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Abstract

Neural processes (NPs) are probabilistic meta-learning models that map sets of
observations to posterior predictive distributions, enabling inference at arbitrary
domain points. Their capacity to handle variable-sized collections of unstructured
observations, combined with simple maximum-likelihood training and uncertainty-
aware predictions, makes them well-suited for modeling data over continuous
domains. Since their introduction, several variants have been proposed. Early
approaches typically represented observed data using finite-dimensional summary
embeddings obtained through aggregation schemes such as mean pooling. How-
ever, this strategy fundamentally mismatches the infinite-dimensional nature of the
generative processes that NPs aim to capture. Convolutional conditional neural
processes (ConvCNPs) address this limitation by constructing infinite-dimensional
functional embeddings processed through convolutional neural networks (CNNs)
to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to
capture long-range dependencies without resorting to large kernels, which impose
significant computational costs. To overcome this limitation, we propose the Spec-
tral ConvCNP (SConvCNP), which performs global convolution in the frequency
domain. Inspired by Fourier neural operators (FNOs) for learning solution opera-
tors of partial differential equations (PDEs), our approach directly parameterizes
convolution kernels in the frequency domain, leveraging the relatively compact yet
global Fourier representation of many natural signals. We validate the effectiveness
of SConvCNP on both synthetic and real-world datasets, demonstrating how ideas
from operator learning can advance the capabilities of NPs.

1 Introduction

Stochastic processes offer a mathematical framework for modeling systems that evolve with inherent
randomness over continuous domains such as time and space. They underpin a wide range of scientific
applications—from spatio-temporal climate dynamics to biological and physical systems—thereby
motivating the development of machine learning methods that can learn from data generated by
such stochastic phenomena [Mathieu et al., 2021, Vaughan et al., 2021, Allen et al., 2025, Ashman
et al., 2025, Dupont et al., 2021]. Among classical approaches, Gaussian processes (GPs; Rasmussen
et al., 2006) provide a Bayesian framework with closed-form inference and uncertainty quantification.
However, their cubic computational cost from matrix inversion and the difficulty of specifying suitable
kernels—especially in high-dimensional settings—limit their scalability.

Motivated by the success of deep neural networks in large-scale function approximation, neural
network-based alternatives have emerged. Neural processes (NPs; Garnelo et al., 2018a,b) exemplify
this paradigm, combining ideas from GPs and deep learning within a meta-learning framework. By
exposing the model to multiple realizations of an underlying stochastic process, each treated as a
distinct task, NPs learn shared structure across tasks to parameterize a neural mapping that directly

approximates the corresponding posterior predictive distribution [Bruinsma, 2024]. Once trained, the
model enables efficient probabilistic predictions on new tasks without further optimization.
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Since the introduction of conditional neural processes (CNPs, Garnelo et al. [2018a]) as the first class
within the NPs family [Jha et al., 2022], a wide range of extensions and variants have been proposed to
enhance their effectiveness. One active line of research introduces explicit inductive biases into CNPs
to encode the symmetries commonly present in scientific and physical domains [Gordon et al., 2019,
Kawano et al., 2021, Holderrieth et al., 2021, Huang et al., 2023, Ashman et al., 2024a,b]. Another
major direction seeks to move beyond the mean-field factorized Gaussian predictive distributions to
which CNPs are limited. A popular approach augments CNPs with stochastic latent variables, giving
rise to the family of latent neural processes (LNPs; Garnelo et al. [2018b], Louizos et al. [2019],
Wang and Van Hoof [2020], Foong et al. [2020], Lee et al. [2020], Volpp et al. [2021], Wang et al.
[2022], Wang and van Hoof [2022], Kim et al. [2022], Jung and Park [2023], Lee et al. [2023], Xu
et al. [2023]). Alternative approaches explore autoregressive prediction schemes [Bruinsma et al.,
2023, Nguyen and Grover, 2022], Gaussian predictive distributions with non-diagonal covariances
[Bruinsma et al., 2021, Markou et al., 2022], and quantile-based parameterizations of the predictive
distribution [Mohseni et al., 2023].

