053

054

Unified (Semi) Unbalanced and Classic Optimal Transport with Equivalent Transformation Mechanism and KKT-Multiplier Regularization

Anonymous Authors¹

Abstract

Semi-Unbalanced Optimal Transport (SemiUOT) shows great promise in matching two probability measures by relaxing one of the marginal constraints. Previous solvers often incorporate an entropy regularization term, which can result in inaccurate matching solutions. To address this issue, we focus on determining the marginal probability distribution of SemiUOT with KL divergence using the proposed Equivalent Transformation Mechanism (ETM) approach. Furthermore, we extend the ETM-based method into exploiting the marginal probability distribution of Unbalanced Optimal Transport (UOT) with KL divergence for validating its generalization. Once the marginal probabilities of UOT/SemiUOT are determined, they can be transformed into a classical Optimal Transport (OT) problem. Moreover, we propose a KKT-Multiplier regularization term combined with Multiplier Regularized Optimal Transport (MROT) to achieve more accurate matching results. We conduct several numerical experiments to demonstrate the effectiveness of our proposed methods in addressing UOT/SemiUOT problems.

1. Introduction

Optimal Transport (OT) technique is a powerful tool for discerning and comparing distinct probability distributions. Nowadays, OT has multiple successful applications in traditional machine learning (Frogner et al., 2015; Feydy et al., 2019; Zhuang et al., 2022; Chuang et al., 2023; Riaz et al., 2023), unsupervised clustering (Asano et al., 2019; Caron et al., 2020), domain adaptation (Damodaran et al., 2018; Courty et al., 2017; Redko et al., 2019), diffusion (Khrulkov et al., 2023; Lipman et al., 2023), generative modeling (Korotin et al., 2023; Onken et al., 2021; Tong et al., 2023) and many others. Nevertheless, directly solving OT distances could have relatively high computation cost with around super-cubic time. Although one can adopt entropybased Sinkhorn algorithm (Cuturi, 2013) for solving OT efficiently, it still suffers from the dilemma of dense and inaccurate solutions (Liu et al., 2023; Lorenz et al., 2021; Dessein et al., 2018). Moreover, classical OT strictly assume that the masses on both source and target domains should be equal. It further hurdles the generalization of OT when the data samples inherit noise or outliers.

Recently, Unbalanced Optimal Transport (UOT) (Benamou, 2003; Chizat, 2017; Séjourné et al., 2023; Scetbon et al., 2023; Séjourné et al., 2022b) and Semi-Unbalanced Optimal Transport (SemiUOT) (Le et al., 2021) have become more attractive in adapting outliers since it allows relaxing marginal constraints for transportation results. UOT adopts several divergences such as Kullback-Leiber (KL) divergence (Pham et al., 2020), ℓ_1 norm (Caffarelli & Mc-Cann, 2010) and ℓ_2 norm (Blondel et al., 2018) for the relaxation on OT mass equality constraints by adjusting the corresponding coefficients τ . Meanwhile, KL divergence is the most commonly-used in UOT formulation in real practice (Séjourné et al., 2022a). UOT also provides great applications in transfer learning (Tran et al., 2023; Mukherjee et al., 2021; Pariset et al., 2023), computer vision (Bonneel & Coeurjolly, 2019; De Plaen et al., 2023; Choi et al., 2023; Neklyudov et al., 2023; Chang et al., 2022; Ma et al., 2021; Zhan et al., 2021), structure data exploration (Sato et al., 2020), natural language processing (Arase et al., 2023) and many areas. Previous solvers always involves extra regularization terms including entropy regularization term and proximal point term (Fatras et al., 2021) for tackling UOT problem. While adding additional entropy terms will lead to dense and inaccurate matching solutions. Latest, (Chapel et al., 2021) and (Nguyen et al., 2023) further reconsider solving UOT problem with majority maximization algorithm without the requirements of regularization terms. However, these methods are sensitive to the choice of τ , i.e., providing sparse and accurate solutions when τ is small, but unsatisfying solutions when τ is much larger. Therefore, it is quite challenging to efficiently exploit accurate solutions for both UOT and SemiUOT problems.

 ¹Anonymous Institution, Anonymous City, Anonymous Region,
 Anonymous Country. Correspondence to: Anonymous Author
 <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

In this paper, we propose a new method, i.e., equivalent transformation mechanism (ETM), which relieves the need for extra regularization terms in solving SemiUOT and 058 UOT with KL divergence. Specifically, ETM first finds 059 the marginal probability distributions for SemiUOT and 060 UOT problems based on Karush-Kuhn-Tucker (KKT) con-061 ditions and their dual forms. We can further observe that 062 the essence of SemiUOT and UOT lies in correspondingly 063 adjusting the initial weights of different data samples. This 064 provides us with new insights for understanding SemiUOT 065 and UOT problems, i.e., we can transform SemiUOT and 066 UOT problems into classic optimal transport problems based 067 on initial marginal weights. Though we can exactly solve 068 the marginal distributions via conventional iterative meth-069 ods, e.g., L-BFGS, we further propose ETM-Approx to 070 achieve the approximate results efficiently and convergently. Moreover, ETM-Refine resolves exact solutions via quasi-Newton optimization where the start points are these approximate solutions. Compared with original ETM, ETM-074 Apporx and ETM-Refine obtain accurate solutions while 075 competitively balancing computational cost. Beyond solv-076 ing the marginal distribution, we also discover that the KKT 077 multipliers provide valuable guidance for addressing the OT 078 problem, which is transformed from the SemiUOT and UOT 079 problems with marginal weights. Therefore we further proposed Multiplier Regularized Optimal Transport (MROT) 080 081 for achieving more sparse and accurate OT matching so-082 lutions. We summarize our contributions: (1) To our best 083 knowledge, we first propose both exact and approximate 084 solutions for ETM on two problems, i.e., SemiUOT and 085 UOT. After optimizing these problems, one can obtain the 086 sample marginal probabilities and transfer SemiUOT/UOT 087 into standard optimal transport problems. (2) We first in-088 novatively propose multiplier constraint terms to establish 089 MGOT for achieving more accurate results. (3) We con-090 duct extensive experiments on both synthetic and real-world 091 datasets to demonstrate the performance of proposed ETM. 092

2. Preliminary

093

105

094 We first provide a brief preliminary definition of OT, UOT 095 and SemiUOT. Let us consider two sets of data samples 096 $X \in \mathbb{R}^{M \times D}$ and $Z \in \mathbb{R}^{N \times D}$ in source and target domains, 097 where M, N denote the number of samples and D denotes 098 the data dimension. Each data samples has corresponding 099 prior-given mass weights $\boldsymbol{a} \in \mathbb{R}^{M \times \hat{1}}$ and $\boldsymbol{b} \in \mathbb{R}^{N \times \hat{1}}$. Mean-100 while the total masses of these data samples are equal as $a^{\top} \mathbf{1}_M = b^{\top} \mathbf{1}_N$. The classical OT problem was defined by (Kantorovich, 1942) with a linear problem to measure the minimum transportation cost among data sample X and Z: 104

$$\min_{\boldsymbol{\pi} \mapsto \geq 0} J_{\mathrm{OT}} = \langle \boldsymbol{C}, \boldsymbol{\pi}
angle \quad \mathrm{s.t.} \; \boldsymbol{\pi} \mathbf{1}_N = \boldsymbol{a}, \quad \boldsymbol{\pi}^\top \mathbf{1}_M = \boldsymbol{b}$$

where $C \in \mathbb{R}^{M \times N}$ denotes the pairwise distance matrix. Meanwhile $\pi \in \mathbb{R}^{M \times N}$ denotes the coupling matching matrix among the data samples X and Z. One can directly solve J_{OT} via utilizing network-flow algorithm (Kennington & Helgason, 1980; Ahuja et al., 1988). To consider more general cases (e.g., filtering out the noise or outliers), one can relax two marginal constraints, i.e., $\pi \mathbf{1}_N \neq \mathbf{a}$ and $\pi^{\top} \mathbf{1}_M \neq \mathbf{b}$, to achieve unbalanced optimal transport problem (Pham et al., 2020):

$$\min_{\pi_{ij}\geq 0} J_{\text{UOT}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \tau_a \text{KL}\left(\boldsymbol{\pi} \boldsymbol{1}_N \| \boldsymbol{a}\right) + \tau_b \text{KL}(\boldsymbol{\pi}^\top \boldsymbol{1}_M \| \boldsymbol{b}),$$

where KL (·) denotes Kullback-Leiber (KL) divergence which has been widely used in dealing with UOT. τ_a and τ_b denote the balanced hyper parameters between the minimizing cost and marginal relaxation. Note that when $\tau_a, \tau_b \to +\infty$ and $\mathbf{a}^\top \mathbf{1}_M = \mathbf{b}^\top \mathbf{1}_N$, UOT problem will turn into classical OT. Moreover, we can add one marginal constraints to formulate SemiUOT. For instance, we relax the constraint $\pi \mathbf{1}_N \neq \mathbf{a}$ and keep the constraint $\pi^\top \mathbf{1}_M = \mathbf{b}$:

$$\min_{\pi_{ij} \geq 0} J_{\text{SemiUOT}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \tau \text{KL} \left(\boldsymbol{\pi} \boldsymbol{1}_N \| \boldsymbol{a} \right) \quad \text{s.t. } \boldsymbol{\pi} \cdot \boldsymbol{1}_M = \boldsymbol{b}$$

Previous researches always add entropy regularization term for solving OT, UOT and SemiUOT. Although entropy regularization term can enhance the scalability of solving π^* , it still suffers from the dense and inaccurate solution dilemma. In the following, we will first investigate the problem of UOT/SemiUOT from the perspective of marginal probability distribution, in order to find out the accurate solution of π^* for OT, UOT and SemiUOT.

3. Methodology

In this section, we will provide the calculation details on finding the solutions for commonly-existed UOT and SemiUOT. Previous methods (Pham et al., 2020; Chizat et al., 2018) always directly adopted entropy-based regularization term into tackling UOT and SemiUOT problem. Although such approaches can provide fast computation speed, it will lead to relatively ambiguous and dense solution which does not match most of situations in real practices (Li et al., 2023; Scetbon et al., 2021). Latest, (Chapel et al., 2021) adopted majorization-minimization algorithm or regularization path for solving UOT/SemiUOT problem. However, majorization-minimization algorithm is sensitive to the choice of τ , and still causes inaccurate and dense solutions when $\tau \to +\infty$. Worse still, regularization path could involve heavy matrix computation on inversion, requiring complicated optimization procedure. To solve the above problem, we change the perspective of solving the UOT/SemiUOT problem, i.e., originally exploiting the marginal probability of UOT/SemiUOT via our proposed Equivalent Transformation Mechanism (ETM) approach. In this way, we can obtain some interesting insights on understanding the intrinsic characteristics of UOT/SemiUOT. Moreover, we further propose KKT-Multiplier Regularization with Multiplier Regularized Optimal Transpor (MROT) with theorems and corollaries to achieve more accurate matching solution on SemiUOT and UOT respectively.

110 **3.1. Equivalent Transformation Mechanism**

In this section, we will first introduce the proposed equivalent transformation mechanism approach. Specifically, we propose an ETM-based method to determine the marginal probabilities of source data samples in SemiUOT, accompanied by detailed illustrations. We then extend the ETM-based method to address the more complex UOT problem.

¹¹⁸ Equivalent Transformation Mechanism for SemiUOT.

119 To start with, we first exploit the marginal probability dis-120 tributions for SemiUOT via the proposed ETM method. 121 Specifically, ETM includes three different approaches, i.e., 122 ETM-Exact, ETM-Approx and ETM-Refine. By utilizing 123 the methods above, one can transform SemiUOT into classic 124 optimal transport problem. In this section, we will intro-125 duce the deduction and optimization details for the proposed 126 ETM-based method on SemiUOT.

Proposition 1.(Principles of Equivalent Transformation129Mechanism for SemiUOT) Given SemiUOT with KL-130Divergence J_{SemiUOT}, one can obtain its Fenchel-Lagrange131multipliers form as:

132

133

134

135

136

137

138

139

140 141 142

153

154

$$\min_{\boldsymbol{f},\boldsymbol{g},\boldsymbol{\zeta}} \left[\tau \sum_{i=1}^{M} a_i e^{-\frac{f_i + \boldsymbol{\zeta}}{\tau}} - \sum_{j=1}^{N} b_j (g_j - \boldsymbol{\zeta}) \right]$$

$$s.t. \ f_i + g_j + s_{ij} = C_{ij}, \quad s_{ij} \ge 0.$$
(1)

where f, g, s and ζ denotes Lagrange multipliers. Moreover, SemiUOT problem can be transformed into classic optimal transport as follows:

$$\min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\mathrm{P}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle \quad s.t. \begin{cases} \boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{a} \odot \exp\left(-\frac{\boldsymbol{f}^{*} + \boldsymbol{\zeta}^{*}}{\tau}\right) = \boldsymbol{\alpha} \\ \boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{b} \end{cases}$$
(2)

143 Note that when $\tau \to \infty$, the source marginal probability can 144 be determined as $\pi \mathbf{1}_N = \omega \mathbf{a}$ where $\omega = \langle \mathbf{b}, \mathbf{1}_N \rangle / \langle \mathbf{a}, \mathbf{1}_M \rangle$.

