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ABSTRACT

Neural surrogates for Partial Differential Equations (PDEs) often suffer significant
performance degradation when evaluated on unseen problem configurations, such
as new initial conditions or structural dimensions. Meanwhile, Domain Adapta-
tion (DA) techniques have been widely used in vision and language processing to
generalize from limited information about unseen configurations. In this work, we
address this gap through two focused contributions. First, we introduce SIMSHIFT,
a novel benchmark dataset and evaluation suite composed of four industrial simula-
tion tasks spanning diverse processes and physics: hot rolling, sheet metal forming,
electric motor design and heatsink design. Second, we extend established DA
methods to state-of-the-art neural surrogates and systematically evaluate them.
These approaches use parametric descriptions and ground truth simulations from
multiple source configurations, together with only parametric descriptions from
target configurations. The goal is to accurately predict target simulations without
access to ground truth simulation data. Extensive experiments on SIMSHIFT high-
light the challenges of out-of-distribution neural surrogate modeling, demonstrate
the potential of DA in simulation, and reveal open problems in achieving robust
neural surrogates under distribution shifts in industrially relevant scenarios.

1 INTRODUCTION

PDE simulations are essential tools for understanding and predicting physical phenomena in engi-
neering and science (Evans|2010). Over recent years, machine learning has emerged as a novel and
promising modeling option for complex systems (Brunton & Kutz, 2020), significantly accelerating
and augmenting simulation workflows across diverse applications, including weather and climate
forecasting (Pathak et al., 2022} |Bodnar et al., 2025)), material design (Merchant et al., 2023} |Zeni1
et al.| 2025) and protein folding (Abramson et al.,|2024) to name a few.

In practice, however, models are often deployed outside of their training distribution. This distribution
shift (Quionero-Candela et al.| 2009; Wang et al., [2023)) often leads to a significant performance
degradation (Bonnet et al} 2022} Herde et al.,|2024). A well known analogue is clinical microscopy:
models trained with data collected at a few hospitals often fail when deployed at others because
microscopes, staining protocols, and lighting conditions differ (Tellez et al., [2019; |[Koh et al., 2020).
For neural surrogates an analogous “instrument shift” arises from new initial conditions, such as
material parameters or mesh geometries not encountered during training. Robustness to distribution
shifts is crucial for industrial adoption and deployment also because it is becoming a compliance
requirement, as stated by Article 15 of the EU Al Act (European Union, [2024).

While methods for increasing out-of-distribution performance have been at the center of research
for a long time (Ben-David et al.| 2006} |Shimodaira, 2000; Sugiyama et al., 2007b)), to the best
of our knowledge, no benchmark systematically investigates such methods on simulation tasks.
Addressing this gap is particularly relevant in scientific and industrial settings, where generating
ground truth simulation data is costly, limiting the diversity of training configurations. In contrast,
parametric descriptions, such as material types or structural dimensions, are often readily available or
easy to generate. This problem is known as Unsupervised Domain Adaptation (UDA) (Ben-David
et al.| [2010), where parametric (input) descriptions and full simulation outputs are available for each
source configuration, while only input descriptions are provided for farget configurations, without
corresponding outputs.
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Figure 1: Schematic overview of the SIMSHIFT framework. In training, the model has access to
inputs (e.g., parameters and meshes), corresponding outputs (,y) from the source domain (left,
blue), and only inputs =’ from the target domain (right, yellow) are available. The neural operator g
and the conditioning network ¢ are shared across domains and jointly optimized. Two loss terms are
used: Lyecon, computed on source labels, and Lpa, which aligns source and target ¢ features. After
training, unsupervised model selection strategies choose 1, which is expected to perform best on
target domain.
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To investigate the potential of UDA for neural surrogate modeling, we provide simulation data
across a range of realistic tasks from industrial engineering design. We introduce a comprehensive
benchmark that evaluates established UDA methods and neural surrogates. An overview of the
framework is shown in Figure[I] Our contributions can be summarized as follows:

* We propose four practical datasets with flexible distribution shifts in hot rolling, sheet metal
forming, electric motor, and heatsink design, based on realistic simulation setups.

* We present, to the best of our knowledge, the first joint study of established neural surrogate
architectures and UDA on engineering simulations with unstructured meshes.

* We introduce SIMSHIFT, a modular benchmarking suite that complements our datasets with
baseline models and algorithms. It allows easy integration of new simulations, machine learning
methods, domain adaptation techniques, and model selection strategies.

2 RELATED WORK

Unsupervised Domain Adaptation. UDA research covers a wide spectrum of results from theoretical
foundations (Ben-David et al.|[2010; [Zellinger et al.l 2021a)) to modern deep learning methods (Liu &
Xue} 2021} Zellinger et al.,[2019; Zhu et al.,|2021; Long et al.,|2018)). A prominent class of methods,
dubbed as representation learning, aims to map the data to a feature space, where source and target
representations appear similar, while maintaining enough information for accurate prediction. To
enforce feature similarity between domains, algorithms often employ statistical (Sun & Saenko| |2016;
Gretton et al., |2006; |[Zhang et al.| [2019; |Shalit et al., 2017) or adversarial (Ganin et al., 2015; [Tzeng
et al.,|2017) discrepancy measures. One crucial yet frequently overlooked factor in the success of
UDA methods is model selection. Numerous studies underline the critical impact of hyperparameter
choices on UDA algorithm performance, often overshadowing the adaptation method itself (Musgrave
et al.} 2021} |Zellinger et al., [2021b; Dinu et al., 2023} [Yang et al.l 2024). Even more, since labeled
data is unavailable in the target domain, standard validation approaches become infeasible. Thus, it
is essential to jointly evaluate adaptation algorithms alongside their associated unsupervised model
selection strategies. In this work, we focus on importance weighting strategies (Sugiyama et al.,
2007a;|You et al.,2019), which stand out by their general applicability, theoretical guarantees and
high empirical performance.

Benchmarks for Unsupervised Domain Adaptation. Numerous different Numerous benchmark
datasets and evaluation protocols have been established for UDA methods across various machine
learning domains, including computer vision (Venkateswara et al., 2017} Peng et al.| [2018}; |Arjovsky
et al.,|2019), natural language processing (Blitzer et al., | 2007), timeseries data (Ragab et al.|[2022)
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and tabular data (Gardner et al., [2023). However, to the best of our knowledge, systematic UDA
benchmarking for neural surrogates remains unexplored.

Benchmarks for Neural Surrogates. Recent years have seen a surge of surrogates belonging to the
group of neural operators (see Appendix [A), and benchmarks have grown alongside them. However,
designing a robust and fair benchmark in the realm of PDE:s is difficult and the current literature is not
without shortcomings (Brandstetter, |2025)). Many focus on solving PDEs on structured, regular grids
(Gupta & Brandstetter, 2022} |Takamoto et al., [2022; |(Ohana et al., [2024), which serve as valuable
platforms for developing and testing new algorithms. However, these overlook the irregular meshes
commonly used in large scale industrial simulations. In that direction, other benchmarks extend to
Computational Fluid Dynamics (CFD) on irregular static meshes for airfoil simulations (Bonnet et al.|
2022), aerodynamics for automotive (Elrefaie et al.,[2024a3b)), more academic fluid problems (Luo
et al.| 2023)), and even particle based Smoothed Particle Hydrodynamics simulations (Toshev et al.|
2023;[2024). Finally, and most closely related to our work, recent efforts have explored the application
of Active Learning techniques (Cohn et al., {1996} Ren et al.,|2021) to neural surrogates, introducing
a benchmark specifically designed for scenarios where data is scarce (Musekamp et al.| [2025)).
Despite these contributions, all current benchmarks often fall short when addressing a critical issue:
the significant performance drop models exhibit under distribution shifts, i.e., when encountering
simulation configurations beyond their training setting (Quionero-Candela et al., 2009).

3 DATASET PRESENTATION

Our datasets follow three design principles. (i) Industry relevance: They reflect practical, real-world
simulation use-cases. The benchmark covers a diverse set of problems, including 2D as well as 3D
cases. (ii) Parametrized conditions: The behavior of all simulations depends on the set of initial
parameters only. (iii) Steady-state scenarios: We constrain them to time independent problems, being
the standard use case in industry. Take for example design optimization tasks: most rely on either
steady-state or time-averaged solutions rather than detailed transient dynamics. This is not just a
modeling convenience, but reflects how simulation is integrated into design pipelines: numerical
simulations are used to assess candidates by computing scalar objective values. This practice
is well documented established various application areas, including thermal systems (Majumdar,
2021)), aerodynamic shape optimization for aircrafts (Martins| 2022}, wind turbine design (Martins|
2022)), and car aerodynamics (Dumas) 2007). Additionally with this constraint we avoid additional
complexities such as autoregressive error accumulation in neural surrogates (Lippe et al., 2023)).

The datasets were generated using the commercial Finite Element Method (FEM) software Abaqus,
the open-source simulation software HOTINT and the open-source CFD package OpenFoam 9. E] An
overview of each dataset together with its most important parameters and a custom metric, motivated
by engineering practice, is presented in Sections [3.1) to 3.4] Additionally, we provide detailed
descriptions of the respective numerical simulations in Appendix [} Since the behavior of each
simulation task is entirely determined by its input parameters, we predefine source and target domains
by partitioning the parameter space into distinct, non-overlapping regions. A detailed explanation of
the domain splitting strategy is provided in Section[3.5] Table[I|summarizes key characteristics of
each dataset, including physical dimensionality, mesh resolution, number of conditioning parameters,
and total dataset size. All datasets are publicly hosted on Hugging Faceﬂ

Table 1: Overview of the benchmark datasets. Heatsink meshes are subsampled to a fourth of their
original size. Detailed and descriptions of the parameter sampling ranges can be found in Appendix@

. . Output Avg. Varied simulation . Size
Dataset Origin Samples channels # nodes parameters Dim (GB)
Rolling Metallurgy 4,750 10 576 4 2D 0.5
Forming Manufacturing 3,315 10 6,417 4 2D 4.1
Motor Machinery 3,196 26 9,052 15 2D 13.4
Heatsink Electronics 460 5 1,385,594 4 3D 40.8

! Abaqus; HOTINT; OpenFoam 9.
“https://huggingface.co/datasets/simshift/SIMSHIFT_data


https://www.3ds.com/products/simulia/abaqus
https://hotint.lcm.at/
https://www.openfoam.com/
https://huggingface.co/datasets/simshift/SIMSHIFT_data
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(a) Illustration of the simulation setup. The parame- (b) Metal slab after the process, showing PEEQ as a
ters correspond to those in Table[T4] We use symme- contour plot. The green line indicates the center cord,
try constraints and only simulate half of the slab. along which we measure the custom metric.

Figure 2: Overview of the hot rolling simulation scenario.

3.1 HoT ROLLING

Problem Description. The Kot rolling process plastically deforms a metal slab into a sheet metal
product, as visualized in Figure[2} This complex thermo-mechanical operation involves coupled
elasto-plastic deformation and heat transfer phenomena (Guptal, 2021} |Galantucci & Tricarico, [1999;
Jo et al.l |2023)). The Finite Element (FE) simulation models the progressive thickness reduction
and thermal evolution of the material as it passes through a rolling gap, incorporating temperature-
dependent material properties and contact between the slab and the rolls. Among the output fields,
the key quantity is Equivalent Plastic Strain (PEEQ), representing the material’s plastic deformation,
visualized in Figure 2b] The custom metric measures the relative error of the PEEQ profile along the
slab’s vertical center cord (green line in Figure [2b).

Input parameters are the initial slab thickness ¢, temperature characteristics T¢ore and Tgy,s of the
slab, as well as the geometry of the roll gap. To vary the slab deformation we define the thickness
reduction as a percentage of the initial thickness: reduction = t_Tg, where g is the rolling gap distance.
Table [T4]in Appendix [FI| shows a detailed overview of the parameter values together with their
sampling ranges used to generate the dataset.

3.2 SHEET METAL FORMING

Problem Description. The sheet metal forming process is a critical manufacturing operation widely
used across industries such as automotive and aerospace. FEM simulations are commonly employed to
estimate critical quantities such as thinning, local plastic deformation and residual stress distribution
(Tekkaya, [2000; |Ablat & Qattawil 2017} [Folle et al.| [2024). The simulation setup consists of a
symmetrical workpiece supported at the ends and center, a holder and a punch that deforms the sheet
by applying a displacement (U in Figure[3a). The 2D simulation predicts the sheet’s elasto-plastic
deformation, providing quantities such as stress, elastic and plastic strain distributions (shown in
Figure[3b). An essential engineering metric used in practice is the transverse stress (xx-component)
distribution along the vertical center cord (green line in Figure [3).