This work focuses on CNPs, particularly convolutional CNPs (ConvCNPs; Gordon et al. 2019), which
were the first to endow NPs with translation equivariance. ConvCNPs introduce the convolutional
deep set construction which characterizes a broad class of translation-equivariant mappings over
finite, potentially unstructured sets of observations as a composition of functional embeddings with
translation-equivariant operators, typically realized through convolutional neural networks (CNNs;
Fukushima [1980], LeCun et al. [1989, 1998]).

Despite their effectiveness, ConvCNPs can struggle to aggregate information from observations
spread across large spatial domains—a challenge that becomes particularly pronounced in sparse data
regimes. This limitation stems from their reliance on local convolutional kernels with small receptive
fields, which hampers their ability to model long-range dependencies. A natural remedy is to enlarge
the kernel size to extend the receptive field; however, this approach rapidly increases the number of
model parameters and computational cost [Romero et al., 2021]. Alternatively, transformer-based
architectures can capture long-range interactions but incur quadratic, rather than linear, computational
complexity in the number of observations [Vaswani et al., 2017, Nguyen and Grover, 2022].

In this work, we propose an alternative approach that represents functions in the frequency domain,
inspired by the well-established observation that many natural processes exhibit energy concentration
in low-frequency bands [Field, 1987, Ruderman and Bialek, 1993, Wainwright and Simoncelli,
1999]. This characteristic allows for efficient approximation using only a subset of dominant spectral
coefficients, enabling tractable computations while preserving the signal’s global structure. By
parameterizing convolution kernels directly in the Fourier domain over a finite set of frequencies
and leveraging the convolution theorem, our method attains large effective receptive fields without
incurring prohibitive computational costs.

While spectral methods have been extensively studied in neural operator learning for partial dif-
ferential equations (PDEs) (e.g., [Li et al., 2020a, Gupta et al., 2021, Kovachki et al., 2021, 2023,
Helwig et al., 2023]), their application within NPs framework remains relatively unexplored. To
bridge this gap, we propose the Spectral Convolutional Conditional Neural Process (SConvCNP)—a
model that adopts Fourier neural operators (FNOs; Li et al. 2020a) to realize global convolution
while maintaining computational efficiency. Across a suite of synthetic and real-world benchmarks,
SConvCNP performs competitively with state-of-the-art baselines, illustrating how ideas from neural
operators can enhance the flexibility and performance of NPs.

2 Preliminaries

2.1 Fourier Neural Operator

Neural operators [Chen and Chen, 1995, Li et al., 2020b,a, Kovachki et al., 2023, Raonic et al.,
2023] constitute a class of neural networks that learn mappings between function spaces rather than
finite-dimensional vectors. Analogous to conventional feed-forward architectures, they comprise
stacked layers alternating between operator-based transformations and pointwise nonlinearities. Each
transformation acts as an operator—typically a linear integral operator with kernel ω : X → X ↑

Y—applied to an input function v : X ↑ Y:

K[v](x) =

∫
ω(x, t) v(t) dt.
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While this work focuses on linear operators, nonlinear formulations have also been explored, including
continuous formulations of softmax attention. When the kernel is stationary (ω(x, t) = ω(x↓ t)),
the operator simplifies to a convolution, K[v] = ω ↔ v, directly connecting neural operators to CNNs,
where ω is parameterized by learnable weights.

Typically, convolutional kernels are spatially local and possess a limited receptive field [Luo et al.,
2016, Peng et al., 2017, Wang et al., 2018]. Consequently, modeling long-range dependencies
requires increasingly large kernels, which substantially inflates the parameter count. The Fourier
Neural Operator (FNO, Li et al. [2020a]) overcomes this limitation by exploiting the convolution
theorem [Bracewell and Kahn, 1966, Oppenheim, 1999], which re-expresses convolution in the
frequency domain as:

K[v](x) = F
→1

[
F [ω](ε) · F [v](ε)

]
(x), (1)

where F and F
→1 denote the Fourier and inverse Fourier transforms, respectively. Rather than

parameterizing the kernel ω in the spatial domain, the FNO learns its representation directly in
the Fourier domain. When the input function v is approximately band-limited—i.e., its spectrum
F [v](ε) carries negligible energy for frequencies |ε| > ε0—the high-frequency components can be
truncated with minimal loss of information. This property, observed in many natural signals [Field,
1987, Ruderman and Bialek, 1993, Wainwright and Simoncelli, 1999], allows setting F [ω](ε) = 0
outside the retained frequency band. In practice, the FNO parameterizes F [ω](ε) only for a limited
number of low-frequency modes, thereby capturing global dependencies while maintaining a compact
parameterization.