The proof of Proposition 1 can be found in Appendix A. We can observe that SemiUOT is set to assign different weights on data samples. To further simplify the calculation by reducing variable g, we set $g_j = \inf_{k \in [M]} (C_{kj} - f_k)$ according to the *c*-transform theorem (Villani et al., 2009). Therefore, we only need to optimize f and ζ without additional constraints as follows:

$$\min_{f,\zeta} L_{\rm P} = \tau \sum_{i=1}^{M} a_i e^{-\frac{f_i + \zeta}{\tau}} - \sum_{j=1}^{N} \left[\inf_{k \in [M]} \left[C_{kj} - f_k \right] - \zeta \right] b_j,$$
(3)

155 We refer to $L_{\rm P}$ as the newly proposed *Exact SemiUOT* 156 *Equation*. Specifically, we initialize $\zeta = 0$ for the opti-157 mization. We first fix ζ then adopting L-BFGS method 158 (Berahas et al., 2016; Virtanen et al., 2020) to reach optimal 159 results of f^{ℓ} and $g_j^{\ell} = \inf_{k \in [M]} (C_{kj} - f_k^{\ell})$ at the ℓ -th iteration. Then we optimize $\zeta = \tau [\log(\sum_{i=1}^M a_i \exp(-f_i^{\ell}/\tau)) - \log(\sum_{j=1}^N b_j)]$ which is obtained by considering $\nabla_{\zeta} L_{\rm P} = 0$ 160 161 162 and it guarantees $\sum_{i=1}^{M} a_i e^{-(f_i^{\ell}+\zeta)/\tau} = \sum_{j=1}^{N} b_j$. We it-163 164

eratively update L_U to reach the optimal solution on ζ^* , f^* and g^* . Here we refer to the entire optimization procedure as the ETM-Exact approach for addressing the Exact Semi-UOT Equation. Although L_P is convex and has unique solutions, the presence of $\inf(\cdot)$ renders it a nonsmooth function, leading to inefficient optimization (An et al., 2022). To further accelerate the optimization process, we consider to make a smooth approximation on replacing $\inf(\cdot)$ as $\inf_{k \in [M]} [C_{kj} - f_k] \approx -\epsilon \log[\sum_{k=1}^{M} e^{\frac{f_k - C_{kj}}{\epsilon}}]$. Note that $\epsilon > 0$ denotes the balanced hyper parameters among the accuracy and function smoothness. Smaller ϵ (e.g., ϵ approaches to 0) could lead to more accurate while less smooth solutions. Then we can obtain the proposed *Approximate SemiUOT Equation* as \hat{L}_P by replacing $\inf(\cdot)$ with the smoothness term for \hat{f} as below:

$$\min_{\widehat{f},\zeta} \widehat{L}_{\mathrm{P}} = \tau \sum_{i=1}^{M} a_i e^{-\frac{\widehat{f}_i + \zeta}{\tau}} + \sum_{j=1}^{N} b_j \left[\log \left[\sum_{k=1}^{M} e^{\frac{\widehat{f}_k - C_{kj}}{\epsilon}} \right]^{\epsilon} + \zeta \right]$$
(4)

Proposition 2. (Calculation for Approximate SemiUOT Equation) Given Approximate SemiUOT equation $\hat{L}_{\rm P}$, it can be optimized via Equivalent Transformation Mechanism with Approximation (ETM-Approx). That is, ETM-Approx aims to solve the following equation for each \hat{f}_s :

$$\frac{\partial \widehat{L}_{\mathrm{P}}}{\partial \widehat{f}_{s}} = -a_{s}e^{-\frac{\widehat{f}_{s}+\zeta}{\tau}} + e^{\frac{\widehat{f}_{s}}{\epsilon}}\sum_{j=1}^{N} \left[\frac{b_{j}\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\sum_{k=1}^{M}\exp\left(\frac{\widehat{f}_{k}-C_{kj}}{\epsilon}\right)}\right] = 0.$$
(5)

Specifically, we can adopt fixed-point iteration method for solving Eq.(5) at the ℓ -th iteration as follows:

$$\begin{cases} \widehat{f}_{1}^{\ell+1} = \nu \left[\log \left(a_{1} e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j} e^{-C_{1j}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right] \\ \vdots \\ \widehat{f}_{M}^{\ell+1} = \nu \left[\log \left(a_{M} e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j} e^{-C_{Mj}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right], \end{cases}$$
(6)

where $\nu = \tau \epsilon / (\tau + \epsilon)$ for simplification and $\mathscr{W}_{\epsilon,j}(\mathbf{f}^{\ell})$ denotes the corresponding calculation as shown below:

$$\mathscr{W}_{\epsilon,j}(\widehat{\boldsymbol{f}}^{\ell}) = \sum_{k=1}^{M} \exp\left(\frac{\widehat{f}_k^{\ell} - C_{kj}}{\epsilon}\right).$$
(7)

The proposed procedure can be convergence with theoretical guarantee after \mathcal{T} -th inner iteration. Finally, updating variable ζ by further considering $\nabla_{\zeta} \hat{L}_{\rm P} = 0$ via $\zeta = \tau [\log(\sum_{i=1}^{M} a_i \exp(-\hat{f}_i^*/\tau)) - \log(\sum_{j=1}^{N} b_j)]$. One can achieve the optimal solution on \hat{f} and ζ accordingly.

The proof of Proposition 2 can be found in Appendix B. Generally, Proposition 2 outlines the optimization procedure using the newly proposed ETM-Approx approach for addressing the Approximate Semi-UOT Equation. We can observe that the ETM-Approx approach is easy to compute

180 Figure 1. The SemiUOT matching solutions on π^* when $\tau = 0.1$ or $\tau = 100$ among the Robust-SemiSinkhorn (Le et al., 2021) and our proposed ETM + MROT-Ent, ETM + MROT-Norm with $\eta_G = 10^2$ and $\epsilon = 10^{-2}$. We set $\eta_{\text{Reg}} = 0.1$ for entropy or L_2 -norm 181 182 regularization term. Our proposed method can avoid ambiguous matching solution and achieve more accurate results.

183 and implement, while avoiding complex calculations (such 184 as finding the step size and estimating the Hessian matrix) 185 and not requiring a large amount of storage space against 186 previous methods. Therefore, the ETM-Approx approach is 187 an efficient method for determining the optimal result of f^* 188 and $\hat{g}_{j}^{*} = -\epsilon \log[\sum_{k=1}^{M} \exp((\hat{f}_{k}^{*} - C_{kj})/\epsilon)]$, transforming SemiUOT into a classical optimal transport problem. 189 190

Moreover, we can finally figure out the exact optimal so-191 lution f^* via the approximate optimal solution \hat{f}^* on $\hat{L}_{\rm P}$ using Proposition 2. That is, if we directly optimize $L_{\rm P}$ 193 from a randomly initial point, we could cost more time on gradient descent for reaching f^* . Since \hat{f}^* is close to f^* , 195 196 it should be more efficient to use \widehat{f}^* as the initial guess 197 for optimizing f^* in the quasi-Newton optimization proce-198 dure on $L_{\rm P}$ (Jin & Mokhtari, 2021; 2023; Rodomanov & 199 Nesterov, 2021) and we regard it as ETM-Refine method. 200 In summary, one can utilize ETM-based approach (e.g., 201 ETM-Exact, ETM-Approx and ETM-Refine) to transform 202 SemiUOT into classic optimal transport problem. We also summarize the optimization details in Appendix C. 204

Equivalent Transformation Mechanism for UOT. We have obtained the marginal probability of SemiUOT via tack-206 ling Proposition 1 with proposed ETM-based method. In this section, we will further extend our methods for solving 208 the marginal probability on UOT which is also a commonly 209 exist optimization problem. That is, we will generalize 210 ETM-based method on solving UOT problem accordingly. 211

Proposition 3. (Principles of Equivalent Transformation Mechanism for UOT) Given UOT with KL-Divergence 214 J_{UOT} , its Fenchel-Lagrange multipliers form is given: 215

216
217
218
218
219

$$\mathbf{u}, \mathbf{v}, \zeta \left[\tau_a \sum_{i=1}^M a_i e^{-\frac{u_i + \zeta}{\tau_a}} + \tau_b \sum_{j=1}^N b_j e^{-\frac{v_j - \zeta}{\tau_b}} \right]$$
(8)
 $s.t. \ u_i + v_j + s_{ij} = C_{ij}, \quad s_{ij} \ge 0.$

219
$$s.t. u_i + v_j + s_{ij} = C_{ij}, \quad s_{ij}$$

where u, v, s and ζ denotes Lagrange multipliers. Moreover, UOT problem can also be transformed into classic optimal transport as follows:

$$\min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\mathrm{U}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle \ s.t. \begin{cases} \boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{a} \odot \exp\left(-\frac{\boldsymbol{u}^{*} + \zeta^{*}}{\tau_{a}}\right) = \boldsymbol{\alpha} \\ \boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{b} \odot \exp\left(-\frac{\boldsymbol{v}^{*} - \zeta^{*}}{\tau_{b}}\right) = \boldsymbol{\beta} \end{cases}$$
(9)

Note that when $\tau_a, \tau_b \to \infty$, the source and target marginal probability can be determined as $\pi \mathbf{1}_N = \sqrt{\omega} \mathbf{a}$ and $\pi^{\top} \mathbf{1}_M = \mathbf{b}/\sqrt{\omega}$ where $\omega = \langle \mathbf{b}, \mathbf{1}_N \rangle / \langle \mathbf{a}, \mathbf{1}_M \rangle$ respectively.

The proof of Proposition 3 can be found in Appendix D. Likewise, we set $v_j = \inf_{k \in [M]} (C_{kj} - u_k)$ according to the c-transform theorem (Villani et al., 2009) to simplify the calculation. Therefore we can obtain Exact UOT Equation:

$$\min_{\boldsymbol{u},\zeta} L_{\mathrm{U}} = \tau_{a} \sum_{i=1}^{M} a_{i} e^{-\frac{u_{i}+\zeta}{\tau_{a}}} + \tau_{b} e^{\frac{\zeta}{\tau_{b}}} \sum_{j=1}^{N} b_{j} e^{\frac{\sup_{k \in [M]} (u_{k}-C_{kj})}{\tau_{b}}}.$$
(10)

We first fix ζ then adopting L-BFGS method to optimize L_U . Then we optimize $\zeta = \kappa [\log(\sum_{i=1}^M a_i \exp(-u_i^{\ell}/\tau_a)) - \log(\sum_{j=1}^N b_j \exp(-v_j^{\ell}/\tau_b))]$ at the ℓ -th iteration where $v_j^{\ell} = \inf_{k \in [M]} (C_{kj} - u_k^{\ell})$ and $\kappa = \tau_a \tau_b / (\tau_a + \tau_b)$ by considering $\nabla_{\zeta} L_{\rm U} = 0$. Here we regard the above process as the ETM-Exact approach for solving UOT problem. Note that the non-smooth function $\sup(\cdot)$ will result in inefficient optimization. However, if we directly apply the similar function approximation to replace $\sup(\cdot)$ following Eq.(4), the optimization problem becomes quite complex, making it relatively difficult to determine the iterative solutions. Meanwhile Proposition 2 enlightens us with a completely new ETM-Approx approach for optimizing UOT.

Optimization 1. (Calculation of ETM-Approx approach for UOT) Since the optimization problem in Eq.(8) is convex, we can also utilize block gradient descend to optimize the

221 222 223 224 225 227 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 261 263 264 265 266 267 268 269 270

272

273

274

220

Figure 2. The UOT matching solutions on π^* when $\tau_a = \tau_b = 0.1$ or $\tau_a = \tau_b = 100$ among the Ent-UOT (Pham et al., 2020), MM-UOT (Chapel et al., 2021), GEMUOT (Nguyen et al., 2023) and our proposed ETM + MROT-Norm with $\eta_G = 10^2$ and $\eta_{\text{Reg}} = 0.1$.

problem. Specifically, we first fix \hat{v}^l and optimize variable \hat{u}^l at the *l*-th iteration by replacing the original marginal probability **b** in Eq.(4) with $\mathbf{b} \odot \exp(-(\hat{v} - \zeta)/\tau_b) = \beta$ accordingly to transform UOT into SemiUOT problem:

$$\min_{\hat{\boldsymbol{u}}} \widehat{L}_{\mathrm{U}}^{\boldsymbol{u}} = \tau_a \sum_{i=1}^{M} a_i e^{-\frac{\widehat{u}_i + \zeta}{\tau_a}} + \sum_{j=1}^{N} \beta_j \left[\log \left[\sum_{k=1}^{M} e^{\frac{\widehat{u}_k - C_{kj}}{\epsilon}} \right]^{\epsilon} + \zeta \right]$$
(11)

Note that it is equivalent to solve the following equation by taking the differentiation w.r.t. on \hat{u}_s over \hat{L}_{U}^{u} and set it 0:

$$\frac{\partial \hat{L}_{\mathrm{U}}^{u}}{\partial \hat{u}_{s}} = -a_{s}e^{-\frac{\hat{u}_{s}+\zeta}{\tau_{a}}} + e^{\frac{\hat{u}_{s}}{\epsilon}} \sum_{j=1}^{N} \left[\frac{\beta_{j} \exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\sum_{k=1}^{M} \exp\left(\frac{\hat{u}_{k}-C_{kj}}{\epsilon}\right)} \right] = 0.$$
(12)

Obviously, it is equivalent to replace **b** with β in Eq.(5) for solving Eq.(12). Then we can utilize the iteration step shown in Eq.(6) to obtain \hat{u}^{l+1} . After that we fix \hat{u}^{l+1} and optimize variable \hat{v}^{l+1} via $\hat{v}_j^{l+1} = -\epsilon \log[\sum_{k=1}^{M} \exp((\hat{u}_k^{l+1} - C_{kj})/\epsilon)]$. We can achieve the optimal solution on \hat{u}^* and \hat{v}^* via iteratively computing via the above procedure accordingly. Finally, we update variable ζ via considering $\zeta = (\tau_a \tau_b/(\tau_a + \tau_b))[\log(\sum_{i=1}^{M} a_i \exp(-\hat{u}_i^*/\tau_a)) - \log(\sum_{j=1}^{N} b_j \exp(-\hat{v}_j^*/\tau_b))]$. Due to the space limits, the deduction details are provided in Appendix E.

