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ABSTRACT

Neural surrogates for Partial Differential Equations (PDEs) often suffer significant
performance degradation when evaluated on unseen problem configurations, such
as new initial conditions or structural dimensions. Meanwhile, Domain Adapta-
tion (DA) techniques have been widely used in vision and language processing to
generalize from limited information about unseen configurations. In this work, we
address this gap through two focused contributions. First, we introduce SIMSHIFT,
a novel benchmark dataset and evaluation suite composed of four industrial simula-
tion tasks spanning diverse processes and physics: hot rolling, sheet metal forming,
electric motor design and heatsink design. Second, we extend established DA
methods to state-of-the-art neural surrogates and systematically evaluate them.
These approaches use parametric descriptions and ground truth simulations from
multiple source configurations, together with only parametric descriptions from
target configurations. The goal is to accurately predict target simulations without
access to ground truth simulation data. Extensive experiments on SIMSHIFT high-
light the challenges of out-of-distribution neural surrogate modeling, demonstrate
the potential of DA in simulation, and reveal open problems in achieving robust
neural surrogates under distribution shifts in industrially relevant scenarios.

1 INTRODUCTION

PDE simulations are essential tools for understanding and predicting physical phenomena in engi-
neering and science (Evans|2010). Over recent years, machine learning has emerged as a novel and
promising modeling option for complex systems (Brunton & Kutz, 2020), significantly accelerating
and augmenting simulation workflows across diverse applications, including weather and climate
forecasting (Pathak et al., 2022} |Bodnar et al., 2025)), material design (Merchant et al., 2023} |Zeni1
et al.| 2025) and protein folding (Abramson et al.,|2024) to name a few.

In practice, however, models are often deployed outside of their training distribution. This distribution
shift (Quionero-Candela et al.| 2009; Wang et al., [2023)) often leads to a significant performance
degradation (Bonnet et al} 2022} Herde et al.,|2024). A well known analogue is clinical microscopy:
models trained with data collected at a few hospitals often fail when deployed at others because
microscopes, staining protocols, and lighting conditions differ (Tellez et al., [2019; |[Koh et al., 2020).
For neural surrogates an analogous “instrument shift” arises from new initial conditions, such as
material parameters or mesh geometries not encountered during training. Robustness to distribution
shifts is crucial for industrial adoption and deployment also because it is becoming a compliance
requirement, as stated by Article 15 of the EU Al Act (European Union, [2024).

While methods for increasing out-of-distribution performance have been at the center of research
for a long time (Ben-David et al.| 2006} |Shimodaira, 2000; Sugiyama et al., 2007b)), to the best
of our knowledge, no benchmark systematically investigates such methods on simulation tasks.
Addressing this gap is particularly relevant in scientific and industrial settings, where generating
ground truth simulation data is costly, limiting the diversity of training configurations. In contrast,
parametric descriptions, such as material types or structural dimensions, are often readily available or
easy to generate. This problem is known as Unsupervised Domain Adaptation (UDA) (Ben-David
et al.| [2010), where parametric (input) descriptions and full simulation outputs are available for each
source configuration, while only input descriptions are provided for farget configurations, without
corresponding outputs.
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Figure 1: Schematic overview of the SIMSHIFT framework. In training, the model has access to
inputs (e.g., parameters and meshes), corresponding outputs (,y) from the source domain (left,
blue), and only inputs =’ from the target domain (right, yellow) are available. The neural operator g
and the conditioning network ¢ are shared across domains and jointly optimized. Two loss terms are
used: Lyecon, computed on source labels, and Lpa, which aligns source and target ¢ features. After
training, unsupervised model selection strategies choose 1, which is expected to perform best on
target domain.
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To investigate the potential of UDA for neural surrogate modeling, we provide simulation data
across a range of realistic tasks from industrial engineering design. We introduce a comprehensive
benchmark that evaluates established UDA methods and neural surrogates. An overview of the
framework is shown in Figure[I] Our contributions can be summarized as follows:

* We propose four practical datasets with flexible distribution shifts in hot rolling, sheet metal
forming, electric motor, and heatsink design, based on realistic simulation setups.

* We present, to the best of our knowledge, the first joint study of established neural surrogate
architectures and UDA on engineering simulations with unstructured meshes.

* We introduce SIMSHIFT, a modular benchmarking suite that complements our datasets with
baseline models and algorithms. It allows easy integration of new simulations, machine learning
methods, domain adaptation techniques, and model selection strategies.

2 RELATED WORK

Unsupervised Domain Adaptation. UDA research covers a wide spectrum of results from theoretical
foundations (Ben-David et al.|[2010; [Zellinger et al.l 2021a)) to modern deep learning methods (Liu &
Xue} 2021} Zellinger et al.,[2019; Zhu et al.,|2021; Long et al.,|2018)). A prominent class of methods,
dubbed as representation learning, aims to map the data to a feature space, where source and target
representations appear similar, while maintaining enough information for accurate prediction. To
enforce feature similarity between domains, algorithms often employ statistical (Sun & Saenko| |2016;
Gretton et al., |2006; |[Zhang et al.| [2019; |Shalit et al., 2017) or adversarial (Ganin et al., 2015; [Tzeng
et al.,|2017) discrepancy measures. One crucial yet frequently overlooked factor in the success of
UDA methods is model selection. Numerous studies underline the critical impact of hyperparameter
choices on UDA algorithm performance, often overshadowing the adaptation method itself (Musgrave
et al.} 2021} |Zellinger et al., [2021b; Dinu et al., 2023} [Yang et al.l 2024). Even more, since labeled
data is unavailable in the target domain, standard validation approaches become infeasible. Thus, it
is essential to jointly evaluate adaptation algorithms alongside their associated unsupervised model
selection strategies. In this work, we focus on importance weighting strategies (Sugiyama et al.,
2007a;|You et al.,2019), which stand out by their general applicability, theoretical guarantees and
high empirical performance.

Benchmarks for Unsupervised Domain Adaptation. Numerous benchmark datasets and evaluation
protocols have been established for UDA methods across various machine learning domains, including
computer vision (Venkateswara et al.| 2017} Peng et al.,|2018;|Arjovsky et al.,|2019), natural language
processing (Blitzer et al., [2007)), timeseries data (Ragab et al.,|2022) and tabular data (Gardner et al.,
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2023). However, to the best of our knowledge, systematic UDA benchmarking for neural surrogates
remains unexplored.

Benchmarks for Neural Surrogates. Recent years have seen a surge of surrogates belonging to the
group of neural operators (see Appendix [A), and benchmarks have grown alongside them. However,
designing a robust and fair benchmark in the realm of PDE:s is difficult and the current literature is not
without shortcomings (Brandstetter, |2025)). Many focus on solving PDEs on structured, regular grids
(Gupta & Brandstetter, 2022} |Takamoto et al., [2022; |(Ohana et al., [2024), which serve as valuable
platforms for developing and testing new algorithms. However, these overlook the irregular meshes
commonly used in large scale industrial simulations. In that direction, other benchmarks extend to
Computational Fluid Dynamics (CFD) on irregular static meshes for airfoil simulations (Bonnet et al.|
2022), aerodynamics for automotive (Elrefaie et al.,[2024a3b)), more academic fluid problems (Luo
et al.| 2023)), and even particle based Smoothed Particle Hydrodynamics simulations (Toshev et al.|
2023;[2024). Finally, and most closely related to our work, recent efforts have explored the application
of Active Learning techniques (Cohn et al., {1996} Ren et al.,|2021) to neural surrogates, introducing
a benchmark specifically designed for scenarios where data is scarce (Musekamp et al.| [2025)).
Despite these contributions, all current benchmarks often fall short when addressing a critical issue:
the significant performance drop models exhibit under distribution shifts, i.e., when encountering
simulation configurations beyond their training setting (Quionero-Candela et al., 2009).

3 DATASET PRESENTATION

Our datasets follow three design principles. (i) Industry relevance: They reflect practical, real-world
simulation use-cases. The benchmark covers a diverse set of problems, including 2D as well as 3D
cases. (ii) Parametrized conditions: The behavior of all simulations depends on the set of initial
parameters only. (iii) Steady-state scenarios: We constrain them to time independent problems,
being the standard use case in industry. Take for example design optimization tasks: most rely on
either steady-state or time-averaged solutions rather than detailed transient dynamics. This is not just
a modeling convenience, but reflects how simulation is integrated into design pipelines: numerical
simulations are used to assess candidates by computing scalar objective values. This practice
is well documented established various application areas, including thermal systems (Majumdar,
2021)), aerodynamic shape optimization for aircrafts (Martins| 2022}, wind turbine design (Martins|
2022)), and car aerodynamics (Dumas) 2007). Additionally with this constraint we avoid additional
complexities such as autoregressive error accumulation in neural surrogates (Lippe et al., 2023)).

The datasets were generated using the commercial Finite Element Method (FEM) software Abaqus,
the open-source simulation software HOTINT and the open-source CFD package OpenFoam 9. E] An
overview of each dataset together with its most important parameters and a custom metric, motivated
by engineering practice, is presented in Sections [3.1) to 3.4] Additionally, we provide detailed
descriptions of the respective numerical simulations in Appendix |G} Since the behavior of each
simulation task is entirely determined by its input parameters, we predefine source and target domains
by partitioning the parameter space into distinct, non-overlapping regions. A detailed explanation of
the domain splitting strategy is provided in Section[3.5] Table[I|summarizes key characteristics of
each dataset, including physical dimensionality, mesh resolution, number of conditioning parameters,
and total dataset size. All datasets are publicly hosted on Hugging Faceﬂ

Table 1: Overview of the benchmark datasets. Heatsink meshes are subsampled to a fourth of their
original size. Detailed descriptions of the parameter sampling ranges can be found in Appendix @

. . Output Avg. Varied simulation . Size
Dataset Origin Samples channels # nodes parameters Dim (GB)
Rolling Metallurgy 4,750 10 576 4 2D 0.5
Forming Manufacturing 3,315 10 6,417 4 2D 4.1
Motor Machinery 3,196 26 9,052 15 2D 13.4
Heatsink Electronics 460 5 1,385,594 4 3D 40.8

! Abaqus; HOTINT; OpenFoam 9.
“https://huggingface.co/datasets/simshift/SIMSHIFT_data


https://www.3ds.com/products/simulia/abaqus
https://hotint.lcm.at/
https://www.openfoam.com/
https://huggingface.co/datasets/simshift/SIMSHIFT_data
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(a) Illustration of the simulation setup. The parame- (b) Metal slab after the process, showing PEEQ as a
ters correspond to those in Table[T4] We use symme- contour plot. The green line indicates the center cord,
try constraints and only simulate half of the slab. along which we measure the custom metric.

Figure 2: Overview of the hot rolling simulation scenario.

3.1 HoT ROLLING

Problem Description. The Kot rolling process plastically deforms a metal slab into a sheet metal
product, as visualized in Figure[2} This complex thermo-mechanical operation involves coupled
elasto-plastic deformation and heat transfer phenomena (Guptal, 2021} |Galantucci & Tricarico, [1999;
Jo et al.l |2023)). The Finite Element (FE) simulation models the progressive thickness reduction
and thermal evolution of the material as it passes through a rolling gap, incorporating temperature-
dependent material properties and contact between the slab and the rolls. Among the output fields,
the key quantity is Equivalent Plastic Strain (PEEQ), representing the material’s plastic deformation,
visualized in Figure 2b] The custom metric measures the relative error of the PEEQ profile along the
slab’s vertical center cord (green line in Figure [2b).

Input parameters are the initial slab thickness ¢, temperature characteristics T¢ore and Tgy,s of the
slab, as well as the geometry of the roll gap. To vary the slab deformation we define the thickness
reduction as a percentage of the initial thickness: reduction = t_Tg, where g is the rolling gap distance.
Table [T4] in Appendix [G.I] shows a detailed overview of the parameter values together with their
sampling ranges used to generate the dataset.

3.2 SHEET METAL FORMING

Problem Description. The sheet metal forming process is a critical manufacturing operation widely
used across industries such as automotive and aerospace. FEM simulations are commonly employed to
estimate critical quantities such as thinning, local plastic deformation and residual stress distribution
(Tekkaya, [2000; |Ablat & Qattawil 2017} [Folle et al.| [2024). The simulation setup consists of a
symmetrical workpiece supported at the ends and center, a holder and a punch that deforms the sheet
by applying a displacement (U in Figure[3a). The 2D simulation predicts the sheet’s elasto-plastic
deformation, providing quantities such as stress, elastic and plastic strain distributions (shown in
Figure[3b). An essential engineering metric used in practice is the transverse stress (xx-component)
distribution along the vertical center cord (green line in Figure [3).

Input parameters include the deformed sheet length [, the sheet thickness ¢, friction coefficient 1
and the radii of the holder, punch, and supports 7. Table[I5]in Appendix[G.2]provides the sampling
ranges for data generation.
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(a) Mustration of the simulation setup. The param-  (b) Material before (top) and after (bottom) the
eters correspond to those listed in Table@ process, shown as PEEQ contours. A = [/2

Figure 3: Overview of the sheet metal forming simulation scenario.