In practice, functions are available only through discrete samples, requiring the use of the discrete
Fourier transform (DFT) to transition between spatial and frequency domains. Given discretized
samples of v on a uniform grid G ↗ X, the FNO computes their DFT, F̂{(v(x))x↑G}, efficiently
using the fast Fourier transform (FFT; [Cooley and Tukey, 1965, Frigo and Johnson, 2005]). The
resulting spectrum is truncated to retain only a finite subset of frequency modes, !̂ ↗ R

dX , where
dX denotes the dimension of X; these retained modes are assumed to capture most of the signal’s
energy. For each retained frequency mode ε̂ ↘ !̂, the Fourier transform of the kernel, F [ω](ε̂), is
parameterized by learnable complex-valued weights. In the simplest case, this parameterization takes
the form F [ω](ε̂) = wω̂ ↘ C

dY1 where dY denotes the dimension of Y. This formulation implicitly
assumes periodicity in the spatial domain, as it models ω using a discrete set of harmonics (i.e., a
Dirac comb in frequency space). After pointwise multiplication in the frequency domain, the inverse
FFT is applied to map the result back to the spatial domain, yielding the final operator output.

2.2 Neural Processes

Let P denote the space of all Y-valued stochastic processes on X. Consider P ↘ P, with p(·)
denoting the density of its finite-dimensional distributions. A task D is defined as a finite collection
of input–output pairs sampled from a realization f ≃ P , partitioned into a context set and a target set:

D = (Dc,Dt) = ({(xc,k, yc,k)}k↑Ic , {(xt,k, yt,k)}k↑It) ,

where
yc,k = f(xc,k) + ϑc,k, yt,k = f(xt,k) + ϑt,k, ϑc,k, ϑt,k ≃ N (0,ϖ2

P).

Here, ϖP > 0 is the observation noise scale, and Ic, It ↗ N are finite index sets corresponding to the
context and target subsets, respectively. Neural processes (NPs; [Garnelo et al., 2018a,b]) constitute a
class of models that employ neural networks to learn a mapping ϱ :

⋃↓
k=0(X→ Y)k ↑ P, which

takes a finite context set Dc and gives a direct approximation to the posterior predictive process
[Bruinsma et al., 2021, Bruinsma, 2024, Ashman et al., 2024a,b]. Let qDc(·) denote the density of
ϱ[Dc]

(
(xt,k)k↑It

)
. The NP approximation can then be expressed as

qDc((yt,k)k↑It | (xt,k)k↑It ,Dc) ⇐ p((yt,k)k↑It | (xt,k)k↑It ,Dc) .

In this work, we focus on conditional NPs (CNPs, Garnelo et al. [2018a]), which restrict qDc to the
family of mean-field Gaussians, i.e. qDc((yt,k)k↑It | (xt,k)k↑It ,Dc) =

∏
k↑It

qDc(yt,k | xt,k,Dc).

1More generally, a matrix-valued parameterization F [ω](ε̂) = wω̂ → C
cout→dY is used, where cout is the

number of output channels, allowing for joint mixing of input channels and projection into a space with
potentially different dimensionality.
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In general, CNPs parameterization of the predictive distribution qDc(yt,k | xt,k,Dc) can be abstracted
as a two-stage encoder-decoder pipeline [Bruinsma, 2024, Ashman et al., 2024a, 2025]. The encoder
ςe : X →

⋃↓
k=0(X → Y)k ↑ H maps the target input and context set into a latent representation,

while the decoder ςd : X→H ↑ ” transforms the target input and latent code into parameters φ ↘ ”
of the predictive distribution qDc(yt,k | xt,k,Dc).

