.022	0.208 \pm 0.008	0.122 \pm 0.007			
	DARE-GRAM	IVW	0.214 \pm 0.003	0.234 \pm 0.027	0.061 \pm 0.002	0.029 \pm 0.000	0.040 \pm 0.000	200.788 \pm 7.351	140.188 \pm 2.357	0.009 \pm 0.000	0.051 \pm 0.002	0.049 \pm 0.003	0.215 \pm 0.016	0.058 \pm 0.002	0.121 \pm 0.007		
	DARE-GRAM	TB	0.218 \pm 0.027	0.268 \pm 0.027	6.155 \pm 0.662	12.800 \pm 1.537	0.024 \pm 0.001	0.042 \pm 0.003	0.022 \pm 0.012	129.019 \pm 2.128	0.009 \pm 0.001	0.018 \pm 0.002	0.042 \pm 0.013	0.121 \pm 0.007			
DARE-GRAM	DEV	0.219 \pm 0.009	0.235 \pm 0.027	0.061 \pm 0.003	0.030 \pm 0.001	0.040 \pm 0.003	201.857 \pm 6.192	147.438 \pm 3.372	0.009 \pm 0.001	0.051 \pm 0.030	0.210 \pm 0.022	0.208 \pm 0.008	0.122 \pm 0.007				
	DARE-GRAM	IVW	0.214 \pm 0.003	0.234 \pm 0.027	0.061 \pm 0.002	0.029 \pm 0.000	0.040 \pm 0.000	200.788 \pm 7.351	140.188 \pm 2.357	0.009 \pm 0.000	0.051 \pm 0.002	0.049 \pm 0.003	0.215 \pm 0.016	0.058 \pm 0.002	0.121 \pm 0.007		
	DARE-GRAM	TB	0.218 \pm 0.027	0.268 \pm 0.027	6.155 \pm 0.662	12.800 \pm 1.537	0.024 \pm 0.001	0.042 \pm 0.003	0.022 \pm 0.012	129.019 \pm 2.128	0.009 \pm 0.001	0.018 \pm 0.002	0.042 \pm 0.013	0.121 \pm 0.007			
	Deep Coral	DEV	0.270 \pm 0.003	0.294 \pm 0.003	0.071 \pm 0.003	0.027 \pm 0.000	0.044 \pm 0.000	224.078 \pm 5.452	103.767 \pm 5.717	0.016 \pm 0.008	0.031 \pm 0.004	0.117 \pm 0.067	0.276 \pm 0.024	0.070 \pm 0.029	0.112 \pm 0.010		
	Deep Coral	IVW	0.270 \pm 0.003	0.294 \pm 0.003	0.071 \pm 0.003	0.027 \pm 0.000	0.044 \pm 0.000	224.078 \pm 5.452	103.767 \pm 5.717	0.016 \pm 0.008	0.031 \pm 0.004	0.117 \pm 0.067	0.276 \pm 0.024	0.070 \pm 0.029	0.112 \pm 0.010		
	Deep Coral	TB	0.270 \pm 0.003	0.294 \pm 0.003	0.071 \pm 0.003	0.027 \pm 0.000	0.044 \pm 0.000	224.078 \pm 5.452	103.767 \pm 5.717	0.016 \pm 0.008	0.031 \pm 0.004	0.117 \pm 0.067	0.276 \pm 0.024	0.070 \pm 0.029	0.112 \pm 0.010		
	Deep Coral	DEV	0.245 \pm 0.004	0.246 \pm 0.004	0.071 \pm 0.004	0.024 \pm 0.000	0.048 \pm 0.000	207.197 \pm 4.372	106.616 \pm 2.365	0.007 \pm 0.000	0.052 \pm 0.002	0.087 \pm 0.007	0.221 \pm 0.002	0.076 \pm 0.004			
	Deep Coral	IVW	0.182 \pm 0.001	0.246 \pm 0.002	0.071 \pm 0.001	0.024 \pm 0.000	0.048 \pm 0.000	207.197 \pm 4.372	106.616 \pm 2.365	0.007 \pm 0.000	0.052 \pm 0.002	0.087 \pm 0.007	0.221 \pm 0.002	0.076 \pm 0.004			
	Deep Coral	TB	0.181 \pm 0.001	0.246 \pm 0.002	0.071 \pm 0.001	0.024 \pm 0.000	0.048 \pm 0.000	207.197 \pm 4.372	106.616 \pm 2.365	0.007 \pm 0.000	0.052 \pm 0.002	0.087 \pm 0.007	0.221 \pm 0.002	0.076 \pm 0.004			
Transducer	DEV	0.181 \pm 0.001	0.346 \pm 0.006	0.071 \pm 0.011	0.021 \pm 0.007	0.040 \pm 0.000	292.277 \pm 21.590	172.533 \pm 1.341	0.007 \pm 0.003	0.034 \pm 0.002	0.173 \pm 0.013	0.223 \pm 0.040	0.096 \pm 0.014	0.116 \pm 0.006			
	DANN	DEV	0.213 \pm 0.056	0.250 \pm 0.023	5.905 \pm 0.938	14.712 \pm 1.183	0.028 \pm 0.007	0.047 \pm 0.004	274.272 \pm 9.637	164.538 \pm 1.429	0.011 \pm 0.006	0.023 \pm 0.002	0.067 \pm 0.060	0.204 \pm 0.007	0.096 \pm 0.027	0.128 \pm 0.005	
	DANN	IVW	0.182 \pm 0.002	0.242 \pm 0.015	4.335 \pm 0.773	13.596 \pm 1.133	0.024 \pm 0.003	0.047 \pm 0.002	294.820 \pm 24.069	160.219 \pm 4.465	0.011 \pm 0.006	0.023 \pm 0.002	0.052 \pm 0.050	0.202 \pm 0.007	0.131 \pm 0.002		
	DANN	TB	0.182 \pm 0.002	0.242 \pm 0.015	4.335 \pm 0.773	13.596 \pm 1.133	0.024 \pm 0.003	0.047 \pm 0.002	294.820 \pm 24.069	160.219 \pm 4.465	0.011 \pm 0.006	0.023 \pm 0.002	0.052 \pm 0.050	0.202 \pm 0.007	0.131 \pm 0.002		
	DARE-GRAM	DEV	0.181 \pm 0.003	0.233 \pm 0.006	0.071 \pm 0.011	0.021 \pm 0.007	0.040 \pm 0.000	292.277 \pm 21.590	172.533 \pm 1.341	0.007 \pm 0.003	0.034 \pm 0.002	0.173 \pm 0.013	0.224 \pm 0.040	0.097 \pm 0.014	0.117 \pm 0.006		
	DARE-GRAM	IVW	0.181 \pm 0.003	0.233 \pm 0.006	0.071 \pm 0.011	0.021 \pm 0.007	0.040 \pm 0.000	294.820 \pm 24.069	160.219 \pm 4.465	0.007 \pm 0.003	0.034 \pm 0.002	0.174 \pm 0.013	0.224 \pm 0.040	0.097 \pm 0.014	0.117 \pm 0.006		
	DARE-GRAM	TB	0.182 \pm 0.003	0.233 \pm 0.006	0.071 \pm 0.011	0.021 \pm 0.007	0.040 \pm 0.000	294.820 \pm 24.069	160.219 \pm 4.465	0.007 \pm 0.003	0.034 \pm 0.002	0.174 \pm 0.013	0.224 \pm 0.040	0.097 \pm 0.014	0.117 \pm 0.006		
	Deep Coral	DEV	0.181 \pm 0.001	0.318 \pm 0.007	0.071 \pm 0.013	0.021 \pm 0.007	0.030 \pm 0.000	237.336 \pm 17.218	103.767 \pm 5.717	0.006 \pm 0.003	0.031 \pm 0.002	0.174 \pm 0.013	0.225 \pm 0.040	0.097 \pm 0.014	0.117 \pm 0.006		
	Deep Coral	IVW	0.182 \pm 0.001	0.318 \pm 0.007	0.071 \pm 0.013	0.021 \pm 0.007	0.030 \pm 0.000	237.336 \pm 17.218	103.767 \pm 5.717	0.006 \pm 0.003	0.031 \pm 0.002	0.174 \pm 0.013	0.225 \pm 0.040	0.097 \pm 0.014	0.117 \pm 0.006		
	Deep Coral	TB	0.182 \pm 0.001	0.318 \pm 0.007	0.071 \pm 0.013	0.021 \pm 0.007	0.030 \pm 0.000	237.336 \pm 17.218	103.767 \pm 5.717	0.006 \pm 0.003	0.031 \pm 0.002	0.174 \pm 0.013	0.225 \pm 0.040	0.097 \pm 0.014	0.117 \pm 0.006		
UPT	DEV	0.181 \pm 0.011	0.446 \pm 0.026	4.651 \pm 0.781	15.589 \pm 1.308	0.026 \pm 0.002	0.046 \pm 0.003	229.986 \pm 13.096	120.457 \pm 2.902	0.007 \pm 0.004	0.024 \pm 0.003	0.084 \pm 0.014	0.221 \pm 0.043	0.092 \pm 0.014	0.122 \pm 0.003		
	DANN	DEV	0.181 \pm 0.009	0.447 \pm 0.026	4.651 \pm 0.781	15.589 \pm 1.308	0.026 \pm 0.002	0.046 \pm 0.003	229.986 \pm 13.096	120.457 \pm 2.902	0.007 \pm 0.004	0.024 \pm 0.003	0.084 \pm 0.014	0.221 \pm 0.043	0.092 \pm 0.014		
	DANN	IVW	0.181 \pm 0.009	0.448 \pm 0.026	4.650 \pm 0.781</												

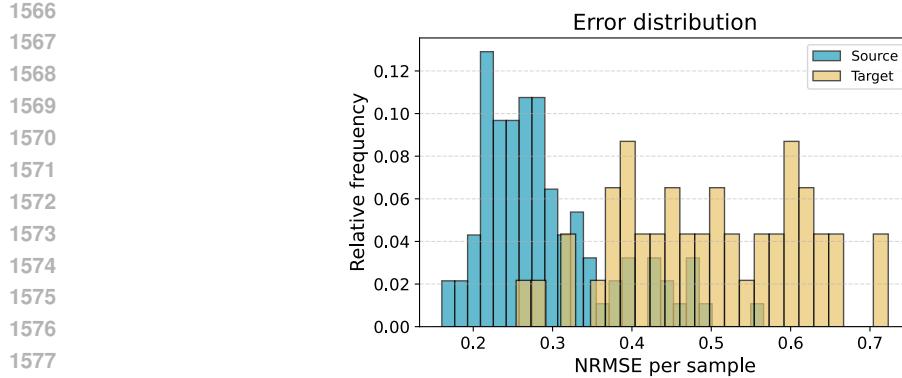


Figure 20: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue) and target (yellow) domains in the *heatsink design* dataset. Bar height indicates the relative frequency of samples within each bin.