Under review as a conference paper at ICLR 2026

3.3 ELECTRIC MOTOR DESIGN

Problem Description. The electric motor design dataset encompasses a structural FEM simulation
of a rotor in electric machinery, subjected to mechanical loading at burst speed. It is motivated by the
conflicting design objectives in rotor development: while magnetic performance favors certain rotor
topologies to optimize flux paths and torque generation, structural integrity requires designs capable
of withstanding centrifugal loads without plastic deformation (Gerlach et al 2021}, [Dorninger et all,
[2021). The 2D simulation predicts stress and deformation responses due to assembly pressing forces
and centrifugal loads, accounting for the rotor’s topology, material properties, and rotation speed.
The custom metric measures the relative error in Mises stress along the cord shown in green Figure 4]

Input Parameters together with their variations and a detailed technical drawing are omitted from
the main body since this case is more complex than the preceding datasets. They are provided in
Figure[3T]and Table[I7] both in Appendix [G.3}
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Figure 4: The electric motor design simulation scenario, with a schematic sketch of the motor (left)
and zoomed-in detail from the simulated radial portion (right). Mises stress field contour plot is
shown. The custom error metric is measured along the green line at A = t*% + 1.1 % 7p0.

3.4 HEATSINK DESIGN

Problem Description. The heatsink design dataset represents a
CFD simulation focused on the thermal performance of heat sinks,
commonly used in electronic cooling applications
Velraj,[2010; [Rahman et al.}[2024). It models the convective heat

transfer from a heated base through an array of fins to the surround-
ing air. The simulation captures how geometric fin characteristics,
specifically, the number, height, and thickness of fins, affect the
overall heat dissipation, along with the temperature of the heat sink.
Outputs include steady state temperature, velocity and pressure

380

370

360

340

330

320

(1) @anjesadwal

fields, enabling the assessment of design efficiency and thermal re-
sistance under varying configurations. The main engineering metric
measures the relative error in the temperature distribution along the
dashed green line in Figure[3]

Input Parameters and their variations as well as an overview of
the setup are provided in Appendix [G.4] Figure 5: Slice of the heatsink
3D temperature field. Custom
metric along dashed cord at

A =0.0025.

SIMSHIFT’s functionality allows for generating arbitrary n-dimensional parametric shifts for each
problem, ensuring flexibility and extensibility. For benchmarking, each dataset includes three
predefined distribution shifts: easy, medium and hard, which reflect increasing distributional distance
in the respective input spaces (see Table [2] for parameter ranges). The source and target domains are
constructed by shifting along the dominant input parameter of each simulation scenario, as suggested
by domain experts.

3.5 DISTRIBUTION SHIFTS
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To validate the design of our domain shifts we perform two analyses: (i) Latent space inspection:
We train models across the full parameter ranges and perform a cluster analysis of their latent
representations as the input conditions are varied. The resulting clusters consistently align with the
parameters proposed by the experts, indicating that the chosen parameters dominate latent space
variation (see visualizations in Figures[25|to 28] Appendix . (ii) Transfer difficulty validation:
Scalar parameter differences alone can be misleading regarding the actual shift difficulty experienced
by models. We therefore provide the Proxy .A-Distance (PAD), which serves as an upper bound
on the model’s maximum transfer error. It works by bounding the #-divergence, which in turn is
an upper bound the maximum transfer error itself (for details see Bouvier et al.|(2020), Johansson
et al. (2019) and Zellinger et al.| (2021b))). We estimate the PAD in the output spaces (ground truth
simulation fields) using a PointNet Qi et al.|(2017) mesh classifier. The resulting PAD values for each
difficulty together with the domain defining parameter splits for all datasets are reported in Table

The PAD values indicate a clear output-space distribution shift across all datasets. To illustrate this
more concretely, consider the hot rolling dataset: in the medium difficulty setting, the range of PEEQ
values in the source domain is [0, 0.19], while in the target domain it extends to [0, 0.28]. Therefore
part of the target solution field lies outside the support of the source field, demonstrating a genuine
output-space shift in addition to the parametric input shift.

Beyond the predefined one-dimensional splits, we explore higher-dimensional distribution shifts. In
Appendix we demonstrate that models, adaptation algorithms and model selection strategies
exhibit consistent behavior under a two-dimensional shift in the electric motor design dataset.

Table 2: SIMSHIFT’s predefined distribution shifts. We show the domain defining parameter and its
respective ranges for all difficulty levels together with the corresponding PAD.

Dataset Parameter Difficulty Source range Target range PAD
easy [0.01,0.13) [0.13,0.15] 1.063
Rolling Reduction r (—) medium [0.01,0.115) [0.115,0.15] 1.159
hard [0.01, 0.10) [0.10, 0.15] 1.210
easy [2,4.8) [4.8, 5] 0.860
Forming Thickness ¢ (mm) medium [2,4.3) [4.3, 5] 0.938
hard [2,4.1) [4.1, 5] 1.030
easy [100, 122) [122, 126] 0.762
Electric Motor  Rotor slot diameter 3 d,.;3 (mm) medium [99, 120) [120, 126] 0.932
hard [99, 118) [118, 126] 0.955
easy [5,13) [13, 14] 1.446
Heatsink # fins medium [5,12) [12, 15] 1.683
hard [5,11) [11,15] 1.861

4 BENCHMARK SETUP

This section outlines the learning problem (Section[4.T)), the UDA algorithms considered (Section4.2)),
the unsupervised model selection strategies (Section[4.3), and the baseline models used (Section 4.4).
Finally, we describe the experimental setup and evaluation metrics in Section

4.1 LEARNING PROBLEM

Let X be an input space containing geometries and conditioning parameters (e.g., thickness and
temperatures in Figure 2a) and ) be an output space containing ground truth solution fields, obtained
from a numerical solver (e.g., PEEQ field in Figure @ Following (Ben-David et al., [2010), a
domain is represented by a probability density function p on X x ) (e.g., describing the probability
of observing an input-output pair corresponding to the parameter range r € [0.01,0.115) in Table [2).
UDA has been formulated as follows: Given a source dataset (1, 1), ..., (Zn, yn) drawn from a
source domain pg together with an unlabeled target dataset ', ..., 2}, drawn from the (X-marginal)
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of a target domain pr, the problem is to find a model f : X — ) that has small expected risk on the
target domain:

E w,p)~pr [L(f (), 9)] )

with £ : J) X ) — R being some loss function. For example, consider the square loss £(f(x),y) =
(f(z)—y)?. Inoursetup f(x) = g(x, #(x)) is composed of a conditioning network ¢ and a surrogate

g (see Figure[T).

4.2 UNSUPERVISED DOMAIN ADAPTATION ALGORITHMS

Our UDA baseline algorithms are from the class of domain-invariant representation learning methods.
These methods are strong baselines, in the sense that their performance typically lies within the
standard deviation of the winning algorithms in large scale empirical evaluations (i.e., no significant
outperformance is observed), see CMD, Deep CORAL and DANN in (Dinu et al.,2023| Tables 12—
14), M3SDA in (Peng et al.,2019), MMDA and HoMM in (Ragab et al.,|2022).

Following [Johansson et al.| (2019) and Zellinger et al.|(2021bJ)), we express the objective of domain-
invariant learning using two learning models: a representation mapping ¢ € ® C {¢: X — R},
which in our case corresponds to the conditioning network that maps simulation parameters into
some representation space R C R¥ and a regressor g € G C {g: X x R — Y}, which is realized
by a neural surrogate. The goal is to find a mapping ¢ under which the source representations
o(x) := (¢(x1),...,0(zy,)) and the target representations ¢(x') := (¢(z}),...,¢(x),)) appear
similar, and, at the same time, enough information is preserved for prediction by g, see (Quionero-
Candela et al., 2009)). This is realized by estimating objectives of the form

Jmin B y)ps (o 0(2)),9)] + - d(6(2),6()) - @
Lrecon Lpa

The training objective therefore consists of minimizing both terms: the supervised reconstruction loss
Lecon and the domain adaptation loss Lpa as shown in Figure A variety of UDA algorithms corre-
spond to different implementations of the distance d. Good choices for d in Equation (2]) have been
found to be the Wasserstein distance (Courty et al.||2017)), the Maximum Mean Discrepancy (Baktash
motlagh et al.,|2013)), moment distances (Sun & Saenko| [2016; |Zellinger et al., | 2019)), adversarially
learned distances (Ganin et al., 2015)) and other divergence measures (Johansson et al.,|2019; Zhang
et al.,[2019). We outline the distance measures of all included algorithms in Appendixlﬁ[ Furthermore,
appropriately choosing the regularization parameter \ is crucial for performance (Musgrave et al.,
20215 Dinu et al.;2023; Yang et al., 2024), making model selection necessary.

4.3 UNSUPERVISED MODEL SELECTION STRATEGIES

Among all algorithm design choices in UDA, model selection has been repeatedly recognized as one
of the most crucial (Musgrave et al., 2021} [Yang et al.,[2024)), with sub-optimal choices potentially
leading to negative transfer (Pan & Yang,|2010). However, classical approaches (e.g., validation set,
cross-validation, information criterion) cannot be used due to missing labels and distribution shifts.
It is therefore a natural benchmark requirement for UDA to provide also unified model selection
strategies in addition to UDA algorithms.

In this work, we rely on Importance Weighted Validation IWV) (Sugiyama et al.,2007a) and Deep
Embedded Validation (DEV) (You et al.,[2019) to overcome the two challenges: (i) distribution shift
and (ii) missing target labels. These methods rely on the Radon-Nikodym derivative and the covariate
shift assumption ps(y|z) = pr(y|z) to obtain

Eeyepe L7 (@), 9)] = Eqogyops %«mm = E(yyops @S (@) )] . 3)

Equation motivates to estimate the target error by a two step procedure: First, approaching

challenge (i) by estimating the density ratio 8(x) = i ggi; from the input data only, and, approaching

challenge (ii) by estimating target error by the weighted source error using labeled source data.
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4.4 BASELINE MODELS

We provide a comprehensive range of machine learning methods, adapted to our conditioned simula-
tion task, organized by their capacity to model interactions across different spatial scales:

Global context models such as PointNet (Q1 et al.,|2017) incorporate global information into local
Multi-Layer Perceptrons (MLPs) by summarizing features of all input points by aggregation into
a global representation, which is then shared among nodes. Recognizing the necessity of local
information when dealing with complex meshes and structures, we include GraphSAGE (Hamilton
et al., | 2017), a proven Graph Neural Network (GNN) architecture (Scarselli et al., 2009} [Battaglia
et al., 2018)) already used in other mesh based tasks (Pfaff et al.,|2020; Bonnet et al.| 2022)). However,
large scale applications of GNNs are challenging due to computational expense (Alkin et al.| 2024a)
and issues like oversmoothing (Rusch et al.,|2023)). Finally, to overcome these limitations, we employ
attention based models (Vaswani et al.,2017). These models typically scale better with the number of
points, and integrate both global and local information enabling stronger long-range interactions and
greater expressivity. We include Transolver (Wu et al.|[2024)), a modern neural operator Transformer.

As an alternative categorization, baselines can also be classified by input-output pairings into poinz-
to-point and latent approaches. The former explicitly encodes nodes, while the latter represents
the underlying fields in a latent space and requires queries to retrieve nodes. While all previously
mentioned models are point-to-point, we also include Universal Physics Transformer (UPT) (Alkin
et al., [2024a; |Fiirst et al., [2025) and Geometry-Informed Neural Operator (GINO) Li et al.|(2023b), as
examples of latent field methods. Both methods are designed for large problems and offer favorable
scaling on big meshes through latent field modeling. The main difference is that GINO latent space is
constrained to a regular grid, where it operates in the frequency domain. UPT, in contrast, learns in a
standard unconstrained latent domain. Both UPT and GINO are designed for large scale meshes, and
therefore we benchmark them on the heatsink design dataset.

We provide detailed explanations of all implemented architectures in Appendix [El Our framework
explicitly conditions neural operators on configuration parameters. We first embed them using a
sinusoidal (sin—cos) encoding and a shallow MLP ¢ to produce a latent representation and then
condition the neural operator g by using either concatenation of the latent conditioning vector, FiLM
(Perez et al., 2018)) or DiT conditioning layers (Peebles & Xiel 2023). As an alternative, we also
evaluate replacing ¢ with a geometric mesh encoder that derives the latent representation directly
from the input geometry. On the electric motor design dataset, this variant performs worse (see
Appendix [H.T), supporting our design choice.

4.5 EXPERIMENTS AND EVALUATION

Experimental Setup. We benchmark four prominent UDA algorithms (Deep Coral (Sun & Saenko,
2016), CMD (Zellinger et al., 2019), DANN (Ganin et al., 2015) and DARE-GRAM (Negjjar et al.,
2023)) in combination with the following four unsupervised model selection strategies: TWV
(Sugiyama et al., [2007a), DEV (You et al.l[2019), Source Best (SB) (selecting models based on
source domain validation performance) and Target Best (TB) (selecting models based on target
simulation data, which is not available in UDA but serves as a lower bound for perfect model
selection).