The vanilla CNP encodes context pairs (xc,k, yc,k) using a permutation-invariant scheme [Qi et al.,
2017, Zaheer et al., 2017]: each pair is independently mapped to a representation ↼k, which are then
aggregated—typically by averaging—into a single embedding ↼ ↘ H, where H is a finite-dimensional

Euclidean space. The target input does not affect this encoding (i.e., ςe is constant with respect to it).
The decoder then combines the target input with ↼ through a feedforward network to produce the
parameters of the Gaussian predictive distribution.

Although sum-pooling aggregation provides universal approximation guarantees [Zaheer et al., 2017,
Bloem-Reddy and Teh, 2020], NPs employing such mechanisms often exhibit underfitting in practice
[Kim et al., 2019]. Prior works have partly attributed this phenomena to two primary factors[Xu et al.,
2020]: (1) the limitation of summaries with prespecified finite dimensionality in representing context
sets of arbitrary size [Wagstaff et al., 2019], and (2) the shortcomings of simple sum or mean pooling
operations to effectively capture rich interactions between context and target points[Xu et al., 2020,
Nguyen and Grover, 2022].

Given that the problems tackled by NPs are inherently functional in nature, it is natural to seek
embeddings that also exhibit a functional character. In this spirit, Gordon et al. [2019] formalize a
general framework for constructing translation-equivariant prediction maps over sets, satisfying

ϱ
[{

(x+ ↽, y) | (x, y) ↘ Dc

}](
(xt,k)k↑It

)
= ϱ

[
Dc

](
(xt,k ↓ ↽)k↑It

)
⇒ ↽ ↘ X.

They show that a broad family of such maps can be expressed as ϱ[Dc] = ςd

[
ςe [Dc]

]
, where the

functional embedding is defined by

ςe[Dc](·) =
∑

(x(c)
k ,y(c)

k )↑Dc

⇀(y(c)k )⇁e(·↓ x(c)
k ), (2)

and ςd : H ↑ Cb(X,Y) is a translation-equivariant decoder operating on a function space H. Here,
Cb(X,Y) denotes the space of bounded continuous functions from X to Y; ⇀(y) = (1, y)2 and
⇁e : X ↑ R is a continuous, strictly positive-definite kernel typically chosen to be a Gaussian.

In implementing the ConvCNP, the encoder output ςe[Dc] is first evaluated on a uniform grid G ↗ X

that spans the joint support of both the context and target points. This yields a discretized representa-
tion (ςe[Dc](x))x↑G , which is then passed through the decoder ςd to produce

(
ςd

[
ςe[Dc]

]
(x)

)
x↑G .

Because the target inputs (xt,k)k↑It may not lie exactly on the grid G, ConvCNP employs an
interpolation step to obtain predictions at arbitrary target locations. Specifically

(φt,k)k↑It =

(
∑

x↑G
ςd

[
ςe[Dc]

]
(x)⇁d(xt,k ↓ x)

)

k↑It

, (3)

where ⇁d is another strictly positive kernel. Note that this step can be viewed as part of the decoder
itself, thereby preserving the overall encoder–decoder abstraction discussed earlier.

3 Spectral Convolutional Conditional Neural Process

The decoder ςd in ConvCNP is typically parameterized using standard CNNs such as U-Net [Ron-
neberger et al., 2015] or ResNet [He et al., 2016]. These architectures employ discrete convolutional
kernels—finite sets of learnable parameters that define localized filters operating over neighboring
grid points. The kernel size, fixed a priori, determines the receptive field of each convolution [Ding
et al., 2022] and is generally much smaller than the overall spatial extent of the input signals [Romero
et al., 2021, Knigge et al., 2023].