Table 11 compares the absolute temperature prediction errors for the best and worst samples from both the source and target test sets. The corresponding scatter plots are shown in Figures 21 to 24, comparing the ground truth and predicted temperature fields, alongside their absolute errors.

While the best source domain prediction is quite accurate, with low average and percentile errors (Table 11, Figure 21), the 99th percentile of the worst source domain prediction reaches up to 29K. Given a total temperature range of 100K, this represents a relative error of nearly 30%. The worst target domain prediction is even less accurate, showing substantial visual and quantitative deviations from the ground truth (Table 11, Figure 24).

Table 11: Absolute error (K) of temperature predictions for the best and worst samples in the source and target domain of the *heatsink design* dataset. Lowest value per metric is bold.

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605

Metric	Source		Target	
	Best	Worst	Best	Worst
Mean	1.84e+00	5.79e+00	2.23e+00	1.42e+01
Std	1.94e+00	5.90e+00	2.85e+00	1.46e+01
Median	1.25e+00	4.06e+00	1.31e+00	8.84e+00
Q ₀₁	2.17e-02	7.51e-02	2.41e-02	1.62e-01
Q ₂₅	5.49e-01	1.92e+00	5.95e-01	4.49e+00
Q ₇₅	2.44e+00	7.48e+00	2.68e+00	1.87e+01
Q ₉₉	9.26e+00	2.88e+01	1.49e+01	6.61e+01

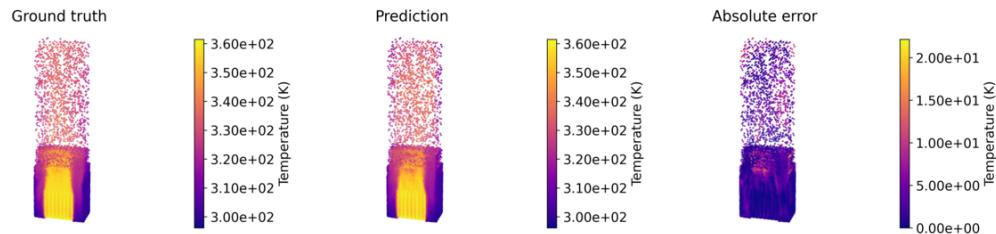
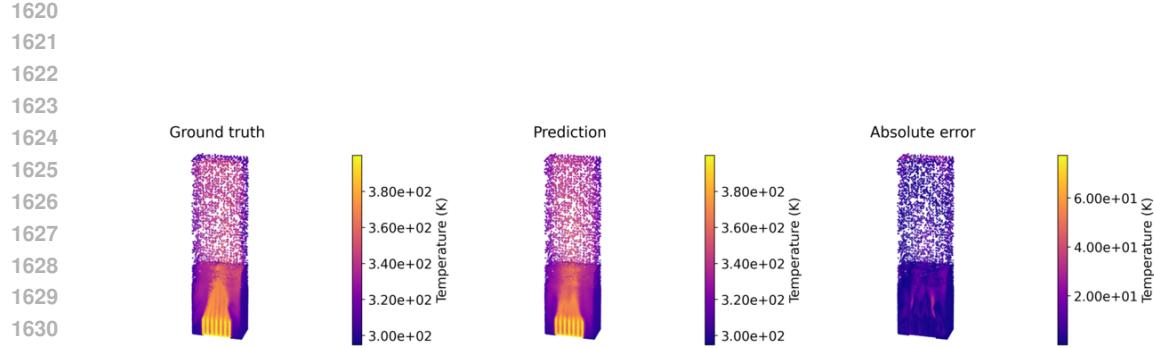
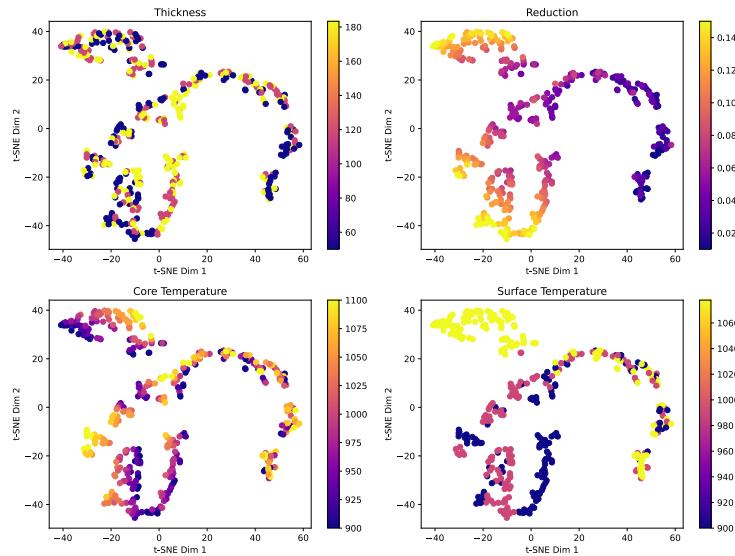
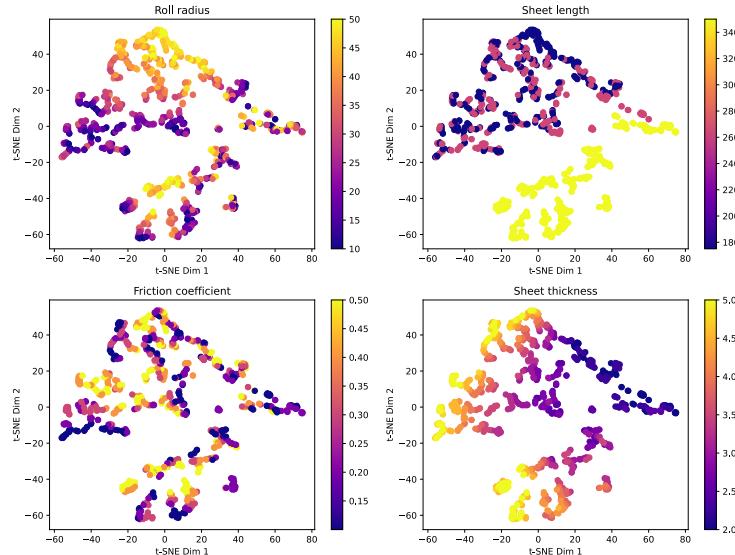


Figure 21: Sliced scatter plot of the *heatsink design* dataset (best source sample). Shown is the ground truth (left) and predicted (middle) temperature field, as well as the absolute error (right).



1674
1675 C DISTRIBUTION SHIFTS
16761677 To gain more insights into the parameter importance besides the domain experts' opinion, we visualize
1678 the latent space of the conditioning network for all presented datasets in Figures 25 to 28.
16791697
1698 Figure 25: T-SNE visualization of the conditioning vectors for the *hot rolling* dataset. Point color
1699 indicates the magnitude of the respective parameter. While the slab thickness t appears to be uniformly
1700 distributed, the remaining three exhibit distinct clustering patterns. Taking into account domain
1701 knowledge from industry experts, we defined the reduction parameter r as the basis for constructing
1702 distribution shifts.
17031722
1723 Figure 26: T-SNE visualization of the conditioning vectors for the *sheet metal forming* dataset. Point
1724 color indicates the magnitude of the respective parameter. The sheet length l shows the most distinct
1725 groupings, but with only three discrete values, it is unsuitable for defining domain splits. The friction
1726 coefficient μ appears uniformly distributed across the embedding. In contrast, sheet thickness t
1727 and roll radius r show clustering behavior, making them more appropriate candidates for inducing
1728 distribution shifts. We choose t as the domain defining parameter.
1729

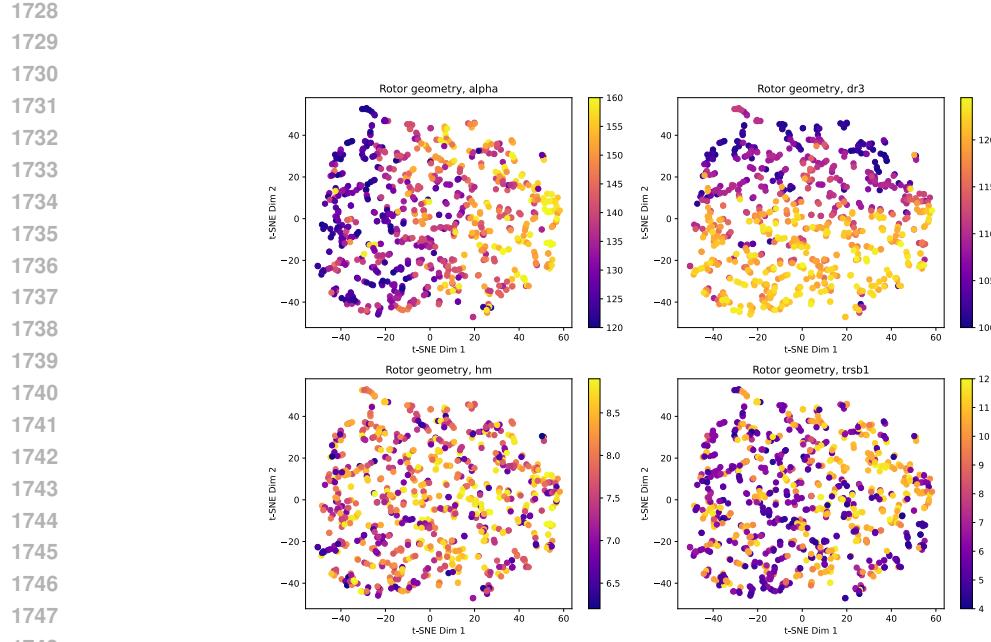


Figure 27: T-SNE visualization of the conditioning vectors for the *electric motor design* dataset. Point color indicates the magnitude of the respective parameter. For clarity, we only show selected parameters. The only parameter for which exhibits some structure in the latent space is d_{r3} , we therefore choose this to be our domain defining parameter in accordance with domain experts.