For the baseline neural surrogate models, we evaluate PointNet, GraphSAGE, and Transolver on the
hot rolling, sheet metal forming, and electric motor design datasets. Due to memory and runtime
constraints on the large scale heatsink design dataset, we omit GraphSAGE and instead benchmark
UPT and GINO alongside PointNet and Transolver.

Experimental Scale. We perform an extensive sweep over the critical UDA parameter A\ and average
across four seeds, resulting in a total of 1,664 training runs (see Table . Details on architectures,
hyperparameters, training setup and normalization, as well as a breakdown of training times are
included in Appendices @ and

Evaluation Metrics. For each dataset, we report the Normalized Root Mean Squared Error (NRMSE)
averaged over all output fields, as well as the per field Root Mean Squared Error (RMSE) values
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(computed on denormalized data), the Euclidean error for deformation predictions and the custom
error metrics described in Sections to Additionally we provide physics-based evaluation
metrics for all datasets. These metrics are tailored to the underlying PDEs. Detailed metric definitions
are provided in Appendix [F.2]

5 BENCHMARKING RESULTS

Table [3]overviews our benchmarking results, showing the best UDA and selection combination per
model. Across datasets and architectures, UDA applied together with unsupervised model selection
generally leads to a target error reduction, measured by NRMSE averaged across all fields. However,
when examining the dataset-specific custom metrics introduced in Sections to the individual
fields, and the physics-based metrics, gains are not uniform, and some methods improve the global
loss, while performance on particular metrics. This pattern suggests that standard methods are a good
starting point, but specialized algorithms tailored to high-dimensional regression tasks are needed.
Furthermore, the gap between the best UDA + selection configurations and the TB oracle (lower
bound on error) indicates that current unsupervised model selection strategies also leave room for
improvement. Despite the clear benefits of UDA, no single UDA algorithm or unsupervised selection
strategy dominates across all datasets. In addition to this summary, we report full source and target
metrics across architectures, algorithms, and selection strategies in Tables [Z_f] to @}

Finally, since the presented tables only report performance on the medium difficulty setting, we
additionally visualize model behavior of the best performing combination (model + UDA algorithm +
selection strategy) across all difficulty levels of the hort rolling dataset in Figure[6] It illustrates the
increase in prediction error as the domain gap widens and highlights the consistent improvements
achieved by applying UDA algorithms combined with unsupervised model selection strategies on the
easy and medium settings.

For the hard setting, however, the shown unsupervised model selection algorithm fails to identify
suitable models, as the mean error matches that of the unregularized baselines with the standard
deviation even increasing. Nonetheless, the theoretical lower bound (TB) remains substantially

Table 3: Best performing combination of UDA algorithm and unsupervised model selection for each
dataset (medium difficulty) and architecture. We also report an oracle with target best (TB) selection,
which provides a lower bound on the selection error. Entries show the target domain (N)RMSE
or physics-based metric. Promotion on the unregularized baseline are shown in parentheses, with
improvement indicated as negative values and asterisks marking unstable unregularized baselines. For
each dataset, the best configuration (green) is chosen by the lowest NRMSE across all fields (bold).

Dataset  Model Best UDA Method All Fields Mises Stress Rel Custom Error VM Consistency
+ Model Selection Normalized Avg (-) (MPa) (-) (-)
GraphSAGE DARE-GRAM + IWV 0.192 (-0.172) 12.384 (-7.406) 0.142 (-0.092) 0.049 (+0.003)
PointNet CMD + SB 0.387 (-0.082) 27.922 (+0.311) 0.261 (-0.009) 0.055 (-0.001)
Rolling  Transolver CMD + SB 0.781 (%) 71.526 (%) 0.507 (%) 0.086 (%)
Oracle (GraphSAGE) DARE-GRAM + TB 0.192 (-0.172) 12.384 (-7.406) 0.142 (-0.092) 0.049 (+0.003)
GraphSAGE DARE-GRAM + SB 0.342 (-0.033) 29.088 (-0.370) 0.349 (-0.078) 0.031 (-0.000)
Motor PointNet Deep Coral + SB 0.313 (-0.084) 26.229 (-4.425) 0.197 (-0.147) 0.043 (-0.003)
oto Transolver Deep Coral + SB 0.098 (-0.018) 7.269 (-0.729) 0.089 (-0.022) 0.016 (-0.003)
Oracle (Transolver) Deep Coral + TB 0.098 (-0.018) 7.266 (-0.732) 0.089 (-0.022) 0.016 (-0.002)
Dataset Model Best UDA Method All Fields Mises Stress Rel Custom Error Plastic Residual
atase ode + Model Selection  Normalized Avg (-) (MPa) -) )
GraphSAGE DANN +IWV 0.334 (-0.042) 52917 (+6.821) 5.384 (+2.888) 0.509 (+0.028)
Formin PointNet Deep Coral + SB 0.182 (-0.044) 31.345 (-0.090) 1.154 (+0.273) 0.451 (-0.029)
€ Transolver Deep Coral + DEV 0.154 (-0.014) 24.427 (+1.457) 0.806 (+0.199) 0.581 (+0.098)
Oracle (Transolver) CMD + TB 0.131 (-0.037) 20.275 (-2.695) 0.796 (+0.189) 0.506 (+0.022)
Dataset  Model Best UDA Method All Fields Temperature  Rel Custom Error  BC Violation
atase ode + Model Selection ~ Normalized Avg (-) (K) ) Velocity (m/s)
PointNet DARE-GRAM + SB 0.371 (-0.197) 12.343 (-8.783) 0.015 (-0.035) 0.121 (+0.011)
Transolver Deep Coral + DEV 0.318 (-0.128) 9.081 (-0.639) 0.009 (-0.001) 0.117 (+0.039)
Heatsink UPT Deep Coral + SB 0.325 (-0.116) 12.414 (-0.619) 0.013 (-0.000) 0.107 (+0.036)
GINO Deep CORAL + SB 0.356 (-0.128) 14.031 (+0.136) 0.017 (+0.000) 0.107 (+0.024)
Oracle (Transolver) Deep Coral + TB 0.310 (-0.135) 8.718 (-1.002) 0.009 (-0.001) 0.117 (+0.039)
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Figure 6: Target error scaling with increasing domain gap. We show the averaged RMSE across all
(normalized) fields for the easy, medium, and hard gaps on the hot rolling task. We compare models
without UDA, the best performing UDA method with unsupervised model selection (CMD + IWV),
and the theoretical lower bound (TB). Error bars indicate the standard deviation across four seeds.
Furthermore, we highlight potentials of architecture, algorithm and selection improvements on the
hard task.

below the unregularized error. Figure [6]again highlights the two promising directions for further
improvement of the presented baselines: (i) enhancement of neural surrogate architectures and UDA
algorithms, and (ii) especially, improvement of unsupervised model selection strategies.

6 DISCUSSION

We presented SIMSHIFT, a collection of industry relevant datasets paired with a benchmarking
library for comparing UDA algorithms, unsupervised model selection strategies and neural surrogates
in real world scenarios. We adapted available techniques, applied them on physical simulation data
and performed extensive experiments to evaluate their performance on the presented datasets. Our
findings suggest that standard UDA training methods can improve performance of models in unseen
parameter ranges in physical simulations, with improvement margins in line with those seen in UDA
literature (Dinu et al.| [2023} Ragab et al.| [2022)). Additionally, we find correct unsupervised model
selection to be extremely important in downstream model performance on target domains, with it
arguably having as much impact as the UDA training itself, which is also in agreement with other
DA works (Musgrave et al.l 2021).

Limitations. We acknowledge that our datasets are limited under two main aspects: (i) They only
cover steady-state problems, which represent a large portion of industrial simulation tasks. However,
an extension with time-dependent datasets could be valuable for certain application areas. (ii) They
cover a wide range of mesh sizes, ranging from roughly O(102) up to O(10°) nodes. Nevertheless,
many industrial scenarios require substantially larger meshes. These limitations reflect design choices
aimed at benchmarking clarity and computational feasibility and leave room for future extensions.

Future Directions. Motivated by our results, we identify several promising research directions:

(i) Although we include a diverse and competitive set of UDA algorithms and unsupervised model
selection techniques, a wide range of methods remain unexplored in the context of scientific ML.
Examples include ensembling based adaptation (Cha et al.,[2021)), adversarial information bottleneck
approaches (Luo et al., 2019; [Song et al., 2020) or diffusion based methods (Peng et al.| [2024; Liao
et al., [2025). In addition, test-time adaptation methods (Wang et al., [2021;|Adachi et al.,|2025)) could
be designed and tested using our benchmark. (ii) SIMSHIFT currently evaluates standard UDA
algorithms and does not integrate physics constraints (Karniadakis et al., 2021)) into training. Our
framework and datasets allows to include physics constraints, and we find the direction of a specific
physics-inspired UDA method a very interesting and potentially fruitful gap in the current research.
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REPRODUCIBILITY STATEMENT

The first step towards reproducibility are the datasets. We provide a download link for all dataset with
our predefined domain shifts and a high—level description of each dataset and the splitting strategy in
Section [3|and Appendix [C] To take transparency a step further, we present detailed descriptions of the
respective numerical simulations together with the employed solvers, initial/boundary conditions and
the configuration details in Appendix |G} Concerning the machine learning parts of the benchmark, we
provide detailed descriptions of the architectures, their configurations and training hyperparameters in
Appendix [F 1} Additionally, we provide an anonymized codebase with pinned dependencies, fixable
seeds and a comprehensive README . md along with all necessary configuration files used in our
benchmarking pipeline.
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LLM USAGE DISCLOSURE

In general, LLM tools were used to refine writing in parts of the paper. DeepSeek-R1 and GPT-5
were additionally used to make visualizations prettier, speed up the development of plotting functions,
and dump experimental results neatly into latex tabled tables. Beyond that, they were not used to a
significant degree in other parts of the code, as neither Copilot nor Cursor are used by the main author.
Al assistants were strictly editors and decorators, i.e. they were not involved in ideation, reordering
ideas, or at any higher or lower conceptual level.

A ON NEURAL OPERATORS

One prominent approach in neural surrogate modeling for PDE:s is operator learning (Kovachki et al.|
2021 |L1 et al.,2020a; Lu et al., 2021} |Alkin et al.} 20244a; L1 et al.,[2020b)). In this setting, an operator
maps input functions, such as boundary or initial conditions, to the corresponding solution of the PDE.
During training, neural operators typically learn from input-output pairs of discretized functions
(Kovachki et al., 2021} |L1 et al., [2020a; |Lu et al., [2021}; |Alkin et al.,|2024a). While some methods
expect regular, grid based inputs (Li et al., 2020a), others can be applied to any kind of data structure
(Alkin et al.l[2024a} [Li et al.,2020bj; 2023b)). One notable property is discretization invariance, which,
along with the ability to handle irregular data, enables generalization across different resolutions and
mesh geometries. This is a highly desirable property for industrial simulations (Pfaff et al., [2020;
Alkin et al., 2024a; [Fiirst et al., 2025} L1 et al., |2023a; |[Franco et al., [2022), where non-uniform
meshes are the standard due to the computational and modeling advantages. In this work, we focus on
domain adaptation rather than benchmarking discretization invariance, and include neural surrogates
that may not satisfy this property, such as (Hamilton et al.,[2017). Such models have been leveraged
in several large scale industrial contexts, including CFD for automotive (Bleeker et al., |2025) or
Discrete Element Method (DEM) simulations for industrial processes (Alkin et al., [2024b).

B DETAILED RESULTS

Complementing the summary in Table [3]of the main paper, the following sections present detailed
results for each dataset. For every dataset, we present a complete empirical evaluation of our
benchmark that compares the performance for all combinations of models, UDA algorithms and
model selection strategies across all output fields.

While these quantitative metrics offer a high level summary of model performance, industry prac-
titioners often need a more fine grained picture to assess the neural surrogate’s capabilities under
distribution shifts. To address this, we include additional analyses and visualizations alongside the
quantitative results. First, we provide error distribution histograms to better illustrate the difficulty of
the domain shift occurring in each dataset. Additionally, we present fringe and scatter plots comparing
model predictions with the respective ground truth numerical solutions.

B.1 HoOT ROLLING

Table @] presents the complete benchmarking results for the kot rolling dataset.

To gain more insights, we conduct additional analyses on the best performing model, selected based
on having the lowest average normalized target domain error across all fields. Figure[7|shows the
error distribution of this model and clearly highlights the substantial distribution shift between the
source and target domain of the Kot rolling dataset. Errors in the target domain are noticeably larger,
almost up to an order of magnitude higher than those observed in the source domain.

To further illustrate the model’s performance, we analyze two representative samples, one from the
source and one from the target domain. Since the most critical field for downstream applications is
PEEQ, we restrict the following analysis on this scalar field only.

Table[5]presents a summary of the absolute PEEQ prediction errors for the selected source and target
samples. Additionally, Figure[§]and Figure[J] visualize the ground truth, predictions, and absolute
errors for these samples using fringe plots.
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Table 4: RMSE (mean = std over 4 seeds) on the hot rolling dataset at medium difficulty. Values are
target domain errors (lower is better). Bold marks the overall best model + UDA algorithm + model
selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas
the best UDA + selection within that architecture is underlined and shaded green. Asterisks denote

unstable runs (> 10x the column median).
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Figure 7: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the hot rolling dataset. Bar height indicates the relative frequency of

samples within each bin.

