Spectral Convolutional Conditional Neural Processes

Peiman Mohseni Nick Duffield
Texas A&M University Texas A&M University
peiman.mohseni@tamu.edu duffieldng@tamu.edu
Abstract

Neural Processes (NPs) are meta-learning models that learn to map sets of obser-
vations to approximations of the corresponding posterior predictive distributions.
By accommodating variable-sized, unstructured collections of observations and
enabling probabilistic predictions at arbitrary query points, NPs provide a flexible
framework for modeling functions over continuous domains. Since their intro-
duction, numerous variants have emerged; however, early formulations shared a
fundamental limitation: they compressed the observed data into finite-dimensional
global representations via aggregation operations such as mean pooling. This
strategy induces an intrinsic mismatch with the infinite-dimensional nature of the
stochastic processes that NPs intend to model. Convolutional conditional neural
processes (ConvCNPs) address this limitation by constructing infinite-dimensional
functional embeddings processed through convolutional neural networks (CNNs)
to enforce translation equivariance. Yet CNNs with local spatial kernels struggle to
capture long-range dependencies without resorting to large kernels, which impose
significant computational costs. To overcome this limitation, we propose spectral
ConvCNPs (SConvCNPs), which perform global convolution in the frequency
domain. Inspired by Fourier neural operators (FNOs) for learning solution opera-
tors of partial differential equations (PDEs), our approach directly parameterizes
convolution kernels in the frequency domain, leveraging the relatively compact yet
global Fourier representation of many natural signals. We validate the effectiveness
of SConvCNPs on both synthetic and real-world datasets, demonstrating how ideas
from operator learning can advance the capabilities of NPs.

1 Introduction

Stochastic processes offer a mathematical framework for modeling systems that evolve with inherent
randomness over continuous domains such as time and space. They underpin a wide range of scientific
applications—from spatio-temporal climate dynamics to biological and physical systems—thereby
motivating the development of machine learning methods that can learn from data generated by
such phenomena [Mathieu et al. 2021} [Vaughan et al.} 2021} |Allen et al.| 2025/ |Ashman et al.,
2025, [Dupont et al 2021]]. Among classical approaches, Gaussian processes (GPs; [Rasmussen
et al.,|2006) provide a Bayesian framework with closed-form inference and uncertainty quantification.
However, their cubic computational cost from matrix inversion and the difficulty of specifying suitable
kernels—especially in high-dimensional settings—Ilimit their scalability.

Motivated by the success of deep neural networks in large-scale function approximation, neural
network-based alternatives have emerged. Neural processes (NPs;|Garnelo et al.l 2018alb) exemplify
this paradigm, combining ideas from GPs and deep learning within a meta-learning framework. By
exposing the model to multiple realizations of an underlying stochastic process, each treated as a
distinct task, NPs learn shared structures across tasks to parameterize a neural mapping that directly
gives an approximation of the corresponding posterior predictive distribution [Bruinsmal |2024]. Once
trained, the model enables efficient probabilistic predictions on new tasks without further training.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Since the introduction of conditional neural processes (CNPs, |Garnelo et al.| [2018al]) as the first
class within the NPs family [Jha et al.,2022], numerous extensions have been proposed to enhance
their effectiveness. One prominent line of work focuses on incorporating explicit inductive biases
into CNPs in order to better capture the symmetries that commonly arise in scientific applications
[Gordon et al., 2019, [Kawano et al., 2021, |Holderrieth et al., 2021} [Huang et al., [2023|, /Ashman
et al.| 2024alb]. Another major direction seeks to move beyond the mean-field factorized Gaussian
predictive distributions to which CNPs are limited. A widely adopted approach augments CNPs with
stochastic latent variables, giving rise to the family of latent neural processes (LNPs; Garnelo et al.
[2018b]], Louizos et al. [2019]],[Wang and Van Hoof] [2020], Foong et al.| [2020], |[Lee et al.|[2020]],
Volpp et al.| [2021],[Wang et al.|[2022]],[Wang and van Hoof] [2022], Kim et al.|[2022], Jung and Park’
(2023, Lee et al.| [2023]], Xu et al.| [2023]]). Complementary efforts explore autoregressive prediction
schemes [Bruinsma et al., |2023| Nguyen and Grover, [2022], Gaussian predictive distributions
with non-diagonal covariances [Bruinsma et al., 2021, Markou et al.| 2022f, and quantile-based
parameterizations of the predictive distribution [Mohseni et al., [2023].

This work focuses on CNPs, particularly convolutional CNPs (ConvCNPs; |Gordon et al.| [2019]]),
which were the first to endow NPs with translation equivariance. ConvCNPs introduce the convolu-
tional deep set construction which characterizes a broad class of translation-equivariant mappings
over finite, potentially unstructured sets of observations as a composition of a functional embedding
with a translation-equivariant operator, typically realized through convolutional neural networks
(CNNs; [Fukushimal [[1980]], LeCun et al.[[1989,[1998]]).

Despite their effectiveness, ConvCNPs can struggle to aggregate information from observations
spread across large spatial domains—a challenge that becomes particularly pronounced in sparse data
regimes. This limitation stems from their reliance on local convolutional kernels with small receptive
fields, which hampers their ability to model long-range dependencies. A natural remedy is to enlarge
the kernel size to extend the receptive field; however, this approach rapidly increases the number of
model parameters and computational cost [Romero et al.,2021]]. Alternatively, transformer-based
architectures can capture long-range interactions but incur quadratic, rather than linear, computational
complexity in the number of observations [[Vaswani et al., 2017, Nguyen and Grover, 2022].

In this work, we pursue an alternative paradigm that represents functions in the frequency domain,
inspired by the well-established observation that many natural processes exhibit energy concentration
in low-frequency bands [Field, 1987, |Ruderman and Bialek, |1993| [Wainwright and Simoncelli, |1999].
This property allows for efficient approximation using only a subset of dominant spectral coefficients,
enabling tractable computations while preserving the signal’s global structure. By parameterizing
convolution kernels directly in the Fourier domain over a finite set of frequencies and leveraging
the convolution theorem, we can attain large effective receptive fields without incurring prohibitive
computational costs.

While spectral methods have been extensively studied in neural operator learning for partial differen-
tial equations (PDEs, |Chen and Chen! [1995]], Kovachki et al.|[2021} 2023])), their application within
NPs framework remains relatively unexplored. To bridge this gap, we propose spectral convolutional
conditional neural processes (SConvCNPs)—a class of models that adopt Fourier neural operators
(FNOs; |L1 et al.[[2020a]) to realize global spectral convolution while maintaining computational
efficiency. Across a suite of synthetic and real-world benchmarks, SConvCNPs perform competitively
with state-of-the-art baselines, illustrating how ideas from neural operators can enhance the flexibility
and performance of NPs.

2 Preliminaries

2.1 Fourier Neural Operators

Neural operators [|Chen and Chen, |1995| |Li et al., [2020a, [Kovachki et al.,[2023] are neural network
architectures designed to learn mappings between function spaces rather than finite-dimensional
vectors. Like conventional feed-forward networks, they consist of stacked layers that alternate
between operator-based transformations and pointwise nonlinearities. A common transformation is
an integral operator with kernel x : X x X —)/, acting on an input function v : X —) as

Kv)(x) = /H(m,s) v(s)ds,

where X = R% and) = R% are Euclidean spaces with d,,d, € N. While this work focuses
on operators linear in v, nonlinear formulations have also been explored, including continuous
formulations of softmax attention [[Ashman et al.,2024a) |(Calvello et al., 2024]]. When the kernel
is stationary—that is, k(z, s) = k(xz — s)—the operator reduces to a convolution, K[v] = k * v,
connecting neural operators to CNNs where x is parameterized by learnable weights.

Convolutional kernels are typically spatially local with limited receptive fields [Luo et al.; 2016, |[Peng
et al.Ll 2017, Wang et al., 2018|]. Modeling long-range dependencies thus requires large kernels, sub-
stantially increasing parameter count. The Fourier Neural Operator (FNO; [Li et al.|[2020a]) addresses
this limitation by exploiting the convolution theorem [Bracewell and Kahn| 1966, |Oppenheim, [1999],
which expresses convolution as

Kll(w) = F~[7(©) - 5(9)| (@), (M

where f := F|f] denotes the Fourier transform of f, and F ! denotes the inverse Fourier transform.
Rather than parameterizing in the spatial domain, the FNO learns its Fourier representation &
directly. When v is approximately band-limited—i.e., ©(£) has negligible energy for ||£]| > £o—high-
frequency components can be truncated with minimal information loss. This property, observed in
many natural signals [Field, 1987, Ruderman and Bialek, [1993| /Wainwright and Simoncelli, [1999],
allows setting <(£) = 0 outside the retained band without significant degradation.

In practice, functions are accessible only through discrete samples, requiring the discrete Fourier
transform (DFT) for domain transitions. Given samples of v on a uniform grid G C X, the FNO
applies the DFT via the fast Fourier transform (FFT;|Cooley and Tukey|[[1965]], [Frigo and Johnson
[2005]]). The resulting spectrum is truncated to a finite set of frequency modes = C R% assumed to
capture most of the signal’s energy. For each retained frequency ¢ € Z, the Fourier kernel is parame-
terized by learnable complex weights W, € C9v, so that (&) = We/!| This formulation implicitly
imposes spatial periodicity, as the kernel is represented using discrete harmonics (equivalently, a
Dirac comb in frequency space). After pointwise multiplication in frequency space, an inverse FFT
returns the operator output to the spatial domain.

2.2 Neural Processes

Let P(J}X) denote the space of probability measures over measurable functions f : X —), which
we interpret as stochastic processes indexed by X. We assume an unknown data-generating process
n e P()}X), from which latent functions are drawn. A task consists of a finite number of noisy
input—output observations generated from a realization f ~ p, partitioned into a context set and a
query set:

D= (Dcqu)a D, = {(xc,kayc,k)}z;p Dq = {(xq,lqu,l)};l:ql-)

Observations are generated according to
Yoo = [(Tek) + ks Ygu = f(Tqu) + €qus

iid.
where €. 1, €41 N (0, 0'(2)) and oy > 0 denotes the observation noise standard deviation.

Neural processes (NPs; [Garnelo et al.|[2018alb]]) constitute a class of models that use neural networks
to learn a mapping 7 : S(X x V) — P(Y), where S(X x))) denotes the collection of all finite
subsets of X' x). Given a context set D, n outputs a stochastic process intended to approximate
the Bayesian posterior over functions induced by p and conditioned on D,.. Typically, this process
is specified implicitly through its finite-dimensional marginals [|[Garnelo et al., 2018b| [Bruinsma;
et al., [2021, Bruinsma, [2024, Mathieu et al., 2023]. Let x, = (24,;),%, and y; = (yq,1),2,. We
denote by 77|D,; x4](-) the finite-dimensional distribution of the process n[D.] evaluated at x, and by
pix, (- | De) the corresponding finite-dimensional marginal of the true posterior process. Informally,
the NP approximation aims to satisfy

N[De; xq)(-) & pixe, (- | De),

for all x, and D, [Bruinsma et al., 2021, Bruinsma, [2024]]. With slight abuse of notation, we write
n[De; x4](y4) for the density of this finite-dimensional distribution evaluated at y,.