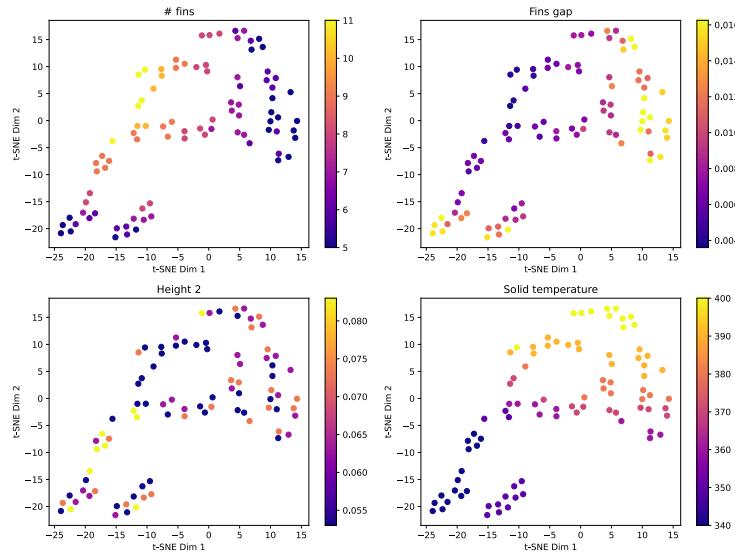


Figure 28: T-SNE visualization of the conditioning vectors for the *heatsink design* dataset. Point color indicates the magnitude of the respective parameter. Height 2 is distributed equally across the representation, but the other parameters show concrete grouping behavior. We therefore choose the number of fins as the domain defining parameter.

1782 **D DISTANCE MEASURES**
 1783

1784 **Deep CORAL.** This distance measures the difference in second-order statistics (covariances) of
 1785 source and target latent features and can be calculated as follows:
 1786

$$1788 d_{\text{deep_coral}}(\phi(\mathbf{x}), \phi(\mathbf{x}')) = \frac{1}{4k^2} \|\mathbf{C} - \mathbf{C}'\|_F^2, \\ 1789$$

1790 where $\phi(\mathbf{x}), \phi(\mathbf{x}') \in \mathbb{R}^{n \times k}$ denote latent source and target features for a batch size n and a feature
 1791 dimension k , \mathbf{C} and \mathbf{C}' are the source and target feature covariances and $\|\cdot\|_F^2$ is the squared
 1792 Frobenius norm.
 1793

1794 **CMD.** CMD measures not only the difference in first and second moments of source and target
 1795 latent features, but also in higher-order central moments. Let $\phi(\mathbf{x}), \phi(\mathbf{x}') \in \mathbb{R}^{n \times k}$ denote the latent
 1796 activations for a batch size n and feature dimension k . The CMD distance up to order P is defined as
 1797

$$1799 d_{\text{cmd}}(\phi(\mathbf{x}), \phi(\mathbf{x}')) = \frac{1}{|b-a|} \|\boldsymbol{\mu} - \boldsymbol{\mu}'\|_2 + \sum_{p=2}^P \frac{1}{|b-a|^p} \|\mathbf{c}_p(\phi(\mathbf{x})) - \mathbf{c}_p(\phi(\mathbf{x}'))\|_2, \\ 1800 \\ 1801$$

1802 where $\boldsymbol{\mu}, \boldsymbol{\mu}' \in \mathbb{R}^k$ are the source and target empirical mean feature vectors, $|b-a|^p$ can be seen
 1803 as a hyperparameter of the method which we set to 2 to reflect the original implementation, and
 1804 $\mathbf{c}_p(\phi(\mathbf{x})), \mathbf{c}'_p(\phi(\mathbf{x}')) \in \mathbb{R}^k$ are the respective p -th central moments which are calculated as:
 1805

$$1807 \mathbf{c}_p(\phi(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^n (\phi(\mathbf{x})_i - \boldsymbol{\mu})^{\odot p}, \quad \mathbf{c}'_p(\phi(\mathbf{x}')) = \frac{1}{n} \sum_{i=1}^n (\phi(\mathbf{x}')_i - \boldsymbol{\mu}')^{\odot p}. \\ 1808 \\ 1809$$

1810 Above, $(\cdot)^{\odot p}$ denotes the element-wise p -th power. Choosing the number of higher-order moments
 1811 to align is another hyperparameter of the method. For our benchmark, we choose $P = 5$.
 1812

1813 **DANN.** DANN is introduced to minimize an upper bound on the \mathcal{H} -divergence between source
 1814 and target feature distributions. Since it is intractable to compute this directly, the authors use a do-
 1815 main classifier in the form of a small MLP trained to distinguish whether a latent feature comes from
 1816 the source or the target domain. The error of this classifier is then used to compute the PAD, which,
 1817 up to a constant depending on the model's VC dimension, upper-bounds the \mathcal{H} -divergence (Ganin
 1818 et al., 2015).
 1819

1820 Training is performed via a min–max optimization, i.e. the domain classifier is trained to maximize
 1821 its classification accuracy, while the feature encoder ϕ is trained to *minimize* this separability by using
 1822 a gradient reversal layer. This adversarial interaction encourages the latent representations of source
 1823 and target samples to become indistinguishable, thereby promoting domain-invariant features.
 1824

1825 **DARE-GRAM.** DARE-GRAM aims to align a selected low-rank subspace of the pseudo-inverse
 1826 Gram matrices of source and target features. Given feature matrices $\phi(\mathbf{x}), \phi(\mathbf{x}') \in \mathbb{R}^{n \times k}$ for a batch
 1827 size n and feature dimension k , we can compute their Gram matrices:
 1828

$$1829 G = \phi(\mathbf{x})^\top \phi(\mathbf{x}), \quad G' = \phi(\mathbf{x}')^\top \phi(\mathbf{x}'). \\ 1830$$

1831 Each Gram matrix is then decomposed via eigendecomposition, and its truncated Moore–Penrose
 1832 pseudo-inverse is formed by keeping the top p^* eigenvalues that explain a fixed proportion of variance
 1833 (95% for our implementation):
 1834

$$1835 G^+ = U_{1:p^*} \Lambda_{1:p^*}^{-1} U_{1:p^*}^\top, \quad (G')^+ = U'_{1:p^*} (\Lambda'_{1:p^*})^{-1} (U'_{1:p^*})^\top.$$

1836 We can then define the difference in angles as
 1837

$$d_{\text{angle}}(G, G') = \|\mathbf{1} - \cos(\theta_{1:p^*})\|_1,$$

1840 where $\cos(\theta_i)$ is the cosine similarity between the i -th column of G^+ and $(G')^+$.
 1841

1842 Furthermore, we can define the difference in scale as
 1843

$$d_{\text{scale}}(G, G') = \|\lambda_{1:p^*} - \lambda'_{1:p^*}\|_2.$$

1845 The first term aligns the orientation of the dominant inverse-Gram subspaces, whereas the second
 1846 term matches the principal eigenvalues of the Gram matrices to ensure that feature scale is consistent
 1847 across source and target.
 1848

1849 The total DARE-GRAM distance is defined as a weighted sum of the two:
 1850

$$d_{\text{dare_gram}} = \alpha_{\text{angle}} d_{\text{angle}} + \gamma_{\text{scale}} d_{\text{scale}},$$

1852 where the α and γ are hyperparameters. Following the original authors, we set $\alpha_{\text{angle}} = 0.02$ and
 1853 $\gamma_{\text{scale}} = 0.001$.
 1854

1855 E MODEL ARCHITECTURES

1856 This section provides explanations of all model architectures used in our benchmark. All models
 1857 are implemented in PyTorch and are adapted to our conditional regression task. All models have in
 1858 common, that they take node coordinates as inputs and embed them using a sinusoidal positional
 1859 encoding. Additionally, all models are conditioned on the input parameters of the respective simulation
 1860 sample, which are encoded through a conditioning network described below.
 1861

1862 **Conditioning Network.** The conditioning module used for all neural surrogate architectures embeds
 1863 the simulation input parameters into a latent vector used for conditioning. The network consists of a
 1864 sinusoidal encoding followed by a simple MLP. The dimension of the latent encoding is 8 throughout
 1865 all experiments.
 1866

1867 **PointNet.** Our PointNet implementation is adapted from (Qi et al., 2017) for node-level regression.
 1868 Input node coordinates are first encoded using sinusoidal embeddings and passed through an encoder
 1869 MLP. The resulting representations are aggregated globally using max pooling over nodes to obtain
 1870 a global feature vector. To propagate this global feature, it is concatenated back to each point’s
 1871 feature vector. This fused representation is then fed into a final MLP, which produces the output
 1872 fields. The conditioning is performed by concatenating the conditioning vector to the global feature
 1873 before propagating it to the nodes features. We use a PointNet base dimension of 16 for the small
 1874 model and 32 for the larger model.
 1875