Input parameters include the deformed sheet length [, the sheet thickness ¢, friction coefficient 1
and the radii of the holder, punch, and supports r. Table[I5]in Appendix [F.2]provides the sampling
ranges for data generation.
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(a) Mustration of the simulation setup. The param-  (b) Material before (top) and after (bottom) the
eters correspond to those listed in Table@ process, shown as PEEQ contours. A = [/2

Figure 3: Overview of the sheet metal forming simulation scenario.
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3.3 ELECTRIC MOTOR DESIGN

Problem Description. The electric motor design dataset encompasses a structural FEM simulation
of a rotor in electric machinery, subjected to mechanical loading at burst speed. It is motivated by the
conflicting design objectives in rotor development: while magnetic performance favors certain rotor
topologies to optimize flux paths and torque generation, structural integrity requires designs capable
of withstanding centrifugal loads without plastic deformation (Gerlach et al 2021}, Dorninger et all,
[2021). The 2D simulation predicts stress and deformation responses due to assembly pressing forces
and centrifugal loads, accounting for the rotor’s topology, material properties, and rotation speed.
The custom metric measures the relative error in Mises stress along the cord shown in green Figure 4]

Input Parameters together with their variations and a detailed technical drawing are omitted from
the main body since this case is more complex than the preceding datasets. They are provided in
Figure[3T]and Table[T7] both in Appendix [F3]
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Figure 4: The electric motor design simulation scenario, with a schematic sketch of the motor (left)
and zoomed-in detail from the simulated radial portion (right). Mises stress field contour plot is
shown. The custom error metric is measured along the green line at A = “% + 1.1 % 7p0.

3.4 HEATSINK DESIGN

380
Problem Description. The heatsink design dataset represents 370
a CFD simulation focused on the thermal performance of heat
sinks, commonly used in electronic cooling applications 360
[larasan & Velraj, 2010} [Rahman et all, [2024). It models the @

: 350 3
convective heat transfer from a heated base through an array of 3
fins to the surrounding air. The simulation captures how geo- 310 8
metric fin characteristics, specifically, the number, height, and g
thickness of fins, affect the overall heat dissipation, along with 330 ;i
the temperature of the heat sink. Outputs include steady state =
temperature, velocity and pressure fields, enabling the assess- 320
ment of design efficiency and thermal resistance under varying
configurations. The main engineering metric measures the rela- 310
tive error in the temperature distribution along the dashed green 300
line in Figure 5]

Input Parameters and their variations as well as an overview

of the setup are provided in Appendix [F-4] Figure 5: Slice of the heatsink 3D
temperature field. Custom metric

3.5 DISTRIBUTION SHIFTS along dashed cord at A = 0.0025.

SIMSHIFT’s functionality allows to generate arbitrary n-dimensional shifts on the parameter spaces
of each problem, ensuring flexibility and extensibility. For benchmarking, each dataset includes
three predefined distribution shifts: easy, medium and hard, which reflect increasing distributional
distance in the respective input spaces (see Table [T for parameter ranges). The source and target
domains are defined by shifting along the dominant input parameter for each simulation scenario, as
suggested by domain experts. To validate these choices, we train models across the full parameter
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ranges and perform a cluster analysis of their latent representations as the input conditions are
varied. The resulting clusters consistently align with the parameter selected by the experts, indicating
that the chosen parameters dominate latent space variation (see visualizations in Figures 23] to 28]
Appendix [C). Besides benchmarking on the predefined shifts, we confirm consistent behavior of
models and algorithms in an ablation under a two-dimensional shift on the electric motor design
dataset in Appendix[G.2]

4 BENCHMARK SETUP

This section outlines the learning problem (Section[4.T)), the UDA algorithms considered (Section4.2)),
the unsupervised model selection strategies (Section|4.3), and the baseline models used (Section ¥.4).
Finally, we describe the experimental setup and evaluation metrics in Section @.5]

4.1 LEARNING PROBLEM

Let X be an input space containing geometries and conditioning parameters (e.g., thickness and
temperatures in Figure 2a) and ) be an output space containing ground truth solution fields, obtained
from a numerical solver (e.g., PEEQ field in Figure @I) Following (Ben-David et al., [2010), a
domain is represented by a probability density function p on X x ) (e.g., describing the probability
of observing an input-output pair corresponding to the parameter range r € [0.01,0.115) in Table .
UDA has been formulated as follows: Given a source dataset (1, 1), ..., (Z, yn) drawn from a
source domain pg together with an unlabeled target dataset ', ..., 2}, drawn from the (X-marginal)
of a target domain pp, the problem is to find a model f : X — ) that has small expected risk on the
target domain:

Ey)~pr [E(f (@), Y)], (1

with £ : ) x ) — R being some loss function. For example, consider the square loss ¢(f(z),y) =
(f(z)—y)% Inoursetup f(x) = g(z, ¢(x)) is composed of a conditioning network ¢ and a surrogate
g (see Figure[l).

4.2 UNSUPERVISED DOMAIN ADAPTATION ALGORITHMS

Our UDA baseline algorithms are from the class of domain-invariant representation learning methods.
These methods are strong baselines, in the sense that their performance typically lies within the
standard deviation of the winning algorithms in large scale empirical evaluations (i.e., no significant
outperformance is observed), see CMD, Deep CORAL and DANN in (Dinu et al., 2023, Tables 12—
14), M3SDA in (Peng et al.,2019), MMDA and HoMM in (Ragab et al., 2022).

Following [Johansson et al.| (2019) and Zellinger et al.|(2021b])), we express the objective of domain-
invariant learning using two learning models: a representation mapping ¢ € ® C {¢ : X — R},
which in our case corresponds to the conditioning network that maps simulation parameters into
some representation space R C R¥ and a regressor g € G C {g: X x R — Y}, which is realized
by a neural surrogate. The goal is to find a mapping ¢ under which the source representations
d(x) := (¢(x1),...,¢(xy,)) and the target representations ¢(x') := (¢(z}),...,¢(x),)) appear
similar, and, at the same time, enough information is preserved for prediction by g, see (Quionero
Candela et al., 2009)). This is realized by estimating objectives of the form

min B,y)~pr [0(9(2, 6(2)), y)] + A - d(6(x), 6(X)), )

geG,ped

where d is a distance between source and target representations and A is a regularization parameter.
Good choices for d in Equation have been found to be the Wasserstein distance (Courty et al.,
2017), the Maximum Mean Discrepancy (Baktashmotlagh et al.,[2013), moment distances (Sun &
Saenko, 2016} |Zellinger et al., [2019), adversarially learned distances (Ganin et al.,|2015) and other
measures of divergence (Johansson et al., 2019; [Zhang et al., 2019). Appropriately choosing A is
crucial for high performance (Musgrave et al.,[2021} |Dinu et al., 2023} [Yang et al., [2024)), making
model selection necessary.
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4.3 UNSUPERVISED MODEL SELECTION STRATEGIES

Among all algorithm design choices in UDA, model selection has been repeatedly recognized as one
of the most crucial (Musgrave et al., 2021} [Yang et al., 2024)), with sub-optimal choices potentially
leading to negative transfer (Pan & Yang,|2010). However, classical approaches (e.g., validation set,
cross-validation, information criterion) cannot be used due to missing labels and distribution shifts.
It is therefore a natural benchmark requirement for UDA to provide also unified model selection
strategies in addition to UDA algorithms.

In this work, we rely on Importance Weighted Validation IWV) (Sugiyama et al.l | 2007a) and Deep
Embedded Validation (DEV) (You et al.,[2019) to overcome the two challenges: (i) distribution shift
and (i) missing target labels. These methods rely on the Radon-Nikodym derivative and the covariate
shift assumption ps(y|z) = pr(y|z) to obtain

s (@] = Eapons | P U1 2),0)| = Biaops B @) )] O
Equation (3)) motivates to estimate the target error by a two step procedure: First, approaching
challenge (i) by estimating the density ratio 5(x) = f) zg;g from the input data only, and, approaching
challenge (ii) by estimating target error by the weighted source error using labeled source data.

4.4 BASELINE MODELS

We provide a comprehensive range of machine learning methods, adapted to our conditioned simula-
tion task, organized by their capacity to model interactions across different spatial scales:

Global context models such as PointNet (Q1 et al.,|2017) incorporate global information into local
Multi-Layer Perceptrons (MLPs) by summarizing features of all input points by aggregation into
a global representation, which is then shared among nodes. Recognizing the necessity of local
information when dealing with complex meshes and structures, we include GraphSAGE (Hamilton
et al.;|2017), a proven Graph Neural Network (GNN) architecture (Scarselli et al., 2009; Battaglia
et al., 2018)) already used in other mesh based tasks (Pfaff et al.,|2020; Bonnet et al.| 2022)). However,
large scale applications of GNNs are challenging due to computational expense (Alkin et al.| 2024a)
and issues like oversmoothing (Rusch et al.|[2023). Finally, to overcome these limitations, we employ
attention based models (Vaswani et al., 2017). These models typically scale better with the number of
points, and integrate both global and local information enabling stronger long-range interactions and
greater expressivity. We include Transolver (Wu et al.,|2024), a modern neural operator Transformer.

As an alternative categorization, baselines can also be classified by input-output pairings into point-
to-point and latent approaches. The former explicitly encodes nodes, while the latter represents
the underlying fields in a latent space and requires queries to retrieve nodes. While all previously
mentioned models are point-to-point, we also include Universal Physics Transformer (UPT) (Alkin
et al.| [2024a; |First et al.| [2025), as an example of a latent field method. UPTs are designed for large
problems and offer favorable scaling on big meshes through latent field modeling; however they
are better suited for static-mesh scenarios, as they are lacking the notion of point and don’t handle
deformations out-of-the-box. Therefore we benchmark UPT only on the heatsink design dataset.

We provide detailed explanations of all implemented architectures in Appendix [D| Our framework
explicitly conditions neural operators on configuration parameters. We first embed them using a
sinusoidal (sin—cos) encoding and a shallow MLP ¢ to produce a latent representation and then
condition the neural operator g by using either concatenation of the latent conditioning vector, FiLM
(Perez et al., 2018) or DiT conditioning layers (Peebles & Xiel [2023). As an alternative, we also
evaluate replacing ¢ with a geometric mesh encoder that derives the latent representation directly
from the input geometry. On the electric motor design dataset, this variant performs worse (see
Appendix [G.T), supporting our design choice.

4.5 EXPERIMENTS AND EVALUATION

Experimental Setup. We benchmark three prominent UDA algorithms (Deep Coral (Sun &
Saenkol, 2016), CMD (Zellinger et al.l 2019) and DANN (Ganin et al.| [2015)) in combination
with the following four unsupervised model selection strategies: IWV (Sugiyama et al.| 2007a)),
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DEV (You et al.,|2019), Source Best (SB) (selecting models based on source domain validation
performance) and Target Best (TB) (selecting models based on target simulation data, which is not
available in UDA but serves as a lower bound for perfect model selection).

For the baseline neural surrogate models, we evaluate PointNet, GraphSAGE, and Transolver on the
hot rolling, sheet metal forming, and electric motor design datasets. Due to memory and runtime
constraints on the large scale heatsink design dataset, we omit GraphSAGE and instead benchmark
UPT alongside PointNet and Transolver.

Experimental Scale. In total, this results in 3podels X 3UDA algorithms X 4selection algorithms 1
Sunregularized models = 99 configurations per dataset. We perform an extensive sweep over the crit-
ical UDA parameter A\ and average across four seeds, resulting in 1,200 training runs. Details on
architectures, hyperparameters, training setup and normalization, as well as a breakdown of training
times are included in Appendices|[D]and [E]

Evaluation Metrics. For each dataset, we report the Normalized Root Mean Squared Error (NRMSE)
averaged over all output fields, as well as the per field Root Mean Squared Error (RMSE) values (com-
puted on denormalized data), the Euclidean error for deformation predictions and the custom error
metrics described in Sections to Detailed metric definitions are provided in Appendix

5 BENCHMARKING RESULTS

Table [2] overviews our benchmarking results, showing the best UDA and selection combination
per model. Across datasets and architectures, UDA applied together with unsupervised model
selection generally leads to a target error reduction, measured by NRMSE averaged across all fields.
However, when examining the dataset-specific custom metrics introduced in Sections [3.1] to [3.4]
and the individual fields, gains are not uniform, and some methods improve the global loss, while
performance on particular fields or regions deteriorates. This pattern suggests that standard methods
are a good starting point, but specialized algorithms tailored to high-dimensional regression tasks are
needed. Furthermore, the gap between the best UDA + selection configurations and the TB oracle
(lower bound on error) indicates that current unsupervised model selection strategies also leave room
for improvement. Despite the clear benefits of UDA, no single UDA algorithm or unsupervised
selection strategy dominates across all datasets. In addition to this summary, we report full source
and target domain metrics across architectures, algorithms, and selection strategies in Tables t0 E]in

Appendix [B]

Table 2: Best performing combination of UDA algorithm and unsupervised model selection for each
dataset (medium difficulty) and architecture. We also report an oracle with target best (TB) selection,
which provides a lower bound on the selection error. Entries show the target domain (N)RMSE.
Promotion on the unregularized baseline are shown in parentheses, with improvement indicated as
negative values and asterisks marking unstable unregularized baselines. For each dataset, the best
configuration (green row) is chosen by the lowest NRMSE across all fields (bold).