"More generally, a matrix-valued parameterization W € C* 4y is used, where cou is the number of output
channels, enabling joint mixing of input channels and projection to different dimensionality.

In this work, we focus on conditional neural processes (CNPs;|Garnelo et al.|[2018a]]), which restrict
these finite-dimensional distributions to mean-field Gaussians, i.e. 7[D¢;xq] = [[, 7[De; 2q,1],
where each marginal n[D,; z,,] is Gaussian. Each predictive marginal is typically parameterized
via a two-stage encoder—decoder architecture [Bruinsma, 2024, |/Ashman et al.} 20244} [2025]]. The
encoder . : S(X x Y) — H maps the context set D, to a latent representation, while the decoder
¢a : H — ©% maps this representation to a function that assigns, to each query z,;, parameters
0(z4,1) € O of the predictive distribution n[D.; x,,].

The vanilla CNP encoder summarizes D, using a permutation-invariant architecture [Q1i et al.|[2017,
Zaheer et al, [2017]]. Each context pair (z,yck) € D. is independently mapped by a shared
network to a finite-dimensional embedding ¢ 5, which are then aggregated—typically via mean
pooling—into a single representation €.. Notably, this encoding is independent of the query locations.
The decoder then combines €, with each x,; to parameterize the Gaussian predictive distribution.

Although sum-pooling aggregation provides universal approximation guarantees [Zaheer et al.| 2017|
Bloem-Reddy and Teh| |[2020], NPs employing such mechanisms often exhibit underfitting in practice
[Kim et al.l|2019]]. Prior works have partly attributed this phenomena to two primary factors [Xu
et al.l 2020]: (1) the limitation of summaries with prespecified finite dimensionality in representing
context sets of arbitrary size [Wagstaff et al.| [2019], and (2) the shortcomings of simple sum or mean
pooling operations to effectively capture rich dependencies between different points [Xu et al., 2020,
Nguyen and Grover, [2022]].

Since NPs address inherently functional learning problems, it is natural to consider embeddings that
themselves take the form of functions. |Gordon et al.|[2019] introduce a framework for translation-
equivariant prediction maps over sets, satisfying

nH{(@e+7,9c) | (2e,ye) € ,Dc}§xq} = n[Dc;xq - T]»

for all translations 7, context sets D, and collections of query locations x,, where subtraction by
T acts pointwise, i.e., X, — T = (xq; — 7')7:"1. They show that a broad class of such maps can be
written as 17[D.] = ¢4 © p.[D.], where the functional embedding is defined by

¢e[De|(x) = Z O(Ye) Ye(r — 2¢). 3

(mc,yc)EDc

Moreover, ¢4 : H — Cp(X,)) is a translation-equivariant decoder acting on a function space H,
Cy(X,Y) denotes the space of bounded continuous functions fromX to Y, ¢(y) = (1, y)ﬂ and
P + X — Ris a continuous strictly positive-definite kernel, typically Gaussian.

In convolutional conditional neural processes (ConvCNPs), the functional embedding ¢.[D,] is
evaluated on a uniform grid G C X covering the joint support of x. and x,, yielding the discretized
representation (@c[Dc](24))x,eg- This representation is processed by ¢4, and predictions at query
locations are obtained via kernel interpolation:

Og.0 = Z (pa © e)[De](zg) Ya(qs — x4), I=1,...,ng)
Ty€G

where)4 is another strictly positive-definite kernel. This interpolation step may be viewed as part of
the decoder, preserving the overall encoder—decoder abstraction.

3 Spectral Convolutional Conditional Neural Processes

The decoder 4 in ConvCNPs is typically parameterized using standard CNNs such as U-Net [Ron;
neberger et al.| [2015]] or ResNet [He et al., 2016|. These architectures employ discrete convolutional
kernels—finite sets of learnable parameters that define localized filters operating over neighboring
grid points. The kernel size, fixed a priori, determines the receptive field of each convolution [Ding
et al.| [2022] and is generally much smaller than the overall extent of the input signals in the physical
domain [Romero et al} 2021 [Knigge et al.| 2023]]. This locality constraint fundamentally limits a
model’s ability to capture long-range dependencies and to integrate information from observations

*More generally, ¢(y) = (1,9, ...,y"), where M accounts for repeated inputs.See Gordon et al.| [2019)]

and [Bruinsmal [2024] for details.

distributed across large spatial or temporal domains [Peng et al., 2017, Wang et al.,|2018| Ramachan-
dran et al., 2019, |Wang et al., | 2020]]. The issue becomes particularly pronounced when handling
sparse or irregularly sampled data, where effective global reasoning cannot emerge solely from local
convolution operations. Although enlarging the convolutional kernel increases the receptive field,
it results in a rapid escalation of both parameter count and computational cost. Transformer-based
architectures mitigate this issue by enabling explicit global interactions [Vaswani et al., [2017]); how-
ever, they incur quadratic, rather than linear, complexity in the number of inputs, rendering them
impractical for large context sets unless one resorts to approximation schemes [Nguyen and Grover,
2022, [Feng et al., 2022, |Ashman et al., 20244l 2025]].

To overcome this limitation without relying on prohibitively large filters or expensive transformers,
we exploit the Fourier representation of signals. This is motivated by the well-established observation
that many natural signals are approximately band-limited (see Section 2.1, implying that their
Fourier representation offers a more compact encoding relative to its physical-domain counterpart.
Concretely, we instantiate ¢4 via spectral convolution modules based on equation[I} This substitution
effectively enlarges the receptive field, enabling the model to capture global structures from sparse or
irregularly sampled data without incurring a parameter count explosion. We refer to the resulting
models as spectral convolutional conditional neural processes (SConvCNPs).

Computational Complexity. The computational cost of SConvCNPs comprises three parts: (i)
O(|D.||G]) to compute the discretized functional embedding on the grid G (equation [3)); (ii)
O(|G|log|G|) for the FFT-based spectral convolutions (equation [I); and (iii) O(|D||G]) to in-
terpolate grid embeddings at the query locations (equation [d). Overall, the total complexity is
O(|G|(|D.| + log |G| + |Dy|)), matching the O(|G|(|De| + 1 + |Dy|)) complexity of ConvCNPs up
to logarithmic factors. Both architectures therefore scale linearly with task size. A key limitation,
however, is that |G| grows exponentially with the input dimension d,, restricting these methods to
low-dimensional domains. In contrast, transformer-based NPs (TNPs; |[Kim et al.| [2019]], [Nguyen
and Grover|[2022], Feng et al.|[2022], /Ashman et al|[20244a]) avoid gridding entirely and thus scale
more gracefully with input dimensionality. Instead, their computational cost scales quadratically
with the task size, typically as O(|D.|* + |D,|?), with minor variations depending on the specific
implementation (see Section [B.1.T).

Positional Encodings The convolution operator preserves translation equivariance under the Fourier
transform (see equation[T). However, practical FNOs implementations often include explicit positional
information to improve predictive accuracy [Li et al., 2020a, [Iran et al.| 2021} \Gupta et al., 2021,
Rahman et al.,2022b| [Helwig et al., [2023] |Tripura and Chakraborty}, 2023| [Liu et al., 2023a} [Li et al.},
2024]). Accordingly, we augment the functional embedding . [D.|(x) with positional information:

(;e [Dc] (.’L’) = (‘pe[Dc}(l‘% .’L‘)

While this augmentation explicitly breaks translation equivariance, we empirically observe perfor-
mance improvements (see Section[B.3). An interesting direction for future work is to investigate
relative positional encodings [Shaw et al.,[2018],[Su et al.l 2024]], which can provide spatial context
while preserving translation equivariance.

Discretization Sensitivity of DFT. Unlike the continuous Fourier transform, the DFT—and there-
fore the FFT—depends inherently on the grid G on which ¢.[D,] (or @.[D,)) is represented. This
dependence arises from both the grid resolution and its physical extent: changing either alters the
resulting Fourier coefficients and can lead to inconsistent behavior in the outputs (see Section [A]).
Sensitivity to resolution is not unique to DFT; CNNs exhibit analogous issues [Raonic et al., 2023}
Bartolucci et al.,|2023]. For example, ConvCNPs mitigate this effect by fixing the grid resolution.
While spatial CNNs become stable once the resolution is fixed, DFT-based methods remain sensitive
unless both the resolution and the physical range are controlled. Accordingly, we fix both, choosing a
domain sufficiently large to cover all context and query inputs across tasks. When this is impractical,
the domain can instead be divided into (possibly overlapping) fixed-size patches, with spectral convo-
lutions applied independently to each patch and the outputs aggregated—mirroring the mechanism of
standard convolution layers. Related ideas in efficient transformer architectures suggest that this is a
promising direction for future work [Beltagy et al.l 2020} Zaheer et al.,|2020, [Liu et al.| 2021} Ding
et al.,2023].

¢ Context * Query Model Ground truth

GP-Matérn 5/2

GP-Periodic

Sawtooth

Square

3 2 1 0 1 2 3 2 1 0 2 3 2 1 0 1

TE-TNP ConvCNP SConvCNP

Figure 1: Example predictions on synthetic data. For each model, the blue curve denotes the predictive
mean, and the shaded region corresponds to -2 standard deviations of the model’s Gaussian predictive
distribution. In the first two rows, where the data are generated from Gaussian processes, the ground-
truth distribution is shown in purple: the dash—dotted curve indicates the true mean, and the shaded
band represents £2 standard deviations around it. Black points denote context observations, and the
red point indicates the queries.

4 Experiments

We evaluate our framework on four regression benchmarks and compare its performance against

several members of CNPs family. Specifically, we include the original CNP [Garnelo et al., 2018a],
the Attentive CNP (AttCNP; [2019]), the Convolutional CNP (ConvCNP; Gordon et al|
[2019]), the diagonal variant of the Transformer Neural Process (TNP;[Nguyen and Grover| [2022]),
and the Translation-Equivariant Transformer Neural Process (TE-TNP;|Ashman et al.|[2024a]). For

each experimental setting, all models are trained using four random seeds. Performance is evaluated

using the final aggregated log-likelihood and root-mean-squared error (RMSE), and we report the

mean =+ standard deviation across runs. Additional details regarding datasets, architectures, and

training procedures are provided in Appendix Bl Our implementation and experimental code are

publicly available at https://github.com/peiman-m/SConvCNP.