1876 **GraphSAGE.** We adapt GraphSAGE (Hamilton et al., 2017) to the conditional mesh regression
 1877 setting. Again, input node coordinates are embedded using a sinusoidal encoding and passed through
 1878 an MLP encoder. The main body of the model consists of multiple GraphSAGE message passing
 1879 layers with mean aggregation. We support two conditioning modes, namely concatenating the latent
 1880 conditioning vector to the node features, or applying FiLM style modulation (Perez et al., 2018)
 1881 to the node features before each message passing layer. We always use FiLM modulation in the
 1882 presented results. After message passing, the node representations are passed through a final MLP
 1883 decoder to produce the output fields. The base dimension of the model is kept at 128 and we employ
 1884 4 GraphSAGE layers.
 1885

1886 **Transolver.** The Transolver model follows the originally introduced architecture (Wu et al., 2024).
 1887 Similar to the other models, node coordinates first are embedded using a sinusoidal encoding and
 1888 passed through an MLP encoder to produce initial features. Through learned assignement, each
 1889 node then gets mapped to a slice, and inter- as well as intra-slice attention is performed. Afterwards,
 fields are decoded using an MLP readout. The architecture supports two conditioning modes:

1890 concatenation, where the conditioning vector is concatenated to the input node features before
 1891 projection, or modulation through DiT layers across the network. For our experiments, DiT is used.
 1892 We choose a latent dimension of 128, a slice base of 32 and we apply four attention blocks for the
 1893 small model. For the larger model, we scale to 256, 128 and 8 layers respectively.
 1894

1895 **UPT.** Our UPT implementation builds on the architecture proposed in (Alkin et al., 2024a). First,
 1896 a fixed number of supernodes are uniformly sampled from the input nodes. Node coordinates are
 1897 embedded using a sinusoidal encoding followed by an MLP. The supernodes aggregate features from
 1898 nearby nodes using one-directional message passing and serve as tokens for subsequent transformer
 1899 processing. They are then processed by stack of DiT blocks, which condition the network on the
 1900 simulation input parameters. For prediction, we employ a DiT Perceiver (Jaegle et al., 2022) decoder
 1901 that performs cross-attention between the latent representation and a set of query positions. This
 1902 allows the model to generate field predictions at arbitrary spatial locations, which is a desirable
 1903 property for inference. We sample 4096 supernodes and use a base dimension of 192. We use 8 DiT
 1904 blocks for processing and 4 DiT Perceiver blocks for decoding.
 1905

1906 **GINO.** GINO was proposed in (Li et al., 2023b). Input coordinates are again embedded via
 1907 sinusoidal encoding, after which the mesh is projected onto a regular latent grid. This is achieved via
 1908 message passing with connections generated via a radius graph. On the latent grid, the conditioning is
 1909 concatenated to the features at each grid point before Fourier Neural Operator (FNO) Li et al. (2020a)
 1910 layers are employed. Afterwards, features are mapped back onto the output grid by querying the latent
 1911 grid, again via message passing. Our implementation uses a latent grid of size $(16 \times 16 \times 16)$ with
 1912 16 latent channels and a radius of 0.1 to construct the radius graph for message passing operations.
 1913 For our implementation, we use the library of the original authors.³
 1914

1915 F EXPERIMENTS

1916 This section provides a detailed overview of the performed experiments for this benchmark. First, we
 1917 explain the benchmarking setup used to generate the benchmarking results in detail in Appendix F.1
 1918 and the evaluation procedure in Appendix F.2. Furthermore, we provide information about training
 1919 times for the presented methods in Appendix F.3.
 1920

1922 F.1 EXPERIMENTAL SETUP

1923 **Dataset Splits.** We split each dataset into source and target domains as outlined in Section 3.5
 1924 and Appendix C. Within source domains, we use a 50%/25%/25% split for training, validation,
 1925 and testing, respectively. For target domains, where labels are unavailable during training in our
 1926 UDA setup, we use a 50%/50% split for training and test sets. The large validation and test sets
 1927 are motivated by the industrial relevance of our benchmark, where reliable performance estimation on
 1928 unseen data is a crucial factor.
 1929

1930 **Training Pipeline.** For training, we use a dataset wide per field z-score normalization strategy,
 1931 with statistics computed on the source domain training set. We use a batch size of 16 and the
 1932 AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of 1e-5 and a cosine learning
 1933 rate schedule, starting from 1e-3. Gradients are clipped to a maximum norm of 1. For the large
 1934 scale *heatsink design* dataset, we enable Automatic Mixed Precision (AMP) to reduce memory
 1935 consumption and training time. Additionally, we use Exponential Moving Average (EMA) updates
 1936 with a decay factor of 0.95 to stabilize training.
 1937

1938 Performance metrics are evaluated every 10 epochs, and we train all models for a maximum of 3000
 1939 epochs with early stopping after 500 epochs of no improvement on the source domain validation loss.
 1940

1941 **Domain Adaptation Specifics.** To enable UDA algorithms, we jointly sample mini batches from
 1942 the source and target domains at each training step and pass them through the model. Since target
 1943 labels are not available, we compute supervised losses only on the source domain outputs. In addition,

³<https://github.com/neuraloperator/neuraloperator>

1944 we compute DA losses on the latent representations of source and target domains in order to encourage
 1945 domain invariance.

1946 Since a crucial factor in the performance of UDA algorithms is the choice of the domain adaptation
 1947 loss weight λ , we perform extensive sweeps over this hyperparameter and select models using the
 1948 unsupervised model selection strategies described in Section 4.3.

1949
 1950 For the three smaller datasets, we sweep λ logarithmically over $\lambda \in \{10^{-1}, 10^{-2}, \dots, 10^{-9}\}$,
 1951 while for the large scale *Heatsink design* dataset, we sweep a smaller range, namely $\lambda \in \{10^2, 10^{-1}, \dots, 10^{-2}\}$, motivated by the balancing principle (Zellinger et al., 2021b).

1952
 1953 Table 12 provides an overview of the number of trained models for benchmarking performance of all
 1954 models and all UDA algorithms on the *medium* difficulty domain shifts across all datasets.

1955
 1956 Table 12: Overview of the benchmarking setup and number of trained models across all datasets.

1958 Dataset	1959 Models	1960 UDA algorithms	1961 λ values	1962 # seeds	1963 # models trained
1959 Rolling	1960 PointNet, GraphSAGE, Transolver	1961 Deep Coral, CMD, DANN, DARE-GRAM w/o UDA	1962 $\{10^{-1}; 10^{-9}\}$ 1963 –	1964 4 1965 4	1966 432 1967 12
1960 Forming	1961 PointNet, GraphSAGE, Transolver	1962 Deep Coral, CMD, DANN, DARE-GRAM w/o UDA	1963 $\{10^{-1}; 10^{-9}\}$ 1964 –	1965 4 1966 4	1967 432 1968 12
1961 Motor	1962 PointNet, GraphSAGE, Transolver	1963 Deep Coral, CMD, DANN, DARE-GRAM w/o UDA	1964 $\{10^{-1}; 10^{-9}\}$ 1965 –	1966 4 1967 4	1968 432 1969 12
1962 Heatsink	1963 PointNet, Transolver, UPT, GINO	1964 Deep Coral, CMD, DANN, DARE-GRAM w/o UDA	1965 $\{10^2; 10^{-2}\}$ 1966 –	1967 4 1968 4	1969 320 1970 12
1963 Sum					1,664

1966
 1967 **Additional Details.** For the three smaller datasets, we use smaller networks, while for the large
 1968 scale *heatsink design* dataset, we train larger model configurations to accommodate the increased
 1969 data complexity. An overview of model sizes along with average training times per dataset is
 1970 provided in Table 13. We also refer to the accompanying code repository for a complete listing of all
 1971 model hyperparameters, where we provide all baseline configuration files and detailed step by step
 1972 instructions for reproducibility of our results.

1973 Another important detail is that, during training on the *heatsink design* dataset, we randomly subsample
 1974 16,000 nodes from the mesh in each training step to ensure computational tractability. However, all
 1975 reported performance metrics are computed on the full resolution of the data without any subsampling.

1977 F.2 EVALUATION METRICS

1979 F.2.1 GENERAL METRICS

1980 We report the RMSE for each predicted output field. For field i , the RMSE is defined as:

$$1982 \text{RMSE}_i^{\text{field}} = \frac{1}{M} \sum_{m=1}^M \sqrt{\frac{1}{N_m} \sum_{n=1}^{N_m} \left(y_{m,n}^{(i)} - f(x)_{m,n}^{(i)} \right)^2},$$

1986 where M is the number of test samples (graphs), N_m the number of nodes in graph m , $y_{m,n}^{(i)}$ the
 1987 ground truth value of field i at node n of graph m , and $f(x)_{m,n}^{(i)}$ the respective model prediction.

1988 For aggregated evaluation, we define the total Normalized RMSE (NRMSE) as:

$$1991 \text{NRMSE} = \frac{1}{K} \sum_{i=1}^K \text{RMSE}_i^{\text{field}},$$

1993 where K is the number of predicted fields. For this metric, all individual field errors are computed on
 1994 normalized fields before aggregation.

1995 In addition to the error on the fields, we report the mean Euclidean error of the predicted node
 1996 displacement. This is computed based on the predicted coordinates $\hat{c}_{m,n} \in \mathbb{R}^d$ and the ground truth
 1997 coordinates $c_{m,n} \in \mathbb{R}^d$, where $d \in \{2, 3\}$ is the spatial dimensionality, as follows:

1998
1999
2000
2001
2002

$$\text{RMSE}^{\text{deformation}} = \frac{1}{M} \sum_{m=1}^M \sqrt{\frac{1}{N_m} \sum_{n=1}^{N_m} \|\mathbf{c}_{m,n} - \hat{\mathbf{c}}_{m,n}\|_2},$$

F.2.2 PHYSICS METRICS

Von Mises stress consistency. For all structural simulations in our benchmark, we predict both the relevant Cauchy stress tensor components and the von Mises equivalent stress. This allows for an internal consistency check using the standard von Mises definition:

$$\sigma_{vM} = \sqrt{\frac{1}{2} [(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6\tau_{12}^2]},$$

with $\sigma_{11}, \sigma_{22}, \sigma_{33}$ denote the normal stresses and τ_{12} the in-plane shear stress.