Table 5: Absolute error of PEEQ predictions for representative samples from the source and target
domain of the hot rolling dataset. Lowest value per metric is bold.

Metric

Source

Target

Mean
Std
Median
Qo1

Qos

Q75

Qoo

2.07e-04
1.87¢-04
1.66¢-04
7.45e-09
6.38e-05
2.99¢-04
7.61e-04

1.46e-02
2.73e-03
1.49e-02
6.82e-03
1.37e-02
1.58e-02
2.14e-02
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2.70e-05 2.70e-05 7.45e-09

Figure 8: Fringe plot of the hot rolling dataset (representative source sample). Shown is the ground
truth (left) and predicted (middle) PEEQ, as well as the absolute error (right).
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Figure 9: Fringe plot of the hot rolling dataset (representative target sample). Shown is the ground
truth (left) and predicted (middle) PEEQ, as well as the absolute error (right).
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B.2 SHEET METAL FORMING

In contrast to the substantial shift observed in the hot rolling dataset, the distribution shift in the
sheet metal forming dataset is moderate. Table[6| presents the detailed performance across all models,
algorithms, and selections for this dataset.

Table 6: RMSE (mean =+ std over 4 seeds) on the sheet metal forming dataset at medium difficulty.
Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm
+ model selection combination. For each architecture, the unregularized baseline row is shaded beige,
whereas the best UDA + selection within that architecture is underlined and shaded green.
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To further illustrate model behavior under distribution shift, we examine the best performing model,
selected by lowest normalized average target domain error. The error distribution (Figure [T0) shows
a moderate distribution shift between the source and target domain with some outliers in the target
domain.

Error distribution
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Figure 10: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the sheet metal forming dataset. Bar height indicates the relative
frequency of samples within each bin.

To better understand the model’s predictive behavior in this setting, we analyze best- and worst-case
examples in each domain, again focusing on the critical PEEQ field. Table[7]provides a statistical
summary of the absolute PEEQ prediction errors across the selected cases. Fringe plots in Figures [IT]
to[T4] provide a visual understanding of model accuracy. These visualizations emphasize that while
the best prediction in the target domain remains reasonably accurate, others (e.g., the worst case
sample) exhibit notable discrepancies in the localized regions around the bends that we are most
interested in.
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Table 7: Absolute error of PEEQ predictions for the best and worst samples from the source and
target domain of the sheet metal forming dataset. Lowest value per metric is bold.

Metric Source Target
Best Worst Best Worst
Mean 5.47e-05 1.68e-04 1.72e-04 1.86e-03
Std 1.35e-04 3.80e-04 4.52e-04 5.97e-03
Median 1.96e-05 4.35e-05 5.58e-05 2.85e-04
Qo1 2.43e-07 6.52e-07 1.03e-06 6.66e-06
Q25 7.49¢-06 1.84e-05 2.60e-05 1.53e-04
Qs 4.05e-05 1.05e-04 9.10e-05 4.67e-04
Qg9 7.37¢-04 1.96e-03 2.56e-03 3.40e-02
Ground truth 4.646-02
F q 4.12e-02
3.60e-02
3.08e-02
\/@ imgoz 8
2.05e-02 W
1.53e-02
1.01e-02
4.93e-03
-2.50e-04
Prediction 4.646-02
4.12e-02
3.60e-02
3.08e-02
3560.00 &
2.05e-02 W
1.53e-02
1.01e-02
4.93e-03
-2.50e-04
Absolute error 1.87€-03
1.66e-03
h‘ 1.45e-03
1.25e-03
\/@ i104203 :
8.31e-04 W
6.23e-04
4.16e-04
2.08e-04
3.03e-09

Figure 11: Fringe plot of the sheet metal forming dataset (best source sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, aswell as the absolute error (bottom).
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Figure 12: Fringe plot of the sheet metal forming dataset (worst source sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).
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Figure 13: Fringe plot of the sheet metal forming dataset (best target sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).
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Figure 14: Fringe plot of the sheet metal forming dataset (worst target sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).

B.3 ELECTRIC MOTOR DESIGN

Table [§] presents the complete benchmarking results for the electric motor design dataset. For this
dataset the relative degradation in model performance in the target domain is in general smaller than

in the previous two presented above.

Table 8: RMSE (mean = std over 4 seeds) on the electric motor design dataset at medium ditficulty.
Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm
+ model selection combination. For each architecture, the unregularized baseline row is shaded beige,

whereas the best UDA + selection within that architecture is underlined and shaded green.

Dy Mo 1] ) Total Strain (+10 %) Rel Custom Error () VM Comsistency ()
Model Algorithm  Selection
A S SRC T 61 5 SRC 61
OBITE0 00 0TS0 00) 0002000 0000000 _0OR(E 000 To09(000] Do 000 00) 04200056 04270050 002000100310 002)
DANY DEV 033002 0AB(00)  0003(E000) 00000 00(E0001) G002 DO 0001 0011(-0.002) 0498(20.112) 0710056 0.035(:0.009) 0037(£0.009)
DANN WV 020(0002)  0F0(:0005)  0.00(:0000) DORZ(00L) 00080000 0000(0.000) DOT(E0000) D00(-0000) 0DS(0026) 0IA(LO0LY) 00R(0001) 0031(0001)
DANN sB 020310001 OSITE0006)  0.003(:0001) 00R2(0.001) 000000 00090000 DOTE0000) 0090000 0460(:0.013) 03110017 0.031(:0003) 0032(£0.001)
DANN ™ 020710004 03E(0.006) _0.002(:0.000) _0002(£0.000) _0.008(£0000) 1 00090000 070000 0.009(-0.100) 04S0(:0.020) 0335 £0.035] _0.031(:0.002) _0.032(:0.001)
o DEV  029(0.013) 0A05(:0.05) 0.002(E0000) DOVZ(0.00) 000S(£0000) Ton (002 Q00000 D010(Z0002) 0ATHE0.096) 0I0031)  0.030(=0003) 0030(£0.003)
can NV OBME00L)  0352(0007)  0.002(:0000) 0.0N(E0.000)  00S(=0000) 00090000 DOOIZ0.000) 0.009(-0.000) 0.432(:0.031) 01200 £0.008]  0.029(=0.000) 0.031(£0.000)
GruphSAGE  CMD sB O203:0010)  OSUCE0005)  0.002(:0000) 000L(0.000) 00080000 00090000 DOUTI 0000 0.009(=0.000 00L1) 030019 000001 0.030(20.001)
i i 020510009 0S0(0.005) _0.002(20.001) 00R(L0001) 0008(20000) 1 0009(10.000) DOTI0000) DO0S(-01000) 0431(:0.045) 03I6(L0031) 0.029(20002) 0.031(£0.002)
DAREGRAM DEV  0206(1001%) 0356(20.005) 0002(E0000) DODZ(E0001) 00S(E0000) GO0 0000 DOT(Z0000) D009(Z0000) 0T0(Z0.0%) 0555(10071) 0.031(20005) 0031(£0.007)
DAREGRAM IWY  028(10.003) 0346(:0.004) 000200000 0.002(:0.000) 0.00S(+0.000 0100900000 OUTCH0.000) DOODI0.000) 043210003 0.325(£0.013) 0.025(£0.000) 0.031(£0.000)
s 002(0000)  0.002(:0.000)  0.00S(£0.000) ) 0.009(20.000) 00u7(=0.000) 0466(£0.023)  0319(£0023)  0.029(:0001) 0.031(=0.001)
DAREGRAM _TH Q002(£000) _0.002(20.000) _0.005(£0.000) 00090000 DouT(0.000) 10025 0.350(:0.022) _0029(20.001) _0.031(£0.001)
DecpConl  DEV  0201(20.005) 0358(20.005) 0.002(20000) DODZ(Z0.000) 000(Z0000) ToL0(0000) DouT 0000, (E0.01T) O029(E0.002)  0.031(£0001)
DecpConl  IWV  O2S(DOI) 02(:0017) 0.00(:0001) DOR(0001) 0.0S(£0000) 000900001 5 0.007(20.00) IE0051) 0030 £0.002)
DecpConl 5B 02880004 QU0 E0000)  0.002(:0.001)  0.00S(<0.000) 0009(£0,000) 0070000 WEOOIT) 0327010017 0.028(:0.002)
DecpConl __TB 02000003 Q00200001 0.002(:0.000) _0.008(£0.000, 00090000 0007 £0.000) _0.008(=0.100 0026 034(£0.021) 002900001
B 5 031900050 Q0020.001) _0.002(0001) 0 00S(0001) G000 ) D00 00) 0008 035720125 031(0121) 00120005
QUDLZ000) 0.001(20001) D00S(0.001) QI3(20.002) DOI2(Z0002) 0324(20116) 0056) 0.012(20.005)
Q0020001 0.001(:0.001)  0.008[0.001 Qo200 " 0 121 009 0.012(£0.005) 0.
QO0(0001)  0.002(:0.001)  0.007( 0.0 G000 DOUT(0.001)  0.011(-0103) 0.255(=0.002) (H0.008)  0039(0.003) 0.083(£0.005)
QUDL(000) _0.000(20.000) _0.005(£0.001) ] Oooaio0n) DOUTIL0001) _0008(-0101) _0300(20.110) 0091 0041(:0.005) 00350 L0005,
QUG(Z0.00)  0.002(20.001) 0OL(E0013) OIS L0012 00I(Z0002 Torm F008%) 0015(Z0.007)  0055(£0000
Q00000 0.002(:0.001) 0.013( <0011, DOI20013) 00090002 03132015 0083000 0.0H(:0.004
PoiniNer QU000 0.002(:0.000) 00130001, o 012(£0015) DOH0002) 030154 008320008 0.00(:0.003
O3LI(E005) _ 00R2(0.000)  0.001(:0000) 000720001 DOUG0001) _0.008(=0.001) 02601 00100008 _0.013(20.003
0320(Z0017)  O0U2(Z0.000) 0.001(Z0000)  0.007(30.000 G000 =000 006120000 0.008(=0.000 m QU000 0.03(20.003
QI(L0017)  002(0.000) 0.001(£0.000 o0, 000920000 00G(L0.000) 0.008(-0.100 20 0390002 0.0
0310023 0002(0.001) 0.001(£0.001 00080001 00061 0.000) 0.008(=0.100 019530035 0.035(:0.003) 0022
03130028 0003(0.001) 000202000 0080001 D007 £0.002) _0.008(=0.00 QINS(E0030) 003820003
O3IS(Z0012)  0002(0.001) 0.002(20001 00090000 0006 0.001) 0.005(=0.00 019000025 0.039(20.002
OFIS(L0012)  00(0001) 000220001 0000 £0.000) D.OUGI0.001)  0.008(=0.000 1) 0199(:0.025) 0030(0.002)  0.041(£0.005)
OBIS(E0017)  00C(0001) 0.002(£0.001 0008(20.000) DODGIL0.001) 0.005(20.000) £0035) 0197(0.027)  0.035(£0002)  0.043(20.005)
TSTTI00T)_ 0.002(0.001) 000200001 WS(£0000) DOGL0.001) _0.005(-0.000 0035) 0197(0.027) _0.035(£0002)_0.043(20.005)
OT16(Z0006) _0002(20,001) _0.001(Z0000) 0030000 000000 _0002(20.00 £0000) 0111(20,008) _0016(Z0001) _0.015(20.001)
QI03(0005)  0001(Z0.000) 0.001(Z0000 G003 0000 0.002( 0.0 S0001) O0STE0.001) 00LI(Z000)  0.017(20.001)
QIDIE0004)  O00L(£0.000) 0.001(20.000 000500000 Dom2( 0000 0005) O0ST(L0.008) 0.0LA(X0001) 0.017(20.001)
QADS(E000)  0001(£0.000) 0.001(0.000 00030000 000210000 0005 Q0SS(0.005) 0.0L4(Z0000]  0.017(£0.001)
Q1000003 0.001(£0.000) _0.00 (0000 00030000 000210000, U103(£0.001) _0SG(£0002)_ 0.011(20.000) _0.016(20.000)
TT(E0016)  0.0DI(Z0.000) O00L(Z0.000) 0.002(0000 T003( 0000 00020 0.0 0007) O0SI(E0.001) 00LI(Z0000)  0.017(20.002)
QIS0 OIDL(000) 00010000 0.002(20.000 ) 0.003(20.000) D.ou2( 0.0, OI0L(:0.006) 00SS(E00M)  0.015(:0.001) 0017(0.001)
Transolver 0102(:0008) 0.002(£0002) 0.001(:0.000) 0.004(<0.008 0.005(20.000) 0004(0.003 (X001 0.09(0002) 00I5(0002) 001T(£0005)
i 0020002 0099(0.003) _0.001(:0.000) _0.001(£0.000) _0.002(£0.000 00020000 Don2(0.00; 105(£0.006) 01110004 0.014(:0.001) _0.016(:0.001)
DEV  O0SHZ0.002) 010520006 0.001GE0001) 0001(0.00) 0 00030000 000210000 DA0TE0.005) 0922000 0.0T5(E0.001) 00IT(£0.001)
WV OOSIEDOM)  002(:0002) 0000001 DODI(0.00) 0 00030000 Do 0000 000201 06 0.090(:0.001) 00A(0.000) 00170001
DAREGRAM  SB Q0200001 OIDG(LD0LE)  0.DL(-0.000) 0.002(£0.002) sz 2 DOR(L0000) DOR(-0100) 0105(0.001) 0U95(L0013) 0.0LI:0001) 00IT(0.002)
DAREGRAM _TB O0SIE0002)  0099(£0.002) _0.001C:0.000) 0.001(£0.000) _0.02(0000) 0003000 2. DOR0000) 00020000 010S(:0.003) _0.10(£0004] _0.015(:0.000) 0.017(£0.001)
DeepConl  DEV  0.156(10.145) 0.099(:0.002) 0.002(:0002) 0001(0.000) 0003(£0002) Q00250000 4 00WZ0001)  0.002(=0.00 0066 000(E0.002) 0015(£0002)  0.016(:0.001)
DecpConl  IWY  OISS(0.144)  0.102(:0007) 000200002 0.001(:0.000) 0.003(£0.002 00030000 DOMI0L00) 00020000 0 1A:0.065) 00000006 0.015(:0.000) 0.0I7(£0.001)
DeepCoral  SB 00S2(<0003) 0.098(0.003] O00I(=000) 0.0VI(=0.000) ~0O2(=0000) 0.002(0000) 00U2(0.000)  0.002(=0000)  0.10(=0.005) QUSIEOOUS)  OLIC=0000) 0.16(0.001)
DecpCont T8 005220003 DIISCEDOUT_0.001(-0.000) _0.001(£0.000) _0.002(0000) 000200000 Dom(z000) 00)_010I(0.005) 0090003 0.011(:0.000) _0.016(20.001)
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To assess the effect of the domain shift on prediction accuracy in the electric motor design dataset
further, Figure [I5] shows the distribution of NRMSEs for the best performing model, selected by
lowest average error in the target domain, in the source and target domain.