4.1 Synthetic 1-D Regression

We begin by evaluating models on four synthetic benchmarks generated from distinct stochastic
processes: a GP with a Matérn—5/2 kernel, a GP with a periodic kernel, a sawtooth-wave generator,
and a square-wave generator. For each benchmark, the parameters of the generative process—kernel
hyperparameters for the GPs, frequency and direction for the sawtooth generator, and frequency and
duty cycle for the square-wave generator—are sampled randomly. Complete experimental details are
provided in Appendix[B.T} Table|[I|reports the average evaluation metrics over 1,000 test batches, each

https://github.com/peiman-m/SConvCNP

Table 1: Comparison of predictive performance across methods on synthetically generated tasks.
Lower RMSE and higher log-likelihood indicate better performance. For each metric and experimental
setting, boldface denotes the top-two performing models.

Metric Data Model

CNP AttCNP TNP TE-TNP ConvCNP SConvCNP

Matérn 52 —0.54+0.01 —0.32£0.00 —0.29+0.00 —0-2810.00 —0.30£0.01 —0.2910.01

o Periodic ~ —1.2040.00 —0.87+0.05 —0.76+0.03 —0.57+0.02 —0.73+0.01 —0.660.00
Log-likelihood 1

Sawtooth —0.9049.00 —0.90+0.00 —0.9040.00 —0.9040.00 0.104+9.30 0.8210.03

Square —1.3940.00 —1.4110.01 —1.3310.02 —1.17+0.06 —1.35+0.04 —1.13+0.03

Matém 52 0.50.1000 0.451000 0.441000 0.441000 0.45:000 0-45-000
Periodic 0.81.000 0.65:002 0.601002 0.501001 0.57-000 0-53-0.00
Sawtooth 0.58+0.00 0.58+0.00 0.58+0.00 0.58+0.00 0.401006 0.24.1900
Square 0.9810.00 1.00£0.01 0.9310.02 0.811001 0.89+0.02 0.79+0.01

RMSE |

containing 16 tasks (each task defined in equation[2)). For every task—independent of batch—both
x. and x, are sampled independently from {/[—3, 3). For each test batch, the number of context
points, shared by all tasks within that batch, is drawn independently according to n. ~ U[5,25). The
number of query points, however, is fixed at n, = 256 for all the test tasks. As shown, SConvCNP
consistently outperforms or closely matches strong baselines, including TE-TNP and ConvCNP,
which represent the current state of the art. Figure[I] provides qualitative comparisons of predictive
maps produced by SConvCNP, ConvCNP, and TE-TNP.

For the sawtooth-wave benchmark, we were unable to successfully train either TNP or TE-TNP.
Across the configurations we attempted—including increased model capacity and multiple random-
ized initializations—their predictions consistently collapsed to zero. We hypothesize that this failure
mode stems from spectral bias, the tendency of neural networks to favor low-frequency structure
over high-frequency components [Rahaman et al., 2019\ Ronen et al., 2019 Basri et al., 2020, |Tancik
et al.l 2020, |[Fridovich-Keil et al., |2022]]. Recent findings by [Vasudeva et al.| [2025] further suggest
that this bias is exacerbated in transformer architectures compared with convolutional networks. This
interpretation aligns with observations by Nguyen and Grover| [2022]], who originally introduced
TNPs. They report degraded performance on GP samples drawn from a periodic kernel—reflected
in poor log-likelihood scores—despite strong results on Matérn-kernel tasks. Interestingly, our
experiments on periodic-kernel GP tasks (Table[I)) do not replicate this limitation. A key distinction
is that we employ the Efficient Query TNP (EQTNP) architecture of |[Feng et al.[[2022], rather than
the original TNP design [Nguyen and Grover, 2022] (see Appendix [B.I.1|for architectural details).
Finally, although sawtooth and square-wave functions share similar discontinuity and high-frequency
characteristics, Table|l|shows that TNP and TE-TNP do not collapse when trained on square-wave
signals. Investigating the source of this discrepancy falls beyond the scope of this work but represents
an intriguing direction for future study.

4.2 Predator-Prey Dynamics

We next assess performance on simulated trajectories from a stochastic variant of the Lotka—Volterra
predator—prey system [Lotkal [{1910), [Volterra, |1926], following the formulation in |Bruinsma et al.
[2023]. Let U, and V; denote the prey and predator populations at time ¢, respectively. Their dynamics
evolve according to the stochastic Lotka—Volterra system

AU, = aUy dt — BU Vi dt + oUY dBY, dVi = —AU, dt + §UV; dt + oV dB®,

where Bt(l) and Bt(z) are independent Brownian motions.In the deterministic component of the
dynamics, U, grows exponentially at rate o, while V; decays at rate . The bilinear interaction
terms SU,V; and 0U,V; model predation and the corresponding transfer of biomass from prey to
predators. To account for stochastic fluctuations commonly observed in empirical population counts,

the dynamics are augmented with multiplicative noise terms oU}’ ng” and th”dB?). Here, o
controls the noise magnitude, while v determines how the variability scales with population size.

Table 2: Comparison of predictive performance across methods on tasks constructed from the Lotka—
Volterra system simulation. Lower RMSE and higher log-likelihood indicate better performance. For
each metric and experimental setting, boldface denotes the top-two performing models.

CNP AttCNP TNP TE-TNP ConvCNP SConvCNP

LOg—likelihOOd T _0-27:I:0.01 0.08:‘:0‘00 0-12:|:0.00 0.16:‘:0.00 0.14:{:0'00 0.14:‘:0‘00

RMSE | 0.37+0.00 0.31i0.00 0.31i000 0.3010.0.00 0.31i000 0.30+0.00

—— Ground truth @ Context Model

B

£

5 . ,

S .

2

a-()

TE-TNP ConvCNP SConvCNP

Figure 2: Illustrative predictions on simulated Lotka—Volterra predator—prey trajectories. Black
markers denote the context observations. The blue curve shows the predictive mean, while the shaded
region corresponds to the +2 standard deviation interval of the Gaussian predictive distribution.
Ground-truth population trajectories from the simulator are plotted in red.

We simulate trajectories over a dense uniform grid on ¢ € [—10,100), discarding the initial 10
years as burn-in. For each task, context points . and query points z, are drawn independently and
uniformly from the retained interval [0, 100). Population values (corresponding to y = [U, V;]) and
time inputs (corresponding to x = t) are rescaled by factors of 0.01 and 0.1, respectively, before being
fed to the models. A complete description of the experimental protocol is provided in Appendix [B.2]

Table [2] reports average evaluation metrics over 1,000 test batches, each containing 16 tasks. For
each batch, the number of context points—shared across all tasks—is sampled as n. ~ U[5, 25), and
the number of query points is fixed at n, = 256. SConvCNP achieves log-likelihood performance
comparable to ConvCNP, and both are competitive with TE-TNP. In terms of RMSE, SConvCNP
matches TE-TNP, indicating that its predictive uncertainty intervals are slightly wider. Qualitative
comparisons of predictive maps for the top three models appear in Figure [2]

4.3 Traffic Flow

For our third experiment, we evaluate on the California traffic-flow dataset from LargeST [Liu et al.,
2023b]. This dataset comprises five years (2017-2021) of traffic measurements recorded every 5
minutes by approximately 8,600 loop-detector sensors deployed across California’s highway network.
We focus on the year 2020, where traffic patterns are expected to exhibit heightened variability due to
the abrupt onset of the COVID-19 pandemic. For each sensor, we segment its year-long time series
into non-overlapping 14-day windows and downsample each window by a factor of 6 (from 5-minute
to 30-minute resolution). Each window is treated as a dense trajectory from which individual tasks
are constructed. Additional details of the experimental setup are provided in Appendix [B.3]

Table 3: Comparison of predictive performance across methods on tasks constructed from California
traffic flow measurements. Lower RMSE and higher log-likelihood indicate better performance. For
each metric and experimental setting, boldface denotes the top-two performing models.

CNP AttCNP TNP TE-TNP ConvCNP SConvCNP

Log-likelihood 1 1.73+0.10 1.80+0.01 1.9340.06 1.7240.02 1.984002 2.051¢.02
RMSE | 0.0510.00 0.0510.00 0.041900 0.051000 0.041000 0.04.+0.00

—— Ground truth ® Context Model

TE-TNP ConvCNP SConvCNP

Figure 3: Illustrative predictions on the California traffic-flow dataset. Black markers denote the
context observations. The blue curve shows the predictive mean, while the shaded region corresponds
to the £2 standard deviation interval of the Gaussian predictive distribution. Ground-truth traffic
measurements are shown in red.

Table |§| reports evaluation metrics averaged over 66,586 test tasks, constructed from 2,561 held-
out test sensors and partitioned into batches of size 32. For each batch, the number of context
points—shared across all tasks—is drawn as n. ~ U[5, 25), and the number of query points is fixed
at ng = 50. Across all metrics, SConvCNP achieves the best performance, attaining the highest
log-likelihood and lowest RMSE among the baselines. Figure [3| provides qualitative comparisons of
the predictive maps produced by the three models.

4.4 TImage Completion

For our final experiment, we evaluate model
performance on an image-completion task for-
mulated as a spatial regression problem, where
the model maps 2D pixel coordinates to their
corresponding intensity values. We use images
from the Describable Textures Dataset (DTD;
Cimpoi et al.|[2014]]), and construct each task
from a processed 64 x 64 subsampled crop
of an original image. Because each task con-
tains a large number of context and query pix-
els, we were unable to fit TE-TNP within our
computational budget—even after reducing its
size—so we exclude it from this experiment.
Additional experimental details are provided
in Appendix [B.4] Table[d|reports results aver-
aged over 1,880 test tasks, evaluated in batches
of 16. For each batch, the number of context Ground Truth ~ Context TNP ConvCNP SConvCNP
points—shared across all tasks—is sampled as
ne ~ U[5,1024); all remaining pixels serve as

Figure 4: Illustrative model outputs for image com-
query points, so that 1, = 4096 — 1. Among pletion on the DTD dataset. Gray pixels indicate

the baselines, SConvCNP achieves the highest query regions, while the remaining pixels serve

log-likelihood and the second-lowest RMSE. %% context observations. _For each model, query
Figure [presents qualitative comparisons of regrons are comp leted using the mean of the pre-
the predictive means produced by the top three dictive distribution.

models.

Table 4: Comparison of predictive performance across methods on image-completion tasks con-
structed from the DTD dataset. Lower RMSE and higher log-likelihood indicate better performance.
For each metric and experimental setting, boldface denotes the top-two performing models..