We can recompute σ_{vM} from the predicted tensor components and compare it to the predicted von Mises value using a normalized mean absolute error:

$$\text{Consistency}_{vM} = \frac{\sum_{i=1}^N |\sigma_{vM,i} - \sigma_{vM,recalc,i}|}{\sum_{i=1}^N |\sigma_{vM,i}|}$$

Constitutive law consistency. For the *sheet metal forming* dataset, the material is modeled as elastoplastic with von Mises plasticity and linear isotropic hardening. This defines a yield surface, σ_y , which represents the material's current strength as a function of the equivalent plastic strain (ε_p):

$$\sigma_y(\varepsilon_p) = \sigma_{y0} + H \varepsilon_p,$$

where σ_{y0} is the initial yield stress, H the hardening modulus, and ε_p the equivalent plastic strain.

A physically-correct model must adhere to two conditions based on this law:

1. Elastic nodes ($\varepsilon_p = 0$) must have a stress below this surface: $\sigma_{vM} \leq \sigma_{y0}$.
2. Plastic nodes ($\varepsilon_p > 0$) must have a stress on this surface: $\sigma_{vM} = \sigma_y(\varepsilon_p)$.

Based on these two conditions, we introduce two metrics to evaluate the physical consistency of the predictions:

1. Elastic violation rate (percentage of elastic nodes that incorrectly violate the initial yield stress):

$$\text{Violation}_{\text{elastic}} = \frac{1}{N_{\text{el}}} \sum_{i \in \mathcal{E}} \mathbf{1}[\sigma_{vM,i} > \sigma_{y0}],$$

where \mathcal{E} is the set points in the elastic regime and $N_{\text{el}} = |\mathcal{E}|$ is the number of elastic nodes.

2. Plastic Law Residual (NMAE for all plastic nodes):

$$\text{Residual}_{\text{plastic}} = \frac{1}{N_{\text{pl}}} \sum_{i \in \mathcal{P}} \frac{|\sigma_{vM,i} - (\sigma_{y0} + H \varepsilon_{p,i})|}{\sigma_{y0}},$$

where \mathcal{P} is the set points in the plastic regime and $N_{\text{pl}} = |\mathcal{P}|$ is the number of plastic nodes.

Boundary condition satisfaction. The *heatsink design* simulations impose two important Dirichlet Boundary Conditions (BCs) on the fin surfaces: no slip velocity and the solid temperature of the fins. Therefore we define the two following errors to measure the violation of these BCs for our surrogates:

$$\text{BC-violation}_T = \frac{1}{N_{\text{fin}}} \sum_{i \in \mathcal{F}} \frac{|T_i - T_{\text{solid}}|}{|T_{\text{solid}} - T_{\text{env}}|},$$

2052 and

2053
2054
2055
$$\text{BC-violation}_{\mathbf{u}} = \frac{1}{N_{\text{fin}}} \sum_{i \in \mathcal{F}} \|\mathbf{u}_i\|,$$

2056 where \mathcal{F} is the set of fin nodes, $N_{\text{fin}} = |\mathcal{F}|$ is the number of fin nodes, and T_i and \mathbf{u}_i are the
2057 respective predictions for temperature and velocity at node i .2058 These should be interpreted as “soft” BC consistency checks. OpenFOAM enforces Dirichlet BCs on
2059 faces of boundary patches, whereas our dataset contains cell center values. Cells adjacent to the fins
2060 generally exhibit nonzero gradients, meaning their ground-truth temperatures and velocities do not
2061 exactly satisfy the BCs, also in the ground truth data.2063
2064 **F.3 COMPUTATIONAL RESOURCES AND TIMINGS**2065 While generating the results reported on the *medium* difficulty level of our benchmark, we measured
2066 average training times per dataset and model architecture. All our runs were timed on a single
2067 NVIDIA H200 144GB GPU for a fair comparison. While the total compute budget is difficult to
2068 estimate due early stopping, we provide a detailed analysis of the average training times for 2000
2069 epochs in Table 13.2070 This table refers to models trained with Deep CORAL, however different UDA algorithms do not add
2071 significant computational cost. What is more impactful concerning the full pipeline (including model
2072 selection) is the number of hyperparameter variations. The total cost of one UDA algorithm & model
2073 selection pipeline can be estimated by multiplying the average training time by the number of trained
2074 models (e.g. $\times 9$ if one sweeps over 9 hyperparameters of λ), for sequential execution. Furthermore,
2075 the model selection method’s runtime training is negligible compared to the training times.2076
2077
2078 Table 13: Average training times (averaged for 2000 epochs) and parameter counts for each model on
2079 the *medium* difficulty benchmark tasks. Times are measured on a H200 144GB GPU using a batch
2080 size of 16.

2082 2083 Dataset	# samples	Avg. # nodes	Model	# parameters	Avg. training time (h)
2084 2085 2086 Rolling	4,750	576	PointNet	0.3M	0.75
			GraphSAGE	0.2M	1.77
			Transolver	0.57M	1.77
2087 2088 2089 Forming	3,315	6,417	PointNet	0.3M	2.35
			GraphSAGE	0.2M	10.82
			Transolver	0.57M	3.74
2090 2091 2092 Motor	3,196	9,052	PointNet	0.3M	2.35
			GraphSAGE	0.2M	12.14
			Transolver	0.57M	3.60
2093 2094 2095 2096 Heatsink	460	1,385,594	PointNet	1.08M	3.88
			Transolver	4.07M	4.94
			UPT	5.77M	4.73
			GINO	2.5M	5.94

2097
2098
2099 **G DATASET DETAILS**2100
2101 **G.1 HOT ROLLING**2102 The *hot rolling* dataset represents a hot rolling process in which a metal slab undergoes plastic
2103 deformation to form a sheet metal product. The model considers a plane-strain representation of a
2104 heated steel slab segment with a core temperature T_{core} and a surface temperature T_{Surf} , initially at
2105 thickness t , passing through a simplified roll stand with a nominal roll gap g (see Figure 2a). This roll

gap effectively matches the exit thickness of the workpiece. Given the material properties, the initial temperature distribution over the slab thickness and the specified pass reduction, the model aims to capture the evolution of the thermo-mechanical state of the workpiece as it traverses the roll gap.

To reduce computational complexity, the analysis is confined to the vertical midplane along the rolling direction based on a plane-strain assumption. This is well justified by the high width-to-thickness ratio characteristic of the workpiece. Additionally, vertical symmetry is also exploited. Consequently, only the upper half of the workpiece and the upper work roll are modeled.

The workpiece is discretized using plane-strain, reduced-integration, quadrilateral elements. Mesh generation is fully automated, with the element size calibrated according to findings from a mesh convergence study. In terms of mechanical behavior, the workpiece is modeled as elasto-plastic with isotropic hardening, employing tabulated flow curves representative for a titanium alloy (Lesuer, 2000; Lu et al., 2018). The elastic modulus and flow stress are temperature dependent, with the latter also influenced by the plastic strain rate. In contrast, material density and Poisson’s ratio are assumed to remain constant. The work roll with a diameter of 1000 mm is idealized as an analytically defined rigid body.

In addition to the mechanical behavior, the elements also feature a temperature degree of freedom that captures thermal phenomena, which are in turn fully coupled with the mechanical field. Heat conduction within the workpiece is governed by temperature dependent thermal conductivity and specific heat capacity. Heat transfer at the interface between the workpiece and the roll is modeled as proportional to the temperature difference between the contacting surfaces, using a heat transfer coefficient of 5 mW/mm²K. The model also accounts for internal heat generation due to plastic deformation, based on the standard assumption that 90% of plastic work is converted into heat. Additionally, all frictional energy is assumed to be fully transformed into heat and evenly divided between the workpiece and the roll. However, since the analysis focuses on the workpiece, only the portion of this heat entering the workpiece is considered.

The FE simulation is performed with the *Abaqus* explicit solver using a relatively high mass scaling factor of 100. This mass scaling proved to be a suitable choice for maintaining both computational efficiency and solution accuracy. The pre-processing, evaluation and post-processing of the simulations was automated in Python. A full factorial design of experiments was conducted by varying the parameters outlined in Table 14. Simulation outputs from *Abaqus* (.odb files) were converted to a more suitable .h5 format in post-processing, enabling seamless integration into the SIMSHIFT framework. All simulations were run on a Gigabyte Aorus 15P KD consumer laptop equipped with an Intel Core i7-11800H CPU (8 cores, 16 threads, 2.30–4.60 GHz), 16 GB DDR4 RAM at 3200 MHz and a 1 TB NVMe SSD. The single-core CPU time for one simulation was 25 seconds on average, depending on the mesh size and convergence speed.

Table 14: Input parameter ranges for the *hot rolling* simulations. Samples are generated by equally spacing each parameter within the specified range using the indicated number of steps, resulting in $5 \times 19 \times 10 \times 5 = 4750$ total samples.

Parameter	Description	Min	Max	Steps
t (mm)	Initial slab thickness.	50.0	183.3	5
reduction (–)	Reduction of initial slab thickness.	0.01	0.15	19
T_{core} (°C)	Core slab temperature.	900.0	1000.0	10
T_{surf} (°C)	Surface slab temperature.	900.0	1077.77	5

G.2 SHEET METAL FORMING

For the *sheet metal forming* dataset, a w-shaped bending process was selected due to its complex contact interactions and the highly nonlinear progression of bending forces. For this purpose, a parameterized 2D FE model of the process was developed using the commercial FEM software *Abaqus* and its implicit solver, with the simulation pipeline implemented in Python. The initial configuration of the finite element model is shown in Figure 29 and described below.