Dataset  Model Best UDA Method All Fields Rel Custom Error ~ Mises Stress PEEQ Deformation
atasef ode + Model Selection Normalized Avg (-) (=) (MPa) (x1072) (mm)

PointNet CMD + SB 0.387 (-0.082) 0.261 (-0.424)  27.922 (+0.311)  2.511 (-0.008)  11.327 (-0.146)

Rollin GraphSAGE CMD + IWV 0.228 (-0.137) 0.170 (-0.022) 14.494 (-5.296)  1.563 (-0.550)  4.622 (-1.093)

s Transolver CMD + SB 0.899 (%) 0.594 (%) T7.712 (%) 5.798 (%) 13.867 (%)

Oracle (GraphSAGE)  Deep Coral + TB 0.212 (-0.152) 0.158 (-0.035) 13.829 (-5.960)  1.427 (-0.686)  4.547 (-1.168)

PointNet Deep Coral + SB 0.182 (-0.044) 1.154 (+0.273) 31.345 (-0.090)  0.150 (-0.009)  2.555 (-0.001)

Forming GraphSAGE DANN +IWV 0.329 (-0.047) 5.599 (+3.104) 52.401 (+6.304)  0.269 (-0.003)  2.095 (+0.156)
$ Transolver Deep Coral + DEV 0.155 (-0.013) 0.803 (+0.194) 24.395 (+1.381)  0.143 (+0.016)  1.356 (+0.167)

Oracle (Transolver) CMD + TB 0.131 (-0.037) 0.794 (+0.185) 20.285 (-2.730)  0.117 (-0.010) 1.023 (-0.165)

PointNet Deep Coral + SB 0.313 (-0.084) 0.197 (-0.147) 26.229 (-4.425) - 1.528 (-0.057)

Motor GraphSAGE CMD + SB 0.344 (-0.032) 0.326 (-0.101) 28.918 (-0.540) - 1.305 (-0.186)
Transolver Deep Coral + SB 0.103 (-0.018) 0.091 (-0.023) 7.678 (-0.650) - 1.296 (-0.201)

Oracle (Transolver)  Deep Coral + TB 0.102 (-0.019) 0.092 (-0.023) 7.594 (-0.734) - 1.254 (-0.244)

All Fields Rel Custom Error  Temperature Velocity Pressure
Normalized Avg (-) (-) (K) (m/s) (kPa)

PointNet Deep Coral + SB 0.394 (-0.175) 0.031 (-0.020) 17.428 (-3.699)  0.044 (+0.000)  1.037 (-0.842)

Transolver Deep Coral + DEV 0.310 (-0.135) 0.009 (-0.001) 8.717 (-1.003)  0.037 (-0.001)  1.334 (-0.353)

Heatsink UPT Deep Coral + SB 0.328 (-0.113) 0.014 (+0.001) 12.610 (-0.424)  0.040 (-0.000)  0.866 (+0.049)
Oracle (Transolver) Deep Coral + TB 0.310 (-0.135) 0.009 (-0.001) 8.717 (-1.003) 0.037 (-0.001) 1.334 (-0.353)
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Figure 6: Error scaling with increasing domain gap. We show the averaged RMSE across all
(normalized) fields for the easy, medium, and hard gaps on the hot rolling task. We compare models
without UDA, the best performing UDA method with unsupervised model selection (CMD + IWV),
and the theoretical lower bound (TB). Error bars indicate the standard deviation across four seeds.
Furthermore, we highlight potentials of architecture, algorithm and selection improvements on the
hard task.

Finally, since the presented tables only report performance on the medium difficulty setting, we
additionally visualize model behavior of the best performing combination (model + UDA algorithm +
selection strategy) across all difficulty levels of the hot rolling dataset in Figure[§] It illustrates the
increase in prediction error as the domain gap widens and highlights the consistent improvements
achieved by applying UDA algorithms combined with unsupervised model selection strategies on the
easy and medium settings.

For the hard setting, however, the shown unsupervised model selection algorithm fails to identify
suitable models, as the mean error matches that of the unregularized baselines with the standard
deviation even increasing. Nonetheless, the theoretical lower bound (TB) remains substantially
below the unregularized error. Figure [6]again highlights the two promising directions for further
improvement of the presented baselines: (i) enhancement of neural surrogate architectures and UDA
algorithms, and (ii) especially, improvement of unsupervised model selection strategies.

6 DISCUSSION

We presented SIMSHIFT, a collection of industry relevant datasets paired with a benchmarking
library for comparing UDA algorithms, unsupervised model selection strategies and neural operators
in real word scenarios. We adapt available techniques, apply them on physical simulation data and
perform extensive experiments to evaluate their performance on the presented datasets. Our findings
suggest that standard UDA training methods can improve performance of neural operators to unseen
parameter ranges in physical simulations, with improvement margins in line with those seen in UDA
literature (Dinu et al.| [2023} Ragab et al.| [2022)). Additionally, we find correct unsupervised model
selection to be extremely important in downstream model performance on target domains, with it
arguably having as much impact as the UDA training itself, which is also in agreement with other
DA works (Musgrave et al.| 2021).

Limitations. We acknowledge that our datasets are limited under two main aspects: (i) They only
cover steady-state problems, which represent a large portion of industrial simulation tasks. However,
an extension with time-dependent datasets could be valuable for certain application areas. (ii) They
cover a wide range of mesh sizes, ranging from roughly O(102) up to O(10°) nodes. Nevertheless,
many industrial scenarios require substantially larger meshes. These two design choices prioritize
benchmarking clarity and computational feasibility and leave room for future extensions.
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REPRODUCIBILITY STATEMENT

The first step towards reproducibility are the datasets. We provide a download link for all dataset with
our predefined domain shifts and a high—level description of each dataset and the splitting strategy in
Section [3|and Appendix [C] To take transparency a step further, we present detailed descriptions of the
respective numerical simulations together with the employed solvers, initial/boundary conditions and
the configuration details in Appendix [} Concerning the machine learning parts of the benchmark, we
provide detailed descriptions of the architectures, their configurations and training hyperparameters in
Appendix [E.T] Additionally, we provide an anonymized codebase with pinned dependencies, fixable
seeds and a comprehensive README . md along with all necessary configuration files used in our
benchmarking pipeline.
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LLM USAGE DISCLOSURE

In general, LLM tools were used to refine writing in parts of the paper. DeepSeek-R1 and GPT-5
were additionally used to make visualizations prettier, speed up the development of plotting functions,
and dump experimental results neatly into latex tabled tables. Beyond that, they were not used to a
significant degree in other parts of the code, as neither Copilot nor Cursor are used by the main author.
Al assistants were strictly editors and decorators, i.e. they were not involved in ideation, reordering
ideas, or at any higher or lower conceptual level.

A ON NEURAL OPERATORS

One prominent approach in neural surrogate modeling for PDE:s is operator learning (Kovachki et al.|
2021 |L1 et al.,2020a; Lu et al., 2021} |Alkin et al.} 20244a; L1 et al.,[2020b)). In this setting, an operator
maps input functions, such as boundary or initial conditions, to the corresponding solution of the PDE.
During training, neural operators typically learn from input-output pairs of discretized functions
(Kovachki et al., 2021} |L1 et al., [2020a; |Lu et al., [2021}; |Alkin et al.,|2024a). While some methods
expect regular, grid based inputs (Li et al., 2020a), others can be applied to any kind of data structure
(Alkin et al., [2024a; [Li et al.,2020b). One notable property is discretization invariance, which, along
with the ability to handle irregular data, enables generalization across different resolutions and mesh
geometries. This is a highly desirable property for industrial simulations (Pfaff et al.,|2020; |Alkin
et al.| [2024a; [Furst et al., [2025; |L1 et al.l [2023; [Franco et al., 2022), where non-uniform meshes are
the standard due to the computational and modeling advantages. In this work, we focus on domain
adaptation rather than benchmarking discretization invariance, and include neural surrogates that
may not satisfy this property, such as (Hamilton et al [2017). Such models have been leveraged
in several large scale industrial contexts, including CFD for automotive (Bleeker et al., |2025) or
Discrete Element Method (DEM) simulations for industrial processes (Alkin et al., [2024b).

B DETAILED RESULTS

Complementing the summary in Table 2] of the main paper, the following sections present detailed
results for each dataset. For every dataset, we present a complete empirical evaluation of our
benchmark that compares the performance for all combinations of models, UDA algorithms and
model selection strategies across all output fields.

While these quantitative metrics offer a high level summary of model performance, industry prac-
titioners often need a more fine grained picture to assess the neural surrogate’s capabilities under
distribution shifts. To address this, we include additional analyses and visualizations alongside the
quantitative results. First, we provide error distribution histograms to better illustrate the difficulty of
the domain shift occurring in each dataset. Additionally, we present fringe and scatter plots comparing
model predictions with the respective ground truth numerical solutions.

B.1 HoOT ROLLING

Table 3| presents the complete benchmarking results for the kot rolling dataset.

To gain more insights, we conduct additional analyses on the best performing model, selected based
on having the lowest average normalized target domain error across all fields. Figure[7|shows the
error distribution of this model and clearly highlights the substantial distribution shift between the
source and target domain of the Kot rolling dataset. Errors in the target domain are noticeably larger,
almost up to an order of magnitude higher than those observed in the source domain.

To further illustrate the model’s performance, we analyze two representative samples, one from the
source and one from the target domain. Since the most critical field for downstream applications is
PEEQ, we restrict the following analysis on this scalar field only.

Table[d] presents a summary of the absolute PEEQ prediction errors for the selected source and target
samples. Additionally, Figure[§]and Figure[J] visualize the ground truth, predictions, and absolute
errors for these samples using fringe plots.

18



Under review as a conference paper at ICLR 2026

Error distribution

o o I
N w »
L | L

Relative frequency

°
—
\

0.0-

0.1 0.2

0.3 0.4 0.5
NRMSE per sample

Figure 7: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the hot rolling dataset. Bar height indicates the relative frequency of

samples within each bin.
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Figure 8: Fringe plot of the kot rolling dataset (representative source sample). Shown is the ground
truth (left) and predicted (middle) PEEQ, as well as the absolute error (right).
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Figure 9: Fringe plot of the hot rolling dataset (representative target sample). Shown is the ground
truth (left) and predicted (middle) PEEQ, as well as the absolute error (right).

19



Under review as a conference paper at ICLR 2026

Table 3: RMSE (mean =+ std over 4 seeds) on the hot rolling dataset at medium difficulty. Values
are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm +
model selection combination. For each architecture, the unregularized baseline row is shaded beige,
whereas the best UDA + selection within that architecture is underlined and shaded green. Asterisks
denote unstable runs (> 10x the column median).