CNP AttCNP TNP ConvCNP SConvCNP

Log-likelihood 1 0.67:&0_01 1.39:&‘02 1.39:&0‘05 1.48. 900 1.5010.02
RMSE | 0.1440.00 0.081000 0.061000 0.081000 0.0810.00

5 Related Works

Neural PDE Solvers The high computational cost of traditional numerical PDE solvers has moti-
vated the development of more efficient alternatives based on deep learning |Gupta and Brandstetter
[2022]. Among these, neural operators [Li et al., [2020b} [Kovachki et al., 2023|], and in particular
Fourier neural operators (FNOs, [Li et al.,[2020a), have become popular. Numerous extensions have
since been proposed: |[Helwig et al.| [[2023]] introduced rotation- and reflection-equivariant FNOs;
Gupta et al.|[2021]] developed multiwavelet neural operators by projecting kernels onto predefined
polynomial bases; and [Tran et al.|[2021] reduced model complexity through separable Fourier repre-
sentations. Xiao et al.| [2024] proposed the Amortized FNO (AM-FNO), which substantially cuts
parameter count by amortizing the Fourier kernel parameterization, while|Qin et al.| [2024]] analyzed
FNOs through the lens of spectral bias. |Koshizuka et al.| [2024] provided a mean-field theoretical
perspective, and |Zheng et al.|[2024] introduced the Mamba Neural Operator, which couples global
context via a state-space model to achieve linear complexity and representation equivalence. |Bar{
tolucci et al.|[2023]] examined continuous—discrete consistency, showing that it holds for convolutional
neural operators [Raonic et al.,|2023]]. Additional works include orthogonal-attention eigenfunction
methods for operator learning [Xiao et al.}2023]] and hierarchical transformers with frequency-aware
priors for resolution-invariant super-resolution [Luo et al., [2024].

Function Space Inference In non-parametric Bayesian modeling, GPs and deep GPs [Damianou
and Lawrence} |2013]] provide flexible function-space priors with well-calibrated uncertainty estimates,
but their computational cost becomes prohibitive on large datasets. This challenge has motivated the
development of Bayesian neural networks (BNNs; [MacKay|[[1992]], Hinton and Van Camp][[1993]],
Neal|[2012]]), which combine neural network expressiveness with Bayesian uncertainty quantification.
However, specifying meaningful priors over network weights remains notoriously difficult. Recent
work therefore reframes Bayesian inference in neural networks as learning a posterior over the
functions induced by stochastic weights [Wolpert, [1993] |Qiu et al 2023|]. Variational implicit
processes (VIPs; Ma et al.| [2019]], [Santana et al.|[2021]], Ortega et al.|[2022]) generalize GPs by
defining implicit stochastic processes through latent variables, while functional variational BNNs
(fBNNs; |Sun et al|[2019]) enforce alignment between BNN-induced priors and target priors by
minimizing a functional KL divergence—though this objective can be difficult to compute and, in
some cases, ill-posed [Burt et al.| [2020]]. Subsequent work has aimed to address these limitations
[Ma and Hernandez-Lobato, [2021, |Rudner et al., 2022, |Wild et al.,[2022] Rudner et al., 2023} [Wu
et al.| [2024]. Orthogonally, energy-based models have been explored for representing stochastic
processes in function space [Yang et al., 2020, [Lim et al., | 2022f]. More recently, several approaches
have extended diffusion and flow models to function spaces [Phillips et al., 2022, |Dutordoir et al.,
2023| Mathieu et al., 2023 [Franzese et al., 2023} [Lim et al., [2023} [Kerrigan et al.,|2024} Zhang and
Scott, 2025]].

6 Conclusion

In this work, we introduced spectral convolutional conditional neural processes (SConvCNPs), a
class of conditional neural processes that incorporates ideas from operator learning—particularly
Fourier neural operators—into the neural processes framework, with an emphasis on convolutional
conditional neural processes. Empirical evaluations on a collection of synthetic and real-world
datasets indicate that SConvCNPs perform comparably to strong baselines. These results suggest
that integrating techniques from operator learning into neural processes is a viable direction for
probabilistic function modeling and warrants further investigation.

Acknowledgments

We thank Arman Hasanzadeh and Jonathan W. Siegel for their insightful feedback and constructive
suggestions. We also acknowledge the Texas A&M High Performance Research Computing facility
for providing the computational resources used in this study. Finally, we thank the anonymous
reviewers for their valuable comments and suggestions, which helped improve the quality of this
work.

10

References

Anna Allen, Stratis Markou, Will Tebbutt, James Requeima, Wessel P Bruinsma, Tom R Andersson,
Michael Herzog, Nicholas D Lane, Matthew Chantry, J Scott Hosking, et al. End-to-end data-driven
weather prediction. Nature, 641(8065):1172—-1179, 2025.

Matthew Ashman, Cristiana Diaconu, Junhyuck Kim, Lakee Sivaraya, Stratis Markou, James Re-
queima, Wessel P Bruinsma, and Richard E Turner. Translation equivariant transformer neural
processes. arXiv preprint arXiv:2406.12409, 2024a.

Matthew Ashman, Cristiana Diaconu, Adrian Weller, Wessel Bruinsma, and Richard Turner. Approx-
imately equivariant neural processes. Advances in Neural Information Processing Systems, 37:
97088-97123, 2024b.

Matthew Ashman, Cristiana Diaconu, Eric Langezaal, Adrian Weller, and Richard E. Turner. Gridded
transformer neural processes for spatio-temporal data. In Forty-second International Conference
on Machine Learning, 2025. URL https://openreview.net/forum?id=000e7hPtbl,

Francesca Bartolucci, Emmanuel de Bezenac, Bogdan Raonic, Roberto Molinaro, Siddhartha Mishra,
and Rima Alaifari. Representation equivalent neural operators: a framework for alias-free operator
learning. Advances in Neural Information Processing Systems, 36:69661-69672, 2023.

Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira Kritchman.
Frequency bias in neural networks for input of non-uniform density. In International conference
on machine learning, pages 685-694. PMLR, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1-61, 2020.

Ron Bracewell and Peter B Kahn. The fourier transform and its applications. American Journal of
Physics, 34(8):712-712, 1966.

Wessel P Bruinsma. Convolutional conditional neural processes. arXiv preprint arXiv:2408.09583,
2024.

Wessel P Bruinsma, James Requeima, Andrew YK Foong, Jonathan Gordon, and Richard E Turner.
The gaussian neural process. arXiv preprint arXiv:2101.03606, 2021.

Wessel P Bruinsma, Stratis Markou, James Requiema, Andrew YK Foong, Tom R Andersson, Anna
Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
neural processes. arXiv preprint arXiv:2303.14468, 2023.

David R Burt, Sebastian W Ober, Adria Garriga-Alonso, and Mark van der Wilk. Understanding
variational inference in function-space. arXiv preprint arXiv:2011.09421, 2020.

Edoardo Calvello, Nikola B Kovachki, Matthew E Levine, and Andrew M Stuart. Continuum
attention for neural operators. arXiv preprint arXiv:2406.06486, 2024.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE transactions on
neural networks, 6(4):911-917, 1995.

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3606-3613, 2014.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297-301, 1965.

Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence and
statistics, pages 207-215. PMLR, 2013.

11

https://openreview.net/forum?id=O0oe7hPtbl

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11963-11975, 2022.

Charles Dugas, Yoshua Bengio, Francois Bélisle, Claude Nadeau, and René Garcia. Incorporating
second-order functional knowledge for better option pricing. Advances in neural information
processing systems, 13, 2000.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions.
arXiv preprint arXiv:2102.04776, 2021.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion processes.
In International Conference on Machine Learning, pages 8990-9012. PMLR, 2023.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bottle-
necked attentive neural processes. arXiv preprint arXiv:2211.08458, 2022.

David J Field. Relations between the statistics of natural images and the response properties of
cortical cells. Journal of the Optical Society of America A, 4(12):2379-2394, 1987.

Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard
Turner. Meta-learning stationary stochastic process prediction with convolutional neural processes.
Advances in Neural Information Processing Systems, 33:8284—-8295, 2020.

Giulio Franzese, Giulio Corallo, Simone Rossi, Markus Heinonen, Maurizio Filippone, and Pietro
Michiardi. Continuous-time functional diffusion processes. Advances in Neural Information
Processing Systems, 36:37370-37400, 2023.

Sara Fridovich-Keil, Raphael Gontijo Lopes, and Rebecca Roelofs. Spectral bias in practice: The
role of function frequency in generalization. Advances in Neural Information Processing Systems,
35:7368-7382, 2022.

Matteo Frigo and Steven G Johnson. The design and implementation of fftw3. Proceedings of the
IEEE, 93(2):216-231, 2005.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202, 1980.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances in neural
information processing systems, 31, 2018.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pages 1704—-1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556,
2019.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048-24062, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

12

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.

Jacob Helwig, Xuan Zhang, Cong Fu, Jerry Kurtin, Stephan Wojtowytsch, and Shuiwang Ji.
Group equivariant fourier neural operators for partial differential equations. arXiv preprint
arXiv:2306.05697, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pages 5-13, 1993.

Peter Holderrieth, Michael J Hutchinson, and Yee Whye Teh. Equivariant learning of stochastic
fields: Gaussian processes and steerable conditional neural processes. In International conference
on machine learning, pages 4297-4307. PMLR, 2021.

Daolang Huang, Manuel Haussmann, Ulpu Remes, ST John, Grégoire Clarté, Kevin Luck, Samuel
Kaski, and Luigi Acerbi. Practical equivariances via relational conditional neural processes.
Advances in Neural Information Processing Systems, 36:29201-29238, 2023.

Saurav Jha, Dong Gong, Xuesong Wang, Richard E Turner, and Lina Yao. The neural process family:
Survey, applications and perspectives. arXiv preprint arXiv:2209.00517, 2022.

Yohan Jung and Jinkyoo Park. Bayesian convolutional deep sets with task-dependent stationary prior.
In International Conference on Artificial Intelligence and Statistics, pages 3795-3824. PMLR,
2023.

Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, and Yutaka Matsuo. Group
equivariant conditional neural processes. arXiv preprint arXiv:2102.08759, 2021.

Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Functional flow matching. In Sanjoy
Dasgupta, Stephan Mandt, and Yingzhen Li, editors, Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine
Learning Research, pages 3934-3942. PMLR, 02-04 May 2024. URL https://proceedings.
mlr.press/v238/kerrigan24a.html.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Mingyu Kim, Kyeongryeol Go, and Se-Young Yun. Neural processes with stochastic attention:
Paying more attention to the context dataset. arXiv preprint arXiv:2204.05449, 2022.

David M Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J Bekkers, Jakub Mikolaj
Tomczak, Mark Hoogendoorn, and Jan jakob Sonke. Modelling long range dependencies in
nd: From task-specific to a general purpose CNN. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=ZW5aK4yCRqU,

Takeshi Koshizuka, Masahiro Fujisawa, Yusuke Tanaka, and Issei Sato. Understanding the expres-
sivity and trainability of fourier neural operator: A mean-field perspective. Advances in Neural
Information Processing Systems, 37:11021-11060, 2024.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1-76, 2021.

Nikola B Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to pdes. J. Mach. Learn. Res., 24(89):1-97, 2023.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989.