In summary, Optimization 1 for solving the UOT can be seen as an extension of Proposition 2 applied to SemiUOT, demonstrating the robust generalization capability of the proposed ETM method. Likewise, one can utilize \hat{u}^* and \hat{v}^* as the initial guess for solving Exact UOT Equation on Eq.(10) as ETM-Refine. Hence, UOT can be transformed into classic optimal transport using the ETM-based method.

3.2. KKT-Multiplier Regularization

According to the Proposition 1-3 that discussed in Section 3.1, we have figured out the marginal probability distributions on both UOT and SemiUOT with commonly used KL Divergence via proposed ETM-based method. Motivated by this, we can observe that the core mechanism of UOT/SemiUOT is carefully reweighting the weights of different samples accordingly. If the samples are noise or outliers, the corresponding weights will be much smaller than the corresponding weights among similar data samples. Therefore, UOT/SemiUOT has better adaptability than traditional OT that commonly treats all data samples equally. In this section, we will further exploit the matching results of π for SemiUOT and UOT using the following corollary:

Corollary 1. Given any UOT/SemiUOT with KL divergence, we can transfer the original problem into classical optimal transport via adopting proposed ETM approach flexibly. We can further utilize existing OT solver for solving π^* as: (UOT, SemiUOT) $\stackrel{\text{ETM Method}}{\longrightarrow} \text{OT} \stackrel{\text{OT Solver}}{\longrightarrow} \pi^*$.

This observation provides us with entirely new unified insights into solving the matching results of π^* for UOT and

sights into solving the matching results of π^* for UOT and SemiUOT. It is essential to utilize the proposed ETM-based method, as it offers a variety of OT solvers that yield more efficient and accurate results than directly optimizing UOT or SemiUOT. Specifically, one can further adopt Sinkhorn (Cuturi, 2013; Carlier, 2022), ℓ_2 -norm term (Blondel et al., 2018) or some other sparsification OT solver (Liu et al., 2023; Genevay et al., 2016) with different regularization terms to achieve the transportation solution on π^* .

Although previous efficient OT solvers (e.g., Sinkhorn (Cuturi, 2013)) could figure out π^* efficiently, they often produce ambiguous matching results that may deviate significantly from the correct solutions (Montesuma et al., 2023; Liu et al., 2023). Therefore, finding an accurate matching solution for π^* efficiently remains a challenge. Recalling the whole process of ETM-based approach, we not only obtain the marginal probabilities for each data sample, but also derive the multipliers *s* which can be further utilized.

Corollary 2. Given the optimal u^* and v^* in UOT via \overline{ETM} -based approach, one can obtain s on UOT by $s_{ij} = \max(0, C_{ij} - u_i^* - v_j^*)$. Likewise, the multipliers s on SemiUOT can be obtained via ETM-based approach as $s_{ij} = \max(0, C_{ij} - f_i^* - g_j^*)$. Multipliers s indicates the

275 value of π , i.e., (case 1) $s_{ij} > 0$ when $\pi_{ij} = 0$ and (case 2) 276 $s_{ij} = 0$ when $\pi_{ij} > 0$ according to the KKT conditions.

The Corollary 2 demonstrates that the value of π_{ij} can be reflected via s_{ij} . This observation inspires us to further utilize such useful information in calculating π^* .

281 **Proposition 4.** (The Definition and Usage of KKT-282 Multiplier Regularization) Given any OT with multiplier 283 s, one can obtain accurate solution π^* via proposed KKT-284 multiplier regularization term $\mathcal{G}(\pi, s) = \langle \pi, s \rangle$, which for-285 mulates Multiplier Regularized Optimal Transport (MROT):

286

287

289

296

297

298

314

315

$$\min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\mathrm{G}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \eta_{G} \langle \boldsymbol{\pi}, \boldsymbol{s} \rangle + \eta_{\mathrm{Reg}} \mathcal{L}_{\mathrm{Reg}}(\boldsymbol{\pi})$$

s.t. $\boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{\beta},$ (13)

where $\mathcal{L}_{\text{Reg}}(\pi)$ denotes the regularization term on π . α , β denote the final marginal probabilities obtained by ETMbased approach and η_{Reg} , η_G denotes the hyper parameter. Ideally, η_G should be set as a relatively large number. Meanwhile the dual form of MROT is given as:

$$\max_{\boldsymbol{\psi},\boldsymbol{\phi}} L_{\mathrm{G}} = \langle \boldsymbol{\alpha}, \boldsymbol{\psi} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{\phi} \rangle - \eta_{\mathrm{Reg}} \mathcal{L}_{\mathrm{Reg}}^* \left(\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\mathrm{Reg}}} \right)$$
(14)

(14) where $\tilde{C}_{ij} = C_{ij} + \eta_G s_{ij}$ and ϕ and ψ denote the Lagrange multipliers for MROT. $\mathcal{L}^*_{\text{Reg}}(\cdot)$ denotes the conjugate function of $\mathcal{L}_{\text{Reg}}(\cdot)$ and one can figure out the matching results of π via solving $\nabla_{\pi_{ij}} \mathcal{L}_{\text{Reg}}(\pi_{ij}) = (\psi_i + \phi_j - \tilde{C}_{ij})/\eta_{\text{Reg}}$. The deduction process of MROT can be found in Appendix G. That is, minimizing $s_{ij}\pi_{ij}$ to 0 could result in $s_{ij}\pi_{ij} = 0$ which is consistent with the KKT complementary condition.

Generally, we can adopt different kinds of regularization term $\mathcal{L}_{\text{Reg}}(\cdot)$ on MROT for optimization. For instance, one can use the widely adopted entropy regularization term $\mathcal{L}_{\text{Reg}}(\pi) = -\langle \pi, \log(\pi) - 1 \rangle$ to formulate Entropic Multiplier Regularized Optimal Transport (MROT-Ent). The matching results of π in MROT-Ent can be obtained as:

$$\pi_{ij} = \exp\left(-\frac{\eta_G s_{ij}}{\eta_{\text{Reg}}}\right) \exp\left(\frac{\psi_i + \phi_j - C_{ij}}{\eta_{\text{Reg}}}\right) \qquad (15)$$

Obviously, the multipliers information s has been involved 317 for achieving more accurate solutions. Specifically, the 318 non-matching samples pairs will get lower value on π_{ij} 319 320 since $\mathcal{G}(\boldsymbol{\pi}, \boldsymbol{s}) = \langle \boldsymbol{\pi}, \boldsymbol{s} \rangle$ avoids rigorous results. Otherwise, the matching results on π_{ij} will mainly be determined by the transportation cost. Similarly, one can also adopt L_2 norm regularization term $\mathcal{L}_{\text{Reg}}(\boldsymbol{\pi}) = \frac{1}{2} \langle \boldsymbol{\pi}, \boldsymbol{\pi} \rangle$ to formulate 323 Sparse Multiplier Regularized Optimal Transport (MROT-324 325 Norm) with similar characteristics. More discussions on MROT-Norm can be found in Appendix. In conclusion, we can integrate the ETM-based approach with MROT method to solve UOT and SemiUOT, achieving accurate results for both marginal probabilities and the matching solution π_{ij} . 329

4. Related Works

Unbalanced and Semi-Unbalanced Optimal Transport. (1) Related works on UOT: UOT with KL divergence has been widely investigated for dealing with diverse applications (Peyré et al., 2019; De Plaen et al., 2023; Séjourné et al., 2019; Le et al., 2022). Different types of UOT solutions can be distinguished in terms of using entropy regularization term or not. Involving entropy in UOT can enhance the model scalability, yet resulting in dense matching results (Sinkhorn & Knopp, 1967; Balaji et al., 2020). Latest, (Chapel et al., 2021) further considers UOT without entropy terms by Majorization-Minimization (MM) (Chizat et al., 2018; Sun et al., 2016) or regularization path methods (Mairal & Yu, 2012; Massias et al., 2018; Liu & Nocedal, 1989). However, the nature of MM algorithm inherits inexact proximal point of KL term (Xie et al., 2020), which still causes dense mapping when τ becomes larger. Meanwhile regularization path methods could be quite slow in computation especially when $\tau \to +\infty$. Furthermore, as the number of samples increases, it can lead to high storage space consumption which can be problematic. (2) Related works on SemiUOT: SemiUOT with KL divergence only relaxes one of the marginal constraints comparing with UOT. (Le et al., 2021) first fully investigated the corresponding problem and proposed Robust-SemiSinkhorm algorithm. Nevertheless, it still suffers from inaccurate matching solutions with entropy regularization term. Currently, there only exists extremely few works for solving SemiUOT (Montesuma et al., 2024). Therefore, how to efficiently provide accurate solution on both UOT and SemiUOT is still a challenging problem.

5. Experiments

In this section, we conduct experiments on both synthetic and real-world datasets to evaluate our proposed methods.

5.1. Experimental setup

Synthetic Datasets. We first conduct the experiments on the synthetic datasets. That is, we set the source and target domain distributions as $\mathbb{P}_X = \mathcal{N}\left(\begin{bmatrix} -1\\ -1 \end{bmatrix}, \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right)$ and $\mathbb{P}_Z = \mathcal{N}\left(\begin{bmatrix} 4\\ 4 \end{bmatrix}, \begin{bmatrix} 1\\ -0.8 & 1 \end{bmatrix}\right)$ following previous works (Flamary et al., 2021; Chapel et al., 2021). We will sample a number of source and target data via $\boldsymbol{x} \sim \mathbb{P}_X$ and $\boldsymbol{z} \sim \mathbb{P}_Z$ respectively to establish the synthetic datasets.

Datasets for Domain Adaptation. We conduct the unsupervised domain adaptation tasks on *Digits* (Lecun et al., 1998; Hull, 2002; Netzer et al., 2011), *Office-Home* (Venkateswara et al., 2017), and *VisDA* (Peng et al., 2018). More details on these datasets are provided in Appendix H.

Baselines. We compare ETM-Refine with MGOT method with the following state-of-the-art UOT/SemiUOT solvers on the synthetic datasets. (1) **Ent-UOT** (Pham et al., 2020)