Due to geometric and loading symmetry, only the right half of the sheet with a thickness t was modeled. The die and punch were idealized as rigid circular segments with a shared radius r . Additionally, a

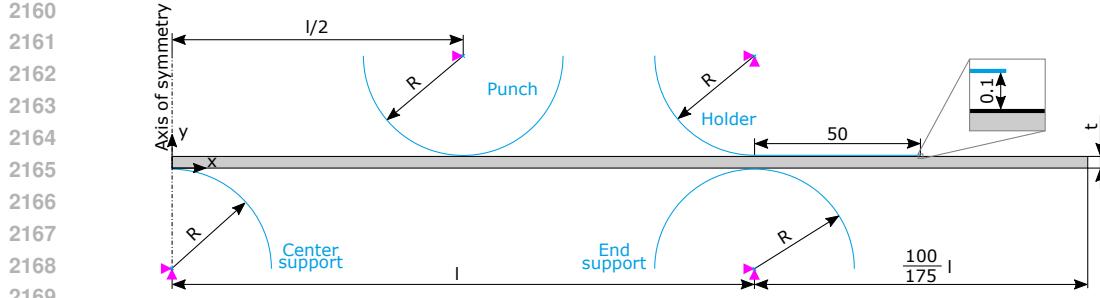


Figure 29: Bending process abstraction, initial configuration.

rigid blank holder comprising an arc and a straight segment was positioned 0.1 mm above the sheet to maintain contact and restrain vertical motion. The required sheet length was determined by the support span l , enabling material flow toward the center in response to the downward motion of the punch.

The sheet was discretized using bilinear, plane-strain quadrilateral elements with reduced integration and hourglass control (Abaqus element type CPE4R). A prior mesh convergence study indicated that accurate simulation results require a minimum of 10 element rows across the sheet thickness. The element size was fixed at 0.125×0.1 mm to ensure a uniform aspect ratio, constraining the sheet thickness to $t > 1$ mm.

The sheet material was modeled as elastoplastic with von Mises plasticity and linear isotropic hardening. The following properties were assigned: Young's modulus of 210 GPa, Poisson's ratio of 0.3, yield stress of 410 MPa, and hardening modulus of 2268 MPa.

For all contact interfaces, a normal contact formulation with surface-to-surface discretization, penalty enforcement, and finite-sliding tracking was employed. Tangential contact was modeled via a Coulomb friction law with a coefficient μ .

The supports and blank holder were fixed by constraining horizontal and vertical translations as well as in-plane rotations. These constraints were applied at the centroid of each arc segment, representing the reference point for the respective rigid body. The punch was similarly constrained against horizontal movement and rotation but retained vertical mobility. The deformed configuration following a vertical displacement U of the punch is illustrated in Figure 30.

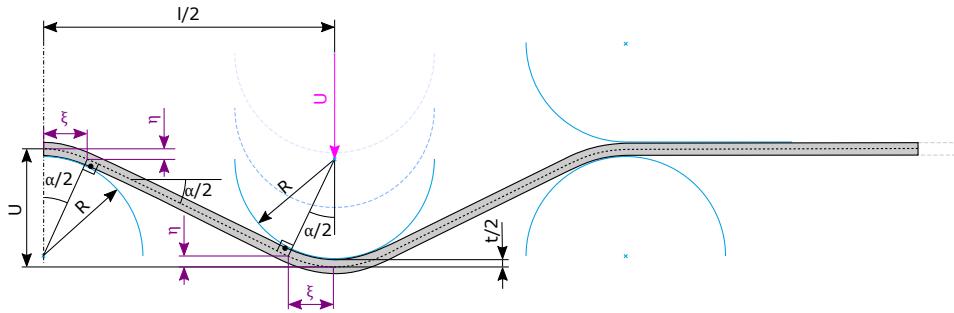


Figure 30: Bending process abstraction, deformed configuration.

A full factorial design of experiments was conducted by varying the parameters outlined in Table 15. As for the hot rolling simulations, outputs from Abaqus (.odb files) were converted to .h5 format in post-processing, to integrate them into the SIMSHIFT framework. All simulations were run on a Gigabyte Aorus 15P KD consumer laptop equipped with an Intel Core i7-11800H CPU (8 cores, 16 threads, 2.30–4.60 GHz), 16 GB DDR4 RAM at 3200 MHz and a 1 TB NVMe SSD. The single-core CPU time for one simulation run was 300 seconds on average, depending on mesh size and convergence speed.

2214
 2215 Table 15: Input parameter ranges for the *sheet metal forming* simulations. Samples are generated
 2216 by equally spacing each parameter within the specified range using the indicated number of steps,
 2217 resulting in $17 \times 13 \times 3 \times 5 = 3315$ total samples.

2218 Parameter	2219 Description	2220 Min	2221 Max	2222 Steps
r (mm)	Roll radius.	10.0	50.0	17
t (mm)	Sheet thickness.	2.0	5.0	13
l (mm)	Sheet length.	175.0	350.0	3
μ (-)	Friction coefficient between the sheet and the rolls.	0.1	0.5	5

2224
 2225 **G.3 ELECTRIC MOTOR DESIGN**

2226
 2227 The *electric motor design* dataset includes a structural FE simulation of a rotor within electric
 2228 machinery, subjected to mechanical loading at burst speed. The rotor topology is modeled after the
 2229 motor architecture of the 2010 Toyota Prius (Burress et al., 2011), an industry-recognized benchmark
 2230 frequently used for validation and comparison in academic and industrial research. The Prius rotor
 2231 topology is based on a V-shaped magnet configuration as shown in Figure 31.

2232 Structural rotor simulations are essential in multi-physics design optimization, where motor per-
 2233 formance is evaluated across multiple domains including electromagnetic, thermal, acoustic, and
 2234 structural. Using a design optimization framework, stator and rotor design are iteratively refined to
 2235 identify Pareto-optimal solutions based on objectives such as efficiency, torque, weight, and speed.
 2236 In this process, the structural FE model predicts stress and deformation due to loading ensuring the
 2237 rotor’s structural integrity.

2238 The set up and execution of the structural simulations for this dataset are automated and implemented
 2239 in the open source design optimization framework *SyMSpace*⁴. The FE simulation of the rotor is
 2240 performed using a mixed 2D plane stress and plane strain formulation with triangular elements. To
 2241 enhance computational efficiency, geometric symmetry is exploited and only a 1/16 sector of the full
 2242 rotor is modeled. The mechanical simulation is static and evaluates the rotor under centrifugal loading,
 2243 incorporating press-fit conditions between the rotor core and shaft, as well as contact interactions
 2244 between the rotor core and embedded magnets.

2245 An elastic material behavior is employed for all components, including the rotor core, shaft, and
 2246 magnets. Material properties are summarized in Table 16. Based on the parametrized CAD model of
 2247 the rotor topology, the geometry is automatically meshed using *Netgen*⁵. The design optimization
 2248 tool also automatically identifies nodes for boundary conditions and contact surfaces and applies
 2249 the corresponding constraints and interactions required for the simulation. The implicit FE solver
 2250 *HOTINT* is used to compute the quasi-static response of the system, providing local stress and strain
 2251 fields across the rotor topology.

2252 Table 16: Material parameters for the structural *electric motor design* simulations.
 2253

2254	2255 Rotor Core	2256 Rotor Shaft	2257 Permanent Magnet
Material	NO27-14 Y420HP	42CrMo4	BMN-40SH
Density (kg/dm ³)	7.6	7.72	7.55
Poissons ratio (-)	0.29	0.3	0.24
Young’s Modulus (kN/mm ²)	185.0	210.0	175.0
Tensile Strength (kN/mm ²)	550.0	850.0	250.0

2261 To generate the electric motor dataset, a comprehensive motor optimization study was conducted
 2262 using *SyMSpace*, based on design specifications of the 2010 Toyota Prius. The optimization aimed to
 2263 minimize multiple performance metrics, including motor mass, material costs, rotor torque ripple,
 2264 motor losses, coil temperature, stator terminal current, and elastic rotor deformation. A genetic
 2265 algorithm was employed to explore the design space and identify Pareto-optimal solutions. In the
 2266

⁴<https://symspace.lcm.at/>

⁵<https://ngsolve.org/>

process, 3,196 motor configurations were evaluated by varying, among other factors, the rotor's topological parameters within the bounds specified in Table 17. The outputs of the structural simulations were generated in .vtk format and then stored in .h5 files, allowing direct integration into the SIMSHIFT framework. Each structural simulation required approximately 4 to 5 minutes of single-core CPU time on a Intel Core i9-14900KS processor (24 Cores, 3200 MHz), depending on convergence speed of the contact algorithm.

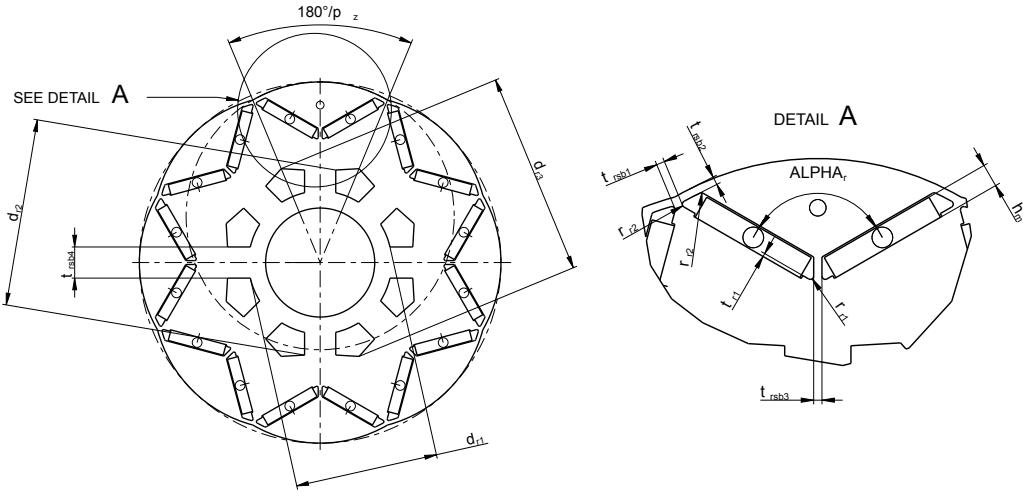


Figure 31: Technical drawing of the electrical motor. Sampling ranges for the shown parameters can be found in Table 17.