13

https://proceedings.mlr.press/v238/kerrigan24a.html
https://proceedings.mlr.press/v238/kerrigan24a.html
https://openreview.net/forum?id=ZW5aK4yCRqU

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Hyungi Lee, Eunggu Yun, Giung Nam, Edwin Fong, and Juho Lee. Martingale posterior neural
processes. arXiv preprint arXiv:2304.09431, 2023.

Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, and Yee Whye Teh. Boot-
strapping neural processes. Advances in neural information processing systems, 33:6606—6615,
2020.

Shibo Li, Xin Yu, Wei Xing, Robert Kirby, Akil Narayan, and Shandian Zhe. Multi-resolution active
learning of fourier neural operators. In International Conference on Artificial Intelligence and
Statistics, pages 2440-2448. PMLR, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Jen Ning Lim, Sebastian Vollmer, Lorenz Wolf, and Andrew Duncan. Energy-based models for
functional data using path measure tilting. arXiv preprint arXiv:2202.01929, 2022.

Sungbin Lim, Eunbi Yoon, Tachyun Byun, Taewon Kang, Seungwoo Kim, Kyungjae Lee, and
Sungjoon Choi. Score-based generative modeling through stochastic evolution equations in hilbert
spaces. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=GrE1RvXnEj.

Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic fourier neural operators. Advances in
Neural Information Processing Systems, 36:47438-47450, 2023a.

Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang
Liu, Bryan Hooi, and Roger Zimmermann. Largest: A benchmark dataset for large-scale traffic
forecasting. In Advances in Neural Information Processing Systems, 2023b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012—-10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Alfred J. Lotka. Contribution to the theory of periodic reactions. The Journal of Physical Chemistry,
14(3):271-274, 1910. ISSN 0092-7325. doi: 10.1021/j150111a004. URL https://doi.org/
10.1021/3j150111a004!

Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. The functional neural process.
Advances in Neural Information Processing Systems, 32, 2019.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive
field in deep convolutional neural networks. Advances in neural information processing systems,
29, 2016.

Xihaier Luo, Xiaoning Qian, and Byung-Jun Yoon. Hierarchical neural operator transformer
with learnable frequency-aware loss prior for arbitrary-scale super-resolution. arXiv preprint
arXiv:2405.12202, 2024.

Chao Ma and José Miguel Herndndez-Lobato. Functional variational inference based on stochastic
process generators. Advances in Neural Information Processing Systems, 34:21795-21807, 2021.

Chao Ma, Yingzhen Li, and José Miguel Herndandez-Lobato. Variational implicit processes. In
International Conference on Machine Learning, pages 4222-4233. PMLR, 2019.

14

https://openreview.net/forum?id=GrElRvXnEj
https://doi.org/10.1021/j150111a004
https://doi.org/10.1021/j150111a004

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 4(3):448-472, 1992.

Stratis Markou, James Requeima, Wessel P Bruinsma, Anna Vaughan, and Richard E Turner. Practical
conditional neural processes via tractable dependent predictions. arXiv preprint arXiv:2203.08775,
2022.

Emile Mathieu, Adam Foster, and Yee Teh. On contrastive representations of stochastic processes.
Advances in Neural Information Processing Systems, 34:28823-28835, 2021.

Emile Mathieu, Vincent Dutordoir, Michael J Hutchinson, Valentin De Bortoli, Yee Whye Teh, and
Richard E Turner. Geometric neural diffusion processes. arXiv preprint arXiv:2307.05431, 2023.

Peiman Mohseni, Nick Duffield, Bani Mallick, and Arman Hasanzadeh. Adaptive conditional quantile
neural processes. In Uncertainty in Artificial Intelligence, pages 1445-1455. PMLR, 2023.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages 807-814,
2010.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. arXiv preprint arXiv:2207.04179, 2022.

Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

Luis A Ortega, Simén Rodriguez Santana, and Daniel Hernandez-Lobato. Deep variational implicit
processes. arXiv preprint arXiv:2206.06720, 2022.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310-1318. Pmlr, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters — improve
semantic segmentation by global convolutional network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

Angus Phillips, Thomas Seror, Michael Hutchinson, Valentin De Bortoli, Arnaud Doucet, and Emile
Mathieu. Spectral diffusion processes. arXiv preprint arXiv:2209.14125, 2022.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652—-660, 2017.

Shaoxiang Qin, Fuyuan Lyu, Wenhui Peng, Dingyang Geng, Ju Wang, Xing Tang, Sylvie Leroyer,
Naiping Gao, Xue Liu, and Liangzhu Leon Wang. Toward a better understanding of fourier neural
operators from a spectral perspective. arXiv preprint arXiv:2404.07200, 2024.

Shikai Qiu, Tim GJ Rudner, Sanyam Kapoor, and Andrew G Wilson. Should we learn most likely
functions or parameters? Advances in Neural Information Processing Systems, 36:35814-35835,
2023.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pages 5301-5310. PMLR, 2019.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022a.

15

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022b.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.

Stand-alone self-attention in vision models. Advances in neural information processing systems,
32,2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for
robust and accurate learning of pdes. Advances in Neural Information Processing Systems, 36:
77187-77200, 2023.

Carl Edward Rasmussen, Christopher KI Williams, et al. Gaussian processes for machine learning,
volume 1. Springer, 2006.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Ckconv:
Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021.

Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. Advances in Neural Information Processing
Systems, 32, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention—-MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part I11
18, pages 234-241. Springer, 2015.

Daniel Ruderman and William Bialek. Statistics of natural images: Scaling in the woods. Advances
in neural information processing systems, 6, 1993.

Tim GJ Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractable function-space variational
inference in bayesian neural networks. Advances in Neural Information Processing Systems, 35:
2268622698, 2022.

Tim GJ Rudner, Sanyam Kapoor, Shikai Qiu, and Andrew Gordon Wilson. Function-space regular-
ization in neural networks: A probabilistic perspective. In International Conference on Machine
Learning, pages 29275-29290. PMLR, 2023.

Simé6n Rodriguez Santana, Bryan Zaldivar, and Daniel Herndndez-Lobato. Function-space inference
with sparse implicit processes. arXiv preprint arXiv:2110.07618, 2021.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian
neural networks. arXiv preprint arXiv:1903.05779, 2019.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn

high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537-7547, 2020.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial

differential equations in computational mechanics problems. Computer Methods in Applied
Mechanics and Engineering, 404:115783, 2023.

16

Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Transform-
ers learn low sensitivity functions: Investigations and implications. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
4ikjWBs3tE,

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Anna Vaughan, Will Tebbutt, J Scott Hosking, and Richard E Turner. Convolutional conditional
neural processes for local climate downscaling. Geoscientific Model Development Discussions,
2021:1-25, 2021.

Michael Volpp, Fabian Fliirenbrock, Lukas Grossberger, Christian Daniel, and Gerhard Neumann.
Bayesian context aggregation for neural processes. In /CLR, 2021.

V. Volterra. Variazioni e fluttuazioni del bumero d’ondividui in specie animali conviventi. Memoria
della Reale Accademia Nazionale dei Lincei, 2:31-113, 1926.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne. On the
limitations of representing functions on sets. In International conference on machine learning,
pages 6487-6494. PMLR, 2019.

Martin J Wainwright and Eero Simoncelli. Scale mixtures of gaussians and the statistics of natural
images. Advances in neural information processing systems, 12, 1999.

Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen.
Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In European conference on
computer vision, pages 108—126. Springer, 2020.

Qi Wang and Herke Van Hoof. Doubly stochastic variational inference for neural processes with
hierarchical latent variables. In International Conference on Machine Learning, pages 10018—
10028. PMLR, 2020.

Qi Wang and Herke van Hoof. Learning expressive meta-representations with mixture of expert
neural processes. Advances in neural information processing systems, 35:26242-26255, 2022.

Qi Wang, Marco Federici, and Herke van Hoof. Bridge the inference gaps of neural processes via
expectation maximization. In The Eleventh International Conference on Learning Representations,
2022.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7794-7803,
2018.

Veit David Wild, Robert Hu, and Dino Sejdinovic. Generalized variational inference in function
spaces: Gaussian measures meet bayesian deep learning. Advances in Neural Information Process-
ing Systems, 35:3716-3730, 2022.

David H Wolpert. Bayesian backpropagation over io functions rather than weights. Advances in
neural information processing systems, 6, 1993.

Mengjing Wu, Junyu Xuan, and Jie Lu. Functional wasserstein bridge inference for bayesian
deep learning. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024. URL
https://openreview.net/forum?id=Wnht2Iqz1N.

Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. Improved operator learning by
orthogonal attention. arXiv preprint arXiv:2310.12487, 2023.

Zipeng Xiao, Siqi Kou, Hao Zhongkai, Bokai Lin, and Zhijie Deng. Amortized fourier neural
operators. Advances in Neural Information Processing Systems, 37:115001-115020, 2024.

Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam Kosiorek, and Yee Whye Teh. Metafun: Meta-
learning with iterative functional updates. In International Conference on Machine Learning,
pages 10617-10627. PMLR, 2020.

17

https://openreview.net/forum?id=4ikjWBs3tE
https://openreview.net/forum?id=4ikjWBs3tE
https://openreview.net/forum?id=Wnht2IqzlN

Jin Xu, Emilien Dupont, Kaspar Mértens, Thomas Rainforth, and Yee Whye Teh. Deep stochastic
processes via functional markov transition operators. Advances in Neural Information Processing

Systems, 36:37975-37994, 2023.

Mengjiao Yang, Bo Dai, Hanjun Dai, and Dale Schuurmans. Energy-based processes for exchangeable
data. In International Conference on Machine Learning, pages 10681-10692. PMLR, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

Jianxin Zhang and Clayton Scott. Flow straight and fast in hilbert space: Functional rectified flow.
arXiv preprint arXiv:2509.10384, 2025.

Jianwei Zheng, Wei Li, Ni Xu, Junwei Zhu, and Xiaoqin Zhang. Alias-free mamba neural operator.
Advances in Neural Information Processing Systems, 37:52962-52995, 2024.