Submission and Formatting Instructions for ICML 2025

Table 1. Classification accuracy (%) on Office-Home for UDA and Partial UDA

	Method for Partial UDA	$Ar \rightarrow Cl$	$Ar \rightarrow Pr$	$Ar{\rightarrow}Rw$	$Cl{\rightarrow}Ar$	$Cl{\rightarrow}Pr$	$Cl{\rightarrow}Rw$	$Pr \rightarrow Ar$	$Pr \rightarrow Cl$	$Pr{\rightarrow}Rw$	$Rw{\rightarrow}Ar$	$Rw{\rightarrow}Cl$	$Rw{\rightarrow}Pr$	Avg
	ResNet (He et al., 2016)	46.3	67.5	75.9	59.1	59.9	62.7	58.2	41.8	74.9	67.4	48.2	74.2	61.4
	ETN (Cao et al., 2019)	59.2	77.0	79.5	62.9	65.7	75.0	68.3	55.4	84.4	75.7	57.7	84.5	70.5
	JUMBOI (Fatras et al., 2021)	62.7	77.5	84.4	76.0	73.3	80.5	74.7	60.8	85.1	80.2	66.5	83.9	75.5
	AR (Gu et al., 2021)	67.4	85.3	90.0	77.3	70.6	85.2	79.0	64.8	89.5	80.4	66.2	86.4	78.3
	m-POT (Nguyen et al., 2022)	64.6	80.6	87.2	76.4	77.6	83.6	77.1	63.7	87.6	81.4	68.5	87.4	78.0
	MOT (Luo & Ren, 2023)	63.1	86.1	92.3	78.7	85.4	89.6	79.8	62.3	89.7	83.8	67.0	89.6	80.6
-	MOT + UOT(ETM + MROT-Ent)	65.2	87.3	92.8	79.5	86.4	91.0	80.8	64.5	90.7	84.5	67.9	90.4	81.8
	MOT + UOT(ETM + MROT-Norm)	65.8	88.0	93.1	79.9	86.2	91.3	81.4	64.9	91.2	84.9	68.3	90.7	82.1
	MOT + SemiUOT(Robust-SemiSinkhorn)	66.0	88.2	93.0	80.5	86.8	91.5	81.3	65.2	91.6	85.2	68.5	90.9	82.4
	MOT + SemiUOT(ETM + MROT-Ent)	68.6	90.4	94.2	83.7	89.5	93.9	83.5	67.4	93.9	88.4	71.8	92.1	84.8
	MOT + SemiUOT(ETM + MROT-Norm)	69.1	90.7	94.6	84.0	90.3	94.0	83.8	67.9	94.4	88.5	71.3	93.6	85.2
	Method for UDA	Ar→Cl	$Ar \rightarrow Pr$	$Ar{\rightarrow}Rw$	$Cl \rightarrow Ar$	$Cl{\rightarrow}Pr$	$Cl{\rightarrow}Rw$	$Pr \rightarrow Ar$	$Pr \rightarrow Cl$	$Pr {\rightarrow} Rw$	$Rw{\rightarrow}Ar$	$Rw{\rightarrow}Cl$	$Rw{\rightarrow}Pr$	Avg
	ResNet (He et al., 2016)	34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
	DeepJDOT (Damodaran et al., 2018)	50.7	68.6	74.4	59.9	65.8	68.1	55.2	46.3	73.8	66.0	54.9	78.3	63.5
	ROT (Balaji et al., 2020)	47.2	71.8	76.4	58.6	68.1	70.2	56.5	45.0	75.8	69.4	52.1	80.6	64.3
	JUMBOT (Fatras et al., 2021)	55.2	75.5	80.8	65.5	74.4	74.9	65.2	52.7	79.2	73.0	59.9	83.4	70.0
	JUMBOT + UOT(MMUOT)	56.3	76.2	81.6	66.0	75.3	75.1	66.4	52.9	79.2	73.8	60.7	84.1	70.6
	JUMBOT + UOT(GEMUOT)	57.5	77.4	82.7	67.2	76.0	75.6	66.1	54.5	80.5	74.9	61.8	85.2	71.6
	JUMBOT + UOT(ℓ_2 -Norm Solver)	57.0	76.7	81.8	66.1	74.5	75.5	65.9	53.4	79.6	74.2	60.6	83.3	70.7
	JUMBOT + UOT(Sparse Solver)	57.8	77.1	82.3	66.7	76.2	75.8	67.0	54.1	80.7	75.4	61.3	84.6	71.5
-	JUMBOT + UOT(ETM + MROT-Ent)	59.0	78.5	83.4	68.7	77.1	77.6	68.3	57.2	82.4	76.2	62.5	86.4	73.1
	JUMBOT + UOT(ETM + MROT-Norm)	59.4	78.7	84.1	68.5	77.3	78.5	68.6	57.9	82.8	76.3	62.5	86.5	73.4

Table 2. Classification accuracy (%) on Digits (Source: LeNet) and VisDA dataset (Source:ResNet50) for UDA task

Method	$S{\rightarrow}M$	M→U	$U{ ightarrow}M$	Avg	VisDA
Source	68.3 ± 0.3	65.3 ± 0.5	$\begin{array}{c} 66.2{\pm}0.2\\ 96.4{\pm}0.3\\ 98.2{\pm}0.1 \end{array}$	66.6	52.4
DeepJDOT (Damodaran et al., 2018)	95.4 ± 0.1	95.6 ± 0.4		95.8	68.0
JUMBOT (Fatras et al., 2021)	98.9 ± 0.1	96.7 ± 0.5		97.9	72.5
JUMBOT + UOT(ETM + MROT-Ent)	99.4±0.1	$^{98.7\pm0.3}_{99.3\pm0.2}$	$99.2{\pm}0.1$	99.1	73.6
JUMBOT + UOT(ETM + MROT-Norm)	99.7±0.1		$99.6{\pm}0.1$	99.5	74.2

tilizes the entropy regularization term on tackling UOT problem. (2) **MMUOT** (Chapel et al., 2021) adopts majority maximization algorithm for solving UOT. (3) **GEMUOT** (Nguyen et al., 2023) adopts ℓ_2 -norm term for reaching transport solutions on UOT which is the state-of-the-art approach. (4) **Robust-SemiSinkhorn** (Le et al., 2021) adopts the entropy regularization term for solving SemiUOT problem. We also involve **DeepJDOT** (Damodaran et al., 2018), **ROT** (Balaji et al., 2020), **JUMBOT** (Fatras et al., 2021), **ETN** (Cao et al., 2019), **AR** (Gu et al., 2021), **m-POT** (Nguyen et al., 2022), **MOT** (Luo & Ren, 2023) as the model baselines for the domain adaptation task. The model details will be provided in Appendix.I.

Implemented details. For both synthetic and real-world datasets, we set $\epsilon = 0.01$ on both $\hat{L}_{\rm U}$ and $\hat{L}_{\rm P}$. We set $\eta_G = 10^2$ and $\eta_{\rm Reg} = 0.1$ for MROT in the calculation. The initial value of $\hat{u}^{(0)}$ and $\hat{f}^{(0)}$ as set as zero vectors. The initial sample weights are set to be equal, i.e., $a_i = \frac{1}{M}$ and $b_j = \frac{1}{N}$. And we adopt square Euclidean distance for the cost C_{ij} . Besides, we follow the same framework and experimental settings as UDA model **JUMBOT** (Fatras et al., 2021) for domain adaptation. Meanwhile, we adopt the same framework and experimental settings as partial UDA model **MOT** (Luo & Ren, 2023) for partial domain adaptation. For all the experiments, we perform five random experiments and report the average results.

5.2. Performance on Synthetic and Real-World Datasets

Performance on Synthetic Datasets. We sample 50 data samples on both source and target distributions for find-

ing π^* on UOT/SemiUOT. We first set $\tau = \{0.1, 100\}$ on SemiUOT and the matching solutions are shown in Fig. 1(a)-(b). Note that we randomly sample 20% of noise in the source datasets. We can observe that previous method Robust-SemiSinkhorn could lead to ambiguious results. Our proposed ETM-Refine with MROT+Ent can reach relatively clear results even if τ is large (e.g., $\tau = 100$). More importantly, ETM-Refine with MROT+Norm can achieve more precise results comparing with ETM-Refine with MROT+Ent shown in Fig.1. Then we also set $\tau_a = \tau_b =$ $\{0.1, 100\}$ on UOT and the matching solutions are shown in Fig.2(a)-(b). From that we can observe: (1) Ent-UOT could merely provide dense transport solutions which are inaccurate. (2) MMUOT obtains relatively accurate solutions when τ is small. However, **MMUOT** cannot better handle the case when τ is large (e.g., $\tau = 100$) due to the deterioration of majority maximization algorithm. (3) GEMUOT can even reach more sparse matching solution against Ent-UOT and **MMUOT** with the aid of ℓ_2 -norm term. However, the matching results obtained from GEMUOT remain coarse and ambiguous, especially when τ is large. (4) ETM-Refine with MGOT-Norm can reach more accurate results with a smaller error compared to the standard UOT solutions.

Performance on Real-World Datasets. We further conduct the experiments on the real-world datasets to validate the our proposed method. The experimental UDA task results on *Office-Home*, *Digits* and *VisDA* are shown in Table.1 and Table.2. We also directly adopt ℓ_2 -norm (Blondel et al., 2018) and sparse solver (Liu et al., 2023) on solving \mathcal{J}_U . We can observe that replacing entropy-based UOT with other regularization term (e.g., **GEMUOT** or \mathcal{J}_U with ℓ_2 -norm) could lead to better results. Moreover, our proposed ETM-Refine with MROT obtains the best performance, which indicates the method efficacy for finding more accurate results. Then we adopt the same experimental protocol as **MOT** to establish the partial UDA task where target label space is a subset of source label space and it is more challenging than classic UDA task (Cao et al., 2018; Luo et al., 2020). The

380

381

382

383

384

Submission and Formatting Instructions for ICML 2025

Figure 4. The effects on tuning different values of $\epsilon = \{0.01, 0.1\}$ with the loss descent curve and computation error $e_{\alpha} = ||\hat{\alpha} - \alpha^*||_{\infty}$ for the proposed ETM-Approx methods on solving SemiUOT and UOT problems.

partial UDA results on Office-Home are also shown in Ta-404 405 ble.1. We can easily observe that MOT + SemiUOT (ETM + MROT-Norm) achieves the best performance on the partial 406 UDA task. UOT relaxes the dual transportation constraints, 407 thus resulting in that some target samples cannot be trans-408 ported to the source domain. Meanwhile, SemiUOT could 409 overcome the mentioned issue while avoid negative transfer 410 in partial UDA, which boosts the model performance. We 411 also conduct more experiments with applications and please 412 kindly refer to Appendix.I, J, K for more details. 413

414 415 **5.3. Analysis**

416 Solver Comparison. To further analyses the proposed 417 ETM-based method with MROT, we conduct the solver com-418 parison on the aspects of computation time, computation 419 error, and model performance on real-world datasets. We 420 first sample the same number of source/target data samples 421 from \mathbb{P}_X and \mathbb{P}_Z respectively. Then we conduct the experi-422 ments on both UOT and SemiUOT with $\tau_a = \tau_b = \tau = 1$ 423 and the results are shown in Fig.3(a)-(b). We can con-424 clude that ETM-Exact with MROT-Norm is most time-425 consuming. Meanwhile ETM-Refine reaches similar com-426 putation time with ETM-Approx suggests that utilizing \widehat{u}^* 427 or \hat{f}^* could accelerate the process for finding u^* or f^* via 428 L-BFGS algorithm. Moreover, we calculate the computa-429 tion error e between matching solution π learned by ETM 430 with MROT and the standard UOT/SemiUOT solution with 431 CVXPY as π^* via absolute error $e = \sum_{i,j} ||\pi_{ij} - \pi^*_{ij}||_1$. 432 We sample 500 number of data samples ranging from 433 $\tau_a = \tau_b = \tau = \{0.01, 0.1, 1, 10, 100\}$ for calculation and 434 the results are shown in Fig.3(c)-(d). We can observe that 435 although ETM-Approx with MROT-Ent has the fastest com-436 putation speed, the provided results π still have the highest 437 error compared to the ground truth π^* . Meanwhile ETM-438 Refine with MROT-Norm can further reach more accurate 439

solutions against MROT-Ent. We also collect the computation error on UOT using **MMUOT** and **GEMUOT**. We can observe that our propose ETM-Refine method achieves much better results, especially when τ is relatively large, which is consistent with our discovery in Fig.1-Fig.2.

Parameter sensitivity. We finally study the effects of hyperparameters on model performance. We tune ϵ in range of $\epsilon \in \{0.01, 0.1\}$ and show the results in Fig.4(a)-(d). We can observe that smaller ϵ could provide good approximation on UOT/SemiUOT, reducing the iteration steps for optimizing $L_{\rm U}$ and $L_{\rm P}$. Although ϵ could hardly effect the performance on ETM-Refine, larger value on ϵ could consume more iteration steps for solving $L_{\rm U}$ and $L_{\rm P}$ since the initial values are less accurate. Additionally, we collect the computation error $e_{\alpha} = ||\hat{\alpha} - \alpha^*||_{\infty}$, which measures the discrepancy between the marginal probability learned via ETM-Approx $\hat{\alpha}$ and the ground truth α^* . Larger values of ϵ may fail to reduce the computation error e_{α} when compared to smaller values of ϵ . Hence we set $\epsilon = 0.01$ empirically and more experimental results can be found in Appendix.L, M.

6. Conclusion

In this paper, we propose Equivalent Transformation Mechanism (ETM) approach with ETM-Exact, ETM-Approx and ETM-Refine to solve the marginal probabilities of SemiUOT and UOT. We illustrate that the essence of UOT/SemiUOT is reweighting data samples accordingly and thus UOT/SemiUOT problem can be transformed into standard optimal transport. Moreover, we propose KKT-Multiplier Regularization with Multiplier Regularized Optimal Transport (MROT) to obtain more accurate solutions. We conduct experiments to demonstrate the superior performance of our proposed ETM with MROT, on both synthetic and real-world datasets of different tasks and applications.

7. Potential Broader Impact

This paper provides a new insight on solving (semi) unbalanced optimal transport problem. Moreover, we first utilize multipliers information into solving transportation solutions. The extensive experiments on both real-world and synthetic datasets with diverse domain adaptation problems show the efficacy of the proposed ETM method with MROT.

References

- Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network flows. 1988.
- An, D., Lei, N., Xu, X., and Gu, X. Efficient optimal transport algorithm by accelerated gradient descent. In *Proceedings of the AAAI Conference on Artificial Intelli*gence, volume 36, pp. 10119–10128, 2022.
- Angrist, J. D. and Imbens, G. W. Two-stage least squares estimation of average causal effects in models with variable treatment intensity. *Journal of the American statistical Association*, 90(430):431–442, 1995.
- Arase, Y., Bao, H., and Yokoi, S. Unbalanced optimal transport for unbalanced word alignment. *ACL*, 2023.
- Asano, Y. M., Rupprecht, C., and Vedaldi, A. Self-labelling via simultaneous clustering and representation learning. *arXiv preprint arXiv:1911.05371*, 2019.
- Balaji, Y., Chellappa, R., and Feizi, S. Robust optimal transport with applications in generative modeling and domain adaptation. *Advances in Neural Information Processing Systems*, 33:12934–12944, 2020.
- Benamou, J.-D. Numerical resolution of an "unbalanced" mass transport problem. *ESAIM: Mathematical Modelling and Numerical Analysis*, 37(5):851–868, 2003.
- Berahas, A. S., Nocedal, J., and Takác, M. A multi-batch l-bfgs method for machine learning. *Advances in Neural Information Processing Systems*, 29, 2016.
- Betlei, A., Diemert, E., and Amini, M.-R. Uplift modeling with generalization guarantees. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 55–65, 2021.
- Blondel, M., Seguy, V., and Rolet, A. Smooth and sparse optimal transport. In *International conference on artificial intelligence and statistics*, pp. 880–889. PMLR, 2018.
- ¹Bonneel, N. and Coeurjolly, D. Spot: sliced partial optimal transport. *ACM Transactions on Graphics (TOG)*, 38(4): 1–13, 2019.