2For most applications, this representation suffices. Generally, ϑ(y) = (1, y, . . . , yM ), where M is the
multiplicity of repeated inputs. See Gordon et al. [2019] and Bruinsma [2024] for further discussion.
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This locality constraint limits the model’s capacity to capture long-range dependencies and to integrate
information from observations distributed across wide spatial domains [Peng et al., 2017, Wang et al.,
2018, Ramachandran et al., 2019, Wang et al., 2020]. The issue becomes particularly pronounced
when handling sparse or irregularly sampled data, where effective global reasoning cannot emerge
solely from local convolution operations. While increasing the kernel size could enlarge the receptive
field, it leads to a rapid growth in both parameter count and computational cost. Transformer-based
architectures offer an alternative by enabling global interactions [Vaswani et al., 2017]; however, they
typically incur quadratic rather than linear complexity in the number of input locations [Nguyen and
Grover, 2022, Feng et al., 2022, Ashman et al., 2024a, 2025].

To overcome this limitation without relying on prohibitively large filters or computationally expensive
transformers, we exploit the Fourier representation of natural signals. This choice is motivated by
the well-established observation that many natural signals are approximately band-limited (see Sec-
tion 2.1), implying that their Fourier representation offers a more compact encoding while preserving
the global structure of the signal compared to its spatial-domain representation. Specifically, we
realize the operator ςd via spectral convolution modules based on equation 1 [Li et al., 2020a].
This substitution enables global convolution that captures long-range dependencies from sparse or
irregularly sampled data—without causing a parameter explosion. We refer to the resulting model as
the Spectral Convolutional Conditional Neural Process (SConvCNP).

Computational Complexity. The computational cost of the SConvCNP comprises three parts:
(1) O(|Dc||G|) for discretizing the functional embedding on grid G (equation 2); (2) O(|G| log |G|)
for spectral convolution via FFT (equation 1); and (3) O(|Dt||G|) for interpolating outputs at target
locations (equation 3). Overall, the complexity is O(|G|(|Dc| + log |G| + |Dt|)), comparable to
ConvCNP’s O(|G|(|Dc|+1+ |Dt|)), both scaling linearly with the task size. In contrast, transformer
NPs (TNPs, Kim et al. [2019], Nguyen and Grover [2022], Feng et al. [2022], Ashman et al. [2024a])
scale quadratically, O(|Dc|

2 + |Dc||Dt|). Thus, SConvCNP and ConvCNP are more efficient for
large datasets but limited by the exponential growth of |G| with input dimensionality. TNPs, while
more expensive in the task size, handle high-dimensional inputs more effectively where grid-based
methods become infeasible.

Positional Encodings The convolution operator preserves translation equivariance under the Fourier
transform (see Equation 1). However, practical FNOs implementations often include explicit posi-
tional information to improve predictive accuracy [Li et al., 2020a, Tran et al., 2021, Gupta et al.,
2021, Rahman et al., 2022c, Helwig et al., 2023, Tripura and Chakraborty, 2023, Liu et al., Li
et al., 2024]. Accordingly, we augment the functional embedding ςe[Dc](x) with absolute positional
features:

ς̃e[Dc](x) =
(
ςe[Dc](x), x

)
.

Although this addition breaks translation equivariance, it consistently improves performance (see
Section C.4 for ablation results), aligning with prior observations. Future work may explore relative

positional encodings [Shaw et al., 2018, Su et al., 2024], which preserve translation equivariance
while providing spatial context.

Discretization Sensitivity of DFT. Unlike the continuous Fourier transform, DFT—and by ex-
tension FFT—is inherently sensitive to the grid G on which ςe[Dc] (or ς̃e[Dc]) is discretized. This
sensitivity stems from the discretization resolution and the spatial range of the domain; varying either
leads to mismatched Fourier representations and altered behavior in spectral convolution modules
(see Section A). Resolution dependence is not unique to the DFT: CNN-based operator learning
models also exhibit this behavior [Raonic et al., 2023, Bartolucci et al., 2023]. ConvCNP, in particular,
mitigates it by fixing the grid resolution. While spatial CNNs remain stable once resolution is fixed,
the DFT is sensitive unless both resolution and spatial range are controlled. Accordingly, we fix
both parameters, choosing a range large enough to cover all context and target inputs across tasks.
When this is impractical, a patch-based strategy can be used—dividing the domain into (possibly
overlapping) fixed-size patches, applying spectral convolutions independently, and aggregating the
outputs. This parallels standard convolutional modules but allows much larger receptive fields.
Similar ideas in transformer models for reducing computational cost suggest a promising direction
for future work [Beltagy et al., 2020, Zaheer et al., 2020, Liu et al., 2021, Ding et al., 2023].
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SConvCNP ConvCNP TETNP TNP