18

A Discretization Sensitivity of the DFT

To illustrate the sensitivity of the discrete Fourier transform (DFT) to the underlying discretiza-
tion—and how changes in grid geometry can degrade predictive performance—we consider a simple
one-dimensional example. Let 0 < A < 1 denote a fixed discretization resolution, interpreted as the
spacing between adjacent grid points. Define the grid

gl = (l‘o, ce 7$m1—1)

as a uniform discretization of the interval [0, 1], where m; = [1/A] and the points are ordered such
that x,, < x4 foralln € {0,...,my — 2}. Let h := ¢.[D,] denote the encoded latent function,
and let its sampled values on G; be

(h(az:))meg1 = (h(a:o), ol h(xml_l)).
The DFT of h on this grid is given by

]—"{(h(x))Iegl}(k) - i h(azn)e 2™ mi™, ke l0,...,mi —1}.
n=0

This yields Fourier coefficients at the normalized frequencies

k myq— 1
1= (E> k=0
As discussed in Section [2.1] the Fourier Neural Operator (FNO) implicitly ties its kernel parameteri-
zation to the specific frequency set =; encountered during training. Now suppose the trained model

is evaluated on a larger spatial domain, e.g. [0, 2], while maintaining the same resolution A. The
corresponding grid

[1]

Go = (x5, - - - ,x;nzfl)

has size mo = [2/A], and the associated DFT produces coefficients at normalized frequencies

- (L) mo—1
Since mg > 2m4, we have |Z3| > 2|Z4], and, crucially, the frequency locations themselves differ.
Let 1 < kpax < my denote the number of Fourier modes retained during training. Even when
restricting attention to the lowest k,,x modes, the frequencies {k/ mg}ﬁ‘;“g‘*l do not coincide with
{k/m1} km“‘_l. This misalignment induces a spectral mismatch between training and evaluation,
illustrating how changes in discretization—even at fixed resolution—can disrupt the learned Fourier
parameterization and lead to degraded generalization.

B Experimental Details

All implementations are written in PyTorch [Paszke et al., 2019] and publicly available at
https://github.com/peiman-m/SConvCNP, We used a single NVIDIA A100 GPU with 40 GB of
memory for all the computations. Our code is based on the implementations of /Ashman et al.|[2024a]
and Bruinsma et al.|[2023]).

B.1 Synthetic 1-D Regression
B.1.1 Model Architectures

This section details the architectures of all CNPs variants used in our experiments. Each model
outputs a Gaussian predictive distribution parameterized by a mean and a pre-softplus [Dugas etal.)
2000|| scale. The pre-softplus value is passed through a softplus transformation, and a minimum noise
term of 1076 is then added to the resulting scale. The Gaussian factorizes across query points—as is
standard for CNPs (see Section @])—and, for multidimensional outputs, across output dimensions as
well. Thus, predictions assume independence both across query locations and across components of
each output vector. Unless otherwise noted, all nonlinearities use ReLU activations [Nair and Hinton)
2010].

19

https://github.com/peiman-m/SConvCNP

Conditional Neural Process (CNP): The CNP encodes each context pair (2. i, Yc k) € D, using
separate input and output pathways. The input z. ;, and output .. ; are first passed through distinct
MLPs with two hidden layers each of dimension 256, producing 256-dimensional representations
sgﬁz and sgylz Their concatenation e, , = [5((;2, sgylz] is then processed by a deeper MLP with six
hidden layers of width 256 and a final 256-dimensional output layer, yielding an embedding for each
context pair. Context embeddings ¢ ;, are averaged to form a single aggregated representation €, of
dimension 256. For prediction, each query input x,; is concatenated with the context representation
€. and passed through a decoder MLP consisting of six hidden layers of dimension 256. The decoder’s
final output layer has dimensionality 2d,,, parameterizing the mean and the log-scale parameters of
the Gaussian predictive distribution.

Attentive Conditional Neural Process (AttCNP). The AttCNP implementation follows the de-
terministic architecture introduced by [Kim et al.| [2019]. The initial encoding stage mirrors that

of the CNP: each context pair (x. k,Yck) € D, is processed by two separate MLPs (each with

two hidden layers of width 256), producing embeddings 55%2 and 553’,2 These are concatenated to

forme.j = [52‘27 59,2], which is subsequently passed through an additional two-layer MLP with

hidden width 256. Departing from the CNP, the AttCNP applies self-attention to the set of context
embeddings. We use two layers of multi-head self-attention, each with 8 heads (head dimension 32),
a feedforward subnetwork with hidden width 256, residual connections, and pre-layer normalization
for both the attention and feedforward blocks. The input and output dimensionality of each attention
layer is fixed at 256. Query representations €,; are computed using a single layer of multi-head
cross-attention between the (attended) context embeddings and the query embeddings, with the same
configuration as above (8 heads of dimension 32, feedforward width 256, residual connections, and
pre-normalization). The decoder is an MLP with six hidden layers of width 256. Its final layer outputs
2d,, units, corresponding to the mean and log-scale parameters of a Gaussian predictive distribution.

Transformer Neural Process (TNP). To apply the TNP, we first construct token representations
for both context and query points. For each context pair (xc k., Ye,x) € D, we form the token

[mCJ% yC,ka 1]a

where the final singleton “1” serves as a density flag indicating that the observation ¥, ;. at . j, is
available. For each query location x,;, we instead construct

[xq,la 07 0]7

where the dummy zero-vector matches the shape of ¥, ; and the final “0” indicates the absence of an
observation [Nguyen and Grover, 2022| |Ashman et al.,|2024a]]. All tokens are then passed through a
shared two-layer MLP (width 256), producing initial embeddings €. ;, and ;.

In the original TNP architecture [Nguyen and Grover, 2022, context and query embeddings are
processed jointly by a transformer encoder. An attention mask prevents (i) interactions among queries
and (ii) context—query attention, ensuring that context representations remain query-independent,
while queries may attend to contexts. This design incurs quadratic complexity in the total sequence
length,

O((IDe| + D,])?)-

Because queries never attend to one another, [Feng et al.[[2022] introduced the Efficient Query TNP,
which we adopt here. This variant first applies self-attention to context tokens to produce updated
context embeddings, then processes each query using cross-attention over these updated contexts.
The resulting two-branch structure (contexts processed twice, queries once) reduces the overall
complexity to

O(IDef* + [Dy| D)

Our model uses six transformer layers with eight attention heads (head dimension 32), each followed
by a feedforward subnetwork of width 256. We use the standard pre-norm architecture, applying
layer normalization before both the attention and feedforward modules. All attention operations
share a 256-dimensional embedding dimension. At each layer, we first apply context self-attention
and then query—context cross-attention. Notably, the same multi-head attention parameters are used
for both operations; the distinction arises only from which embeddings serve as queries, keys, and
values (yielding self-attention when they coincide, and cross-attention otherwise). This is not a

20

modeling requirement—separate parameter sets could be used, as demonstrated in Appendix [B.4.1]
The final-layer query embeddings are passed to a decoder MLP with two hidden layers (width 256),
whose output parameterizes a Gaussian predictive distribution via 2d, units corresponding to the
mean and log-scale.

Translation-Equivariant Transformer Neural Process (TE-TNP). The token construction in
the TE-TNP closely follows that of the TNP, with a crucial modification to ensure translation
equivariance: input locations are excluded from the token representations. Specifically, for each
context pair (Z¢,k, Ye k) € D, we construct the token

[yc,lm 1]a
while for each query location x4 ; we use the token
[0, 0].

All tokens are passed through a shared two-layer MLP with width 256 to produce initial embeddings
Eekand g4 ;.

The TE-TNP replaces the standard multi-head attention mechanism with the translation-equivariant
attention proposed by /Ashman et al.|[2024a]]. For each attention head, we first compute the matrix
of pairwise scaled dot products between token embeddings, analogous to conventional attention but
independent of absolute input locations. In parallel, we compute the matrix of pairwise differences
between token locations. We then concatenate the scaled dot-product scores from all heads with the
corresponding pairwise location differences. This augmented pairwise similarity representation is
processed by an MLP—acting as an implicit kernel—with two hidden layers of width 256 and an
output dimension equal to the number of attention heads, yielding the final translation-equivariant
attention logits.

Apart from this modified attention module, the remainder of the architecture and computational
pipeline follows that of the TNP.

Convolutional Conditional Neural Process (ConvCNP): For the ConvCNP, we begin by deter-
mining, for each input dimension, the minimum and maximum coordinates observed across both the
context and query sets. These extrema are expanded by a small margin of 0.1 in each dimension.
The interval between the expanded minima and maxima is then uniformly discretized at a resolution
of 64 points per unit. When necessary—for example, to satisfy the CNN’s minimum grid-size
requirements—the discretization range is further enlarged while maintaining the same resolution.
The resulting one-dimensional grids are combined via a Cartesian product to yield a uniform grid G.

The functional embedding in equation [3|is evaluated on this grid. The Gaussian kernels used in this
embedding are initialized with per-dimension length scales set to twice the grid resolution, i.e., 2/64.
For multi-dimensional inputs and outputs, the model uses separate length scales for each dimension.
Following |Bruinsma et al.[[2023]], the embedding is further normalized using a density channel,

defined as
Density(x) = Z Ye(T — 2¢).
(ze,ye)EDe
The functional and density channels are concatenated to form the final grid representation

Z(ﬂcc,yc)EDc D(ye) Ye(zg — lc})
z,€G

&)

(Density(acg)7 Density (z,)
9

Each grid point is processed independently by an MLP with two hidden layers of width 128. The
resulting features are passed to a CNN based on a U-Net architecture [Ronneberger et al., [2015]],
consisting of six residual convolutional blocks (kernel size 11, stride 2, 128 channels) in the encoder,
followed by a symmetric sequence of six transposed convolutional blocks in the decoder, with skip
connections following the design of Bruinsma et al.|[2023]]. Since the U-Net downsamples the spatial
resolution by a factor of 64, we ensure that the constructed grid size is divisible by 64. For the
one-dimensional benchmarks considered in this work, this is achieved by symmetrically enlarging
the discretization interval when necessary so that the CNN output aligns exactly with the input grid.

To obtain predictive distribution parameters at query locations—which may not lie on the grid G—
an interpolation scheme analogous to equation [3]is applied, except that the weighted sum over the

21

feature-map values is not normalized. For this interpolation, we employ a separate Gaussian kernel
with learnable length-scale parameters, distinct from the kernel used in the functional embedding.
The resulting query-specific embeddings are then processed by a decoder MLP with two hidden
layers (width 128), whose output consists of 2d,, units parameterizing the mean and log-scale of a
Gaussian predictive distribution.

Spectral Convolutional Conditional Neural Process (SConvCNP) The SConvCNP replaces the
ConvCNP’s U-Net backbone with a U-shaped Fourier Neural Operator (FNO) architecture [Li et al.,
2020al, [Rahman et al.| |2022al]. A residual Fourier block is denoted

F(Cin7 Couty Siny Sout mf)7
where ¢, and ¢, are channel dimensions, s;, and s,y are spatial sizes, and my is the number of
retained Fourier modes.

The representation from equation [5] augmented with positional encodings (grid coordinates), is first
processed by an MLP with one hidden layer of width 64 and GELU activations [Hendrycks and
Gimpel, 2016]. Its output is then passed through the following sequence of residual Fourier blocks:

. Ly = F(64, 128, |G|, ||G]/2], 32)

. L, = F(128, 128, [|G|/2], ||G]/4], 32)
Ls = F(128, 256, ||G|/4], 32)

* L, = F(256, 128, ||G|/2], 32)

* Ly = F(256, 128, |G|, 32)

2
3

Layers L; — Ly — L3 — L4 form the contractive—expansive path. The final block L5 receives the
channel-wise concatenation of the outputs of Ly and L, yielding the U-shaped skip connection. Its
output is concatenated with the initial MLP features and processed by a final MLP (one hidden layer,
width 128, GELU) to produce the SConvCNP representation for the decoder.