- Caffarelli, L. A. and McCann, R. J. Free boundaries in optimal transport and monge-ampere obstacle problems. *Annals of mathematics*, pp. 673–730, 2010.
- Cao, Z., Ma, L., Long, M., and Wang, J. Partial adversarial domain adaptation. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 135–150, 2018.
- Cao, Z., You, K., Long, M., Wang, J., and Yang, Q. Learning to transfer examples for partial domain adaptation. In *Proceedings of the IEEE/CVF conference on computer* vision and pattern recognition, pp. 2985–2994, 2019.
- Caputo, B., Müller, H., Martinez-Gomez, J., Villegas, M., Acar, B., Patricia, N., Marvasti, N., Üsküdarlı, S., Paredes, R., Cazorla, M., et al. Imageclef 2014: Overview and analysis of the results. In *Information Access Evaluation. Multilinguality, Multimodality, and Interaction: 5th International Conference of the CLEF Initiative, CLEF* 2014, Sheffield, UK, September 15-18, 2014. Proceedings 5, pp. 192–211. Springer, 2014.
- Carlier, G. On the linear convergence of the multimarginal sinkhorn algorithm. *SIAM Journal on Optimization*, 32 (2):786–794, 2022.
- Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural information processing systems*, 33:9912–9924, 2020.
- Chang, W., Shi, Y., Tuan, H., and Wang, J. Unified optimal transport framework for universal domain adaptation. *Advances in Neural Information Processing Systems*, 35: 29512–29524, 2022.
- Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. Unbalanced optimal transport through non-negative penalized linear regression. *Advances in Neural Information Processing Systems*, 34:23270–23282, 2021.
- Chen, L., Lou, Y., He, J., Bai, T., and Deng, M. Evidential neighborhood contrastive learning for universal domain adaptation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 6258–6267, 2022.
- Chizat, L. Unbalanced optimal transport: Models, numerical methods, applications. PhD thesis, Université Paris sciences et lettres, 2017.
- Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. Scaling algorithms for unbalanced optimal transport problems. *Mathematics of Computation*, 87(314):2563–2609, 2018.
- Choi, J., Choi, J., and Kang, M. Generative modeling through the semi-dual formulation of unbalanced optimal transport. *NeurIPS*, 2023.

- Chuang, C.-Y., Jegelka, S., and Alvarez-Melis, D. Infoot:
 Information maximizing optimal transport. In *International Conference on Machine Learning*, pp. 6228–6242.
 PMLR, 2023.
- Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy,
 A. Joint distribution optimal transportation for domain adaptation. *Advances in neural information processing systems*, 30, 2017.
- 505 Cuturi, M. Sinkhorn distances: Lightspeed computation
 506 of optimal transport. Advances in neural information
 507 processing systems, 26, 2013.

508

514

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

- Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia,
 D., and Courty, N. Deepjdot: Deep joint distribution
 optimal transport for unsupervised domain adaptation. In *Proceedings of the European conference on computer*vision (ECCV), pp. 447–463, 2018.
- 515 De Plaen, H., De Plaen, P.-F., Suykens, J. A., Proesmans,
 516 M., Tuytelaars, T., and Van Gool, L. Unbalanced optimal
 517 transport: A unified framework for object detection. In
 518 *Proceedings of the IEEE/CVF Conference on Computer*519 Vision and Pattern Recognition, pp. 3198–3207, 2023.
- Dessein, A., Papadakis, N., and Rouas, J.-L. Regularized optimal transport and the rot mover's distance. *The Journal* of Machine Learning Research, 19(1):590–642, 2018.
- Farahani, A., Voghoei, S., Rasheed, K., and Arabnia, H. R.
 A brief review of domain adaptation. *Advances in data science and information engineering: proceedings from ICDATA 2020 and IKE 2020*, pp. 877–894, 2021.
 - Fatras, K., Séjourné, T., Flamary, R., and Courty, N. Unbalanced minibatch optimal transport; applications to domain adaptation. In *International Conference on Machine Learning*, pp. 3186–3197. PMLR, 2021.
 - Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S.-i., Trouvé, A., and Peyré, G. Interpolating between optimal transport and mmd using sinkhorn divergences. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 2681–2690. PMLR, 2019.
 - Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., et al. Pot: Python optimal transport. *The Journal of Machine Learning Research*, 22(1):3571–3578, 2021.
 - Frogner, C., Zhang, C., Mobahi, H., Araya, M., and Poggio, T. A. Learning with a wasserstein loss. *Advances in neural information processing systems*, 28, 2015.

- Fu, B., Cao, Z., Long, M., and Wang, J. Learning to detect open classes for universal domain adaptation. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV* 16, pp. 567–583. Springer, 2020.
- Genevay, A., Cuturi, M., Peyré, G., and Bach, F. Stochastic optimization for large-scale optimal transport. Advances in neural information processing systems, 29, 2016.
- Gu, X., Yu, X., Sun, J., Xu, Z., et al. Adversarial reweighting for partial domain adaptation. Advances in Neural Information Processing Systems, 34:14860–14872, 2021.
- He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
- Hull, J. J. A database for handwritten text recognition research. *IEEE Transactions on Pattern Analysis & Machine Intelligence*, 16(5):550–554, 2002.
- Jin, Q. and Mokhtari, A. Exploiting local convergence of quasi-newton methods globally: adaptive sample size approach. *Advances in Neural Information Processing Systems*, 34:3824–3835, 2021.
- Jin, Q. and Mokhtari, A. Non-asymptotic superlinear convergence of standard quasi-newton methods. *Mathematical Programming*, 200(1):425–473, 2023.

Kantorovich, L. On the transfer of masses. 1942.

- Kennington, J. L. and Helgason, R. V. Algorithms for network programming. John Wiley & Sons, Inc., 1980.
- Khrulkov, V., Ryzhakov, G., Chertkov, A., and Oseledets, I. Understanding ddpm latent codes through optimal transport. *ICLR*, 2023.
- Korotin, A., Selikhanovych, D., and Burnaev, E. Neural optimal transport. *ICLR*, 2023.
- Le, K., Nguyen, H., Nguyen, Q. M., Pham, T., Bui, H., and Ho, N. On robust optimal transport: Computational complexity and barycenter computation. *Advances in Neural Information Processing Systems*, 34:21947–21959, 2021.
- Le, K., Nguyen, H., Nguyen, K., Pham, T., and Ho, N. On multimarginal partial optimal transport: Equivalent forms and computational complexity. In *International Conference on Artificial Intelligence and Statistics*, pp. 4397–4413. PMLR, 2022.
- Lecun, Y. L., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. proc ieee. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

550 551 552 553	Li, G., Kang, G., Zhu, Y., Wei, Y., and Yang, Y. Domain consensus clustering for universal domain adaptation. In <i>Proceedings of the IEEE/CVF conference on computer</i> <i>vision and pattern recognition</i> , pp. 9757–9766, 2021.	Mukherjee, D., Guha, A., Solomon, J. M., Sun, Y., and Yurochkin, M. Outlier-robust optimal transport. In <i>In-</i> <i>ternational Conference on Machine Learning</i> , pp. 7850– 7860. PMLR, 2021.
555 556 557 558	Li, M., Yu, J., Li, T., and Meng, C. Importance sparsification for sinkhorn algorithm. <i>arXiv preprint arXiv:2306.06581</i> , 2023.	Neklyudov, K., Brekelmans, R., Tong, A., Atanackovic, L., Liu, Q., and Makhzani, A. A computational framework for solving wasserstein lagrangian flows. <i>arXiv preprint</i> <i>arXiv:2310.10649</i> , 2023.
559 560 561 562 563	 Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le, M. Flow matching for generative modeling. <i>ICLR</i>, 2023. Liu, D. C. and Nocedal, J. On the limited memory bfgs method for large scale optimization. <i>Mathematical pro-</i> <i>aramming</i> 45(1-3):503–528, 1989. 	Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits in natural images with unsupervised feature learning. <i>Nips Workshop on Deep Learning & Unsupervised Feature Learning</i> , 2011.
564 565 566 567 568	 Liu, T., Puigcerver, J., and Blondel, M. Sparsity-constrained optimal transport. <i>ICLR</i>, 2023. Lorenz, D. A., Manns, P., and Meyer, C. Quadratically 	Nguyen, K., Nguyen, D., Pham, T., Ho, N., et al. Improving mini-batch optimal transport via partial transportation. In <i>International Conference on Machine Learning</i> , pp. 16656–16690. PMLR, 2022.
569 570 571 572	regularized optimal transport. <i>Applied Mathematics & Optimization</i> , 83(3):1919–1949, 2021.	Nguyen, Q. M., Nguyen, H. H., Zhou, Y., and Nguyen, L. M. On unbalanced optimal transport: Gradient methods, sparsity and approximation error. <i>JMLR</i> , 2023.
573 574 575 576	Luo, YW. and Ren, CX. Mot: Masked optimal transport for partial domain adaptation. In <i>2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> , pp. 3531–3540. IEEE, 2023.	Onken, D., Fung, S. W., Li, X., and Ruthotto, L. Ot-flow: Fast and accurate continuous normalizing flows via opti- mal transport. In <i>Proceedings of the AAAI Conference on</i> <i>Artificial Intelligence</i> , volume 35, pp. 9223–9232, 2021.
577 578 579 580 581	Luo, YW., Ren, CX., Dai, DQ., and Yan, H. Unsupervised domain adaptation via discriminative manifold propagation. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 44(3):1653–1669, 2020.	Pariset, M., Hsieh, YP., Bunne, C., Krause, A., and De Bor- toli, V. Unbalanced diffusion schr\" odinger bridge. <i>arXiv</i> <i>preprint arXiv:2306.09099</i> , 2023.
582 583 584 585 586	Ma, Z., Wei, X., Hong, X., Lin, H., Qiu, Y., and Gong, Y. Learning to count via unbalanced optimal transport. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 35, pp. 2319–2327, 2021.	Peng, X., Usman, B., Kaushik, N., Wang, D., Hoffman, J., and Saenko, K. Visda: A synthetic-to-real benchmark for visual domain adaptation. In <i>Proceedings of the IEEE</i> <i>Conference on Computer Vision and Pattern Recognition</i> <i>Workshops</i> , pp. 2021–2026, 2018.
587 588 589 590	Mairal, J. and Yu, B. Complexity analysis of the lasso regularization path. <i>ICML</i>, 2012.Massias, M., Gramfort, A., and Salmon, J. Celer: a fast	Peyré, G., Cuturi, M., et al. Computational optimal transport: With applications to data science. <i>Foundations and Trends</i> ® <i>in Machine Learning</i> , 11(5-6):355–607, 2019.
591 592 593 594	solver for the lasso with dual extrapolation. In <i>Interna- tional Conference on Machine Learning</i> , pp. 3315–3324. PMLR, 2018.	Pham, K., Le, K., Ho, N., Pham, T., and Bui, H. On unbal- anced optimal transport: An analysis of sinkhorn algo- rithm. In <i>International Conference on Machine Learning</i> ,
595	Mathews, J. Numerical methods using matlab, 2004.	pp. 7673–7682. PMLR, 2020.
596 597 598 599	Montesuma, E. F., Mboula, F. N., and Souloumiac, A. Re- cent advances in optimal transport for machine learning. <i>arXiv preprint arXiv:2306.16156</i> , 2023.	Redko, I., Courty, N., Flamary, R., and Tuia, D. Optimal transport for multi-source domain adaptation under target shift. In <i>The 22nd International Conference on artificial</i> <i>intelligence and statistics</i> , pp. 849–858. PMLR, 2019.
601 602 603 604	Montesuma, E. F., Mboula, F. M. N., and Souloumiac, A. Recent advances in optimal transport for machine learn- ing. <i>IEEE Transactions on Pattern Analysis and Machine</i> <i>Intelligence</i> , 2024.	Riaz, B., Karahan, Y., and Brockmeier, A. J. Partial optimal transport for support subset selection. <i>Transactions on Machine Learning Research</i> , 2023.

- Rodomanov, A. and Nesterov, Y. Rates of superlinear convergence for classical quasi-newton methods. *Mathematical Programming*, pp. 1–32, 2021.
- Rosenbaum, P. R. and Rubin, D. B. The central role of
 the propensity score in observational studies for causal
 effects. *Biometrika*, 70(1):41–55, 1983.
- Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting
 visual category models to new domains. In *Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11,*2010, Proceedings, Part IV 11, pp. 213–226. Springer, 2010.
 - Saito, K., Yamamoto, S., Ushiku, Y., and Harada, T. Open set domain adaptation by backpropagation. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 153–168, 2018.