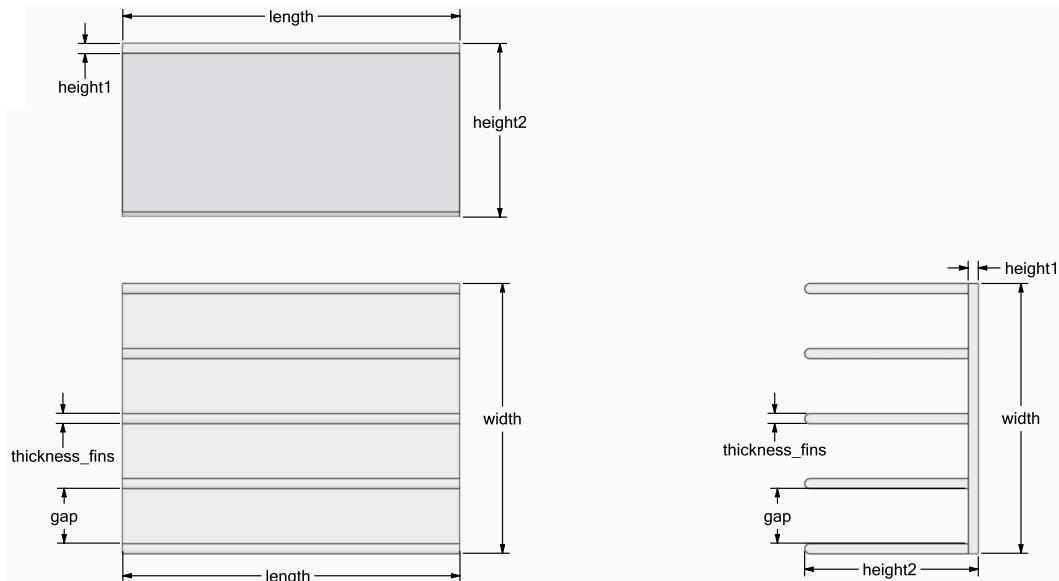
Table 17: Input parameters for the *electric motor design* simulations. Since the design space was explored by a genetic algorithm, the parameters are not uniformly sampled as in the previous simulation scenarios. In total, 3196 simulations were performed.

Parameter	Description	Min	Max
d_{si} (mm)	Stator inner diameter.	150.0	180.0
h_m (mm)	Magnet height.	6.0	9.0
α_r (°)	Angle between magnets.	120.0	160.0
t_{rs1} (mm)	Magnet step.	1.0	5.0
r_{r1} (mm)	Rotor slot fillet radius 1.	0.5	2.5
r_{r2} (mm)	Rotor slot fillet radius 2.	0.5	3.5
r_{r3} (mm)	Rotor slot fillet radius 3.	0.5	5.0
r_{r4} (mm)	Rotor slot fillet radius 4.	0.5	3.0
t_{rsb1} (mm)	Thickness saturation bar 1.	4.0	12.0
t_{rsb2} (mm)	Thickness saturation bar 2.	1.0	3.0
t_{rsb3} (mm)	Thickness saturation bar 3.	1.2	4.0
t_{rsb4} (mm)	Thickness saturation bar 4.	5.0	12.0
d_{r1} (mm)	Rotor slot diameter 1.	60.0	80.0
d_{r2} (mm)	Rotor slot diameter 2.	80.0	120.0
d_{r3} (mm)	Rotor slot diameter 3.	100.0	125.0

2322 G.4 HEATSINK DESIGN
2323

2324 The *heatsink design* dataset consists of heatsink geometries similar to the example shown in Figure 32,
2325 placed centrally at the bottom of a surrounding box-shaped domain filled with air. The dimensions of
2326 the surrounding enclosure are $0.14 \text{ m} \times 0.14 \text{ m} \times 0.5 \text{ m}$ (length \times width \times height).

2327 The geometric configuration of each heatsink is defined by several parameters, which were varied
2328 within specified bounds for the design study. These parameters and their corresponding value ranges
2329 are summarized in Table 18. A total of 460 simulation cases were generated, with non-uniform
2330 sampling across the parameter space.
2331



2351 Figure 32: Technical drawing of the solid body in the *heatsink design* dataset. Some of the shown
2352 parameters are varied for data generation (see Table 18).
2353

2354
2355 Table 18: Geometric and physical parameters of the *heatsink design* simulations. The variable
2356 parameters were not uniformly sampled. In total, 460 simulations were performed.
2357

Parameter	Description	fixed Value	Min	Max
length (m)	Heatsink length	0.1	-	-
width (m)	Heatsink width	0.08	-	-
height1 (m)	Baseplate height	0.003	-	-
T(amb) (K)	Ambient Temperature	300	-	-
fins (-)	Number of fins	-	5	14
gap (m)	Gap between fins	-	0.0023	0.01625
thickness_fins (m)	Thickness of fins	-	0.003	0.004
height2 (m)	Heatsink height	-	0.053	0.083
T (solid) (K)	Temperature of the solid fins	-	340	400

2369 The dataset was generated using CFD simulations based on the Reynolds-Averaged Navier-Stokes
2370 (RANS) equations coupled with the energy equation. All simulations were conducted in the open-
2371 source CFD suite *OpenFOAM 9*.
2372

2373 The computational domain was discretized using a finite volume method with second-order spatial
2374 discretization schemes. A structured hexahedral background mesh was generated with the blockMesh
2375 utility in OpenFOAM, followed by mesh refinement using snappyHexMesh to accurately resolve the
heatsink structure defined in STL format.

To simulate buoyancy driven natural convection, the buoyantSimpleFoam solver was employed. This solver is designed for steady state, compressible, buoyant flows, using the SIMPLE algorithm for pressure-momentum coupling, extended with under relaxation techniques to enhance numerical stability and robust convergence.

Boundary conditions were applied as follows:

- Walls of the surrounding: no-slip velocity condition with fixed ambient temperature as defined in Table 18.
- Walls of the heatsink: no-slip velocity condition with solid temperature within the range specified for parameter T (solid) in Table 18.

Given the turbulent nature of the flow, the RANS equations were closed using the SST $k-\omega$ turbulence model (Menter et al., 2003). Near-wall regions were modeled using a y^+ -insensitive near-wall treatment, allowing accurate resolution of boundary layers without the need for excessively fine meshes.

A mesh convergence study was conducted to ensure numerical accuracy. Depending on mesh resolution, each simulation required approximately 11 to 18 hours of single-core CPU time on an Intel Core i9-14900KS processor (24 cores, 3.2 GHz).

H ABLATION STUDIES

In the following sections, we present ablations on the SIMSHIFT framework.

H.1 GEOMETRIC ENCODING

The design concept of SIMSHIFT is to allow plug-in integration of any UDA algorithm and model architecture, as long as the model can be conditioned in some way (see Figure 1). However, explicitly conditioning models on scalar geometric parameters is not the only option: for instance, domain-specific information may be encoded implicitly in the mesh itself. To investigate this, we provide an ablation in which the model encodes the mesh directly and is not explicitly conditioned on the scalar parameters. Specifically, we replace the feed-forward conditioning network with a geometric PointNet based encoder to embed the input mesh into a global latent vector, on which UDA is then performed.

We report results of this setup on the *electric motor design* dataset. The setup follows the benchmarking procedure described in Section 4 and Appendix F.1: for each UDA algorithm, we train across 9 different regularizer strengths and 4 random seeds.

Table 19: RMSE (mean \pm std over 4 seeds) on the *electric motor design* dataset when using a PointNet geometry encoder. Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm + model selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined and shaded green.

Model	DA	Algorithm	Model Selection	All Fields Normalized Avg ± σ	Rel. Custom Error (%)	Deformation (m)	Logarithmic Stress (± 10 ⁻⁷)	Principal Stress (± 10 ⁻⁷)	Stress (MPa)	Cauchy Stress (MPa)	Miss Stress (MPa)	Principal Stress (MPa)	Total Stress (± 10 ⁻⁷)								
				SRC	TGT	SRC	SRC	TGT	SRC	TGT	SRC	TGT	SRC								
PointNetGeometric	DANN	DEV		0.355 (± 0.005)	0.487 (± 0.004)	0.370 (± 0.009)	0.362 (± 0.002)	0.002 (± 0.001)	0.008 (± 0.001)	0.012 (± 0.001)	12.021 (± 1.272)	15.391 (± 1.272)	12.076 (± 1.226)	16.053 (± 1.430)	30.773 (± 8.456)	33.514 (± 8.454)	37.895 (± 3.346)	0.000 (± 0.001)	0.001 (± 0.001)		
	DANN	PWV		0.291 (± 0.009)	0.412 (± 0.009)	0.345 (± 0.013)	0.327 (± 0.022)	0.001 (± 0.001)	0.006 (± 0.001)	0.011 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		
	DANN	TR		0.291 (± 0.009)	0.353 (± 0.007)	0.327 (± 0.005)	0.308 (± 0.011)	0.001 (± 0.001)	0.006 (± 0.001)	0.007 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		
	CMID	DEV		0.332 (± 0.012)	0.437 (± 0.012)	0.345 (± 0.014)	0.327 (± 0.022)	0.001 (± 0.001)	0.006 (± 0.001)	0.007 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		
	CMID	PWV		0.332 (± 0.012)	0.397 (± 0.012)	0.345 (± 0.014)	0.327 (± 0.022)	0.001 (± 0.001)	0.006 (± 0.001)	0.007 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		
	CMID	TR		0.332 (± 0.012)	0.397 (± 0.012)	0.345 (± 0.014)	0.327 (± 0.022)	0.001 (± 0.001)	0.006 (± 0.001)	0.007 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		
	DeepCord	DEV		0.361 (± 0.010)	0.335 (± 0.006)	0.417 (± 0.139)	0.725 (± 0.762)	0.002 (± 0.001)	0.013 (± 0.023)	0.010 (± 0.003)	0.028 (± 0.003)	0.023 (± 0.004)	37.507 (± 8.482)	32.270 (± 4.049)	37.431 (± 8.427)	22.212 (± 9.056)	112.967 (± 131.069)	14.480 (± 4.317)	85.342 (± 13.235)	0.000 (± 0.001)	0.024 (± 0.020)
	DeepCord	PWV		0.290 (± 0.009)	0.376 (± 0.011)	0.327 (± 0.009)	0.368 (± 0.013)	0.002 (± 0.001)	0.006 (± 0.001)	0.007 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		
	DeepCord	TR		0.290 (± 0.009)	0.376 (± 0.011)	0.327 (± 0.009)	0.368 (± 0.013)	0.002 (± 0.001)	0.006 (± 0.001)	0.007 (± 0.001)	10.675 (± 0.925)	10.503 (± 0.925)	10.794 (± 0.925)	10.420 (± 0.646)	23.420 (± 3.231)	22.022 (± 3.201)	16.960 (± 1.772)	0.007 (± 0.000)	0.000 (± 0.001)		