Model DA Model Al Fields Normalized Avg () Rel Custom Error (-) Deformation (mm) Logarithmic Strain (<10 ) Equivalent Plastic Strain (x10~2) Mises Stress (MPa) Stress (MPa)
Algorithm  Seloction SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT TGT SRC TGT
O016(0000) _0365(£0130) 0.234(£0.081) 0192(£0.000) 0525(0023) _ 57I5(EL567) _ O.IR(E0000) 0.097(£0.377) 0033(£0.000) 2113(£0.780) 19.700(:7186) _ 1234(20010) _ 11421(£3501)
OOLI(Z0000)  LI7a(£0053) 00I(Z0003) 0.726(20051) 0577(£0061)  I7363(0508) 0010000 3. 452(20176)  0.035(20001) 1264(20.083)  59.203(E5.501)
0.014(£0.000)  0.280(£0.147)  0.042(£0.002) 0183(£0.043) 0561(£0.032)  5.359(£1848)  0.018(£0.000)  0.792(+0.186)  0.033(+0.001) 1246(£0.025)  13.737(+11.828)
OOL(E0000)  0692(£0.511)  0043(£0.001) 0AGG(031) 0573(£0.043) 1LON0CETI6H 00180000  2120(:1506)  0.031(:0001 1 225852
0L(X0.000)  0.230(:0.041) _0.042(:0.001) 0.170(:0.026) 0G04(£0010)  4.640(ED503)  0.018(0.001)  0.7O(£0.138)  0.03(x0.001 1 5.605(+1.635)
GraphSAGE 00150001 LAT(:0202) 0.017(£0005) 0799(50069) 0GI7(0080) IS3SACEZII6) 002020001 7SLE05H)  0037(H0003)  7704(£1210) T30320(£23.104)  1320(20062)  95.502(£20973)
0.014(£0.000) 0.228(£0.021) 0.043(£0.003) 0.170(£0.012) 0577(+0.023)  4.622(£0283)  0.018(+0.000) 0.742(+0.071)  0.033(£0.001)  1.563(+0.153) 14494(X1.375)  1237(£0.032)  8.386(£0.819)
DOM(0.000) DTSOEOSE)  0.00(£0.001) 0.526(£0.327) 05TI(00M0)  12160(£TATH)  0.01S(:0.000)  2403(£L51)  0.033(£0.000)  5.068(£3.218) 68.500(£55.017) ) 36.831(228.021
00L4(£0.000) 0014(20.001) 0.165(£0.003) 0583(£0.033)  4607(:0.261)  0.01S(£0.000) O0.TIL(E0014) 0.033(£0.000)  L507(£0.015) 11.285(£ 1L010) 8.275(10.632)
Deep Coral DEV  0.0L1(Z0.000 0041(Z0002) 0458(10213) 0519(£0.000)  10560(E4767)  O0IS(Z0000)  208(EL01T)  0.033(£0.000) 56625 (£57.301) B0 18 187)
DeepCoral IWV  0.014(£0.000 OOLL(Z0.000) 0210(£0.033) 0569(£0.040)  5AIG(E0.3%)  0.01S(x0000) OATAC0103)  0.033(:0.000) 20.781(8.267) 1L823(0.613)
Deep Coral - SB 00140000 O04L(£0.000) 0358(£0260) D5(£0.031)  KGTOEH51N) 0010000  LOT(£1222)  0.033(0.000 AL196(45.402) 22.041(£21.683
T8 00140000 00I0(20.002) 0.158(£0014) 0500(£0.045)  A5IT(£036)  0.0I5(x0000) 0.670(0050) 0.033(:0.001 15.820(£0.600 8007(+0.342)
0.023(20001) _0.469(£0.05) _0270(Z0.046) 0.685(£0.000) 2240(£0.001) IL4TI(£0200) 0.026(0.001) L225(0.165) _0.051(0.002) 27.611(5.693) 16.226(:3.967)
DANN  DEV  00I0(10001) L137(:0051) O.0G1(30001) 0.733(:0.032) 2236(20001) I5265(:0381) 0.027(:0.001) 3.19(:0.150)  0.052(:0.001 106.917(26.080) 5151213799
DANN  IWV  0020(£0001) 097A(:0419) 0.0G5(0004) 0GI(E0265) 2243(:0008) 0028(£0002)  2953(£1232) 89.154(+12957) 45.685(21 204)
DANN B 0019(20001)  0.951(0 0063(20002) 0. 2230(20.001) 0.020(+0001)  2906(+1.015) 85.306(436.953) 13.890(£17.807)
DANN B 0.020(0.001) 3 0 0 0.2 2.239(0.00: 11.137(:0.320)  0.027(0.001)  1.092(:0.206) 22.461(+4.074) 12.876(+2.085)
PoiniNet  CVMD DEV  0020(0.001) LIGIZ0.107) 0.068(0.000) 0700(£0.060) 2200(0.002)  I8ATI(E1.132) £0.001)  3301(£0305)  0051(£0.003 T02001(E11.251) S2018(26.390)
oD WV 0020(H0.001)  L232(£0.036) 0.07AE0.007) 0S36(£0.039) 2200(£0.002)  19.009(0.352) £O.001)  3TTS(E0.10T)  0.055(£0.002 110.671(£4.420) 55.053(+2.196)
oD sB 0019(0.001) (£0.050)  0.060(£0.004) 0.261(£0.080) 2201(0.002)  11327(+0571) (£0.001)  1201(0207)  0.051(£0.001) 7.922(£6 16.105(:3.525)
b T 0019(0.001) Z00TS)  0.058(+0.003) 0.249(x0.077) 2240(£0.002) 11.231(0.5 (H0.000)  L14T(E0281)  0.051(£0.001) 23881(4994) 13.680(+2.721)
DecpCoral DEV  0.020(30.001) LO36(20102) 0.067(20010) 0.678(20.087) 2201(£0.002) I7.119(E1 O02S(Z000)  B07TI(E03TI)  0.055(£0.003) 96.971C10.676) 50.257(£3.63%)
DecpCoral IWV  0.020(0001) 1OIS(:0167) 0.067(+0.004) 0.661(£0.117) 2235(£0.003)  17395(£1 0025(X0.001)  BOTT(0508)  0.055(£0.002) 100.276(20.950) 52.079(48.795)
e o S 0019(:0000) 0977(£0.155) 0060(£0.004) 0.651(:0070) 2213(£0.002) 1676A(L497) 0.027(x0001) 2917(x0.409) 0.052(:0001) SOB(EL502) 16 13)  45.919(10.560)
Decp CoralTB 0.019(0.000) 0.346(x0.078) 0.055(+0.003) 0.236(x0061) 2239(+0.003) 11.099(x0.257) 0.027(£0.001) 1100(+0270) _0.051(0.001) 20.024(+6.005)  L693(£0.087)  13911(+3.132)
= = 0.025(20.001) - - L614(Z0000) _0.580(£0.039 . 0.036(0.001) - 0.070(£0.002) . 2056(20.035) -
DANN  DEV 0021000 L3I6(20087) O0SH(Z0011) O0SIO(E0030) 0567(£0029) 19.257(0025) O00BT(0.002) SRZ6(0.120) 00710005  SI16(=0.218) 13537027012 00T 6T090(22.973)
DANN WV 0023(20001) . 0.081(20.003) . 0558(£0.035) - 0.036(£0.002) . 0071(£0.001 i 3 40 . '
DANN B 0023(0.000) " 0.078(0.001) . 0557(£0.026) . 0.035(:0.000 « 0:069(+0.001 N 3. ‘ 0. M
DANN B UO2(:0.001)  1208(:0.044) 0081(20.013) 0.T7AE0.028) 0581(£0.052)  IS35(:0512)  0.036(H0002)  S34(0.125) 007240000  TT020270)  SASI(:0132)  126TIC6261)  2032(:0072)  63.425(:2241)
Transolver CMD DEV 0.024(£0.001)  1.122(£0.311) ~ 0.085(£0.008) 0.716(+0.151) 0.616(+0.032)  16.889(+3.999)  0.037(+£0.001)  3.344(£0.794)  0.073(+0.002) 3.58( (£44.374)  2.064(=0.046)  54.102(20.096)
oD WV 002(0.000) 2699(3.476) 0.0S(X0.005) LAOAEL6O3) 0.GIS(H0032) TOSSICES0L54) D038(E0.001)  500G(ELIOL)  007A(0.001) o5 RB(E53L870)  2098(:0.026) 255.13(+116.162)
cMD SB 0.023(0.001) 0.070(+0.004)  0.504(+0.228)  0.589(£0.026) (£5.331)  0.035(:0.001)  2742(+1053)  0.070(0.003) 525( T 38.132)  2034(£0.051) 41.261(+18.879)
op T 0.021(20.001) 0082(£0001) 0.405(£0.100) 0.615(£0.045)  0350(£2011)  0.035(£0.002) LTOS(0445)  0.074(£0.003) ALOSS(411585)  2085(:0001)  23.186(£5.851)
Deep Coral DEV  U23(E000)  5.105(54957)  0076(20003) L5LI(Z2070) DSTHEI0599) D0F(E0001)  O.08(E13.802)  0.069(£0.002) ZISI80(E377.121)  L902(Z0.038) 1733012281052
DeepCoral IWV 0.023(20.001) . O085(£0.013) 4755(£4841) . 0.036(£0.003) . 0.071(£0.000) « 2.036(£0.068) .
Deep Coral - SB DO2(£0.001)  3614(EL6SS)  0076(£0.005) LIOI(E1800) OLIS2EIST213) 0.034(£0.002) 10.348(£13.030) 0.068(0.004 260.200(£363.762)  LISS(£0.018) 190.236(+206.513)
Deep Coral_TB U02(£0.000) 0G56(£0.158) 007S(£0.005) 0.A27(£0118) 0. 10201(£2801)  005T(£0.001)  L9S5(£0.580)  0.073(£0.003 SSTOLISINY)  2015(£0.008)  20316(£8.583)

Table 4: Absolute error of PEEQ predictions for representative samples from the source and target
domain of the hot rolling dataset. Lowest value per metric is bold.

Metric Source Target

Mean 2.07e-04 1.46e-02
Std 1.87¢-04 2.73e-03
Median 1.66e-04 1.49e-02
Qo1 7.45¢-09 6.82¢-03
Qzs 6.38¢-05 1.37e-02
Qs 2.99¢-04 1.58e-02
Qo9 7.61e-04  2.14e-02

B.2 SHEET METAL FORMING

In contrast to the substantial shift observed in the hot rolling dataset, the distribution shift in the
sheet metal forming dataset is moderate. Table[5| presents the detailed performance across all models,
algorithms, and selections for this dataset.

To further illustrate model behavior under distribution shift, we examine the best performing model,
selected by lowest normalized average target domain error. The error distribution (Figure[I0) shows
a moderate distribution shift between the source and target domain with some outliers in the target
domain.

To better understand the model’s predictive behavior in this setting, we analyze best- and worst-case
examples in each domain, again focusing on the critical PEEQ field. Table [f] provides a statistical
summary of the absolute PEEQ prediction errors across the selected cases. Fringe plots in Figures [TT]
to[I4] provide a visual understanding of model accuracy. These visualizations emphasize that while
the best prediction in the target domain remains reasonably accurate, others (e.g., the worst case
sample) exhibit notable discrepancies in the localized regions around the bends that we are most
interested in.
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Figure 10: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the sheet metal forming dataset. Bar height indicates the relative
frequency of samples within each bin.
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Figure 11: Fringe plot of the sheet metal forming dataset (best source sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, aswell as the absolute error (bottom).
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Figure 12: Fringe plot of the sheet metal forming dataset (worst source sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).
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Figure 13: Fringe plot of the sheet metal forming dataset (best target sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).
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Table 5: RMSE (mean =+ std over 4 seeds) on the sheet metal forming dataset at medium difficulty.
Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm
+ model selection combination. For each architecture, the unregularized baseline row is shaded beige,
whereas the best UDA + selection within that architecture is underlined and shaded green.