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

- Sato, R., Yamada, M., and Kashima, H. Fast unbalanced optimal transport on a tree. *Advances in neural information* processing systems, 33:19039–19051, 2020.
- Scetbon, M., Cuturi, M., and Peyré, G. Low-rank sinkhorn factorization. In *International Conference on Machine Learning*, pp. 9344–9354. PMLR, 2021.
- Scetbon, M., Klein, M., Palla, G., and Cuturi, M. Unbalanced low-rank optimal transport solvers. *NeurIPS*, 2023.
- Séjourné, T., Feydy, J., Vialard, F.-X., Trouvé, A., and Peyré, G. Sinkhorn divergences for unbalanced optimal transport. 2019.
- Séjourné, T., Peyré, G., and Vialard, F.-X. Unbalanced optimal transport, from theory to numerics. arXiv preprint arXiv:2211.08775, 2022a.
- 642 Séjourné, T., Vialard, F.-X., and Peyré, G. Faster unbal643 anced optimal transport: Translation invariant sinkhorn
 644 and 1-d frank-wolfe. In *International Conference on Ar-*645 *tificial Intelligence and Statistics*, pp. 4995–5021. PMLR,
 646 2022b.
- 648 Séjourné, T., Bonet, C., Fatras, K., Nadjahi, K., and
 649 Courty, N. Unbalanced optimal transport meets sliced650 wasserstein. *arXiv preprint arXiv:2306.07176*, 2023.
- Shalit, U., Johansson, F. D., and Sontag, D. Estimating
 individual treatment effect: generalization bounds and
 algorithms. In *International conference on machine learn- ing*, pp. 3076–3085. PMLR, 2017.
- Sinkhorn, R. and Knopp, P. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics*, 21(2):343–348, 1967.

- Sun, Y., Babu, P., and Palomar, D. P. Majorizationminimization algorithms in signal processing, communications, and machine learning. *IEEE Transactions on Signal Processing*, 65(3):794–816, 2016.
- Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks, J., Fatras, K., Wolf, G., and Bengio, Y. Improving and generalizing flow-based generative models with minibatch optimal transport. In *ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems*, 2023.
- Tran, Q. H., Janati, H., Courty, N., Flamary, R., Redko, I., Demetci, P., and Singh, R. Unbalanced co-optimal transport. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 10006–10016, 2023.
- Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008.
- Venkateswara, H., Eusebio, J., Chakraborty, S., and Panchanathan, S. Deep hashing network for unsupervised domain adaptation. *CoRR*, abs/1706.07522, 2017.
- Villani, C. et al. *Optimal transport: old and new*, volume 338. Springer, 2009.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature methods*, 17(3):261–272, 2020.
- Wang, H., Chen, Z., Fan, J., Li, H., Liu, T., Liu, W., Dai, Q., Wang, Y., Dong, Z., and Tang, R. Optimal transport for treatment effect estimation. *arXiv preprint arXiv:2310.18286*, 2023.
- Xie, Y., Wang, X., Wang, R., and Zha, H. A fast proximal point method for computing exact wasserstein distance. In *Uncertainty in artificial intelligence*, pp. 433– 453. PMLR, 2020.
- Yao, L., Li, S., Li, Y., Huai, M., Gao, J., and Zhang, A. Representation learning for treatment effect estimation from observational data. *Advances in neural information processing systems*, 31, 2018.
- You, K., Long, M., Cao, Z., Wang, J., and Jordan, M. I. Universal domain adaptation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2720–2729, 2019.
- Zhan, F., Yu, Y., Cui, K., Zhang, G., Lu, S., Pan, J., Zhang, C., Ma, F., Xie, X., and Miao, C. Unbalanced feature transport for exemplar-based image translation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15028–15038, 2021.

660 661 662	Zhang, L. and Gao, X. Transfer adaptation learning: A decade survey. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2022.
663 664	Zhuang, Y., Chen, X., and Yang, Y. Wasserstein k-means for
665	clustering probability distributions. Advances in Neural
666	Information Processing Systems, 55:11382–11395, 2022.
667	
668	
669	
670	
671	
672	
670	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
705	
704	
705	
700	
707	
700	
710	
711	
712	
713	
714	

Appendix

A. Proof of Proposition 1

Proposition 1. (Principles of Equivalent Transformation Mechanism for SemiUOT) Given SemiUOT with KL-Divergence $\overline{J}_{\text{SemiUOT}}$, one can obtain its Fenchel-Lagrange multipliers form as:

$$\min_{\boldsymbol{f},\boldsymbol{g},\boldsymbol{\zeta}} \left[\tau \sum_{i=1}^{M} a_i e^{-\frac{f_i + \zeta}{\tau}} - \sum_{j=1}^{N} b_j (g_j - \zeta) \right]$$
(16)

 $s.t. f_i + g_j + s_{ij} = C_{ij}, \quad s_{ij} \ge 0.$

where f, g, s and ζ denotes Lagrange multipliers. Moreover, SemiUOT problem can be transformed into classic optimal transport as follows:

$$\min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\mathrm{P}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle$$
s.t.
$$\begin{cases}
\boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{a} \odot \exp\left(-\frac{\boldsymbol{f}^{*} + \zeta^{*}}{\tau}\right) = \boldsymbol{\alpha} \\
\boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{b}
\end{cases}$$
(17)

Note that when $\tau \to \infty$, the source marginal probability can be determined as $\pi \mathbf{1}_N = \omega \mathbf{a}$ where $\omega = \langle \mathbf{b}, \mathbf{1}_N \rangle / \langle \mathbf{a}, \mathbf{1}_M \rangle$.

Proof. To start with, we first review the definition of SemiUOT as shown below:

$$\min_{\pi_{ij} \ge 0} J_{\text{SemiUOT}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \tau \text{KL} \left(\boldsymbol{\pi} \boldsymbol{1}_N \| \boldsymbol{a} \right)$$

s.t. $\boldsymbol{\pi}^\top \boldsymbol{1}_M = \boldsymbol{b}.$ (18)

Then we can rewrite the optimization problem:

$$\min_{\boldsymbol{\pi} \ge 0} J = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \tau \operatorname{KL} \left(\boldsymbol{\pi} \mathbf{1}_N \| \boldsymbol{a} \right)$$

s.t.
$$\begin{cases} (\operatorname{Constraint}) : \ \boldsymbol{\pi}^\top \mathbf{1}_M = \boldsymbol{b} \\ (\operatorname{Optional}) : \ \boldsymbol{\pi} \mathbf{1}_N = \boldsymbol{\alpha} \end{cases}$$
(19)

Note that we do not need to know the exact value of α beforehand. We adopt this optional constraint only for simplifying the following deduction. The Lagrange multipliers of SemiUOT with KL-Divergence is given as:

$$\max_{s \ge 0, \boldsymbol{f}, \boldsymbol{g}, \zeta} \min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\text{SemiUOT}} = \tau \text{KL} \left(\boldsymbol{\pi} \boldsymbol{1}_N \| \boldsymbol{a} \right) + \langle \boldsymbol{f} + \zeta, \boldsymbol{\pi} \boldsymbol{1}_N \rangle + \langle \boldsymbol{g} - \zeta, \boldsymbol{b} \rangle + \\ \langle \boldsymbol{C} - \boldsymbol{u} \otimes \boldsymbol{1}_N^\top - \boldsymbol{1}_M \otimes \boldsymbol{v}^\top - \boldsymbol{s}, \boldsymbol{\pi} \rangle$$
(20)

where f, g, s and ζ are dual variables. By taking the differentiation on π_{ij} we have:

$$\frac{\partial \mathcal{J}_{\text{SemiUOT}}}{\partial \pi_{ij}} = \left[\tau \log \frac{\sum\limits_{j=1}^{N} \pi_{ij}}{a_i} + f_i + \zeta \right] + (C_{ij} - f_i - g_j - s_{ij})$$

$$= C_{ij} + \tau \log \frac{\sum\limits_{j=1}^{N} \pi_{ij}}{a_i} + \zeta - g_j - s_{ij}$$

$$= 0$$
(21)

762 Therefore we can obtain the results as:

$$\begin{cases}
\sum_{j=1}^{N} \pi_{ij} = a_i \exp\left(-\frac{f_i + \zeta}{\tau}\right) \\
\sum_{j=1}^{M} \pi_{ij} = b_j \\
\sum_{i=1}^{M} \pi_{ij} = b_j \\
C_{ij} - f_i - g_j - s_{ij} = 0
\end{cases}$$
(22)

/ NT

After that, we can take these back into KL-Divergence to simplify the calculation:

$$\begin{aligned} & = \tau \operatorname{KL}\left(\left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{f}+\boldsymbol{\zeta}}{\tau}\right)\right\rangle \|\boldsymbol{a}\right) + \left\langle \boldsymbol{f}+\boldsymbol{\zeta}, \boldsymbol{a}\exp\left(-\frac{\boldsymbol{f}+\boldsymbol{\zeta}}{\tau}\right)\right\rangle \\ & = \tau \operatorname{KL}\left(\left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{f}_i+\boldsymbol{\zeta}}{\tau}\right)\right\rangle \|\boldsymbol{a}\right) + \left\langle \boldsymbol{f}+\boldsymbol{\zeta}, \boldsymbol{a}\exp\left(-\frac{\boldsymbol{f}+\boldsymbol{\zeta}}{\tau}\right)\right\rangle \\ & = \tau \sum_{i=1}^{M} \left[a_i \exp\left(-\frac{f_i+\boldsymbol{\zeta}}{\tau}\right)\log\frac{a_i \exp\left(-\frac{f_i+\boldsymbol{\zeta}}{\tau}\right)}{a_i} - a_i \exp\left(-\frac{f_i+\boldsymbol{\zeta}}{\tau}\right) + a_i\right] + \sum_{i=1}^{M} (f_i+\boldsymbol{\zeta})a_i \exp\left(-\frac{f_i+\boldsymbol{\zeta}}{\tau}\right) \quad (23) \end{aligned}$$

$$=\sum_{i=1}^{M} \left[-\tau a_i \exp\left(-\frac{f_i+\zeta}{\tau}\right)+\tau a_i\right]$$

Therefore we can obtain its Fenchel-Lagrange multipliers form of SemiUOT as:

$$\min_{\boldsymbol{f},\boldsymbol{g},\boldsymbol{\zeta}} \mathcal{J}_{\text{SemiUOT}} = -\tau \text{KL} \left(\boldsymbol{\pi} \mathbf{1}_N \| \boldsymbol{a} \right) - \langle \boldsymbol{f} + \boldsymbol{\zeta}, \boldsymbol{\pi} \mathbf{1}_N \rangle - \langle \boldsymbol{g} - \boldsymbol{\zeta}, \boldsymbol{\pi}^\top \mathbf{1}_M \rangle$$
$$= \tau \exp\left(-\frac{\zeta}{\tau}\right) \left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{f}}{\tau}\right) \right\rangle - \langle \boldsymbol{g} - \boldsymbol{\zeta}, \boldsymbol{b} \rangle + \mathcal{O}_{\text{Const}}$$
(24)

s.t. $f_i + g_j \leq C_{ij}$

where $\mathcal{O}_{\text{Const}} = -\sum_{i=1}^{M} \tau a_i$ and we can neglect it during the following calculation. Once we obtain the optimal solution on f^* , g^* and ζ^* , we will discover that:

$$\tau \operatorname{KL}\left(\pi \mathbf{1}_{N} \| \boldsymbol{a}\right) = \tau \operatorname{KL}\left(\left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{f}^{*} + \zeta^{*}}{\tau}\right) \right\rangle \| \boldsymbol{a}\right) = \operatorname{Const}$$
(25)

Hence SemiUOT problem can be transformed into classic optimal transport accordingly. Finally we can obtain the optimal solution on ζ by considering $\frac{\partial \mathcal{J}_{\text{SemiUOT}}}{\partial \zeta} = 0$ as below:

$$\zeta = \tau \left[\log \left(\sum_{i=1}^{M} a_i \exp\left(-\frac{f_i}{\tau}\right) \right) - \log\left(\sum_{j=1}^{N} b_j \right) \right].$$
(26)

Once we set $\tau \to \infty$, the results of the limitation will be shown as:

$$\lim_{\tau \to +\infty} a_i \exp\left(-\frac{f_i + \zeta}{\tau}\right) = \lim_{\tau \to +\infty} a_i \exp\left(-\frac{\zeta}{\tau}\right) = a_i \frac{\langle \mathbf{b}, \mathbf{1}_N \rangle}{\langle \mathbf{a}, \mathbf{1}_M \rangle} = \omega a_i$$
(27)
he proof of the Proposition 1.

Therefore we conclude the proof of the Proposition 1.