Error distribution
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Figure 15: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the electric motor design dataset. Bar height indicates the relative
frequency of samples within each bin.

In this task, the Mises stress is used as a scalar summary of the multi-axial stress state and is
particularly interesting for downstream analysis and optimization. We therefore focus our closer
inspection on this field.

Table [0 presents a comparison of absolute Mises stress errors for the best and worst samples from
both the source and target test sets. The corresponding fringe plots are shown in Figures[I6]to
comparing the ground truth and predicted fields alongside their absolute errors. They show that the
best samples are predicted very well, whereas the worst sample of the source domain visually appears
slightly worse than the one of the target domain. On average, however, it is still predicted more
accurately than the worst sample of the target domain, as shown in Table[9]

Table 9: Absolute error (MPa) of Mises stress predictions for the best and worst samples from the
source and target domain of the electric motor design dataset. Lowest value per metric is bold.

Metric Source Target
Best Worst Best Worst
Mean 2.00 20.50 2.67 23.21
Std 2.73 39.50 3.13 23.32
Median 1.26 13.63 1.68 13.09
Qo1 0.02 0.18 0.03 0.11
Qs 0.60 5.08 0.75 2.87
Q75 2.24 24.05 3.50 41.97
Qg9 13.43 140.17 15.05 78.28
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Ground truth Prediction Absolute error
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Figure 16: Fringe plot of the electric motor design dataset (best source sample). Shown is the ground
truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).
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Figure 17: Fringe plot of the electric motor design dataset (worst source sample). Shown is the
ground truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).

Ground truth Prediction Absolute error

388.5 388.5 43.91
345.2 345.2 39.03
301.9 301.9 34.15
258.6 § 258.6 § 2927 8

2 2 2
2153 9 2153 2439 9
< o 4
5 5 5
1719 171.9 & 19.51 &
« « 0
& & &
12865 12865 14.64 5
85.3 85.3 9.76
42.0 42.0 4.88
-1.3 -1.3 0.00

Figure 18: Fringe plot of the electric motor design dataset (best target sample). Shown is the ground
truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).
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Figure 19: Fringe plot of the electric motor design dataset (worst target sample). Shown is the ground
truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).
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B.4 HEATSINK DESIGN

Table[I0] presents the complete benchmarking results for the heatsink design dataset.

Table 10: RMSE (mean =+ std over 4 seeds) on the heatsink dataset at medium difficulty. Values are
target domain errors (lower is better). Bold marks the overall best model + UDA algorithm + model
selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas
the best UDA + selection within that architecture is underlined and shaded green.

Model DA Model _ All Fields Normalized Avg (- Temperature (K) Velocity (mis) Pressure (kPa) Rel Custom Error (- BC Violation Temperature () _BC Violation Velocity (m/s)
Algorithm _ Selection ™ 5pe TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT
5T(200%) 0 I5S1CELO%) 2L126(-2365) 0.054(:0002) 0041 ) S%.0R(2313TT)_ IST9390(2239.203) _0.030(X0.006) 0.050(£0.009) 0257(0.026) 0205(£0.020) 0.105(0007) _0110(0.008)
DANN OTALDI0N  DABEOEN L) DMNEIN OO0 OUTE0NN  SUMID LooTo0(+30.70) 0026(E00LY) OOLLCE001Z) OITG(0.085) 0261CH0012) O0S(20031) OIOT(00LD)
DANN 56 0.420(£0.052)  10.167(+2590) 0.010(+0003) 004T(£0.007)  283202(70.570)  1805.938(+141 0019(+0003) 0.036(£0.009) 0.LI5(£0.061) 0215(£0.042) 0.079(£0.026) 0.114(+0.012)
DANN 0.494 LD M3 0000 00m(i000s)  20Te6S00) 0BT DOIE0N 00I(L00R) 0060018 020003 00iT(00) 01280007
DANN 0397(:0019)  10964(+1411) 15719(1387) 0.041(£0.005) 0.043(£0.002) 331207(£140.774) 1907.682(+232.159) 0.021(x0.004) 0.020(+0.006) 0.159(0.027) £0021) 0.086(£0.011) 0.114(+0.010)
cvMD 040000 IGHLOID) MOTCLOUD  OEEDN0N DUKLOM)  BUBLITHON)  LUASS(ISTI) 000000 DO(O00N 000D D00 OIEDE00D  DI0NE000)
cMD THTI(£0479) 18524(+1213) 0033(£0.001) 0.051(x0.002)  192.503(£4658) THSUSAEY 00I2000) OUS(0OI 000000 OG0 000000 010(0002)
PoinNet  CMD S3(£0.406)  1S606(£1057) 0.033(£0.001) 0.051(:0002) _196.144(+5.0: ST OIS I 0010001 D000 0000 0200(50012) 00310008 0100002
cvMD 0302 10801CELOST)  ITS00(E2256) 0037(+0.004) 0.046(£0.001) 756.989(£1076.860) 2283916(+108201) 0.022(£0.014) 0.036(£0.009) 0150(£0.057) 023(x0.033) 0.069(+0011) 0.121(£0.010)
L4050 OTUE000) OON(X0MN)  JESNG(OTS)  IsSooe(xa0sis) DOMGEOOO]  DO(000N OO(EOOD DIIS(E0OL) 00M(00S DIZ:000)
DARE-GRAM 0219( MG(£1525) 0.030(£0.001) 00H(+0003)  20LS8T(+6192)  L4T36IS(X3IL3T2) 0.009(£0.001) 00IS(£0.003) 0.055(£0.015) 0210(+0012) 0O43(£0.008) 0.122(0.007)
DAREGRAM 1250521009 00RC000) 00 ) 2077 LOLKS(E205) 0009(:0.000) DOIS(E0002) 0049(L0003) 0215(:0016) 00(E0002)  0121(:0.007)
= 12800(+1.587) 0.030(£0.001) 0.042(+0.003)  202412(+6875)  1395.163(£230.125) 0.009(+0.001) 001S(+0.003) 0.055(£0.015) 0208(+0.013) 0.042(£0.009) 0.121(:0.007)
Deep Coral S(E0.070)  0304(E0.088) 03138540  1T.950(£2281) O.038(+0010) 0.044(£0.006) TOLWIGETOLSD ~OOIT(Z0010) OEEOON) OI(00]) 0IEOIE) 0000 0.IE00LD
Deep Coral 020006 00AC00M)  QOTICERON) ATIB(HLO  DOSTEO0Y) 0040006) 0016(+0.008) 0.031(£0.010) ) 0276(:0021) 0.070(£0.029) 0.112(+0.010)
Decp Cor OZMGONL 0G00I  SOTI(E0OD) ITES(LN OO0 000000 BT 2 DOIG£0.008)  0.031(20.010) ) 0276(£0.024) 0.070(£0029) 0.112(0.010)
Decp Coral DRS00 03800 ITONAS00T IBSITAIN0Y DONCOON) 00000  SHDCI0RNY) iT(LeTON) 00NN 00002 0203007 02000 0umCo0al 00%s00lt)
2145 ) 0416(Z0018) 4327(20059) 0.720(0272) 0.024(+0.000) 0.03S(£0.001)  B07.197(32557)  1686.316(+263.085) 000T(=0.000) 0OIO(E0.001) 0.035(0.002) D0S3(£0.007) 0.021(:0.002) 0.075(x0.00)
DANN 0183(0001)  0436(:0.011)  4315(20.081) 0020000 0.049(E0.001) 0007(+0.000) 0.023(£0.002) 0.035(£0.004) 0211(£0.008) 0.021(E0.001) 0.131(£0.002)
0213(+0056)  0.425(£0.028)  5.905(+2.938) GOR(LO00T 00T(H000) 47177 0011(+0.006) 0.023(£0.002) 0.067(£0.060) 0200(£0.007) 0.036(+0.027) 0.125(+0.005)
01S3(£0002) 0.422(:0015)  A33(20077) I336(ELIE)  0.021(£0000) 00IT(£0.002) DismiaAkn)  NOANIGAG DOMGOMN DG OBGOND 00NN 0Glloc 013000
0212(:0.068) _0.406(0.024) 603) LLI(E031T) 0.032(£0.009) 0045(£0.003) 436.219(137.337)  2067S19(E155.410) 0.014(£0.008) 0023(0003) 0.093(:0.066) 0.207(:0.006) 005(:0.035) 0.125(£0.004)
OIA00W OBIEOON LI IGOGIAN 0000000 OOEE00 18NN ZO0GMCEIEY) 000 OO0 0NN OIRE0N0 0000 OIICENNG
0375(:0082)  4266(£0.130)  11.923(+2.486) 0.020(£0.000) 0.042(£0.004) IS1G616(£31411)  0.007(£0.000) 0.015(:0.006) 0.031(£0.004) 0.181(+0012) 0.021(£0.002) 0.121(£0.007)
Transolver 0.013(:0014)  4281(0.100) (£2525)  0.024(+0.000) 0.047(0.005) L0705 DONTL0000 0.ICL00%) 003(0003) D100 0.021(c000% 0120150005
0180(:0.002) 0367(:0.025) _ 4232(+0.135 0.024(+0000) _0.041(0.003) 1S94720CEIS5165)  0.007(+0.000) 0.01(£0.005) 0.030(£0.003) 0.176(£0.008) 0.021(:0.002) 0.124(+0.007)
OIR1(0008)  0.316(0.036)  1255(20.051) Q020(+0.000)  0.039(0.003) I $14902) 0.007(£0.000) 0.010(F0.001) O0.031(£0002) 0.173(£0.013) 0.021(E0.001) 0.110(£0.002)
OIS1(:0003)  0.333(:0.030)  1.200(0.086) £0.000) 0.035(:0.003) 1627 061(L077975)  0.007(L0.000) D.O1L(L0OO0L) 003000 OATI-0016) 0.023(50.002) 0.118(10.003)
DARE-GRAM 0.180(0003)  0.351(=0.026) 7) 0TELIS 0020(0000) 00I(0003)  ZGILIS0N)  ITSSTS(EISTGI 00070000 DOIL0ON) DOIB(000) OIT(:0002 0.022(£0002) 0.120(20,006)
DARE-GRAM 0332(0.028) e 98I0(£0953) 0.021(£0000) 0.035(+0.003) _ 282034(+17.7 1G19.81(£291017)  0.007(+0.000) 0.010(£0.001) 0.034(£0.002) 0.71(£0.011) 0.023(+0.001) 0.119(+0.003)
Deep Coral OISI(Z0.001) 0318(:0.027) 4251(£0.073) 0SI(X0.950) 002I(£0000) O03T(£0.002)  2S4T73(£13.051) 0.007(£0.000) 0.009(£0.002) 0.031(£0.003) 0.170(£0.010) 0.022(£0.001) 0.117(£0.004)
Deep Coral 0.182(20001) L309(+0.087)  9.998(+0.208) OO0 BTH(E13T02) 0.007(+0.000)  0.010(£0.001)  0.031(+0.002) ~ 0.183(0.002) 01
DeepCoral B 0.180(+0.002) 4260(+0.030)  0.082(+0.946) 0.039(+0.002) 0007(+0.000)  0.010(£0.002) 0.032(+0001) 0-181(£0.011) (+0.003)
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Again, we further investigate model performance under distribution shift by examining predictions
from the best performing model, selected by lowest average error in the target domain. Figure [20]
presents the respective distribution of prediction errors in the source and target domain, clearly
indicating the negative effects of the distribution shift on model performance.