Figure 1: Examples of predictions made by different methods on synthetic datasets. Rows correspond
to different types of underlying functions (Matérn 5/2 GP, Periodic GP, Sawtooth, and Square Wave),
while columns represent the methods being compared: SConvCNP (our method), ConvCNP, TETNP,
and TNP. Each plot shows context points (black), target points (red), and the model predictions with
uncertainty (blue lines and shaded areas).

4 Experiments

We evaluate our framework on three standard regression benchmarks and compare its performance
against several representative models from the Conditional Neural Processes (CNP) family. Specif-
ically, we include the original CNP [Garnelo et al., 2018a], the Attentive CNP (ACNP; Kim et al.
2019), the Convolutional CNP (ConvCNP; Gordon et al. 2019), the Transformer Neural Process (TNP;
Nguyen and Grover 2022), and the Translation-Equivariant Transformer Neural Process (TETNP;
Ashman et al. 2024a). To evaluate model performance, we report both the log-likelihood and root-
mean-squared error (RMSE) metrics. The implementation and experimental code are available at
https://github.com/peiman-m/SConvCNP.

4.1 Synthetic 1-D Regression

We train our model on mini-batches of 16 tasks. Each epoch processes 1,000 batches, and we train
for 250 epochs—exposing the model to 4 million tasks in total. We generate tasks using four distinct
stochastic processes: two Gaussian processes (GPs) with periodic and Matérn 5/2 kernels, and two
non-Gaussian signals—sawtooth and square waves—with randomly sampled hyperparameters. For
each task, the number of context and target points is drawn independently as nc ≃ U [5, 25) and
nt ≃ U [5, 25), and input locations are sampled uniformly from [↓3, 3). Validation is performed
on a fixed meta-dataset of 4,096 tasks, with evaluation after every epoch. Final performance is
measured on a held-out meta-dataset of 64,000 tasks. Note that while training tasks are generated
dynamically, validation and test sets are fixed. Table 1 reports predictive performance across all
methods. SConvCNP consistently matches or outperforms baselines, with particularly strong gains on
periodic functions—suggesting that global convolutional structure enables more effective modeling
of periodic patterns. Figure 1 illustrates several representative cases where SConvCNP yields superior
fits. Detailed experimental configurations are provided in Appendix.
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Table 1: Comparison of predictive performance (RMSE and log-likelihood) obtained by different
methods over synthetically generated tasks (4 Seeds). Lower RMSE and higher log-likelihood values
indicate better performance.

Metric Data Model

CNP AttCNP TNP TETNP ConvCNP SConvCNP

RMSE ↓

Matérn 5/2 0.49±0.00 0.45±0.00 0.44±0.00 0.44±0.00 0.44±0.00 0.44±0.00

Periodic 0.81±0.00 0.67±0.03 0.61±0.00 0.51±0.01 0.61±0.03 0.48±0.00

Sawtooth 0.57±0.00 0.57±0.00 0.57±0.00 0.57±0.00 0.36±0.07 0.19±0.00

Square Wave 0.97±0.00 0.97±0.00 0.73±0.00 0.83±0.01 0.90±0.00 0.73±0.00

LogLike ↑

Matérn 5/2 ↓0.54±0.00 ↓0.31±0.00 ↓0.29±0.00 ↓0.27±0.00 ↓0.29±0.00 ↓0.29±0.00

Periodic ↓1.19±0.00 ↓0.93±0.08 ↓0.77±0.01 ↓0.60±0.03 ↓0.79±0.05 ↓0.56±0.00

Sawtooth ↓0.87±0.00 ↓0.87±0.00 ↓0.87±0.00 ↓0.87±0.00 0.19±0.37 1.04±0.02

Square Wave ↓1.39±0.00 ↓1.39±0.00 ↓0.86±0.00 ↓1.12±0.01 ↓1.25±0.01 ↓0.86±0.00

4.2 Predator–Prey Model

We next evaluate performance on trajectories sampled from a stochastic version [Bruinsma et al.,
2023] of the Lotka–Volterra equations [Lotka, 1910, Volterra, 1926]:

dXt = αXt dt↓ βYtXt dt+ ϖXε
t dW (1)

t , dYt = ↓▷Yt dt+ ◁YtXt dt+ ϖY ε
t dW (2)

t . (4)

Here, Xt and Yt denote prey and predator populations, respectively. Prey grow exponentially at
rate α, while predators decline at rate ▷, with interaction terms β and ◁ modeling consumption
and reproductive gains. In the deterministic core, larger α or ◁ tend to increase the amplitude and
frequency of natural oscillations, whereas higher β or ▷ act to damp cycles and shorten periods.
Stochasticity is introduced via independent Brownian motions W (1)

t and W (2)
t , with magnitude ϖ

controlling overall noise intensity and exponent 0 governing how fluctuations scale with population
size (e.g. linear for 0 = 1, super- or sub-linear otherwise). To construct the meta-dataset, we simulate
these equations on a dense time grid spanning 110 years, discarding the first 10 years as burn-in.
Each task is formed by sampling nc + nt input–output pairs (t, (Xt, Yt)) from the trajectories, where
nc ≃ U [5, 25) and nt ≃ U [5, 25). The input times t are sampled uniformly from the post-burn-in
interval. For model training and inference, we scale the time values by a factor of 0.1, mapping the
100-year period to the range [0, 10]. Similarly, population values Xt and Yt are scaled by 0.01 to
improve numerical stability and model convergence. As with the previous experiment, training tasks
are generated on-the-fly, while validation and test sets are held fixed.

Table 2: Comparison of predictive performance (RMSE ↓ and Log-likelihood ↑) obtained by different
methods on the Lotka-Volterra predator-prey simulation (4 Seeds).

CNP AttCNP TNP TETNP ConvCNP SConvCNP

RMSE ↓ 1.47±0.00 1.29±0.01 1.23±0.00 1.16±0.00 1.19±0.00 1.19±0.00

Log-likelihood ↑ ↓1.66±0.00 ↓1.27±0.05 ↓1.14±0.00 ↓0.93±0.00 ↓1.01±0.00 ↓1.01±0.00

4.3 Traffic Flow

For our final experiment, we utilized the California traffic flow dataset from LargeST [Liu et al.,
2023b], a large-scale benchmark for traffic forecasting. This dataset encompasses traffic flow readings
from 8,600 loop detector sensors installed across California’s highway system, with a temporal
coverage spanning 5 years (2017-2021) sampled at 5-minute intervals. We choose to focus on the
year 2020, which includes significant anomalies due to the COVID-19 pandemic, and is expected
to exhibit greater variance in traffic patterns. As a preprocessing step, we discard any sensor with
more than 50% missing data. We randomly partition the remaining sensors into training, validation,
and test sets using a 6:1:3 ratio. Each sensor’s year-long data is segmented into non-overlapping
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SConvCNP ConvCNP

TETNP TNP

Figure 2: Examples of predictions for the Lotka-Volterra predator-prey dynamics by different methods.
Each panel shows context points (black), target points (red), and model predictions with uncertainty
bounds (blue).

14-day patches. Each patch forms a dense trajectory from which we sample context and target
points, similar to our previous experiments. This design enables the model to handle both short- and
long-range dependencies under realistic, non-stationary conditions. Evaluation is conducted using
log-likelihood and RMSE metrics, consistent with prior benchmarks. Our results demonstrate that
Spectral-ConvCNP remains robust under highly variable real-world data and outperforms baseline
methods on both accuracy and uncertainty estimation.