AModel D, Model _ All Fields Normalized Ave (- Rel Custom Error () Deformation (mm) Logarithmic Strain (<10%)  Equivalent Plastic Strain (<10 2) Mises Stress (MPa) Stress (MPa)
Algorithm  Selection SRC TGT SRC TGT SRC TGT TGT SRC SRC TGT SRC
B 0.070(£0.002) _0376(:0.028) 0.235(£0.013) 2,496 nm, TATI(Z0.070) _ 1939(£0.530) 0.156(20.014) 0.043(£0.001) Z0320)  46.007(F4911)  5508(20.198)
DEV  0.056(+0.004) N 0.237(20.006) 207) 1347(20.045) 16.199(21.097) 0.965(+1.238) 0.002(£0.003) £0561) 106.570(=103.131)
IWV  0057(+0003) 0329(:0.027)  0.236(:0.011) uaﬂJ\tAlllJ) LAOG(0.071)  2.095(0.188) O.158(20.010)  0.042(0.003) 52.401(+7.908)
B 0055(:0002)  TTR0CE0AIT)  0.236(+0.005) LAOK(0.035)  T.810(£6.066) 0AG7(0.147)  0.010(x0.001) 186.098(£37.057)
i VU000 OABL00 03(003) SoNC0mg Lale(ows 2oRi(ioie 0.156(20.010) 0.012(0.003) 19.234(45.606)
GraphSAGE DEV OORGOAR ORTGOAT) ONGE0MD) TOMEION  LInE0N  CMNGEE 0380(£0.177)  0.011(£0.002) 10.590(+0.343)
W 00%(H0001)  007T(0.130) 0235(:0008  L1T0(1820) 1 2.455(+1.014) 0.201(£0.057)  0.011(£0.001) 10730(£0.065) 5(
B 0.055(:0001)  0.569(+0306)  0.230(:0.008) 1 1708(£1.250) 0.290(£0.160)  0.040(0.000) 10.550(+0.163)  99.069(:58 18t
i 0.057(:0001)  0.280(:0.036) 0.008) L315(0.050)  2.028(0.795) 0.139(20017)  0.042(£0.001) 0.828(20,169)  43.746(£5.836)
DEV  0.054(20.002) 2 T364(20031)  3.601(11.971) CIIEOTE 000000 RIEDI OIS0 o1
WV 0055(£0.002) 0353(£0.075)  0230(:0015) L3008 240D £0.032) 0.041(20.002) 10.585(-£0.289) 53
DechConl 58 Sona(so0m  Daaitions)  baiiiooon 13 71)  2.386(+0.735) 01772005 0oi(0001) 0TI T 9
Decp Coral B 0.056(£0.003) 0287(+0.011) _0.239(£0.015) 13 1825(+0.369) 0.137(20.007) 0.041(0.002) 10.781(20333)  44161(+3.225)  5.398(+0.179)
- - 0.077(£0.011) 0226(0.047) _0.238(0.067) 2 2,556(£0.943) 0.087(20.022) 0.045(0.007) ILIT(ERI00) SLABKEGIT) _ SOGTE06)  16505(E0200)
DANN DEV  0.067(0.006) LISI(£1911) 0705(£1.197)  0.016(£0.001) 12112(+1.331) 100301 (+164.456)
WV 0071(0.006)  0.269(0.177) 0.135(£0.082)  0.019(20.001) 12.935(+1.330) 22,930(+17.436)
B T(+0.005)  0.359(+0.153) 5,573 (44, O0181(0076)  0.047(0.001) 12090(1186) 7
il 0.076(£0.004) 0.166(+0.008) _0.336(0.008) 2270(0.037) >uw\ﬂnm 0.084(:0.010) 0.053(0.002) 14069(1.203)
PoiniNet DEV  0.086(+0039) 0272(£0.127) 0319(20018) I ZRTCEOS  0R(EN0%) OIED0) 00000 IR
WV 0072(+0003) 0.241(£0.146) 0314(£0011) S3a0000)  Zoon(coony 007 0.117(£0070)  0.030(£0.002) 13150(20
B 0.060(0.006) 0.253(£0.050) S0.069)  3.698(+1.484) 2 124(20.020)  0.042(20.005) 10.166(21.150 06(=
i 0.069(0.006) 0.269(0.046) 0124)  2114(X0.141)  0.02 0.089(x0.011) 0.049(20.005) 12.260(20 zsmgn,mu
Deep Coral  DEV_ 0.067(20.008) 0290(+0.0 2201(20189)  2613(:0830) 0.0 0119(20.010) 0.016(£0.006) T(£1.995)  36.983(+12.351)
DecpCoral  IWV  0.065(0.007) 0.289(0.075) 21TT(20177)  2323(:0.412) 0.2 0.096(:0.007) 0.015(0.006) Tora(ran  Boib(oan
DeepCoral  SB o 0.242(0.07 L0.185)  2.555(£0.422) ) 00SA(£0011) 0.042(+0.008) 10156(£2001)  31.345(5
Deep Coral_TB 0.069(£0.014)  0I55(0006) _0.283(£0.080) 0.914(% Eoit 2120(0.181)  2000(£0.051)  0.026(0.006) 0.078(0.005) _0.049(+0.011) . 12320(£3.120)  22.042(+1.420)
s = 0.070(£0.002) _0.168(0.029) 0216(£0.011) 0.609(£0136) 1168(0012) _L1S(£0.203) 0022(0.001) 0070(Z0.015) 0.041(F0.001) _ 0.126(20.020) 25 014(£4.549)
DANN  DEV  0057(0002) 0.206(£0.051) 0212(0.007) 12U(E000) 210 0000 DI0U(L00) 00N 0.IST(0038)
DANN WV 0056(+0002)  0.170(£0.018)  0.210(+0.008) LITI005T)  L595(£0.305) 0.0 001)  0.084(£0.007)  0.040(0.002) =
DANN B 0.056(£0.002)  0172(+0.016)  0.210(£0.008) L207(+0062)  16T9(£0.36 0.001)  0.085(£0.006) 0.040(+0.002) H0289)  28.661(+5.28)
DANN i 0.058(£0.002) _0133(+0.016) _ 0.209(+0.009) 1249(40051)  1:205(+0. 0.064(£0.013) 0.041(0.001) 2560(£0.653)  21.245(+1910)
Transolver  CMD DEV  0.058(x0002) 0275(£0.130) 0.208(+0.006 T 203005 STI) 0.137(£0.063) 0.041(£0.001) TZSGET DO
MD WV 0056(0001)  0.202(£0.008)  0.204(+0.002) T208(£0.033)  2.084(+1.690) 0.105(£0.055)  0.040(0.001) 12374(20.3%0) B
MD B 0.056(£0.002)  0235(0.097)  0.207(£0.004) T204(0.063)  2.730(+1545) 0.122(£0.053)  0.040(0.001) 1214520 515)
M i 0062(:0001)  0.131(+0.008)  0.212(:0.011) L263(+0.042)  1.023(£0.223)  0.023(0.000) 0.065(£0.005) _0.044(0.001) 15 s0na0 128)
Decp Coral DEV  0.058(=0001) 0.155(0.015) 0.209(£0.008) G(=0309)  0.022(£0.001) 0.079(=0.007) 0.042(=0.001) IZ(E)
DeepConl IWV  0.057(£000) (0255(0306) 0.210(:0.008) +3.136) 0.130(£0.109)  0.041(0.000) 5)
Deep Coral ~ SB 0.057(£0.001)  0.263(+0.201) 0.209(0.009) 0.135(20.106)  0.040(0.001) 15.300(20.180)
Deep Coral _TB 0.059(£0.001)  0138(+0.014) _ 0.205(£0.008) 0.068(£0.012) 0.042(0.001) 12.970(x0502)  22062(+2.213)

Table 6: Absolute error of PEEQ predictions for the best and worst samples from the source and
target domain of the sheet metal forming dataset. Lowest value per metric is bold.

Source Target
Best Worst Best Worst

Mean 5.47e-05 1.68e-04 1.72e-04 1.86¢e-03
Std 1.35e-04 3.80e-04 4.52e-04 5.97e-03
Median 1.96e-05 4.35e-05 5.58e-05 2.85e-04
Qo1 2.43e-07 6.52e-07 1.03e-06 6.66e-06
Q25 7.49¢-06 1.84e-05 2.60e-05 1.53e-04
Q75 4.05e-05 1.05e-04 9.10e-05 4.67e-04
Qg 7.37e-04 1.96e-03 2.56e-03 3.40e-02

Metric

B.3 ELECTRIC MOTOR DESIGN

Table 7] presents the complete benchmarking results for the electric motor design dataset. For this
dataset the relative degradation in model performance in the target domain is in general smaller than
in the previous two presented above.

Table 7: RMSE (mean = std over 4 seeds) on the electric motor design dataset at medium difficulty.
Values are target domain errors (lower is better). Bold marks the overall best model + UDA algorithm
+ model selection combination. For each architecture, the unregularized baseline row is shaded beige,
whereas the best UDA + selection within that architecture is underlined and shaded green.
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Figure 14: Fringe plot of the sheet metal forming dataset (worst target sample). Shown is the ground
truth (top) and predicted (middle) PEEQ, as well as the absolute error (bottom).

To assess the effect of the domain shift on prediction accuracy in the electric motor design dataset
further, Figure [T5] shows the distribution of NRMSEs for the best performing model, selected by
lowest average error in the target domain, in the source and target domain.

Error distribution
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Figure 15: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the electric motor design dataset. Bar height indicates the relative
frequency of samples within each bin.

In this task, the Mises stress is used as a scalar summary of the multi-axial stress state and is
particularly interesting for downstream analysis and optimization. We therefore focus our closer
inspection on this field.

Table 8] presents a comparison of absolute Mises stress errors for the best and worst samples from
both the source and target test sets. The corresponding fringe plots are shown in Figures [T6]to [T9]
comparing the ground truth and predicted fields alongside their absolute errors. They show that the
best samples are predicted very well, whereas the worst sample of the source domain visually appears
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slightly worse than the one of the target domain. On average, however, it is still predicted more
accurately than the worst sample of the target domain, as shown in Table[§]

Table 8: Absolute error (MPa) of Mises stress predictions for the best and worst samples from the
source and target domain of the electric motor design dataset. Lowest value per metric is bold.

Metric Source Target
Best Worst Best Worst
Mean 2.00 20.50 2.67 23.21
Std 2.73 39.50 3.13 23.32
Median 1.26 13.63 1.68 13.09
Qo 0.02 0.18 0.03 0.11
Qzs 0.60 5.08 0.75 2.87
Qs 2.24 24.05 3.50 41.97
Qo9 13.43 140.17 15.05 78.28
Ground truth Prediction Absolute error
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Figure 16: Fringe plot of the electric motor design dataset (best source sample). Shown is the ground
truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).
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Figure 17: Fringe plot of the electric motor design dataset (worst source sample). Shown is the
ground truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).

B.4 HEATSINK DESIGN

Table 0] presents the complete benchmarking results for the heatsink design dataset.

We again further investigate model performance under distribution shift by examining predictions
from the best performing model, selected by lowest average error in the target domain. Figure 20]
presents the respective distribution of prediction errors in the source and target domain, clearly
indicating the negative effects of the distribution shift on model performance.
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Figure 18: Fringe plot of the electric motor design dataset (best target sample). Shown is the ground
truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).
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Figure 19: Fringe plot of the electric motor design dataset (worst target sample). Shown is the ground
truth (left) and predicted (middle) Mises stress, as well as the absolute error (right).
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Figure 20: Distribution of NRMSE (averaged across all fields) for the test sets of the source (blue)
and target (yellow) domains in the heatsink design dataset. Bar height indicates the relative frequency
of samples within each bin.
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Table 9: RMSE (mean =+ std over 4 seeds) on the heatsink dataset at medium difficulty. Values are
target domain errors (lower is better). Bold marks the overall best model + UDA algorithm + model
selection combination. For each architecture, the unregularized baseline row is shaded beige, whereas
the best UDA + selection within that architecture is underlined and shaded green.