In this task, the temperature field is the most critical for downstream analysis and optimization, which
is why we focus our detailed analysis on it.
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Figure 20: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the heatsink design dataset. Bar height indicates the relative frequency
of samples within each bin.

Table [[T]compares the absolute temperature prediction errors for the best and worst samples from
both the source and target test sets. The corresponding scatter plots are shown in Figures 21| to 24}
comparing the ground truth and predicted temperature fields, alongside their absolute errors.

While the best source domain prediction is quite accurate, with low average and percentile errors
(Table [T} Figure[Z1)), the 99th percentile of the worst source domain prediction reaches up to 29K.
Given a total temperature range of 100K, this represents a relative error of nearly 30%. The worst
target domain prediction is even less accurate, showing substantial visual and quantitative deviations
from the ground truth (Table[T1] Figure 24).

Table 11: Absolute error (K) of temperature predictions for the best and worst samples in the source
and target domain of the heatsink design dataset. Lowest value per metric is bold.

Metric Source Target
Best Worst Best Worst

Mean 1.84e+00 5.79e+00 2.23e+00 1.42e+01
Std 1.94e+00 5.90e+00 2.85e+00 1.46e+01
Median 1.25e+00 4.06e+00 1.31e+00 8.84e+00
Qo1 2.17e-02 7.51e-02 2.41e-02 1.62¢-01
Qzs 5.49e-01 1.92e+00 5.95e-01 4.49¢+00
Q75 2.44e+00 7.48e+00 2.68e+00 1.87e+01
Qo 9.26e+00 2.88e+01 1.49e+01 6.61e+01
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Figure 21: Sliced scatter plot of the heatsink design dataset (best source sample). Shown is the ground
truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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Figure 22: Sliced scatter plot of the heatsink design dataset (worst source sample). Shown is the
ground truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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Figure 23: Sliced scatter plot of the heatsink design dataset (best target sample). Shown is the ground
truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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Figure 24: Sliced scatter plot of the heatsink design dataset (worst target sample). Shown is the
ground truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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C DISTRIBUTION SHIFTS

To gain more insights into the parameter importance besides the domain experts’ opinion, we visualize
the latent space of the conditioning network for all presented datasets in Figures 23] to[28]
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Figure 25: T-SNE visualization of the conditioning vectors for the Aot rolling dataset. Point color
indicates the magnitude of the respective parameter. While the slab thickness ¢ appears to be uniformly
distributed, the remaining three exhibit distinct clustering patterns. Taking into account domain
knowledge from industry experts, we defined the reduction parameter 7 as the basis for constructing
distribution shifts.

Roll radius Sheet length

s R S
°l ol ""'é-’ o S é *

S

35 o,
& »~ 3 5 »~ g
s o q€peyp o T, | M, 5 oo \?t . 260
H <o i | o e
“ 20 » 25 = 20 240
v
1 20 220
-40 -40
& s ) "o
15
-60 a -60
10 180
-60 —40 -20 o 20 40 60 80 -60 -40 -20 0 20 40 60 80
t-SNE Dim 1 t-SNE Dim 1
Friction coefficient Sheet thickness
0.50 5.0
< 3
0.45
40 40
é )'-\- X &5
L 0.40
2 2 Vf .- 035 2 > Jo ’ 40
. :
3 “e d o, z s dé oo,
5 0 - 5 0
5 q e® T o Wi, 03 B 'g-r"' o A, 3s
H g < H " e x
<20 025 “ -20
3.0
i Mg
Se 0.20
o 34 0 3
J 25
0.15 +
-60 -60 -~
2.0
-60 —40 -20 o 20 40 60 80 -60 —-40 -20 0 20 40 60 80
t-SNE Dim 1 t-SNE Dim 1

Figure 26: T-SNE visualization of the conditioning vectors for the sheet metal forming dataset. Point
color indicates the magnitude of the respective parameter. The sheet length [ shows the most distinct
groupings, but with only three discrete values, it is unsuitable for defining domain splits. The friction
coefficient p appears uniformly distributed across the embedding. In contrast, sheet thickness ¢
and roll radius r show clustering behavior, making them more appropriate candidates for inducing
distribution shifts. We choose ¢ as the domain defining parameter.
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Figure 27: T-SNE visualization of the conditioning vectors for the electric motor design dataset.
Point color indicates the magnitude of the respective parameter. For clarity, we only show selected
parameters. The only parameter for which exhibits see some structure in the latent space is d,.3, we
therefore choose this to be our domain defining parameter in accordance with domain experts.
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Figure 28: T-SNE visualization of the conditioning vectors for the heatsink design dataset. Point
color indicates the magnitude of the respective parameter. Height 2 is distributed equally across the
representation, but the other parameters show concrete grouping behavior. We therefore choose the
number of fins as the domain defining parameter.
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D DISTANCE MEASURES

Deep CORAL. This distance measures the difference in second-order statistics (covariances) of
source and target latent features and can be calculated as follows:

2
IC—ClE,

1
ddeep_coral(¢(x)a ¢(X/)) = rkg |

where ¢(x), ¢(x’) € R"** denote latent source and target features for a batch size n and a feature
dimension k, C and C’ are the source and target feature covariances and || - ||% is the squared
Frobenius norm.

CMD. CMD measures not only the difference in first and second moments of source and target
latent features, but also in higher-order central moments. Let ¢(x), ¢(x’) € R™** denote the latent
activations for a batch size n and feature dimension k. The CMD distance up to order P is defined as

.
dana(9(), ) = =1 I = Wl + 3 =5 1e4(600) = ey (@Gl
p=2

where 1, u’ € R¥ are the source and target empirical mean feature vectors, |b — a|? can be seen
as a hyperparameter of the method which we set to 2 to reflect the original implementation, and
cp(9(x)), ¢/p(p(x')) € RF are the respective p-th central moments which are calculated as:

n

cp(B(x) = =D (d(x)i — )", cp(d(x)) =

g=il

(06— ).

3=

Above, (-)®P denotes the element-wise p-th power. Choosing the number of higher-order moments
to align is another hyperparameter of the method. For our benchmark, we choose P = 5.

DANN. DANN is introduced to minimize an upper bound on the H-divergence between source
and target feature distributions. Since it is intractable to compute this directly, the authors use a do-
main classifier in the form of a small MLP trained to distinguish whether a latent feature comes from
the source or the target domain. The error of this classifier is then used to compute the PAD, which,
up to a constant depending on the model’s VC dimension, upper-bounds the -divergence (Ganin
et al.l[2015).

Training is performed via a min—-max optimization, i.e. the domain classifier is trained to maximize
its classification accuracy, while the feature encoder ¢ is trained to minimize this separability by using
a gradient reversal layer. This adversarial interaction encourages the latent representations of source
and target samples to become indistinguishable, thereby promoting domain-invariant features.

DARE-GRAM. DARE-GRAM aims to align a selected low-rank subspace of the pseudo-inverse
Gram matrices of source and target features. Given feature matrices ¢(x), ¢(x’) € R™"** for a batch
size n and feature dimension k, we can compute their Gram matrices:

G=0¢(x)"¢(x), G =¢(x)"¢x)

Each Gram matrix is then decomposed via eigendecomposition, and its truncated Moore—Penrose
pseudo-inverse is formed by keeping the top p* eigenvalues that explain a fixed proportion of variance
(95% for our implementation):

Gt = Uppr Aph Uy (G)F = U e (Wipe) ™ (Uh) T
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We can then define the difference in angles as

dangle(Ga G/) = H 1- COS(QLP*) ||1’

where cos(6;) is the cosine similarity between the i-th column of Gt and (G')*.

Furthermore, we can define the difference in scale as

dscale(GaG/) = H/\l:p* - llzp*

ol
The first term aligns the orientation of the dominant inverse-Gram subspaces, whereas the second

term matches the principal eigenvalues of the Gram matrices to ensure that feature scale is consistent
across source and target.

The total DARE-GRAM distance is defined as a weighted sum of the two:
ddare_gram = Qiangle dangle + Vscale dscale;

where the o and vy are hyperparameters. Following the original authors, we set cangle = 0.02 and
Vscale = 0.001.

E MODEL ARCHITECTURES

This section provides explanations of all model architectures used in our benchmark. All models
are implemented in PyTorch and are adapted to our conditional regression task. All models have in
common, that they take node coordinates as inputs and embed them using a sinusoidal positional en-
coding. Additionally, all models are conditioned on the input parameters of the respective simulation
sample, which are encoded through a conditioning network described below.

Conditioning Network. The conditioning module used for all neural surrogate architectures embeds
the simulation input parameters into a latent vector used for conditioning. The network consists of a
sinusoidal encoding followed by a simple MLP. The dimension of the latent encoding is 8 throughout
all experiments.

PointNet. Our PointNet implementation is adapted from (Qi et al.,|2017) for node-level regression.
Input node coordinates are first encoded using sinusoidal embeddings and passed through an encoder
MLP. The resulting representations are aggregated globally using max pooling over nodes to obtain
a global feature vector. To propagate this global feature, it is concatenated back to each point’s
feature vector. This fused representation is then fed into a final MLP, which produces the output
fields. The conditioning is performed by concatenating the conditioning vector to the global feature
before propagating it to the nodes features. We use a PointNet base dimension of 16 for the small
model and 32 for the larger model.

GraphSAGE. We adapt GraphSAGE (Hamilton et al.,|2017) to the conditional mesh regression
setting. Again, input node coordinates are embedded using a sinusoidal encoding and passed through
an MLP encoder. The main body of the model consists of multiple GraphSAGE message passing
layers with mean aggregation. We support two conditioning modes, namely concatenating the latent
conditioning vector to the node features, or applying FiLM style modulation (Perez et al., 2018)
to the node features before each message passing layer. We always use FILM modulation in the
presented results. After message passing, the node representations are passed through a final MLP
decoder to produce the output fields. The base dimension of the model is kept at 128 and we employ
4 GraphSAGE layers.

Transolver. The Transolver model follows the originally introduced architecture (Wu et al., 2024).
Similar to the other models, node coordinates first are embedded using a sinusoidal encoding and
passed through an MLP encoder to produce initial features. Through learned assignement, each
node then gets mapped to a slice, and inter- as well as intra-slice attention is performed. Afterwards,
fields are decoded using an MLP readout. The architecture supports two conditioning modes:
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concatenation, where the conditioning vector is concatenated to the input node features before
projection, or modulation through DiT layers across the network. For our experiments, DiT is used.
We choose a latent dimension of 128, a slice base of 32 and we apply four attention blocks for the
small model. For the larger model, we scale to 256, 128 and 8 layers respectively.

UPT. Our UPT implementation builds on the architecture proposed in (Alkin et al., 2024a)). First,
a fixed number of supernodes are uniformly sampled from the input nodes. Node coordinates are
embedded using a sinusoidal encoding followed by an MLP. The supernodes aggregate features from
nearby nodes using one-directional message passing and serve as tokens for subsequent transformer
processing. They are then processed by stack of DiT blocks, which condition the network on the
simulation input parameters. For prediction, we employ a DiT Perceiver (Jaegle et al.,|2022) decoder
that performs cross-attention between the latent representation and a set of query positions. This
allows the model to generate field predictions at arbitrary spatial locations, which is a desirable
property for inference. We sample 4096 supernodes and use a base dimension of 192. We use 8 DiT
blocks for processing and 4 DiT Perceiver blocks for decoding.

GINO. GINO was proposed in (Li et al., [2023b). Input coordinates are again embedded via
sinusoidal encoding, after which the mesh is projected onto a regular latent grid. This is achieved via
message passing with connections generated via a radius graph. On the latent grid, the conditioning is
concatenated to the features at each grid point before Fourier Neural Operator (FNO) [Li et al.| (2020a)
layers are employed. Afterwards, features are mapped back onto the output grid by querying the latent
grid, again via message passing. Our implementation uses a latent grid of size (16 x 16 x 16) with
16 latent channels and a radius of 0.1 to construct the radius graph for messing passing operations.
For our implementation, we use the library of the original authorsﬂ

F EXPERIMENTS

This section provides a detailed overview of the performed experiments for this benchmark. First, we
explain the benchmarking setup used to generate the benchmarking results in detail in Appendix [F.T]
and the evaluation procedure in Appendix [F.2] Furthermore, we provide information about training
times for the presented methods in Appendix [F3]

F.1 EXPERIMENTAL SETUP

Dataset Splits. We split each dataset into source and target domains as outlined in Section [3.5]
and Appendix [C| Within source domains, we use a 50%/25%/25% split for training, validation,
and testing, respectively. For target domains, where labels are unavailable during training in our
UDA setup, we use a 50%/50% split for training and test sets. The large validation and test sets
are motivated the industrial relevance of our benchmark, where reliable performance estimation on
unseen data is a crucial factor.