Parameter Count. Table[5|summarizes the number of learnable parameters for all models used in
our 1D synthetic regression experiments.

Table 5: Learnable parameter counts for all models used in the 1D synthetic regression experiments.

CNP AttCNP TNP TE-TNP ConvCNP SConvCNP

Number of parameters (million) 1.3 2.1 2.6 3.1 3.8 3.7

Forward run time. Table E]reports the forward-pass runtime (in seconds) for a batch of 16 tasks
during both training and validation across all models evaluated in our 1D synthetic regression
experiments. As described in Appendix the number of query points is fixed to 256 during
validation, whereas during training it is sampled uniformly from ¥[5, 25).

Table 6: Average forward-pass runtime (in seconds) for a batch of 16 tasks during training and
validation across all models in the 1D synthetic regression setting.

CNP AtCNP TNP TE-TNP ConvCNP SConvCNP

Train 0.003 0.004 0.007 0.014 0.009 0.009
Validation ~ 0.006 0.009 0.013 0.023 0.033 0.030

B.1.2 Data and Experimental Setup

We evaluate our methods on four families of synthetic 1D regression tasks, each defined by a distinct
stochastic generative process: a Gaussian process (GP) with a Matérn—5/2 kernel, a GP with a
periodic kernel, a sawtooth-wave generator, and a square-wave generator. GP tasks are sampled using
GPyTorch [Gardner et al., 2018]]. All processes include independent Gaussian observation noise.

22

Generative Processes. For each task family, process-specific hyperparameters are sampled inde-
pendently at the task level.

* GP with Matérn-5/2 kernel. Functions are sampled from f ~ GP(0, kms2 + 08 I), where

2—1.5 \/5 . \/5 I
F(25) (T|ZC —x ‘)2 5K2'5(T|1~ — |)

and K 5 is the modified Bessel function of the second kind. The lengthscale is sampled as
A ~ U[0.25,1). Observation noise standard deviation is op = 0.1.

kmsp(z,2") =

* GP with periodic kernel. Functions are sampled from f ~ GP(0, k, + 031), where

2 o
) = s 22200k)

with period p ~ U[0.5,2) and lengthscale A ~ 1£[0.25,1). Observation noise standard
deviation is o9 = 0.1.

« Sawtooth wave. Functions are sampled from f ~ GP (Mg, 021), where the mean function
is
Maw(x) =2 ((€ (ux — ¢)) mod 1) — 1
with frequency £ ~ U][0.5,5), direction u € {+1,—1} (sampled uniformly), and phase
offset ¢ ~ 1[0, 1). Observation noise standard deviation is g = 0.05.

* Square wave. Functions are sampled from f ~ GP(my, o21I), where the mean function is
msq(x) =2]1{((51‘—0) mod 1)<D} — 1

with frequency & ~ U[0.5,5), duty cycle D ~ U£[0.25,0.75), and phase offset ¢ ~ /[0, 1).
Observation noise standard deviation is og = 0.05.

Each model is trained for 500 epochs using AdamW [Loshchilov and Hutter, [2017] with a learning
rate of 5 x 10~4. We apply gradient clipping with a maximum norm of 0.5 [Pascanu et al., 2013].
Each epoch consists of 1000 iterations, and every iteration processes a batch of 16 tasks, yielding a
total of 8 million on-the-fly sampled training tasks. For each batch, the numbers of context and query
points are independently drawn as n. ~ U[5, 25) and n, ~ U[5,25). These values are shared across
all tasks in the batch. Input locations are sampled uniformly and independently from [—3, 3) for each
task.

For validation, we use a fixed set of 4,096 tasks, organized into 256 batches of 16 tasks. In these
tasks, the number of query points is fixed at 256, while the number of context points is sampled using
the same procedure as during training. Testing follows the same configuration as validation, except
that we evaluate on 16,000 test tasks. Unlike the dynamically generated training tasks, the validation
and test sets remain fixed across all experiments and runs.

B.2 Predator-Prey Model
B.2.1 Model Architectures

The model architectures and parameter counts closely follow those described in The only
modification concerns the discretization of the functional embedding in the ConvCNP and the
SConvCNP. Specifically, we first expand the range defined by the minima and maxima of all context
and query coordinates by a margin of 0.5 in each dimension. The resulting interval is then uniformly
discretized at a resolution of 48 points per unit length.

B.2.2 Data and Experimental Setup

We generate data from a stochastic variant of the Lotka—Volterra predator—prey system [Lotka, 1910,
Volterral [1926]], following the formulation of Bruinsma et al.[[2023]]. Let U; and V; denote the prey
and predator populations at time ¢. Their dynamics evolve according to

dU, = aU, dt — BU,V, dt + oU? dBY,
dV; = —yUy dt + UV, dt + oV dB?,

23

where Bt(l) and Bt(z) are independent Brownian motions. The deterministic drift recovers classical
predator—prey behavior: prey grow exponentially at rate « in the absence of predators, while predators
decline at rate «y without prey. The interaction terms SU;V; and 6U;V; model predation and predator
reproduction. Stochasticity enters through the multiplicative noise terms cU; and oV}”, where o
controls noise intensity and v determines how fluctuations scale with population size. Setting v = 1
yields noise proportional to population level, while ¥ < 1 and v > 1 induce sublinear and superlinear
scaling, respectively.

Table 7: Parameter distributions for the stochastic Lotka—Volterra equations.

Parameter Distribution

5,100))

Initial condition U_1y U(

[
Initial condition V_19 U([5,100])
a U([1.0,5.0])
3 2([0.04, 0.08])
v U([1.0,2.0))
5 2([0.04, 0.08])
o U([0.5,10])
U U([1,s])
v Fixed at 1/6

We simulate trajectories using the parameter distributions in Table [7] over a total of 110 years,
discarding the first 10 years as burn-in to reduce sensitivity to initial conditions. Integration is
performed using the Euler—Maruyama method with time step At = 0.022, producing 5000 solver
steps over the interval ¢ € [—10,100). Although the solver runs at this finer resolution, we record
states only on a uniform grid with spacing 0.05, yielding approximately 2200 selected time points
spanning [—10, 100).

To construct a task from a simulated trajectory, input locations ¢ are sampled uniformly and indepen-
dently from the recorded time points in [0, 100) and paired with the corresponding values (U, V7).
We rescale time by a factor of 0.1, mapping the 100-year interval to [0, 10), and rescale population
sizes by multiplying the values by 0.01.

Models are trained for 500 epochs using AdamW with a learning rate of 10~%. We apply gradient
clipping with a maximum norm of 0.5. Each epoch consists of 1,000 iterations, each processing a
batch of 16 tasks, yielding a total of 8 million on-the-fly sampled training tasks. For every batch, the
numbers of context and query points are drawn independently as n. ~ U[5,25) and ng ~ U[5,25);
the sampled values are shared across all tasks within the batch.

For validation, we use a fixed set of 4,096 tasks, arranged into 256 batches of 16 tasks. In these
tasks, the number of query points is fixed at 256, while the number of context points is sampled using
the same procedure as in training. Testing follows the same protocol as validation, except that we
evaluate on 16,000 test tasks. Unlike the dynamically generated training tasks, the randomization
used to construct the validation and test tasks is fixed across all experiments and runs.

B.3 Traffic Flow
B.3.1 Model Architectures

The model architectures follow those described in Section B.I.Il For the discretization of the
functional embedding in both the ConvCNP and the SConvCNP, we use an expanded margin of 0.5
and a resolution of 48 grid points per unit length.

B.3.2 Data and Experimental Setup

We use the California traffic-flow dataset from LARGEST [Liu et al.,2023b|, a large-scale benchmark
for traffic forecasting, available at https://www.kaggle.com/datasets/liuxu77/largest.
The dataset contains traffic-flow measurements from 8,600 loop-detector sensors deployed across

24

https://www.kaggle.com/datasets/liuxu77/largest

California’s highway network, collected at 5-minute intervals between 2017 and 2021. In our
experiments, we restrict attention to data from the year 2020.

As a preprocessing step, we discard sensors with more than 50% missing values. For the remaining
sensors, missing entries are filled via linear interpolation between observed measurements, with
leading and trailing gaps completed using forward and backward propagation, respectively. Sensors
are then randomly partitioned into training, validation, and test sets using a 6:1:3 split.

Each sensor’s time series is segmented into non-overlapping, continuous 14-day windows (4,032
time steps), yielding 26 windows per sensor. Within each window, timestamps are reset to start
at 0 and increase in 5-minute increments. We subsequently downsample each window by a factor
of 6, resulting in a temporal resolution of 30 minutes. Time indices are rescaled to units of days by
dividing by (60 x 24). Finally, traffic-flow values are normalized to the [0, 1] range using min—max
statistics computed from the training set.

The processed dataset contains:

 Training: 5,119 sensors — 133,094 windows
¢ Validation: 853 sensors — 22,178 windows
e Test: 2,561 sensors — 66,586 windows

Models are trained for 100 epochs using AdamW with a learning rate of 10~%. We apply gradient
clipping with a maximum norm of 0.5. Each epoch consists of approximately 4,160 iterations, each
processing a batch of 32 tasks. For every batch, the numbers of context and query points are drawn
independently as n. ~ U[5,25) and n, ~ U[5,25); the sampled values are shared across all tasks
within the batch. A task is formed by independently and uniformly sampling n. + n, time steps from
a window without replacement. Training tasks are sampled on-the-fly from training windows. For
validation and testing, we pre-generate fixed sets of tasks:

* Validation: 22,178 tasks (batched in 32), with n, = 256 and n, sampled as in training.
* Test: 66,586 tasks (batched in 32), with n, = 50 and n. sampled as in training.

B.4 Image Completion
B.4.1 Model Architectures

All models output Gaussian predictive distributions parameterized by a mean and a pre-softplus
standard deviation. Because pixel values are normalized to [0, 1], the predicted mean is passed
through a sigmoid. The predicted standard deviation is obtained by applying a softplus to the network
output, scaling the result by 0.99, and adding a minimum noise of 0.01.

Conditional Neural Process (CNP). The CNP architecture follows the design used in previous
experiments (see Section[B.T.T), with the only modification being an increase in the MLP hidden size
from 256 to 512.

Attentive Conditional Neural Process (AttCNP). The AttCNP architecture is likewise based on
the design used in earlier experiments (see Section[B.1.T). The MLP hidden size is increased from
256 to 512. For the self-attention applied to the set of context embeddings, we increase the per-head
dimension from 32 to 64, set the input/output dimension of each attention layer to 512, and increase
the feedforward subnetwork width from 256 to 512. The same modifications apply to the multi-head
cross-attention used to update query embeddings (eight heads of dimension 64 and feedforward
width 512).