SConvCNP ConvCNP

TETNP TNP

Figure 3: Examples of predictions on the California traffic flow dataset by different methods. Each
panel shows context points (black), target points (red), and model predictions with uncertainty (blue).
SConvCNP effectively captures both short-term patterns and long-range dependencies in traffic flow
data compared to ConvCNP, TETNP, and TNP.
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Table 3: Comparison of predictive performance (RMSE ↓ and Log-likelihood ↑) obtained by different
methods on the California traffic flow dataset (4 Seeds).

CNP AttCNP TNP TETNP ConvCNP SConvCNP

RMSE ↓ 0.04±0.00 0.04±0.00 0.05±0.00 0.04±0.00 0.04±0.00 0.03±0.00

Log-likelihood ↑ 1.88±0.00 1.84±0.00 2.02±0.01 1.79±0.01 1.97±0.00 2.07±0.00

5 Related Works

5.1 Neural PDE Solvers

The substantial computational demands posed by conventional numerical solvers for partial differ-
ential equations (PDEs), which are commonly encountered in mathematically oriented scientific
domains, have spurred a growing interest in employing machine learning towards improved and com-
putationally efficient alternatives Gupta and Brandstetter [2022]. Among these potential alternatives,
neural operators [Li et al., 2020b, Kovachki et al., 2023], and specifically Fourier neural operators
(FNOs, Li et al. [2020a]), have risen as a particularly successful and promising approach. Since
then, various enhancements have been introduced. For instance, Helwig et al. [2023] expanded group
convolutions into the frequency domain, developing Fourier layers that maintain equivariance with
respect to rotations, translations, and reflections. Gupta et al. [2021] introduced multiwavelet-based
neural operators, achieved by parameterizing the kernel’s projection onto predefined multiwavelet
polynomial bases. Tran et al. [2021] use a separable Fourier representation along with enhanced
residual connections to decrease model complexity and allow for deeper architectures. In another
work, Rahman et al. [2022a] introduced a generative model framework to learn distributions over
function spaces through the use of neural operators. Liu et al. [2023a] proposed an integral neural
operator architecture designed to exhibit both translation and rotation invariance.

5.2 Function Space Inference

In non-parametric Bayesian modeling, GPs and deep GPs [Damianou and Lawrence, 2013] exemplify
function-space priors that offer uncertainty estimates but are computationally infeasible for large
datasets. This limitation has motivated alternatives such as Bayesian neural networks (BNNs; Hinton
and Van Camp [1993], Neal [2012]), which combine the scalability of neural networks with Bayesian
uncertainty. However, defining meaningful priors over network weights remains challenging. Recent
efforts reformulate Bayesian inference in neural networks as inferring a posterior over functions
induced by the weights. Variational implicit processes (VIPs; Ma et al. [2019], Santana et al. [2021],
Ortega et al. [2022]) generalize GPs through implicit distributions over random variables, while
functional variational BNNs (fBNNs; Sun et al. [2019]) align BNNs with priors by minimizing
functional KL divergence, though this approach faces issues of intractability and well-definedness
[Burt et al., 2020]. Follow-up work [Ma and Hernández-Lobato, 2021, Rudner et al., 2022, Wild
et al., 2022] addresses these limitations. Parallel research on neural processes (NPs; Garnelo et al.
[2018a,b]) uses neural networks to parameterize stochastic processes, with extensions to temporal
settings [Singh et al., 2019, Yoon et al., 2020]. More recently, Dutordoir et al. [2023] and Mathieu
et al. [2023] extend diffusion models to stochastic processes via their finite marginals.

6 Conclusion

In this work, we introduced the Spectral Convolutional Conditional Neural Process (SConvCNP), a
new addition to the CNPs family that harnesses advancements in operator learning to enhance the
expressive capabilities of the Convolutional Conditional Neural Process (ConvCNP) when modeling
stochastic processes. Our experiments, conducted on synthetic datasets, demonstrated that SConvCNP
enhances the predictive performance of ConvCNP in regression tasks, as evidenced by improvements
in log-likelihood. Furthermore, they adeptly capture global symmetries, including the prevalent
periodic patterns in the data.
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