Training Pipeline. For training, we use a dataset wide per field z-score normalization strategy,
with statistics computed on the source domain training set. We use a batch size of 16 and the
AdamW optimizer (Loshchilov & Hutter, [2019) with a weight decay of 1e-5 and a cosine learning
rate schedule, starting from le-3. Gradients are clipped to a maximum norm of 1. For the large
scale heatsink design dataset, we enable Automatic Mixed Precision (AMP) to reduce memory
consumption and training time. Additionally, we use Exponential Moving Average (EMA) updates
with a decay factor of 0.95 to stabilize training.

Performance metrics are evaluated every 10 epochs, and we train all models for a maximum of 3000
epochs with early stopping after 500 epochs of no improvement on the source domain validation loss.

Domain Adaptation Specifics. To enable UDA algorithms, we jointly sample mini batches from
the source and target domains at each training step and pass them thorugh the model. Since target
labels are not available, we compute supervised losses only on the source domain outputs. In addition,

*https://github.com/neuraloperator/neuraloperator
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we compute DA losses on the latent representations of source and target domains in order to encourage
domain invariance.

Since a crucial factor in the performance of UDA algorithms is the choice of the domain adaptation
loss weight A, we perform extensive sweeps over this hyperparameter and select models using the
unsupervised model selection strategies described in Section

For the three smaller datasets, we sweep \ logarithmically over A € {107!,1072,...,107°},
while for the large scale Heatsink design dataset, we sweep a smaller range, namely A €
{10%2,107%,...,1072}, motivated by the balancing principle (Zellinger et al., 2021b).

Table [I2] provides an overview of the number of trained models for benchmarking performance of all
models and all UDA algorithms on the medium difficulty domain shifts across all datasets.

Table 12: Overview of the benchmarking setup and number of trained models across all datasets.

Dataset Models UDA algorithms A values #seeds # models trained
. . . o Deep Coral, CMD, DANN, DARE-GRAM ~ {10~'; 1079} 4 432
Rolling PointNet, GraphSAGE, Transolver w/o UDA " 4 i
. : Deep Coral, CMD, DANN, DARE-GRAM ~ {10~}; 107°} 4 432
Forming  PointNet, GraphSAGE, Transolver w/o UDA > 4 9
. ~ —1. 19-9
Motor PointNet, GraphSAGE, Transolver Deep Coral, CMD, DANN, DARE-GRAM {10 ; 10 } 4 432
w/o UDA - 4 12
2. 10-2
Heatsink  PointNet, Transover, UPT, GINO Deep Coral, CMD, DANN, DARE-GRAM  {10% 107} 4 320
w/o UDA - 4 12
Sum 1,664

Additional Details. For the three smaller datasets, we use smaller networks, while for the large
scale heatsink design dataset, we train larger model configurations to accommodate the increased
data complexity. An overview of model sizes along with average training times per dataset is
provided in Table[I3] We also refer to the accompanying code repository for a complete listing of all
model hyperparameters, where we provide all baseline configuration files and detailed step by step
instructions for reproducibility of our results.

Another important detail is that, during training on the heatsink design dataset, we randomly subsam-
ple 16,000 nodes from the mesh in each training step to ensure computational tractability. However, all
reported performance metrics are computed on the full resolution of the data without any subsampling.

F.2 EVALUATION METRICS

F.2.1 GENERAL METRICS

We report the RMSE for each predicted output field. For field ¢, the RMSE is defined as:

M N,

1 1 ; 2
RMSE[™ = — 3~ \ [ == > (v — F@)idn)
m

m=1 " n=1

where M is the number of test samples (graphs), N, the number of nodes in graph m, y,(fl)n the
ground truth value of field 7 at node n of graph m, and f (m)ﬁfb)’n the respective model prediction.

For aggregated evaluation, we define the total Normalized RMSE (NRMSE) as:

K
_ 1 field

NRMSE = — ; NRMSEfeld,
where K is the number of predicted fields. For this metric, all individual field errors are computed on
normalized fields before aggregation.
In addition to the error on the fields, we report the mean Euclidean error of the predicted node
displacement. This is computed based on the predicted coordinates €,y , € R? and the ground truth
coordinates ¢, ,, € R, where d € {2, 3} is the spatial dimensionality, as follows:
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F.2.2 PHYSICS METRICS

Von Mises stress consistency. For all structural simulations in our benchmark, we predict both the
relevant Cauchy stress tensor components and the von Mises equivalent stress. This allows for an
internal consistency check using the standard von Mises definition:

1
OyM = \/2 (011 — 022)2 + (022 — 033)2 + (033 — 011)2 + 675),
with 011, 099, 033 denote the normal stresses and 775 the in-plane shear stress.
We can recompute o,,3; from the predicted tensor components and compare it to the predicted von
Mises value using a normalized mean absolute error:

N
D im1 [TuMi = OuM, e il

N
> i1 |Tuil

Consistency,; =

Constitutive law consistency. For the sheet metal forming dataset, the material is modeled as
elastoplastic with von Mises plasticity and linear isotropic hardening. This defines a yield surface, o,
which represents the material’s current strength as a function of the equivalent plastic strain (e,):

oy(ep) = oyo + Hep,
where o is the initial yield stress, H the hardening modulus, and €, the equivalent plastic strain.
A physically-correct model must adhere to two conditions based on this law:

1. Elastic nodes (¢, = 0) must have a stress below this surface: 0,37 < 0y0.

2. Plastic nodes (¢, > 0) must have a stress on this surface: o,ar = 0y(€p).

Based on these two conditions, we introduce two metrics to evaluate the physical consistency of the
predictions:

1. Elastic violation rate (percentage of elastic nodes that incorrectly violate the initial yield
stress):

1
Violationgjastic = —— E 1oppmi >0
elastic Nel Z [ vM,i y()}a
%

where £ is the set points in the elastic regime and N = |€| is the number of elastic nodes.

2. Plastic Law Residual (NMAE for all plastic nodes):

1 |O’vMi—(0'0+HE )|

. 5 Y 250

Residualpjasic = N E . 9
Plicp vo

where P is the set points in the plastic regime and N, = |P| is the number of plastic nodes.

Boundary condition satisfaction. The heatsink design simulations impose two important Dirichlet
Boundary Conditions (BCs) on the fin surfaces: no slip velocity and the solid temperature of the fins.
Therefore we define the two following errors to measure the violation of these BCs for our surrogates:
1 T — Tsotia|

BC-ViOlatiOHT = —= e
Nﬁn X Iﬂolid - Tenv|
i€EF
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and

o 1
BC-violation,, = N Z [luill
iceF
where F is the set of fin nodes, Ng, = |F| is the number of fin nodes, and 7T; and u; are the
respective predictions for temperature and velocity at node .

These should be interpreted as “soft” BC consistency checks. OpenFOAM enforces Dirichlet BCs on
faces of boundary patches, whereas our dataset contains cell center values. Cells adjacent to the fins
generally exhibit nonzero gradients, meaning their ground-truth temperatures and velocities do not
exactly satisfy the BCs, also in the ground truth data.

F.3 COMPUTATIONAL RESOURCES AND TIMINGS

While generating the results reported on the medium ditficulty level of our benchmark, we mea-
sured average training times per dataset and model architecture. All our runs were timed on a single
NVIDIA H200 144GB GPU for a fair comparison. While the total compute budget is difficult to
estimate due early stopping, we provide a detailed analysis of the average training times for 2000

epochs in Table

This table refers to models trained with Deep CORAL, however different UDA algorithms do not add
significant computational cost. What is more impactful concerning the full pipeline (including model
selection) is the number of hyperparameter variations. The total cost of one UDA algorithm & model
selection pipeline can be estimated by multiplying the average training time by the number of trained
models (e.g. x9 if one sweeps over 9 hyperparameters of \), for sequential execution. Furthermore,
the model selection method’s runtime training is negligible compared to the training times.

Table 13: Average training times (averaged for 2000 epochs) and parameter counts for each model on
the medium difficulty benchmark tasks. Times are measured on a H200 144GB GPU using a batch
size of 16.

Dataset # samples Avg. # nodes Model # parameters Avg. training time (h)
PointNet 0.3M 0.75
Rolling 4,750 576 GraphSAGE 0.2M 1.77
Transolver 0.57M 1.77
PointNet 0.3M 2.35
Forming 3,315 6,417 GraphSAGE 0.2M 10.82
Transolver 0.57M 3.74
PointNet 0.3M 2.35
Motor 3,196 9,052 GraphSAGE 0.2M 12.14
Transolver 0.57M 3.60
PointNet 1.08M 3.88
Heatsink 460 1,385,594 Transolver 4.07TM 4.94
catsin UPT 5.77M 4.73
GINO 2.5M 5.94

G DATASET DETAILS

G.1 HoOT ROLLING

The hot rolling dataset represents a hot rolling process in which a metal slab undergoes plastic
deformation to form a sheet metal product. The model considers a plane-strain representation of a
heated steel slab segment with a core temperature 7. and a surface temperature Tg,¢, initially at
thickness ¢, passing through a simplified roll stand with a nominal roll gap g (see Figure[2a). This roll
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gap effectively matches the exit thickness of the workpiece. Given the material properties, the initial
temperature distribution over the slab thickness and the specified pass reduction, the model aims to
capture the evolution of the thermo-mechanical state of the workpiece as it traverses the roll gap.

To reduce computational complexity, the analysis is confined to the vertical midplane along the rolling
direction based on a plane-strain assumption. This is well justified by the high width-to-thickness
ratio characteristic of the workpiece. Additionally, vertical symmetry is also exploited. Consequently,
only the upper half of the workpiece and the upper work roll are modeled.

The workpiece is discretized using plane-strain, reduced-integration, quadrilateral elements. Mesh
generation is fully automated, with the element size calibrated according to findings from a mesh
convergence study. In terms of mechanical behavior, the workpiece is modeled as elasto-plastic with
isotropic hardening, employing tabulated flow curves representative for a titanium alloy (Lesuer,
2000; Lu et al.l 2018). The elastic modulus and flow stress are temperature dependent, with the latter
also influenced by the plastic strain rate. In contrast, material density and Poisson’s ratio are assumed
to remain constant. The work roll with a diameter of 1000 mm is idealized as an analytically defined
rigid body.

In addition to the mechanical behavior, the elements also feature a temperature degree of freedom
that captures thermal phenomena, which are in turn fully coupled with the mechanical field. Heat
conduction within the workpiece is governed by temperature dependent thermal conductivity and
specific heat capacity. Heat transfer at the interface between the workpiece and the roll is modeled
as proportional to the temperature difference between the contacting surfaces, using a heat transfer
coefficient of 5 mW /mm?2K. The model also accounts for internal heat generation due to plastic
deformation, based on the standard assumption that 90% of plastic work is converted into heat.
Additionally, all frictional energy is assumed to be fully transformed into heat and evenly divided
between the workpiece and the roll. However, since the analysis focuses on the workpiece, only the
portion of this heat entering the workpiece is considered.

The FE simulation is performed with the Abaqus explicit solver using a relatively high mass scaling
factor of 100. This mass scaling proved to be a suitable choice for maintaining both computational ef-
ficiency and solution accuracy. The pre-processing, evaluation and post-processing of the simulations
was automated in Python. A full factorial design of experiments was conducted by varying the pa-
rameters outlined in Table [T4} Simulation outputs from Abaqus (.odb files) were converted to a more
suitable .h5 format in post-processing, enabling seamless integration into the SIMSHIFT framework.
All simulations were run on a Gigabyte Aorus 15P KD consumer laptop equipped with an Intel Core
17-11800H CPU (8 cores, 16 threads, 2.30-4.60 GHz), 16 GB DDR4 RAM at 3200 MHz and a 1 TB
NVMe SSD. The single-core CPU time for one simulation was 25 seconds on average, depending on
the mesh size and convergence speed.

Table 14: Input parameter ranges for the Kot rolling simulations. Samples are generated by equally
spacing each parameter within the specified range using the indicated number of steps, resulting in
5 x 19 x 10 x b = 4750 total samples.

Parameter Description Min Max Steps
t (mm) Initial slab thickness. 50.0 183.3 5
reduction (—) Reduction of initial slab thickness.  0.01 0.15 19
Teore (°C) Core slab temperature. 900.0 1000.0 10
Tourt (°C) Surface slab temperature. 900.0 1077.77 5

G.2 SHEET METAL FORMING

For the sheet metal forming dataset, a w-shaped bending process was selected due to its complex
contact interactions and the highly nonlinear progression of bending forces. For this purpose, a
parameterized 2D FE model of the process was developed using the commercial FEM software
Abaqus and its implicit solver, with the simulation pipeline implemented in Python. The initial
configuration of the finite element model is shown in Figure[29]and described below.

Due to geometric and loading symmetry, only the right half of the sheet with a thickness ¢ was modeled.
The die and punch were idealized as rigid circular segments with a shared radius r. Additionally, a
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Figure 29: Bending process abstraction, initial configuration.

rigid blank holder comprising an arc and a straight segment was positioned 0.1 mm above the sheet
to maintain contact and restrain vertical motion. The required sheet length was determined by the
support span [, enabling material flow toward the center in response to the downward motion of the
punch.