Transformer Neural Process (TNP). As with the other models, all MLP hidden sizes are increased
from 256 to 512. We adopt the Efficient Query TNP design described in Section[B.1.1] which employs
a two-branch structure in which context embeddings are processed twice and query embeddings
once. In contrast to previous sections, we allocate separate parameters for each branch: at each layer,
the multi-head self-attention over contexts and the multi-head cross-attention between queries and
contexts no longer share parameters. For each multi-head attention module, the feedforward width
is increased from 256 to 512, and all input/output embedding dimensions are set to 512. All other
configurations follow Section [B.1.1]

25

Convolutional Conditional Neural Process (ConvCNP). Because the data lie on a regular grid,
we use the on-the-grid implementation of the ConvCNP [|Gordon et al., [2019]], eliminating the
discretization step and improving computational efficiency. Let I denote an incomplete image, with
unobserved pixels filled with dummy values, and let M, be the binary mask indicating observed
(context) pixels. For multi-channel images, the mask is broadcast along the channel dimension.

As in Section[B.1.T] the output of the convolutional deep set module has two components: (i) a density
channel capturing the spatial distribution of context pixels, and (ii) a kernel-smoothed representation.
The kernel is implemented via a 2D convolutional layer (kernel size 11, d,, input channels, 128 output
channels, no bias) with a nonnegativity constraint enforced by taking absolute values of the learned
weights during the forward pass [Gordon et al.,2019].

The density channel is obtained by convolving this modified filter with the mask M. The kernel-
smoothed component is computed by first multiplying I elementwise with M, (setting non-context
pixels to zero) and then applying the same modified convolution. Following |Gordon et al.|[2019], we
omit normalization by the density channel, as it did not provide empirical benefits and occasionally
introduced instability; however, we retain the positivity constraint on the kernel.

The resulting representation is processed pointwise by an MLP with two hidden layers of width 128.
These features are then fed into a ResNet-style CNN [He et al., [2016] consisting of six residual
convolutional blocks (kernel size 11, 128 channels), following the implementation of Bruinsma et al.
[2023]]. The embeddings corresponding to query pixels are finally passed to a decoder MLP with two
hidden layers of width 128.

Spectral Convolutional Conditional Neural Process (SConvCNP). The SConvCNP mirrors the
on-the-grid ConvCNP architecture described above, with the distinction that the ResNet backbone is
replaced by a U-shaped FNO. To construct positional information, we uniformly discretize the interval
[—1, 1] along each spatial axis into grids whose sizes match the corresponding image dimensions.
Their Cartesian product yields the 2D positional encoding, which is concatenated with the output of
the convolutional deep set. This concatenated tensor is then passed pointwise through an MLP with
one hidden layer of width 128 and GELU activations.

Let s, and s,, denote the image height and width, respectively. Using the notation introduced in
Section[B.1.1] the operator consists of the following sequence of residual Fourier blocks:

o Ly =F(512, 512, (Sp, Sw), (Sh, Sw), 32)

¢ Ly = F(512, 512, (51,50, (Lsn/4), [5w/4)), 8)

* L3 = F(512, 512, ([sn/4], [sw/4]), ([sn/16], [sw/16]), 2)

* Ly = F(512, 512, ([sn/16], [sw/16]), ([sn/16], |5/16]), 2)
* Ls = F(512, 512, ([sn/16], [sw/16]), ([sn/4], [sw/4]), 8)

* Lg = F(512, 512, (|sn/4], |sw/4]), (sh, Sw), 16)

* Ly =F(512, 512, (sp, Sw), (Sh, Sw), 32)

The forward pass follows a standard U-shaped pattern. Layers L.; — Lo — L3g — L4 are applied
sequentially. On the upward path, L5 receives the channel-wise concatenation of the outputs of L4
and L3. Similarly, Lg receives the concatenation of the outputs of L and Lo, and L~ receives the
concatenation of the outputs of Lg and L;. The output of L7 is then concatenated with the features
from the initial MLP and fed into a final MLP (one hidden layer, width 128, GELU) to yield the
SConvCNP representation consumed by the decoder.

Parameter Count. Table[§|summarizes the number of learnable parameters for all models evaluated
in our image completion experiments.

Table 8: Learnable parameter counts for all models evaluated in the image completion experiments.

CNP AtCNP TNP ConvCNP SConvCNP

Number of parameters (million) 5 8.4 13.7 12.2 14.2

26

B.4.2 Data and Experimental Setup

For our image-completion experiments, we use the Describable Textures Dataset (DTD; |Cimpoi et al.
[2014]). We adopt the standard DTD split, which contains 1,880 images each for training, validation,
and testing. All images are RGB, with heights ranging from 231 to 778 pixels and widths from 271 to
900 pixels. During training, validation, and testing, we sample from each image a random 192 x 192
crop, which we then downsample to 64 x 64. Pixel coordinates of the resulting 64 x 64 grid along
each axis are linearly mapped to [—1, 1], and pixel intensities are normalized to [0, 1] independently
across channels.

Models are trained for 500 epochs using AdamW with a learning rate of 10~%. We apply gradient
clipping with a maximum norm of 0.5. At each epoch, the model processes batches of 16 tasks. For
each batch, we draw the number of context pixels as n. ~ U[5,1024), and treat all remaining pixels
as queries, i.e. ng = 64 X 64 — n.. A single sampled value of n,. is shared across all tasks within the
batch.

B.5 Ablation Studies

We conduct a series of ablation studies to assess the contribution of three core design choices in the
SConvCNP:

1. the number of retained Fourier modes,

2. the discretization resolution of the functional embedding, and

3. the use of positional encodings.
Experiments are conducted on two families of one-dimensional functions: samples drawn from a GP
with a Matérn—5/2 kernel, and a deterministic sawtooth waveform. Training follows the protocol
described in Section [B.T] with the only difference being the use of a smaller SConvCNP model (3.1M

parameters, 32 Fourier modes). Results are reported over 8,096 test tasks, and the main findings are
summarized below.

Table 9: Predictive log-likelihood of SConvCNP for different numbers of Fourier modes m.

m=38 m =16 m = 32
Matérn 5/2 —0.2940.00 —0.2940.00 —0.2940.00
Sawtooth wave —0.1440.03 0.2040.02 0.8040.03

Number of Fourier modes. Increasing the number of retained Fourier modes yields substantial
improvements for the sawtooth signal, while having a negligible effect on Matérn—5/2 functions
(Table[9). This behavior aligns with the spectral properties of the underlying functions. The sawtooth
wave exhibits Fourier amplitudes that decay as 1/¢, leaving significant energy at high frequencies
and necessitating a large number of modes for accurate reconstruction. In contrast, Matérn—5/2
samples have power spectra that decay as 1/£9, resulting in extremely weak high-frequency content;
consequently, a small set of low-frequency modes suffices to capture nearly all signal energy.

Table 10: Predictive log-likelihood of SConvCNP for different discretization resolutions (number of
points per unit).

16 32 64

Matérn 5/2 —0.3040.00 —0.2940.00 —0.2940.00
Sawtooth wave 0.034+0.02 0.2640.08 0.2040.02

Discretization resolution. A finer discretization improves performance for the sawtooth signal but
has little impact on Matérn—-5/2 samples (Table . The slowly decaying spectrum of the sawtooth
implies a high effective Nyquist frequency, requiring dense sampling to resolve sharp transitions. By

27

contrast, the spectral mass of Matérn—5/2 functions is concentrated at lower frequencies, so coarser
discretizations can adequately capture the relevant structure.

Table 11: Predictive log-likelihood of SConvCNP with and without positional encoding.

with positional encoding without positional encoding

Matérn 5/2 —0.2940.00 —0.314+0.00
Sawtooth wave 0.8040.03 0.6740.02

Positional encoding. Incorporating positional encodings consistently improves predictive perfor-
mance, with particularly pronounced gains on the sawtooth tasks (Table [IT). This suggests that
explicit location information helps disambiguate high-frequency and non-smooth patterns that are not
fully captured by fully translation equivariant features alone in the SConvCNP.

28

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that we introduce Spectral Con-
volutional Conditional Neural Processes (SConvCNPs), explain the motivation for using
spectral methods to address limitations in ConvCNPs, and accurately describe the scope of
our experimental validation. The claims match the actual content and results presented in
the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 3.1 discusses the limitations of our approach, including the trade-off
between positional encodings and translation equivariance, and the discretization sensitivity
of the FFT.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper primarily presents a methodological contribution with empirical
validation rather than theoretical results requiring formal proofs.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the model architecture, data
generation process, and experimental setup, ensuring that the main results can be reproduced.
In addition, all implementations are publicly available in our code repository.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All implementations are publicly available in our code repository.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the model architecture, data
generation process, and experimental setup

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results in Tables 1-3 report standard deviations across 4 seeds,
providing a clear measure of the statistical variability in our results.

29

10.

11.

12.

13.

14.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper explicitly states that all computations were performed on a single
NVIDIA A100 GPU with 40 GB of memory. Additionally, forward-pass runtimes for all
models on one of the benchmarks are reported, providing further clarity on the execution
time requirements.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research centers on methodological advancements in neural network
architectures for probabilistic meta-learning, relying solely on synthetic data and publicly
available datasets. The work does not involve human subjects, sensitive data, or applications
with foreseeable harmful impact, and it faithfully represents all results. Accordingly, it
aligns with the NeurIPS Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper does not currently include a dedicated discussion of the broader
societal impacts of the work, and therefore does not address potential positive or negative
implications.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work focuses on meta-learning for regression tasks. The models and data
used do not pose significant risks for misuse or dual-use concerns.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have been meticulous in citing all prior work and assets used in our
experiments. For each external codebase, dataset, or model, we provide proper attribution
and ensure that the associated licenses and terms of use are respected.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper provides a detailed description of the experiments, and the complete
code implementation is publicly released with accompanying documentation, ensuring that
all newly introduced assets are well described and accessible.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

30

https://neurips.cc/public/EthicsGuidelines

15.

16.

Answer: [NA]
Justification: This research does not involve crowdsourcing or human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve human subjects, so IRB approval was not
required.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research methodology does not involve the use of large language models
as components of the proposed method. Any LLM assistance used was solely for writing
and editing purposes and does not impact the scientific rigor or originality of the research.

31

	Introduction
	Preliminaries
	Fourier Neural Operators
	Neural Processes

	Spectral Convolutional Conditional Neural Processes
	Experiments
	Synthetic 1-D Regression
	Predator–Prey Dynamics
	Traffic Flow
	Image Completion

	Related Works
	Conclusion
	Discretization Sensitivity of the DFT
	Experimental Details
	Synthetic 1-D Regression
	Model Architectures
	Data and Experimental Setup

	Predator-Prey Model
	Model Architectures
	Data and Experimental Setup

	Traffic Flow
	Model Architectures
	Data and Experimental Setup

	Image Completion
	Model Architectures
	Data and Experimental Setup

	Ablation Studies