B. Proof of Proposition 2

Proposition 2. (Calculation for Approximate SemiUOT Equation) Given Approximate SemiUOT equation $\hat{L}_{\rm P}$, it can be optimized via Equivalent Transformation Mechanism with Approximation (ETM-Approx). That is, ETM-Approx aims to solve the following equation for each f_s :

$$\frac{\partial \widehat{L}_{\mathrm{P}}}{\partial \widehat{f}_{s}} = -a_{s}e^{-\frac{\widehat{f}_{s}+\zeta}{\tau}} + e^{\frac{\widehat{f}_{s}}{\epsilon}} \sum_{j=1}^{N} \left[\frac{b_{j}\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\sum_{k=1}^{M}\exp\left(\frac{\widehat{f}_{k}-C_{kj}}{\epsilon}\right)} \right] = 0.$$
(28)

Specifically, we can adopt fixed-point iteration method for solving Eq.(28) at the ℓ -th iteration as follows:

$$\begin{cases}
\widehat{f}_{1}^{\ell+1} = \nu \left[\log \left(a_{1}e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j}e^{-C_{1j}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right] \\
\vdots \\
\widehat{f}_{M}^{\ell+1} = \nu \left[\log \left(a_{M}e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j}e^{-C_{Mj}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right],
\end{cases}$$
(29)

where $\nu = \tau \epsilon / (\tau + \epsilon)$ for simplification and $\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})$ denotes the corresponding calculation as shown below:

The proposed procedure can be convergence with theoretical guarantee after \mathcal{T} -th inner iteration. Finally, updating the Lagrange multiplier ζ by considering $\nabla_{\zeta} \hat{L}_{\mathrm{P}} = 0$ via $\zeta = \tau [\log(\sum_{i=1}^{M} a_i \exp(-\hat{f}_i/\tau)) - \log(\sum_{j=1}^{N} b_j)]$. One can achieve the optimal solution on \hat{f} and ζ via iterative computing accordingly.

Proof. We first review the proposed Approximate SemiUOT Equation $\hat{L}_{\rm P}$ as below:

$$\min_{\widehat{f},\zeta} \widehat{L}_{\mathrm{P}} = \tau \sum_{i=1}^{M} a_i e^{-\frac{\widehat{f}_i + \zeta}{\tau}} + \sum_{j=1}^{N} b_j \left[\epsilon \log \left[\sum_{k=1}^{M} e^{\frac{\widehat{f}_k - C_{kj}}{\epsilon}} \right] + \zeta \right]$$
(31)

Then we consider optimizing \hat{f}_s as follows:

:

$$\frac{\partial \widehat{L}_{\mathrm{P}}}{\partial \widehat{f}_{s}} = 0 \quad \Rightarrow \quad \exp\left(\frac{\tau + \epsilon}{\tau \epsilon}\widehat{f}_{s}\right) = \frac{a_{s}e^{-\frac{\zeta}{\tau}}}{\sum\limits_{j=1}^{N} \left(\frac{b_{j}\exp(-C_{sj}/\epsilon)}{\mathscr{W}_{\epsilon,j}(\widehat{f})}\right)}$$
(32)

(34)

At that time we adopt fixed-point iteration method to optimize \hat{f} accordingly:

$$\begin{cases} \widehat{f}_{1}^{\ell+1} = \nu \left[\log \left(a_{1}e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j}e^{-C_{1j}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right] = \mathcal{F}_{1} \left(\widehat{f}_{1}^{\ell}, \cdots, \widehat{f}_{M}^{\ell} \right) \\ \vdots \\ \widehat{f}_{s}^{\ell+1} = \nu \left[\log \left(a_{s}e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j}e^{-C_{sj}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right] = \mathcal{F}_{s} \left(\widehat{f}_{1}^{\ell}, \cdots, \widehat{f}_{M}^{\ell} \right) \end{cases}$$
(33)

$$\begin{cases}
\widehat{f}_{M}^{\ell+1} = \nu \left[\log \left(a_{M} e^{-\frac{\zeta}{\tau}} \right) - \log \left[\sum_{j=1}^{N} \left(\frac{b_{j} e^{-C_{Mj}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{f}^{\ell})} \right) \right] \right] = \mathcal{F}_{M} \left(\widehat{f}_{1}^{\ell}, \cdots, \widehat{f}_{M}^{\ell} \right),
\end{cases}$$

By taking the gradient on $\mathcal{F}_s(\widehat{f}_s^\ell)$ w.r.t \widehat{f}_s^ℓ , we can observe that:

< 1

$$\frac{\partial \mathcal{F}_s(\widehat{f}_s^{\ell})}{\partial \widehat{f}_s^{\ell}} = -\frac{\tau\epsilon}{\tau+\epsilon} \frac{1}{\sum\limits_{j=1}^N \left[\frac{\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\widehat{f}^{\ell})}\right]} b_j} \frac{\partial}{\partial \widehat{f}_s^{\ell}} \left(\sum\limits_{j=1}^N \left[\frac{\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\widehat{f}^{\ell})}\right] b_j\right)$$

$$= \frac{\tau}{\tau + \epsilon} \underbrace{\frac{1}{\sum_{j=1}^{N} \left[\frac{\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\hat{f}^{\ell})}\right]}_{j=1} \sum_{j=1}^{N} \left[\frac{b_j \exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\hat{f}^{\ell})} \cdot \frac{\exp\left(\frac{\hat{f}_s^{\ell} - C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\hat{f}^{\ell})}\right]}_{\mathcal{W}_{\epsilon,j}(\hat{f}^{\ell})}$$

Likewise we can obtain the result:

$$\mathscr{F}_{s}\left(\widehat{f}_{1}^{\ell},\cdots,\widehat{f}_{M}^{\ell}\right) = \left|\frac{\partial\mathcal{F}_{s}(\widehat{f}_{1}^{\ell})}{\partial\widehat{f}_{1}^{\ell}}\right| + \cdots + \left|\frac{\partial\mathcal{F}_{s}(\widehat{f}_{s}^{\ell})}{\partial\widehat{f}_{s}^{\ell}}\right| + \cdots + \left|\frac{\partial\mathcal{F}_{s}(\widehat{f}_{M}^{\ell})}{\partial\widehat{f}_{M}^{\ell}}\right|$$
$$= \frac{\tau}{\tau + \epsilon} \frac{1}{\sum_{j=1}^{N} \left[\frac{\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\widehat{f}^{\ell})}\right]} \sum_{j=1}^{N} \left[\frac{b_{j}\exp\left(-\frac{C_{sj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\widehat{f}^{\ell})} \cdot \sum_{u=1}^{M} \left(\frac{\exp\left(\frac{\widehat{f}_{u}^{\ell} - C_{uj}}{\epsilon}\right)}{\mathcal{W}_{\epsilon,j}(\widehat{f}^{\ell})}\right)\right]$$
(35)
$$= \frac{\tau}{-\frac{\tau}{\epsilon}} < 1$$

< 1

 $\tau + \epsilon$

880 We can easily conclude that:

$$\begin{cases} \mathscr{F}_{1}\left(\widehat{f}_{1}^{\ell},\cdots,\widehat{f}_{M}^{\ell}\right) < 1\\ \vdots\\ \mathscr{F}_{s}\left(\widehat{f}_{1}^{\ell},\cdots,\widehat{f}_{M}^{\ell}\right) < 1\\ \vdots\\ \mathscr{F}_{M}\left(\widehat{f}_{1}^{\ell},\cdots,\widehat{f}_{M}^{\ell}\right) < 1 \end{cases}$$
(36)

Therefore, we can conclude that the proposed method guarantees convergence according to Theorem 2.9 in (Mathews, 2004). $\hfill \Box$

C. Algorithm for ETM-Based Method on SemiUOT

We also provide the pseudo algorithm of the proposed ETM-Based approachs (e.g., ETM-Exact, ETM-Approx and ETM-Refine) for solving SemiUOT in Alg.1 to make a more clear illustration.

Algorithm	1 The algorithm	of FTM_Based	method on	SemilIOT
Aiguriunn	I The argorithm	I OI LIMI-Dascu	memou on	Sennoor

905	Input: C: cost matrix; a, b : initial marginal probability; τ, ϵ : Hyper parameters.
906	Randomly initialize the value of f^{init} .
907	Choose ETM-Exact, ETM-Approx or ETM-Refine on SemiUOT for optimization.
908	(1) Function: ETM-Exact on SemiUOT($C, a, b, \tau, f^{t=0} = f^{\text{init}}$)
909	Optimize f via L-BFGS algorithm on $L_{\rm P}$ as:
910	
911	min I = $-\sum_{i=1}^{M} a_i e^{-\frac{f_i+\zeta}{2}} = \sum_{i=1}^{N} \left[\inf_{i=1}^{N} \left[e^{-f_i} e^{-f_i} \right] e^{-f_i} \right]$
912	$\min_{\boldsymbol{f}} L_{\mathrm{P}} = \tau \sum_{i=1}^{n} d_{i} e^{-\tau} - \sum_{i=1}^{n} \left[\min_{k \in [M]} [\mathcal{C}_{kj} - \mathcal{J}_{k}] - \zeta \right] \delta_{j},$
913	j=1 $j=1$
914	Optimize \boldsymbol{a} via $a_i = \inf (C_{k,i} - f_i^t)$.
915	$\sum_{k \in [M]} (j_k) = \sum_{k \in [M]} (j_k)$
916	Optimize ζ via $\zeta = \tau [\log(\sum_{i=1}^{M} a_i \exp(-f_i/\tau)) - \log(\sum_{j=1}^{N} b_j)]$ as shown in Eq.(26).
917	Return : The optimal solutions of f^* , g^* and ζ^* .
918	(2) Function: ETM-Approx on SemiUOT($C, a, b, \tau, \widehat{f}^{t=0} = f^{\text{init}}$)
919	Optimize \widehat{f} via Proposition 2 on \widehat{L}_{P} as:
920	
921	$\min \widehat{t} = \sum_{k=1}^{M} \sum_{j=1}^{k-1} \frac{\widehat{f}_{i+\zeta}}{\sum_{k=1}^{N}} \sum_{j=1}^{N} \sum_{j=1}^{k-1} \frac{\widehat{f}_{k-C_{kj}}}{\sum_{j=1}^{k-1}} \sum_$
922	$\min_{\widehat{f}} L_{\mathrm{P}} = \tau \sum_{i=1}^{\infty} a_i e^{-\tau} + \sum_{i=1}^{\infty} b_j \left[\epsilon \log \left[\sum_{i=1}^{\infty} e^{-\epsilon} \right] + \zeta \right]$
923	j $i=1$ $j=1$ \lfloor $\lfloor k=1$ \rfloor \rfloor
924 925	Optimize \hat{q} via $\hat{q}_i = -\epsilon \log[\sum_{k=1}^{M} \exp((\hat{f}_k - C_{ki})/\epsilon)].$
926	Optimize ζ via $\zeta = \tau [\log(\sum_{k=1}^{M} q_k \exp(-\hat{f}_k/\tau)) - \log(\sum_{k=1}^{N} b_k)]$ as shown in Eq.(26).
927	Deturn : The entired solutions of \hat{f}^* and \hat{f}^*
928	Return. The optimial solutions of f , g and ζ .
929	(3) Function: ETM-Refine on SemiUOI($C, a, b, \tau, f^{s-0} = f^{mit}$)
930	Obtain $f^* = \text{ETM-Approx on SemiUOI(}(C, a, b, \tau, f^*))$.
931	Obtain $f^* = \text{ETM-Exact on SemiUOI}(C, a, b, \tau, f^{t-0} = f^*)$.
932	Keturn: The optimal solutions of f^* , g^* and ζ^* .

D. Proof of Proposition 3

Proposition 3. (Principles of Equivalent Transformation Mechanism for UOT) Given UOT with KL-Divergence J_{UOT} , one can obtain its Fenchel-Lagrange multipliers form as below:

$$\min_{\boldsymbol{u},\boldsymbol{v},\boldsymbol{\zeta}} \left[\tau_a \sum_{i=1}^M a_i e^{-\frac{u_i + \boldsymbol{\zeta}}{\tau_a}} + \tau_b \sum_{j=1}^N b_j e^{-\frac{v_j - \boldsymbol{\zeta}}{\tau_b}} \right]$$
(37)

$$s.t. \ u_i + v_j + s_{ij} = C_{ij}, \quad s_{ij} \ge 0$$

943 where u, v, s and ζ denotes Lagrange multipliers. Moreover, UOT problem can also be transformed into classic optimal 944 transport as follows: 945 min $T_{\rm H} = \langle C, \pi \rangle$

$$\min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\mathrm{U}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle$$

$$s.t. \begin{cases} \boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{a} \odot \exp\left(-\frac{\boldsymbol{u}^{*} + \zeta^{*}}{\tau_{a}}\right) = \boldsymbol{\alpha} \\ \boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{b} \odot \exp\left(-\frac{\boldsymbol{v}^{*} - \zeta^{*}}{\tau_{b}}\right) = \boldsymbol{\beta} \end{cases}$$
(38)

Note that when $\tau_a, \tau_b \to \infty$, the source and target marginal probability can be determined as $\pi \mathbf{1}_N = \sqrt{\omega} \mathbf{a}$ and $\pi^{\top} \mathbf{1}_M = \mathbf{b}/\sqrt{\omega}$ where $\omega = \langle \mathbf{b}, \mathbf{1}_N \rangle / \langle \mathbf{a}, \mathbf{1}_M \rangle$ respectively.