The sheet was discretized using bilinear, plane-strain quadrilateral elements with reduced integration
and hourglass control (Abaqus element type CPE4R). A prior mesh convergence study indicated that
accurate simulation results require a minimum of 10 element rows across the sheet thickness. The
element size was fixed at 0.125 x 0.1 mm to ensure a uniform aspect ratio, constraining the sheet
thickness to £ > 1 mm.

The sheet material was modeled as elastoplastic with von Mises plasticity and linear isotropic
hardening. The following properties were assigned: Young’s modulus of 210 GPa, Poisson’s ratio of
0.3, yield stress of 410 MPa, and hardening modulus of 2268 MPa.

For all contact interfaces, a normal contact formulation with surface-to-surface discretization, penalty
enforcement, and finite-sliding tracking was employed. Tangential contact was modeled via a
Coulomb friction law with a coefficient .

The supports and blank holder were fixed by constraining horizontal and vertical translations as
well as in-plane rotations. These constraints were applied at the centroid of each arc segment,
representing the reference point for the respective rigid body. The punch was similarly constrained
against horizontal movement and rotation but retained vertical mobility. The deformed configuration
following a vertical displacement U of the punch is illustrated in Figure [30]
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Figure 30: Bending process abstraction, deformed configuration.

A full factorial design of experiments was conducted by varying the parameters outlined in Table
As for the hot rolling simulations, outputs from Abaqus (.odb files) were converted to .h5 format
in post-processing, to integrate them into the SIMSHIFT framework. All simulations were run
on a Gigabyte Aorus 15P KD consumer laptop equipped with an Intel Core i7-11800H CPU (8
cores, 16 threads, 2.30-4.60 GHz), 16 GB DDR4 RAM at 3200 MHz and a 1 TB NVMe SSD. The
single-core CPU time for one simulation run was 300 seconds on average, depending on mesh size
and convergence speed.
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Table 15: Input parameter ranges for the sheet metal forming simulations. Samples are generated
by equally spacing each parameter within the specified range using the indicated number of steps,
resulting in 17 x 13 x 3 x 5 = 3315 total samples.

Parameter Description Min  Max  Steps
r (mm) Roll radius. 100 50.0 17
t (mm) Sheet thickness. 2.0 5.0 13
I (mm) Sheet length. 175.0 350.0 3
w(=) Friction coefficient between the sheet and the rolls. 0.1 0.5 5

G.3 ELECTRIC MOTOR DESIGN

The electric motor design dataset includes a structural FE simulation of a rotor within electric
machinery, subjected to mechanical loading at burst speed. The rotor topology is modeled after the
motor architecture of the 2010 Toyota Prius (Burress et al.} 2011}, an industry-recognized benchmark
frequently used for validation and comparison in academic and industrial research. The Prius rotor
topology is based on a V-shaped magnet configuration as shown in Figure [31]

Structural rotor simulations are essential in multi-physics design optimization, where motor per-
formance is evaluated across multiple domains including electromagnetic, thermal, acoustic, and
structural. Using a design optimization framework, stator and rotor design are iteratively refined to
identify Pareto-optimal solutions based on objectives such as efficiency, torque, weight, and speed.
In this process, the structural FE model predicts stress and deformation due to loading ensuring the
rotor’s structural integrity.

The set up and execution of the structural simulations for this dataset are automated and implemented
in the open source design optimization framework SyMSpac The FE simulation of the rotor is
performed using a mixed 2D plane stress and plane strain formulation with triangular elements. To
enhance computational efficiency, geometric symmetry is exploited and only a 1/16 sector of the full
rotor is modeled. The mechanical simulation is static and evaluates the rotor under centrifugal loading,
incorporating press-fit conditions between the rotor core and shaft, as well as contact interactions
between the rotor core and embedded magnets.

An elastic material behavior is employed for all components, including the rotor core, shaft, and
magnets. Material properties are summarized in Table[T6] Based on the parametrized CAD model of
the rotor topology, the geometry is automatically meshed using Netgerﬂ The design optimization
tool also automatically identifies nodes for boundary conditions and contact surfaces and applies
the corresponding constraints and interactions required for the simulation. The implicit FE solver
HOTINT is used to compute the quasi-static response of the system, providing local stress and strain
fields across the rotor topology.

Table 16: Material parameters for the structural electric motor design simulations.

Rotor Core Rotor Shaft Permanent Magnet
Material NO27-14 Y420HP  42CrMo4 BMN-40SH
Density (kg/dm?) 7.6 7.72 7.55
Possions ratio (-) 0.29 0.3 0.24
Young’s Modulus (kN /mm?) 185.0 210.0 175.0
Tensile Strength (kN /mm?) 550.0 850.0 250.0

To generate the electric motor dataset, a comprehensive motor optimization study was conducted
using SyMSpace, based on design specifications of the 2010 Toyota Prius. The optimization aimed to
minimize multiple performance metrics, including motor mass, material costs, rotor torque ripple,
motor losses, coil temperature, stator terminal current, and elastic rotor deformation. A genetic
algorithm was employed to explore the design space and identify Pareto-optimal solutions. In the

*https://symspace.lcm.at/
>https://ngsolve.org/
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process, 3,196 motor configurations were evaluated by varying, among other factors, the rotor’s
topological parameters within the bounds specified in Table [I7} The outputs of the structural
simulations were generated in .vtk format and then stored in .h5 files, allowing direct integration
into the SIMSHIFT framework. Each structural simulation required approximately 4 to 5 minutes of
single-core CPU time on a Intel Core 19-14900KS processor (24 Cores, 3200 MHz), depending on
convergence speed of the contact algorithm.

see DETAL A

. peTAlL A

Figure 31: Technical drawing of the electrical motor. Sampling ranges for the shown parameters can
be found in Table[T7]

Table 17: Input parameters for the electric motor design simulations. Since the design space was
explored by a genetic algorithm, the parameters are not uniformly sampled as in the previous
simulation scenarios. In total, 3196 simulations were performed.

Parameter Description Min  Max
ds; (mm) Stator inner diameter. 150.0 180.0
hm (mm)  Magnet height. 6.0 9.0
a, (°) Angle between magnets. 120.0 160.0
ty1 (mm) Magnet step. 1.0 5.0
rr1 (mm)  Rotor slot fillet radius 1. 0.5 2.5
rro (mm)  Rotor slot fillet radius 2. 0.5 3.5
rr.3 (mm)  Rotor slot fillet radius 3. 0.5 5.0
rrq (MM Rotor slot fillet radius 4. 0.5 3.0
trsp1 (mm)  Thickness saturation bar 1. 4.0 12.0
trsb2 (mm)  Thickness saturation bar 2. 1.0 3.0
trsp3 (mm)  Thickness saturation bar 3. 1.2 4.0
trsba (mm)  Thickness saturation bar 4. 5.0 12.0
dr1 (mm)  Rotor slot diameter 1. 60.0  80.0
dyo (mm) Rotor slot diameter 2. 80.0 120.0
dy3 (mm)  Rotor slot diameter 3. 100.0 1250
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G.4 HEATSINK DESIGN

The heatsink design dataset consists of heatsink geometries similar to the example shown in Figure[32]
placed centrally at the bottom of a surrounding box-shaped domain filled with air. The dimensions of
the surrounding enclosure are 0.14 m x 0.14 m x 0.5 m (length x width x height).

The geometric configuration of each heatsink is defined by several parameters, which were varied
within specified bounds for the design study. These parameters and their corresponding value ranges
are summarized in Table A total of 460 simulation cases were generated, with non-uniform
sampling across the parameter space.
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Figure 32: Technical drawing of the solid body in the heatsink design dataset. Some of the shown
parameters are varied for data generation (see Table ['1;8[)

Table 18: Geometric and physical parameters of the heatsink design simulations. The variable
parameters were not uniformly sampled. In total, 460 simulations were performed.

Parameter Description fixed Value =~ Min Max
length (m) Heatsink length 0.1 - -
width (m) Heatsink width 0.08 - -
heightl (m) Baseplate height 0.003 - -
T(amb) (K) Ambient Temperature 300 - -
fins (—) Number of fins - 5 14
gap (m) Gap between fins - 0.0023 0.01625
thickness_fins (m)  Thickness of fins - 0.003 0.004
height2 (m) Heatsink height - 0.053 0.083
T (solid) (K) Temperature of the solid fins - 340 400

The dataset was generated using CFD simulations based on the Reynolds-Averaged Navier-Stokes
(RANS) equations coupled with the energy equation. All simulations were conducted in the open-
source CFD suite OpenFOAM 9.

The computational domain was discretized using a finite volume method with second-order spatial
discretization schemes. A structured hexahedral background mesh was generated with the blockMesh
utility in OpenFOAM, followed by mesh refinement using snappyHexMesh to accurately resolve the
heatsink structure defined in STL format.
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To simulate buoyancy driven natural convection, the buoyantSimpleFoam solver was employed. This
solver is designed for steady state, compressible, buoyant flows, using the SIMPLE algorithm for
pressure-momentum coupling, extended with under relaxation techniques to enhance numerical
stability and robust convergence.

Boundary conditions were applied as follows:

» Walls of the surrounding: no-slip velocity condition with fixed ambient temperature as
defined in Table[18]

» Walls of the heatsink: no-slip velocity condition with solid temperature within the range
specified for parameter T (solid) in Table [T8]

Given the turbulent nature of the flow, the RANS equations were closed using the SST k—w turbulence
model (Menter et al., 2003). Near-wall regions were modeled using a y™-insensitive near-wall
treatment, allowing accurate resolution of boundary layers without the need for excessively fine
meshes.

A mesh convergence study was conducted to ensure numerical accuracy. Depending on mesh
resolution, each simulation required approximately 11 to 18 hours of single-core CPU time on an
Intel Core 19-14900KS processor (24 cores, 3.2 GHz).

H ABLATION STUDIES

In the following sections, we present ablations on the SIMSHIFT framework.

H.1 GEOMETRIC ENCODING

The design concept of SIMSHIFT is to allow plug-in integration of any UDA algorithm and model
architecture, as long as the model can be conditioned in some way (see Figure[T). However, explicitly
conditioning models on scalar geometric parameters is not the only option: for instance, domain-
specific information may be encoded implicitly in the mesh itself. To investigate this, we provide
an ablation in which the model encodes the mesh directly and is not explicitly conditioned on the
scalar parameters. Specifically, we replace the feed-forward conditioning network with a geometric
PointNet based encoder to embed the input mesh into a global latent vector, on which UDA is then
performed.

We report results of this setup on the electric motor design dataset. The setup follows the benchmark-
ing procedure described in Sectionf]and Appendix [FI} for each UDA algorithm, we train across 9
different regularizer strengths and 4 random seeds.

Table 19: RMSE (mean + std over 4 seeds) on the electric motor design dataset when using a
PointNet geometry encoder. Values are target domain errors (lower is better). Bold marks the overall
best model + UDA algorithm + model selection combination. For each architecture, the unregularized
baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined
and shaded green.

Table [I9]shows that UDA algorithms can boost target performance compared to the unregularized
baseline model. However compared to our chosen benchmarking design in Table (8, both the
performance of the unregularized baseline as well as the one of the best performing UDA method
is worse, which supports our choice of explicitly conditioning on scalar parameters in the main
benchmark.
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H.2 TwO-DIMENSIONAL SHIFTS

Defining shifts based on one parameter allows for controlled experiments, also given that the
parameters were picked based on preliminary experiments (see Appendix [C)) and consultation with
domain experts. In real-world scenarios, however, distribution shifts often affect multiple parameters
simultaneously rather than only a single one. It is therefore important to investigate the performance
of the benchmarked UDA algorithms under multidimensional parameter shifts. As a step in this
direction, we provide an ablation on the electric motor design dataset for a two-dimensional parameter
shift.

To be concise, we jointly shift the rotor slot diameter d,.3 (parameter shift in the main benchmark) and
the angle between the magnets .. Table 20| shows the corresponding two-dimensional distribution
shift between the source and the target domain.

Table 20: Parameter ranges for the two-dimensional distribution shift on the electric motor design
dataset.

Parameter Source range  Target range

Rotor slot diameter 3 d,.5 (mm) [100, 120) [120, 126]
Angle between magnets «. (°) [119, 153) [153,170]

We train all models with each UDA algorithm following the procedure in Section ff.3] and Ap-
pendix [F1] and report the results in Table 21]

Table 21: RMSE (mean =+ std over 4 seeds) on the electric motor design dataset at with a two-
dimensional distribution shift in parameter space. Values are target domain errors (lower is better).
Bold marks the overall best model + UDA algorithm + model selection combination. For each
architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within
that architecture is underlined and shaded green.
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Comparing these results with the original one-dimensional shift (Table 8], two observations stand out:
(i) For two out of three architectures, both the unregularized baseline and the best UDA algorithm
and model selection combination exhibit higher errors in the average field NRMSE than in the
one-dimensional shift setting, confirming that the two-dimensional shift is a more challenging task.
(i1) The relative improvements over the unregularized baselines are larger, indicating that UDA
training provides greater benefits under this more challenging distribution shift.

These findings highlight the potential of UDA to handle increasingly complex distribution shifts,
underscoring its practical relevance for real-world applications.
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