Table 19 shows that UDA algorithms can boost target performance compared to the unregularized baseline model. However compared to our chosen benchmarking design in Table 8, both the performance of the unregularized baseline as well as the one of the best performing UDA method is worse, which supports our choice of explicitly conditioning on scalar parameters in the main benchmark.

2430 H.2 TWO-DIMENSIONAL SHIFTS

2432 Defining shifts based on one parameter allows for controlled experiments, also given that the
 2433 parameters were picked based on preliminary experiments (see Appendix C) and consultation with
 2434 domain experts. In real-world scenarios, however, distribution shifts often affect multiple parameters
 2435 simultaneously rather than only a single one. It is therefore important to investigate the performance
 2436 of the benchmarked UDA algorithms under multidimensional parameter shifts. As a step in this
 2437 direction, we provide an ablation on the *electric motor design* dataset for a two-dimensional parameter
 2438 shift.

2439 To be concise, we jointly shift the rotor slot diameter d_{r3} (parameter shift in the main benchmark) and
 2440 the angle between the magnets α_r . Table 20 shows the corresponding two-dimensional distribution
 2441 shift between the source and the target domain.

2442 **Table 20:** Parameter ranges for the two-dimensional distribution shift on the *electric motor design*
 2443 dataset.

2445	Parameter	2446	Source range	2447	Target range
2448	Rotor slot diameter 3 d_{r3} (mm)	[100, 120]	2449	[120, 126]	
2449	Angle between magnets α_r (°)	[119, 153]		[153, 170]	

2450 We train all models with each UDA algorithm following the procedure in Section 4.5 and Ap-
 2451 pendix F.1, and report the results in Table 21.

2452 **Table 21:** RMSE (mean \pm std over 4 seeds) on the *electric motor design* dataset at with a two-
 2453 dimensional distribution shift in parameter space. Values are target domain errors (lower is better).
 2454 Bold marks the overall best model + UDA algorithm + model selection combination. For each
 2455 architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within
 2456 that architecture is underlined and shaded green.

2458	Model	DA	Model	All Fields Normalized Avg (\pm)	Deformation (m)	Logarithmic Strain ($\pm 10^{-2}$)	Principal Strain ($\pm 10^{-2}$)	Stress (MPa)	Cauchy Stress (MPa)	Mises Stress (MPa)	Principal Stress (MPa)	Total Strain ($\pm 10^{-2}$)
2459	Algorithm	Selection	SRC	TGT	SRC	TGT	SRC	TGT	SRC	TGT	SRC	TGT
2460	DANN	DEV	0.329(±0.012)	0.329(±0.007)	0.001(±0.000)	0.000(±0.001)	0.000(±0.000)	0.000(±0.000)	11.04(±0.772)	12.98(±0.997)	24.43(±0.420)	22.06(±0.843)
2461	DANN	IVW	0.329(±0.012)	0.329(±0.007)	0.001(±0.000)	0.000(±0.001)	0.000(±0.000)	0.000(±0.000)	10.43(±0.380)	12.66(±0.365)	24.07(±0.454)	18.87(±0.468)
2462	DANN	SB	0.329(±0.012)	0.329(±0.007)	0.001(±0.000)	0.000(±0.001)	0.000(±0.000)	0.000(±0.000)	10.43(±0.380)	12.66(±0.365)	24.07(±0.454)	18.87(±0.468)
2463	DANN	TB	0.299(±0.012)	0.329(±0.005)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.000(±0.000)	10.97(±0.457)	12.86(±0.248)	24.59(±1.127)	28.93(±0.399)
2464	GraphSAGE	CMD	0.300(±0.000)	0.326(±0.011)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.10(±0.100)	13.20(±0.467)	11.23(±0.104)	24.74(±0.247)
2465	GraphSAGE	IVW	0.300(±0.000)	0.326(±0.011)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.10(±0.100)	13.20(±0.467)	11.23(±0.104)	24.74(±0.247)
2466	GraphSAGE	SB	0.300(±0.000)	0.326(±0.011)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.10(±0.100)	13.20(±0.467)	11.23(±0.104)	24.74(±0.247)
2467	GraphSAGE	TB	0.300(±0.000)	0.326(±0.011)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.10(±0.100)	13.20(±0.467)	11.23(±0.104)	24.74(±0.247)
2468	DeepCoRL	DEV	0.326(±0.000)	0.326(±0.002)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.10(±0.000)	13.20(±0.000)	11.23(±0.000)	24.90(±0.000)
2469	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.007)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2470	DeepCoRL	SB	0.270(±0.000)	0.326(±0.007)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2471	DeepCoRL	TB	0.281(±0.012)	0.326(±0.005)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.248)	12.30(±0.248)	11.10(±0.071)	24.34(±0.085)
2472	PointNet	CMD	0.400(±0.000)	0.411(±0.041)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.002)	13.20(±0.297)	14.90(±0.297)	13.40(±0.297)	33.46(±0.297)
2473	PointNet	IVW	0.340(±0.000)	0.411(±0.041)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.002)	13.20(±0.297)	14.90(±0.297)	13.40(±0.297)	33.46(±0.297)
2474	PointNet	SB	0.340(±0.000)	0.411(±0.041)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.002)	13.20(±0.297)	14.90(±0.297)	13.40(±0.297)	33.46(±0.297)
2475	PointNet	TB	0.320(±0.000)	0.411(±0.041)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.002)	13.20(±0.297)	14.90(±0.297)	13.40(±0.297)	33.46(±0.297)
2476	TransE	CMD	0.326(±0.004)	0.326(±0.042)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.011(±0.002)	14.06(±1.546)	12.17(±0.200)	14.06(±1.546)	24.02(±1.544)
2477	TransE	IVW	0.326(±0.004)	0.326(±0.042)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.011(±0.002)	14.06(±1.546)	12.17(±0.200)	14.06(±1.546)	24.02(±1.544)
2478	TransE	SB	0.326(±0.004)	0.326(±0.042)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.011(±0.002)	14.06(±1.546)	12.17(±0.200)	14.06(±1.546)	24.02(±1.544)
2479	TransE	TB	0.326(±0.004)	0.326(±0.042)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.011(±0.002)	14.06(±1.546)	12.17(±0.200)	14.06(±1.546)	24.02(±1.544)
2480	DANN	DEV	0.340(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.04(±0.000)	13.20(±0.000)	11.23(±0.000)	24.90(±0.000)
2481	DANN	IVW	0.340(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.04(±0.000)	13.20(±0.000)	11.23(±0.000)	24.90(±0.000)
2482	DANN	SB	0.340(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.04(±0.000)	13.20(±0.000)	11.23(±0.000)	24.90(±0.000)
2483	DANN	TB	0.340(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	11.04(±0.000)	13.20(±0.000)	11.23(±0.000)	24.90(±0.000)
2484	DeepCoRL	DEV	0.326(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.010(±0.000)	12.47(±0.290)	13.20(±0.290)	12.66(±0.290)	24.90(±0.000)
2485	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2486	DeepCoRL	SB	0.270(±0.000)	0.326(±0.000)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2487	DeepCoRL	TB	0.321(±0.012)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2488	DeepCoRL	CMD	0.326(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2489	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2490	DeepCoRL	SB	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2491	DeepCoRL	TB	0.321(±0.012)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2492	DeepCoRL	CMD	0.326(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2493	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2494	DeepCoRL	SB	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2495	DeepCoRL	TB	0.321(±0.012)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2496	DeepCoRL	CMD	0.326(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2497	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2498	DeepCoRL	SB	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2499	DeepCoRL	TB	0.321(±0.012)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2500	DeepCoRL	CMD	0.326(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2501	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2502	DeepCoRL	SB	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2503	DeepCoRL	TB	0.321(±0.012)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2504	DeepCoRL	CMD	0.326(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2505	DeepCoRL	IVW	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2506	DeepCoRL	SB	0.270(±0.000)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2507	DeepCoRL	TB	0.321(±0.012)	0.326(±0.008)	0.001(±0.000)	0.000(±0.000)	0.000(±0.000)	0.007(±0.001)	10.34(±0.260)	12.30(±0.260)	11.10(±0.073)	24.34(±0.087)
2508	DeepCoRL	CMD	0.326(±0.000)	0.326(±0.008)	0.001(±0.000)	0.00						