Model DA Model Al Fields Normalized Avg () Temperature (K) Velocity (m/s) Rel Custom Error () Pressure (kPa)
Algorithm  Selection SRC TGT SRC TGT SRC TGT SRC TGT SRC TGT
= OS2(0020) 0S6E00) I5ISI(£15%) ILIZ(E2I6E) OON(000E) OOM(0000) OOI(:0006) OOU(E0005)  ISHO0R(EIINT) ISTON(E230:205)
DANN DEV 10.562(£5.446) 20.000(+2 84(]) 0010(E00IL) 00I(F0.007) 0.02(£0.016) 0.012(£0.010) 786.383(1051.360) 203781(£331513)
DANN wv 10.707(+5.293)  19.269(; 0.040(£0.011)  0.049(£0.007)  0.022(£0.016)  0.040(£0.013) . 8) .560(+646. r’l)
DANN SB 228(+0. 4 G.0GS(L1015)  20.120(42380) 0031(10.002) 0.053(£0002) 0.010(-0.009) 0.041(:0.008) ( )’ 2102.712(+6
DANN B DI0UE0030) DIITAOL) L0IGAEIALD ISTIOEIIET O0OM(0005 OO(E000) 0020004 OUM(E0006) B ANTLMOTI) 1907 Sacen m)
PoinNet  CMD DEV 0.BIGE000S)  04BEONG)  1092G0119) 00T0(0TD 00200000 0020001 00B000) ) 2388205(£17.831)  2464.006(£43.671)
CMD wv 0.480(=£0.020) .577(+0.479) 18.524 213)  0.033(£0.001)  0.051(£0.002)  0.012(£0.001) 3) 192.803(+4.658) 24! 2(£118.483)
CMD SB 0.477(£0.023) 7. JES(lU 406) 18.666(+1.057)  0.033(£0.001)  0.051(£0.002)  0.012(£0.001) 3) 196.144(+5.022) 4(+157.350)
cMD B 0305(10086) OAIS(10018) 10801 (L1080 17S00(£2250) 003T(L0004) 0.00(0.004) 0.022(200) 9)  756.930(+1076.860)  2288.916(+108.201)
DeepCoral  DEV  0.276(+0.072)  0.396(+0.049) 18.000(+2 0.038(£0.010) 0.044(0.006) 0.017(x0.011) 210.309(£86.936)  1035.500(+570.783)
Deep Coral wv 0.276(+0.072) 0.396(+0.049) ( 18.009(+2. 0.038(£0. ﬂl()] 0.044(+0.006)  0.01 /[ 0.011) 240.309(+86.936) 1035.599(+570.783)
Deep Coral ~ SB. 0394(10.048)  9.071(+3.069) 17.428(+1939) 0.037(+0.009) 0.044(+0.006) 0.016(+0.008) 224078(£54512)  1037.166(+573.817)
Deep Coral  TB DIIE0012)  12.763(£3.067) 1S517(42.502) 0.047(10.009) 0.042(x0.004) 0027(£0009) 0.010(£0012) 324104(£102861)  1438.782(+427.051)
0.446(+0.018) (£0.057) 0.024(£0.000) ~ 0.038(£0.001)  0.007(£0.000)  0.010(£0.001) 307.475(+£33.199) 1687.115(£262.894)
DANN DEV 0.436(£0.011) 0.024(£0.000)  0.049(£0.001)  0.007(£0.000) 4(+26.912)
DANN wv 0.425(+0.023) 0.028(+0.007)  0.047(£0.004)  0.011(=0.006) 431(+£150.069)
DANN SB 0.422(£0.015) QOG0T 00000 D000 253(+24.111)
DANN TB 0.406(£0.024) 0.032(£0.009)  0.045(£0.003)  0.014(=0.008) 1 36.461(+137.106)
Transolver CMD DEV 0.312(+0.088) 0.040) 0(+4.591) 0.029(+0.004)  0.043(+0.002)  0.030(+0.015) 18?( 6. (L)Zfilﬂﬂﬂ 114)
CMD wv 0.181(+0.001) 5(+0.032) 2(+0.141) ( 0.024(40.000)  0.042(£0.004)  0.007(+0.000) + 2)
cMD B 0.180(£0.002)  0.413(+0.04) (+0.099) ( 0.024(+0.000) 0.046(£0.005) 0.007(+0.000) 0.020(+0.007) 7)
CMD TB 0.180(£0.002) 0.367(£0.026) (+0.137) 11.225(+2. (YH?&) 0.024(£0.000)  0.041(£0.003)  0.007(£0.000)  0.014(=£0.005) 260.403(422. Z(H) 1893.827(£183.300)
Deep Coral DEV 0.181(£0.001)  0.310(+0.019)  4.257(+0.074) 8.717(+0.824)  0.024(£0.000)  0.037(4+0.002)  0.007(£0.000)  0.009(+0.002) 290.470(+21.975) 1334.241(+173.205)
Deep Coral WV 0.181(£0.001) 0.326(£0.029) 4.269(£0.077) 9.493(+1.143)  0.024(£0.000)  0.037(£0.002)  0.007(£0.000)  0.010(£0.001) 293.812(+6.818) 1545.184(£365.222)
Deep Coral ~ SB 0.181(£0.002)  0.334(+0.024)  4276(+0.039)  9.624(+1.231)  0.024(+0.000) 0.038(+£0.002) 0.007(+0.000) 200.325(:£21.486)  1620.377(262.907)
Deep Coral TB 0.181(+0.001) 0.310(+0.019) 4.257(+0.074) 8.717(+0.824)  0.024(+0.1 ﬂ“[)] 0.037(+0.002) 0. “[)/[ 0.000)  0.009(+0.002) 290.470(+21.975) 1334.241(+173.205)
5 2 0204(£0.002) 0.441(£0.024)  4316(£0025) 13.033(11.059) 0.025(+0.000) 0.040(£0.002) 0.006(x0.000) 0.013(£0.004) 23L715(:14315)  816.180(48.994)
DANN DEV 0.188(+0.011) 0.446(+0.026) 4.651(+0.781) lr) 580(+0.609)  0.026(£0.002)  0.050(+0.003)  0.007(=0.002) 222.968(+13.097) 2164.527(+302.094)
DANN WV 0.222(£0.053)  0.443(+0.070)  6.731(£3.132)  15.179(+1.591) 0.030(0.007) 0.048(£0.006) 0.011(+0.007) 217250(+£32.883)  2380.114(+727.167)
DANN SB 0.184(+0.002) 0.480(£0.018) 4.285(+0.072) l') 689(+0.806)  0.025(+0.000)  0.051(%0.001)  0.006(+0.000) 243.565(+23.766) 2729.454(+516.782)
DANN TB 0.273(£0.4 1]92) 0.398(+0.038) 9.411(+4.841) 15.644(+3.334)  0.037(£0.012)  0.043(+0.004)  0.019(+0.013) U U27( 0. 011) 285.494(+£72.700) 3( 31
UPT CMD DEV 0.210(+0.05 0.406(+0.046) 14.289(£2.054)  0.028(£0.007)  0.046(+0.005)  0.010(=0.008)  0.021(=0.006) 236.012(421.869)
cMD WV 0.182(0 unu) 0.363(£0.015) 12.003(£0487)  0.025(+0.000) 0.043(£0.001) ~0.006(0.000) 221.370(0
CMD SB 9 444(£0.010) 16.130(+0. 0.024(£0.000) 0.0 )U[iﬂ 001) 0. “[)()[ 0.000)
CMD TB (£0.015) 12.908(+0. 0.025(40.000) 13(+0.001)  0.006(+0.000)
Deep Coral  DEV 0.345(+0.013) 318(+0.067) 13.290(£0.655)  0.025(£0.000)  0.041(£0.001)  0.006(=0.000)
DeenConl TWY  0L1S3(0.001) 0.330(10020) (+£0.056)  13.190(0. 002520000 DMIG000R) 00060000
Deep Coral  SB 0.182(+0.000)  0.328(+0.012) 12.610(+1.328)  0.025(=+0. UUU) 0.040(£0.002)  0.006(+0.000)  0.014(+0.008) 218.254(+10.676)
Deep Coral ~ TB 0.182(£0.000) 0.321(£0.008) 12.637(£0.949)  0.025(£0.000)  0.039(£0.001)  0.006(=0.000)  0.013(+0.007) 218.167(4+11.586) "‘Jl ‘“)U(ilzl 633)

In this task, the temperature field is the most critical for downstream analysis and optimization, which
is why we focus our detailed analysis on it.

Table [T0| compares the absolute temperature prediction errors for the best and worst samples from
both the source and target test sets. The corresponding scatter plots are shown in Figures [21]to 24}
comparing the ground truth and predicted temperature fields, alongside their absolute errors.

While the best source domain prediction is quite accurate, with low average and percentile errors
(Table [0} Figure[21)), the 99th percentile of the worst source domain prediction reaches up to 29K.
Given a total temperature range of 100K, this represents a relative error of nearly 30%. The worst
target domain prediction is even less accurate, showing substantial visual and quantitative deviations
from the ground truth (Table[T0] Figure 24).

Table 10: Absolute error (K) of temperature predictions for the best and worst samples in the source
and target domain of the heatsink design dataset. Lowest value per metric is bold.

Source Target
Best Worst Best Worst

Mean 1.84e+00 5.79¢+00 2.23e+00 1.42e+01
Std 1.94e+00 5.90e+00 2.85e+00 1.46e+01
Median 1.25e+00 4.06e+00 1.31e+00 8.84e+00
Qo 2.17e-02 7.51e-02 2.41e-02 1.62e-01
Qas 5.49¢-01 1.92e+00 5.95e-01 4.49e+00
Qs 2.44e+00 7.48e+00 2.68e+00 1.87e+01
Qoo 9.26e+00 2.88e+01 1.49e+01 6.61e+01

Metric
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Figure 21: Sliced scatter plot of the heatsink design dataset (best source sample). Shown is the ground
truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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Figure 22: Sliced scatter plot of the heatsink design dataset (worst source sample). Shown is the
ground truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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Figure 23: Sliced scatter plot of the heatsink design dataset (best target sample). Shown is the ground
truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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Figure 24: Sliced scatter plot of the heatsink design dataset (worst target sample). Shown is the
ground truth (left) and predicted (middle) temperature field, as well as the absolute error (right).
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C DISTRIBUTION SHIFTS

Table [TT]provides an overview of the parameter ranges chosen to define source and target domains
for different task difficulties across all datasets. To gain more insights into the parameter importance
besides the domain experts’ opinion, we visualize the latent space of the conditioning network for all
presented datasets in Figures[23]to 28]

Table 11: Defined distribution shifts (source and target domains) of each dataset and each difficulty.

Source range

Target range

Dataset Parameter Difficulty (no. samples) (no. samples)
easy [0.01, 0.13) (4000) [0.13, 0.15] (750)
Rolling Reduction r (—) medium [0.01,0.115) (3500) [0.115,0.15] (1250)
hard [0.01,0.10) (3000)  [0.10, 0.15] (1750)
easy [2,4.8) (3060) [4.8, 5] (255)
Forming Thickness ¢ (mm) medium [2, 4.3) (2550) [4.3, 5] (765)
hard [2,4.1) (2295) [4.1, 5] (1020)
easy [100, 122)(2693) [122, 126](504)
Electric Motor ~ Rotor slot diameter 3 d,3 (mm) medium [99, 120) (2143) [120, 126] (1054)
hard [99, 118) (1728) [118, 126] (1469)
casy [5, 13) (404) [13, 14] (56)
Heatsink # fins medium [5, 12) (365) [12, 15] (95)
hard [5, 11) (342) [11, 15] (118)
Thickness Reduction
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Figure 25: T-SNE visualization of the conditioning vectors for the hot rolling dataset. Point color
indicates the magnitude of the respective parameter. While the slab thickness ¢ appears to be uniformly
distributed, the remaining three exhibit distinct clustering patterns. Taking into account domain
knowledge from industry experts, we defined the reduction parameter 7 as the basis for constructing

distribution shifts.
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Figure 26: T-SNE visualization of the conditioning vectors for the sheet metal forming dataset. Point
color indicates the magnitude of the respective parameter. The sheet length [ shows the most distinct
groupings, but with only three discrete values, it is unsuitable for defining domain splits. The friction
coefficient p appears uniformly distributed across the embedding. In contrast, sheet thickness ¢
and roll radius r show clustering behavior, making them more appropriate candidates for inducing
distribution shifts. We choose ¢ as the domain defining parameter.
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Figure 27: T-SNE visualization of the conditioning vectors for the electric motor design dataset.
Point color indicates the magnitude of the respective parameter. For clarity, we only show selected
parameters. The only parameter for which exhibits see some structure in the latent space is d,.3, we
therefore choose this to be our domain defining parameter in accordance with domain experts.
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Figure 28: T-SNE visualization of the conditioning vectors for the heatsink design dataset. Point
color indicates the magnitude of the respective parameter. Height 2 is distributed equally across the
representation, but the other parameters show concrete grouping behavior. We therefore choose the
number of fins as the domain defining parameter.

D MODEL ARCHITECTURES

This section provides explanations of all model architectures used in our benchmark. All models
are implemented in PyTorch and are adapted to our conditional regression task. All models have in
common, that they take node coordinates as inputs and embed them using a sinusoidal positional en-
coding. Additionally, all models are conditioned on the input parameters of the respective simulation
sample, which are encoded through a conditioning network described below.

Conditioning Network. The conditioning module used for all neural surrogate architectures embeds
the simulation input parameters into a latent vector used for conditioning. The network consists of a
sinusoidal encoding followed by a simple MLP. The dimension of the latent encoding is 8 throughout
all experiments.

PointNet. Our PointNet implementation is adapted from (Qi et al.l|2017)) for node-level regression.
Input node coordinates are first encoded using sinusoidal embeddings and passed through an encoder
MLP. The resulting representations are aggregated globally using max pooling over nodes to obtain
a global feature vector. To propagate this global feature, it is concatenated back to each point’s
feature vector. This fused representation is then fed into a final MLP, which produces the output
fields. The conditioning is performed by concatenating the conditioning vector to the global feature
before propagating it to the nodes features. We use a PointNet base dimension of 16 for the small
model and 32 for the larger model.

GraphSAGE. We adapt GraphSAGE (Hamilton et al.,|2017) to the conditional mesh regression
setting. Again, input node coordinates are embedded using a sinusoidal encoding and passed through
an MLP encoder. The main body of the model consists of multiple GraphSAGE message passing
layers with mean aggregation. We support two conditioning modes, namely concatenating the latent
conditioning vector to the node features, or applying FiLM style modulation (Perez et al., 2018)
to the node features before each message passing layer. We always use FILM modulation in the
presented results. After message passing, the node representations are passed through a final MLP
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decoder to produce the output fields. The base dimension of the model is kept at 128 and we employ
4 GraphSAGE layers.

Transolver. The Transolver model follows the originally introduced architecture (Wu et al., 2024).
Similar to the other models, node coordinates first are embedded using a sinusoidal encoding and
passed through an MLP encoder to produce initial features. Through learned assignement, each
node then gets mapped to a slice, and inter- as well as intra-slice attention is performed. Afterwards,
fields are decoded using an MLP readout. The architecture supports two conditioning modes:
concatenation, where the conditioning vector is concatenated to the input node features before
projection, or modulation through DiT layers across the network. For our experiments, DiT is used.
We choose a latent dimension of 128, a slice base of 32 and we apply four attention blocks for the
small model. For the larger model, we scale to 256, 128 and 8 layers respectively.

UPT. Our UPT implementation builds on the architecture proposed in (Alkin et al., 2024a). First,
a fixed number of supernodes are uniformly sampled from the input nodes. Node coordinates are
embedded using a sinusoidal encoding followed by an MLP. The supernodes aggregate features from
nearby nodes using one-directional message passing and serve as tokens for subsequent transformer
processing. They are then processed by stack of DiT blocks, which condition the network on the
simulation input parameters. For prediction, we employ a DiT Perceiver (Jaegle et al.|[2022)) decoder
that performs cross-attention between the latent representation and a set of query positions. This
allows the model to generate field predictions at arbitrary spatial locations, which is a desirable
property for inference. We sample 4096 supernodes and use a base dimension of 192. We use 8 DiT
blocks for processing and 4 DiT Perceiver blocks for decoding.

E EXPERIMENTS

This section provides a detailed overview of the performed experiments for this benchmark. First, we
explain the benchmarking setup used to generate the benchmarking results in detail in Appendix [E.T|
and the evaluation procedure in Appendix Furthermore, we provide information about training
times for the presented methods in Appendix [E.3]

E.1 EXPERIMENTAL SETUP

Dataset Splits. We split each dataset into source and target domains as outlined in Section
and Appendix |[C| Within source domains, we use a 50%/25%/25% split for training, validation,
and testing, respectively. For target domains, where labels are unavailable during training in our
UDA setup, we use a 50%/50% split for training and test sets. The large validation and test sets
are motivated the industrial relevance of our benchmark, where reliable performance estimation on
unseen data is a crucial factor.

Training Pipeline. For training, we use a dataset wide per field z-score normalization strategy,
with statistics computed on the source domain training set. We use a batch size of 16 and the
AdamW optimizer (Loshchilov & Hutter, |2019) with a weight decay of 1e-5 and a cosine learning
rate schedule, starting from le-3. Gradients are clipped to a maximum norm of 1. For the large
scale heatsink design dataset, we enable Automatic Mixed Precision (AMP) to reduce memory
consumption and training time. Additionally, we use Exponential Moving Average (EMA) updates
with a decay factor of 0.95 to stabilize training.

Performance metrics are evaluated every 10 epochs, and we train all models for a maximum of 3000
epochs with early stopping after 500 epochs of no improvement on the source domain validation loss.

Domain Adaptation Specifics. To enable UDA algorithms, we jointly sample mini batches from
the source and target domains at each training step and pass them thorugh the model. Since target
labels are not available, we compute supervised losses only on the source domain outputs. In addition,
we compute DA losses on the latent representations of source and target domains in order to encourage
domain invariance.

32



Under review as a conference paper at ICLR 2026

Since a crucial factor in the performance of UDA algorithms is the choice of the domain adaptation
loss weight A\, we perform extensive sweeps over this hyperparameter and select models using the
unsupervised model selection strategies described in Section4.3]

For the three smaller datasets, we sweep \ logarithmically over A € {10!,1072,...,107°},
while for the large scale Heatsink design dataset, we sweep a smaller range, namely A\ €
{102,101, ...,1072}, motivated by the balancing principle (Zellinger et al., 2021b).

Table [I2] provides an overview of the number of trained models for benchmarking performance of all
models and all UDA algorithms on the medium difficulty domain shifts across all datasets.

Table 12: Overview of the benchmarking setup and number of trained models across all datasets.

Dataset Models UDA algorithms ) values #seeds # models trained
Rolling PointNet, GraphSAGE, Transolver Deep Co\ff/l(’) %I\SAD DANN {107 1:'_10_9} 3 31224
Forming  PointNet, GraphSAGE, Transolver Deep Co\f:l/l(’) %I\SAD DANN {107 1;_1079} 3 31224

Motor PointNet, GraphSAGE, Transolver Deep Co\fj/l(’) %I\SAD’ DANN {107 ' ’_ 1079} i 31224
Heatsink PointNet, Transover, UPT Deep Co;jl/l(’) %I\];[E DANN {102 { 7107 2} i ]1820

Sum 1,200

Additional Details. For the three smaller datasets, we use smaller networks, while for the large
scale heatsink design dataset, we train larger model configurations to accommodate the increased
data complexity. An overview of model sizes along with average training times per dataset is
provided in Table We also refer to the accompanying code repository for a complete listing of all
model hyperparameters, where we provide all baseline configuration files and detailed step by step
instructions for reproducibility of our results.

Another important detail is that, during training on the heatsink design dataset, we randomly subsam-
ple 16,000 nodes from the mesh in each training step to ensure computational tractability. However, all
reported performance metrics are computed on the full resolution of the data without any subsampling.

E.2 EVALUATION METRICS

We report the RMSE for each predicted output field. For field ¢, the RMSE is defined as:

field 1 < 1A (@) @ )
m=1 m

n=1

where M is the number of test samples (graphs), N,,, the number of nodes in graph m, yﬁfl)n the
ground truth value of field 7 at node n of graph m, and f (m),(f@)n the respective model prediction.

For aggregated evaluation, we define the total Normalized RMSE (NRMSE) as:

K
1 X
NRMSE = — ) ' NRMSE[*"
where K is the number of predicted fields. For this metric, all individual field errors are computed on
normalized fields before aggregation.

In addition to the error on the fields, we report the mean Euclidean error of the predicted node
displacement. This is computed based on the predicted coordinates ¢&,, , € R? and the ground truth

coordinates ¢, ,, € R, where d € {2, 3} is the spatial dimensionality, as follows:

deformation 1 - 1 Al ~
RMSE = M Z Ni Z ||Cm,n —Cm,n

m
m=1 n=1

2
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E.3 COMPUTATIONAL RESOURCES AND TIMINGS

While generating the results reported on the medium difficulty level of our benchmark, we measured
average training times per dataset and model architecture. While the total compute budget is difficult
to estimate due to distributed training runs across various hardware setups, we report standardized
average training times for 2000 epochs in Table |13} measured on a single NVIDIA H100 GPU using
batch size of 16.

Table 13: Average training times (averaged for 2000 epochs) and parameter counts for each model on
the medium difficulty benchmark tasks. Times are measured on a H100 GPU using a batch size of 16.

Dataset Model # parameters Avg. training time (h)
PointNet 0.3M 1.2
Rolling  GraphSAGE 0.2M 3
Transolver 0.57M 2.1
PointNet 0.3M 2.8
Forming  GraphSAGE 0.2M 8
Transolver 0.57TM 4.4
PointNet 0.3M 5.6
Motor GraphSAGE 0.2M 11.5
Transolver 0.57M 6.5
PointNet 1.08M 49
Heatsink  Transolver 4.07M 53
UPT 5.77TM 55

F DATASET DETAILS

F.1 HoT ROLLING

The hot rolling dataset represents a hot rolling process in which a metal slab undergoes plastic
deformation to form a sheet metal product. The model considers a plane-strain representation of a
heated steel slab segment with a core temperature 7. and a surface temperature 7g,¢, initially at
thickness ¢, passing through a simplified roll stand with a nominal roll gap g (see Figure[2a). This roll
gap effectively matches the exit thickness of the workpiece. Given the material properties, the initial
temperature distribution over the slab thickness and the specified pass reduction, the model aims to
capture the evolution of the thermo-mechanical state of the workpiece as it traverses the roll gap.

To reduce computational complexity, the analysis is confined to the vertical midplane along the rolling
direction based on a plane-strain assumption. This is well justified by the high width-to-thickness
ratio characteristic of the workpiece. Additionally, vertical symmetry is also exploited. Consequently,
only the upper half of the workpiece and the upper work roll are modeled.

The workpiece is discretized using plane-strain, reduced-integration, quadrilateral elements. Mesh
generation is fully automated, with the element size calibrated according to findings from a mesh
convergence study. In terms of mechanical behavior, the workpiece is modeled as elasto-plastic with
isotropic hardening, employing tabulated flow curves representative for a titanium alloy (Lesuer,
2000; Lu et al., [2018). The elastic modulus and flow stress are temperature dependent, with the latter
also influenced by the plastic strain rate. In contrast, material density and Poisson’s ratio are assumed
to remain constant. The work roll with a diameter of 1000 mm is idealized as an analytically defined
rigid body.

In addition to the mechanical behavior, the elements also feature a temperature degree of freedom
that captures thermal phenomena, which are in turn fully coupled with the mechanical field. Heat
conduction within the workpiece is governed by temperature dependent thermal conductivity and
specific heat capacity. Heat transfer at the interface between the workpiece and the roll is modeled
as proportional to the temperature difference between the contacting surfaces, using a heat transfer
coefficient of 5 mW /mm?2K. The model also accounts for internal heat generation due to plastic
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deformation, based on the standard assumption that 90% of plastic work is converted into heat.
Additionally, all frictional energy is assumed to be fully transformed into heat and evenly divided
between the workpiece and the roll. However, since the analysis focuses on the workpiece, only the
portion of this heat entering the workpiece is considered.

The FE simulation is performed with the Abaqus explicit solver using a relatively high mass scaling
factor of 100. This mass scaling proved to be a suitable choice for maintaining both computational ef-
ficiency and solution accuracy. The pre-processing, evaluation and post-processing of the simulations
was automated in Python. A full factorial design of experiments was conducted by varying the pa-
rameters outlined in Table[I4] Simulation outputs from Abaqus (.odb files) were converted to a more
suitable .h5 format in post-processing, enabling seamless integration into the SIMSHIFT framework.
All simulations were run on a Gigabyte Aorus 15P KD consumer laptop equipped with an Intel Core
i7-11800H CPU (8 cores, 16 threads, 2.30-4.60 GHz), 16 GB DDR4 RAM at 3200 MHz and a | TB
NVMe SSD. The single-core CPU time for one simulation was 25 seconds on average, depending on
the mesh size and convergence speed.

Table 14: Input parameter ranges for the Kot rolling simulations. Samples are generated by equally
spacing each parameter within the specified range using the indicated number of steps, resulting in
5 x 19 x 10 x b = 4750 total samples.

Parameter Description Min Max Steps
t (mm) Initial slab thickness. 50.0 183.3 5
reduction (—) Reduction of initial slab thickness.  0.01 0.15 19
Teore (°C) Core slab temperature. 900.0 1000.0 10
Tort (°C) Surface slab temperature. 900.0 1077.77 5

F.2 SHEET METAL FORMING

For the sheet metal forming dataset, a w-shaped bending process was selected due to its complex
contact interactions and the highly nonlinear progression of bending forces. For this purpose, a
parameterized 2D FE model of the process was developed using the commercial FEM software
Abaqus and its implicit solver, with the simulation pipeline implemented in Python. The initial
configuration of the finite element model is shown in Figure[29)and described below.
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Figure 29: Bending process abstraction, initial configuration.

Due to geometric and loading symmetry, only the right half of the sheet with a thickness ¢ was modeled.
The die and punch were idealized as rigid circular segments with a shared radius r. Additionally, a
rigid blank holder comprising an arc and a straight segment was positioned 0.1 mm above the sheet
to maintain contact and restrain vertical motion. The required sheet length was determined by the
support span [/, enabling material flow toward the center in response to the downward motion of the
punch.

The sheet was discretized using bilinear, plane-strain quadrilateral elements with reduced integration
and hourglass control (Abaqus element type CPE4R). A prior mesh convergence study indicated that
accurate simulation results require a minimum of 10 element rows across the sheet thickness. The
element size was fixed at 0.125 x 0.1 mm to ensure a uniform aspect ratio, constraining the sheet
thickness to £ > 1 mm.
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The sheet material was modeled as elastoplastic with von Mises plasticity and linear isotropic
hardening. The following properties were assigned: Young’s modulus of 210 GPa, Poisson’s ratio of
0.3, yield stress of 410 MPa, and hardening modulus of 2268 MPa.

For all contact interfaces, a normal contact formulation with surface-to-surface discretization, penalty
enforcement, and finite-sliding tracking was employed. Tangential contact was modeled via a
Coulomb friction law with a coefficient .

The supports and blank holder were fixed by constraining horizontal and vertical translations as
well as in-plane rotations. These constraints were applied at the centroid of each arc segment,
representing the reference point for the respective rigid body. The punch was similarly constrained
against horizontal movement and rotation but retained vertical mobility. The deformed configuration
following a vertical displacement U of the punch is illustrated in Figure

/2 \)

>l

Figure 30: Bending process abstraction, deformed configuration.

A full factorial design of experiments was conducted by varying the parameters outlined in Table[T5}
As for the hot rolling simulations, outputs from Abaqus (.odb files) were converted to .h5 format
in post-processing, to integrate them into the SIMSHIFT framework. All simulations were run
on a Gigabyte Aorus 15P KD consumer laptop equipped with an Intel Core i7-11800H CPU (8
cores, 16 threads, 2.30-4.60 GHz), 16 GB DDR4 RAM at 3200 MHz and a 1 TB NVMe SSD. The
single-core CPU time for one simulation run was 300 seconds on average, depending on mesh size
and convergence speed.

Table 15: Input parameter ranges for the sheet metal forming simulations. Samples are generated
by equally spacing each parameter within the specified range using the indicated number of steps,
resulting in 17 x 13 x 3 x 5 = 3315 total samples.

Parameter Description Min  Max  Steps
r (mm) Roll radius. 10.0  50.0 17
t (mm) Sheet thickness. 2.0 5.0 13
I (mm) Sheet length. 175.0 350.0 3
(=) Friction coefficient between the sheet and the rolls. 0.1 0.5 5

F.3 ELECTRIC MOTOR DESIGN

The electric motor design dataset includes a structural FE simulation of a rotor within electric
machinery, subjected to mechanical loading at burst speed. The rotor topology is modeled after the
motor architecture of the 2010 Toyota Prius (Burress et al., 2011}, an industry-recognized benchmark
frequently used for validation and comparison in academic and industrial research. The Prius rotor
topology is based on a V-shaped magnet configuration as shown in Figure

Structural rotor simulations are essential in multi-physics design optimization, where motor per-
formance is evaluated across multiple domains including electromagnetic, thermal, acoustic, and
structural. Using a design optimization framework, stator and rotor design are iteratively refined to
identify Pareto-optimal solutions based on objectives such as efficiency, torque, weight, and speed.
In this process, the structural FE model predicts stress and deformation due to loading ensuring the
rotor’s structural integrity.
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The set up and execution of the structural simulations for this dataset are automated and implemented
in the open source design optimization framework SyMSpaceﬂ The FE simulation of the rotor is
performed using a mixed 2D plane stress and plane strain formulation with triangular elements. To
enhance computational efficiency, geometric symmetry is exploited and only a 1/16 sector of the full
rotor is modeled. The mechanical simulation is static and evaluates the rotor under centrifugal loading,
incorporating press-fit conditions between the rotor core and shaft, as well as contact interactions
between the rotor core and embedded magnets.

An elastic material behavior is employed for all components, including the rotor core, shaft, and
magnets. Material properties are summarized in Table[I6] Based on the parametrized CAD model of
the rotor topology, the geometry is automatically meshed using Netgerﬂ The design optimization
tool also automatically identifies nodes for boundary conditions and contact surfaces and applies
the corresponding constraints and interactions required for the simulation. The implicit FE solver
HOTINT is used to compute the quasi-static response of the system, providing local stress and strain
fields across the rotor topology.

Table 16: Material parameters for the structural electric motor design simulations.

Rotor Core Rotor Shaft Permanent Magnet
Material NO27-14 Y420HP  42CrMo4 BMN-40SH
Density (kg/dm?) 7.6 7.72 7.55
Possions ratio (-) 0.29 0.3 0.24
Young’s Modulus (kN /mm?) 185.0 210.0 175.0
Tensile Strength (kN /mm?) 550.0 850.0 250.0

To generate the electric motor dataset, a comprehensive motor optimization study was conducted
using SyMSpace, based on design specifications of the 2010 Toyota Prius. The optimization aimed to
minimize multiple performance metrics, including motor mass, material costs, rotor torque ripple,
motor losses, coil temperature, stator terminal current, and elastic rotor deformation. A genetic
algorithm was employed to explore the design space and identify Pareto-optimal solutions. In the
process, 3,196 motor configurations were evaluated by varying, among other factors, the rotor’s
topological parameters within the bounds specified in Table The outputs of the structural
simulations were generated in .vtk format and then stored in .h5 files, allowing direct integration
into the SIMSHIFT framework. Each structural simulation required approximately 4 to 5 minutes of
single-core CPU time on a Intel Core 19-14900KS processor (24 Cores, 3200 MHz), depending on
convergence speed of the contact algorithm.

*https://symspace.lcm.at/
*https://ngsolve.org/
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see DETAL A

. peTAL A

Figure 31: Technical drawing of the electrical motor. Sampling ranges for the shown parameters can
be found in Table[T7]

Table 17: Input parameters for the electric motor design simulations. Since the design space was
explored by a genetic algorithm, the parameters are not uniformly sampled as in the previous
simulation scenarios. In total, 3196 simulations were performed.

Parameter Description Min  Max
ds; (mm) Stator inner diameter. 150.0 180.0
hy (mm)  Magnet height. 6.0 9.0
a, (°) Angle between magnets. 120.0 160.0
tr1 (mm) Magnet step. 1.0 5.0
r.1 (mm)  Rotor slot fillet radius 1. 0.5 2.5
rro (mm)  Rotor slot fillet radius 2. 0.5 3.5
rr.3 (mm)  Rotor slot fillet radius 3. 0.5 5.0
Tra (MM Rotor slot fillet radius 4. 0.5 3.0
trsp1 (mm)  Thickness saturation bar 1. 4.0 12.0
trsp2 (mm)  Thickness saturation bar 2. 1.0 3.0
trsb3 (mm)  Thickness saturation bar 3. 1.2 4.0
tysba (mm)  Thickness saturation bar 4. 5.0 12.0
dr1 (mm)  Rotor slot diameter 1. 60.0  80.0
dro (mm)  Rotor slot diameter 2. 80.0 120.0
dr3 (mm)  Rotor slot diameter 3. 100.0 125.0

F.4 HEATSINK DESIGN

The heatsink design dataset consists of heatsink geometries similar to the example shown in Figure 32}
placed centrally at the bottom of a surrounding box-shaped domain filled with air. The dimensions of
the surrounding enclosure are 0.14 m x 0.14 m x 0.5 m (length x width x height).

The geometric configuration of each heatsink is defined by several parameters, which were varied
within specified bounds for the design study. These parameters and their corresponding value ranges
are summarized in Table @ A total of 460 simulation cases were generated, with non-uniform
sampling across the parameter space.

The dataset was generated using CFD simulations based on the Reynolds-Averaged Navier-Stokes
(RANS) equations coupled with the energy equation. All simulations were conducted in the open-
source CFD suite OpenFOAM 9.
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Figure 32: Technical drawing of the solid body in the heatsink design dataset. Some of the shown

parameters are varied for data generation (see Table ['1;8[)

Table 18: Geometric and physical parameters of the heatsink design simulations. The variable
parameters were not uniformly sampled. In total, 460 simulations were performed.

Parameter Description fixed Value =~ Min Max
length (m) Heatsink length 0.1 - -
width (m) Heatsink width 0.08 - -
heightl (m) Baseplate height 0.003 - -
T(amb) (K) Ambient Temperature 300 - -
fins (—) Number of fins - 5 14
gap (m) Gap between fins - 0.0023  0.01625
thickness_fins (m)  Thickness of fins - 0.003 0.004
height2 (m) Heatsink height - 0.053 0.083
T (solid) (K) Temperature of the solid fins - 340 400

The computational domain was discretized using a finite volume method with second-order spatial
discretization schemes. A structured hexahedral background mesh was generated with the blockMesh
utility in OpenFOAM, followed by mesh refinement using snappyHexMesh to accurately resolve the
heatsink structure defined in STL format.

To simulate buoyancy driven natural convection, the buoyantSimpleFoam solver was employed. This
solver is designed for steady state, compressible, buoyant flows, using the SIMPLE algorithm for
pressure-momentum coupling, extended with under relaxation techniques to enhance numerical
stability and robust convergence.

Boundary conditions were applied as follows:

* Walls of the surrounding: no-slip velocity condition with fixed ambient temperature as
defined in Table[I8]

» Walls of the heatsink: no-slip velocity condition with solid temperature within the range
specified for parameter T (solid) in Table [I8]

Given the turbulent nature of the flow, the RANS equations were closed using the SST k—w turbulence
model (Menter et al., 2003). Near-wall regions were modeled using a y*-insensitive near-wall
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treatment, allowing accurate resolution of boundary layers without the need for excessively fine
meshes.

A mesh convergence study was conducted to ensure numerical accuracy. Depending on mesh
resolution, each simulation required approximately 11 to 18 hours of single-core CPU time on an
Intel Core 19-14900KS processor (24 cores, 3.2 GHz).

G ABLATION STUDIES

In the following sections, we present ablations on the SIMSHIFT framework.

G.1 GEOMETRIC ENCODING

The design concept of SIMSHIFT is to allow plug-in integration of any UDA algorithm and model
architecture, as long as the model can be conditioned in some way (see Figure[T). However, explicitly
conditioning models on scalar geometric parameters is not the only option: for instance, domain-
specific information may be encoded implicitly in the mesh itself. To investigate this, we provide
an ablation in which the model encodes the mesh directly and is not explicitly conditioned on the
scalar parameters. Specifically, we replace the feed-forward conditioning network with a geometric
PointNet based encoder to embed the input mesh into a global latent vector, on which UDA is then
performed.

We report results of this setup on the electric motor design dataset. The setup follows the benchmark-
ing procedure described in Section[dand Appendix [E.T} for each UDA algorithm, we train across 9
different regularizer strengths and 4 random seeds.

Table 19: RMSE (mean =+ std over 4 seeds) on the electric motor design dataset when using a
PointNet geometry encoder. Values are target domain errors (lower is better). Bold marks the overall
best model + UDA algorithm + model selection combination. For each architecture, the unregularized
baseline row is shaded beige, whereas the best UDA + selection within that architecture is underlined
and shaded green.

Table [19|shows that UDA algorithms can boost target performance compared to the unregularized
baseline model. However compared to our chosen benchmarking design in Table /] both the
performance of the unregularized baseline as well as the one of the best performing UDA method
is worse, which supports our choice of explicitly conditioning on scalar parameters in the main
benchmark.

G.2 TWwWO-DIMENSIONAL SHIFTS

Defining shifts based on one parameter allows for controlled experiments, also given that the
parameters were picked based on preliminary experiments (see Appendix[C) and consultation with
domain experts. In real-world scenarios, however, distribution shifts often affect multiple parameters
simultaneously rather than only a single one. It is therefore important to investigate the performance
of the benchmarked UDA algorithms under multidimensional parameter shifts. As a step in this
direction, we provide an ablation on the electric motor design dataset for a two-dimensional parameter
shift.

To be concise, we jointly shift the rotor slot diameter d,.3 (parameter shift in the main benchmark) and
the angle between the magnets «... Table[20|shows the corresponding two-dimensional distribution
shift between the source and the target domain.

We train all models with each UDA algorithm following the procedure in Section 4.5| and Ap-
pendix and report the results in Table
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Table 20: Parameter ranges for the two-dimensional distribution shift on the electric motor design
dataset.

Parameter Source range  Target range

Rotor slot diameter 3 d,.5 (mm) [100, 120) [120, 126]
Angle between magnets c,. (°) [119, 153) [153, 170]

Table 21: RMSE (mean =+ std over 4 seeds) on the electric motor design dataset at with a two-
dimensional distribution shift in parameter space. Values are target domain errors (lower is better).
Bold marks the overall best model + UDA algorithm + model selection combination. For each
architecture, the unregularized baseline row is shaded beige, whereas the best UDA + selection within
that architecture is underlined and shaded green.
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Comparing these results with the original one-dimensional shift (Table[7)), two observations stand out:
(1) For two out of three architectures, both the unregularized baseline and the best UDA algorithm
and model selection combination exhibit higher errors in the average field NRMSE than in the
one-dimensional shift setting, confirming that the two-dimensional shift is a more challenging task.
(i1) The relative improvements over the unregularized baselines are larger, indicating that UDA
training provides greater benefits under this more challenging distribution shift.

These findings highlight the potential of UDA to handle increasingly complex distribution shifts,
underscoring its practical relevance for real-world applications.
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