Proof. To start with, we first rewrite the optimization problem as below:

$$\min_{\boldsymbol{\pi} \ge 0} J = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \tau_a \operatorname{KL}(\boldsymbol{\pi} \mathbf{1}_N \| \boldsymbol{a}) + \tau_b \operatorname{KL}(\boldsymbol{\pi}^\top \mathbf{1}_M \| \boldsymbol{b})$$

s.t. (Optional) : $\boldsymbol{\pi} \mathbf{1}_N = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^\top \mathbf{1}_M = \boldsymbol{\beta}$ (39)

where α and β denote the marginal probabilities for source and target domains respectively. Note that we do not need the true value fo α and β beforehand. That is, the constraints here are optional for the following UOT deduction. The Lagrange multipliers of UOT with KL-Divergence is given as:

$$\max_{\boldsymbol{s} \ge 0, \boldsymbol{u}, \boldsymbol{v}, \zeta} \min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\text{UOT}} = \tau_a \text{KL}\left(\boldsymbol{\pi} \mathbf{1}_N \| \boldsymbol{a}\right) + \langle \boldsymbol{u} + \zeta, \boldsymbol{\pi} \mathbf{1}_N \rangle + \tau_b \text{KL}(\boldsymbol{\pi}^\top \mathbf{1}_M \| \boldsymbol{b}) + \langle \boldsymbol{v} - \zeta, \boldsymbol{\pi}^\top \mathbf{1}_M \rangle + \mathscr{C}_{\text{UOT}}$$
(40)

964 where $\mathscr{C}_{\text{UOT}} = \sum_{i,j} (C_{ij} - u_i - v_j - s_{ij}) \pi_{ij} = \langle \boldsymbol{C} - \boldsymbol{u} \otimes \boldsymbol{1}_N^\top - \boldsymbol{1}_M \otimes \boldsymbol{v}^\top - \boldsymbol{s}, \boldsymbol{\pi} \rangle$ and $\boldsymbol{u}, \boldsymbol{v}$ and ζ are dual variables. By 965 taking the differentiation on π_{ij} we have:

$$\frac{\partial \mathcal{J}_{\text{UOT}}}{\partial \pi_{ij}} = \left[\tau_a \log \frac{\sum\limits_{j=1}^N \pi_{ij}}{a_i} + u_i + \zeta \right] + \left[\tau_b \log \frac{\sum\limits_{i=1}^M \pi_{ij}}{b_j} + v_j - \zeta \right] + (C_{ij} - u_i - v_j - s_{ij})$$

$$\sum\limits_{i=1}^N \pi_{ij} \qquad \sum\limits_{i=1}^M \pi_{ij}$$
(41)

$$= C_{ij} + \tau_a \log \frac{\sum_{j=1}^{\pi_{ij}} \pi_{ij}}{a_i} + \tau_b \log \frac{\sum_{i=1}^{\pi_{ij}} \pi_{ij}}{b_j} - s_{ij} = 0$$

975 Then we can obtain the results:

$$\begin{cases} \sum_{j=1}^{N} \pi_{ij} = a_i \exp\left(-\frac{u_i + \zeta}{\tau_a}\right) \\ \sum_{i=1}^{M} \pi_{ij} = b_j \exp\left(-\frac{v_j - \zeta}{\tau_b}\right) \\ C_{ij} - u_i - v_j - s_{ij} = 0 \end{cases}$$
(42)

983 By taking the above results into KL-Divergence, we can further simplify the results:

984
985
986
$$\begin{cases} \tau_a \text{KL}\left(\pi \mathbf{1}_N \| \boldsymbol{a}\right) + \langle \boldsymbol{u} + \boldsymbol{\zeta}, \pi \mathbf{1}_N \rangle = \sum_{i=1}^M \left[-\tau_a a_i \exp\left(-\frac{f_i + \boldsymbol{\zeta}}{\tau_a}\right) + \tau_a a_i \right] \\ N = 0 \end{cases}$$
(43)

987
988
989
$$\left\{\tau_{b}\mathrm{KL}\left(\boldsymbol{\pi}^{\top}\boldsymbol{1}_{M}\|\boldsymbol{b}\right) + \langle \boldsymbol{v} - \boldsymbol{\zeta}, \boldsymbol{\pi}^{\top}\boldsymbol{1}_{M} \rangle = \sum_{j=1}^{N} \left[-\tau_{b}b_{j}\exp\left(-\frac{g_{j}-\boldsymbol{\zeta}}{\tau_{b}}\right) + \tau_{b}b_{j}\right]$$
(13)

990 Therefore we can obtain its Fenchel-Lagrange multipliers form of UOT as:

994

1001 1002 1003

1006 1007 1008

$$\mathcal{J}_{\text{UOT}} = -\tau_a \text{KL}\left(\boldsymbol{\pi} \mathbf{1}_N \| \boldsymbol{a}\right) - \langle \boldsymbol{u} + \zeta, \boldsymbol{\pi} \mathbf{1}_N \rangle - \tau_b \text{KL}(\boldsymbol{\pi}^\top \mathbf{1}_M \| \boldsymbol{b}) - \langle \boldsymbol{v} - \zeta, \boldsymbol{\pi}^\top \mathbf{1}_M \rangle$$
$$= \tau_a \exp\left(-\frac{\zeta}{\tau_a}\right) \left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{u}}{\tau_a}\right) \right\rangle + \tau_b \exp\left(\frac{\zeta}{\tau_b}\right) \left\langle \boldsymbol{b}, \exp\left(-\frac{\boldsymbol{v}}{\tau_b}\right) \right\rangle + \mathcal{O}_{\text{Const}}$$
(44)

995 996 $s.t. u_i + v_j \le C_{ij}$

 $\min_{\boldsymbol{u},\boldsymbol{v},\zeta}$

where $\mathcal{O}_{\text{Const}} = -\sum_{i=1}^{M} \tau_a a_i - \sum_{j=1}^{N} \tau_b b_j$ and we can neglect it during the following calculation. Once we obtain the optimal solution on u^* , v^* and ζ^* , the KL-Divergence will turn out to be constants and therefore the original optimization problem can be transformed into classic optimal transport. Finally we can obtain the optimal solution on ζ by considering $\frac{\partial \mathcal{J}_{\text{UOT}}}{\partial \zeta} = 0$ as below:

$$\zeta = \frac{\tau_a \tau_b}{\tau_a + \tau_b} \left[\log \left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{u}}{\tau_a}\right) \right\rangle - \log \left\langle \boldsymbol{b}, \exp\left(-\frac{\boldsymbol{v}}{\tau_b}\right) \right\rangle \right].$$
(45)

¹⁰⁰⁴ Once we set $\tau_a \to \infty$ and $\tau_b \to \infty$, the results of the limitation will be shown as:

$$\lim_{\tau_a \to +\infty, \tau_b \to +\infty} a_i \exp\left(-\frac{u_i + \zeta}{\tau_a}\right) = \lim_{\tau_a \to +\infty, \tau_b \to +\infty} a_i \exp\left(-\frac{\zeta}{\tau_a}\right) = a_i \sqrt{\frac{\langle \mathbf{b}, \mathbf{1}_N \rangle}{\langle \mathbf{a}, \mathbf{1}_M \rangle}} = \sqrt{\omega} a_i$$

$$\lim_{\tau_a \to +\infty, \tau_b \to +\infty} b_i \exp\left(-\frac{\zeta}{\tau_a}\right) = b_i \sqrt{\frac{\langle \mathbf{a}, \mathbf{1}_M \rangle}{\langle \mathbf{a}, \mathbf{1}_M \rangle}} = \frac{1}{\tau_b} b_i$$
(46)

$$\lim_{\tau_a \to +\infty, \tau_b \to +\infty} b_j \exp\left(-\frac{v_j - \varsigma}{\tau_b}\right) = \lim_{\tau_a \to +\infty, \tau_b \to +\infty} b_j \exp\left(-\frac{\varsigma}{\tau_b}\right) = b_j \sqrt{\frac{\langle \mathbf{a}, \mathbf{1}_M \rangle}{\langle \mathbf{b}, \mathbf{1}_N \rangle}} = \frac{1}{\sqrt{\omega}} b_j$$

11 Therefore we conclude the proof of the Proposition 3.

E. Illustrations of Optimization 1

1015 **Optimization 1.** (Calculation of ETM-Approx approach for UOT) To start with, we first review the Exact UOT Equation is 1016 defined as:

1029

$$= \tau_a \sum_{i=1}^{M} a_i \exp\left(-\frac{u_i + \zeta}{\tau_a}\right) + \tau_b \exp\left(\frac{\zeta}{\tau_b}\right) \sum_{j=1}^{N} b_j \exp\left(\frac{\sup_{k \in [M]} (u_k - C_{kj})}{\tau_b}\right)$$
(47)

where $v_j = -\sup_{k \in [M]} (u_k - C_{kj})$ meanwhile the marginal probabilities are set as $\pi \mathbf{1}_N = \mathbf{a} \odot \exp(-(\mathbf{u} + \zeta)/\tau_a) = \alpha$ and $\pi^\top \mathbf{1}_M = \mathbf{b} \odot \exp(-(\mathbf{v} - \zeta)/\tau_b) = \beta$. Since the optimization problem in Eq.(8) is convex, we can also utilize block gradient descend to optimize the problem. Specifically, we first fix v^l and optimize variable u^l at the *l*-th iteration by replacing the original marginal probability \mathbf{b} in Eq.(4) with β accordingly to transform UOT into SemiUOT problem:

$$\min_{\boldsymbol{\pi} \ge 0} J_{\mathrm{U}}^{u} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \tau_{a} \mathrm{KL} \left(\boldsymbol{\pi} \boldsymbol{1}_{N} \| \boldsymbol{a} \right)$$

$$\left((Constraint) : \boldsymbol{\pi}^{\top} \boldsymbol{1} \qquad \boldsymbol{h} \odot \exp \left(- \frac{\boldsymbol{v} - \zeta}{\zeta} \right) \qquad \boldsymbol{e} \right)$$

$$\begin{cases} (\text{Constraint}): \ \boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{b} \odot \exp\left(-\frac{\tau_{s}}{\tau_{b}}\right) = \boldsymbol{\beta} \\ (\text{Optional}): \ \boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{a} \odot \exp\left(-\frac{\boldsymbol{u} + \zeta}{\tau_{a}}\right) = \boldsymbol{\alpha} \end{cases}$$

1034 At that time, the Fenchel-Lagrange multipliers form of Eq.(48) is given via the Proposition 1:

$\min_{\boldsymbol{u}} L_{\mathbf{U}}^{\boldsymbol{u}} = \tau_a \sum_{i=1}^{M} a_i \exp\left(-\frac{\widetilde{u}_i + \zeta}{\tau_a}\right) - \sum_{j=1}^{N} \beta_j (\widetilde{v}_j - \zeta)$

$$= \tau_a \sum_{i=1}^{M} a_i \exp\left(-\frac{u_i + \zeta}{2}\right) - \sum_{i=1}^{N} \left(\inf_{i=1}^{N} [C_{kj} - u_k] - \zeta\right) \beta_j$$

$$= \tau_a \sum_{i=1}^{m} a_i \exp\left(-\frac{\tau_a}{\tau_a}\right) - \sum_{j=1}^{m} \left(\lim_{k \in [M]} [C_{kj} - u_k] - \zeta\right) \beta_j$$
1040
1041 Note that \tilde{u} and \tilde{u} denote the Legengrap multiplier for Eq. (49) while we have \tilde{u} inf

1041 Note that \tilde{u} and \tilde{v} denote the Lagrange multiplier for Eq.(48) while we have $\tilde{v}_j = \inf_{k \in [M]} [C_{kj} - u_k] = v_j$ and $\tilde{u} = u$. 1042 To further accelerate the optimization process, we consider to make a smooth approximation on replacing $\inf(\cdot)$ as 1043 $\inf_{k \in [M]} [C_{kj} - u_k] \approx -\epsilon \log[\sum_{k=1}^{M} e^{\frac{u_k - C_{kj}}{\epsilon}}] = \hat{v}_j$. Therefore, we first fix \hat{v}^l and optimize variable \hat{u}^l at the *l*-th iteration

(48)

(49)

to solve the following equation on \widehat{L}^u_{U} accordingly: 1045

1049

 $\min_{\widehat{\boldsymbol{u}}} \widehat{L}_{\mathrm{U}}^{u} = \tau_{a} \sum_{i=1}^{M} a_{i} \exp\left(-\frac{\widehat{u}_{i} + \zeta}{\tau_{a}}\right) + \sum_{i=1}^{N} \beta_{j} \left[\epsilon \log\left[\sum_{l=1}^{M} e^{\frac{\widehat{u}_{k} - C_{kj}}{\epsilon}}\right] + \zeta\right]$ (50) $= \tau_a \sum_{i=1}^{M} a_i \exp\left(-\frac{\widehat{u}_i + \zeta}{\tau_a}\right) + \sum_{i=1}^{N} b_j \exp\left(-\frac{\widehat{v}_j - \zeta}{\tau_b}\right) \left[\epsilon \log\left[\sum_{k=1}^{M} e^{\frac{\widehat{u}_k - C_{kj}}{\epsilon}}\right] + \zeta\right]$

At that time we adopt fixed-point iteration method to optimize \hat{u} accordingly based on the Proposition 2: 1054

$$\begin{bmatrix}
1055 \\
1056 \\
1057 \\
1058 \\
1059 \\
1060
\end{bmatrix}
\left(\widehat{u}_{1}^{\ell+1} = \frac{\tau_{a}\epsilon}{\tau_{a}+\epsilon} \left[\log\left(a_{1}e^{-\frac{\zeta}{\tau_{a}}}\right) - \log\left[\sum_{j=1}^{N}\left(\frac{\beta_{j}e^{-C_{1j}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{u}^{\ell})}\right) \right] \right] = \mathcal{U}_{1}\left(\widehat{u}_{1}^{\ell}, \cdots, \widehat{u}_{M}^{\ell}\right)$$

1060

1064 1065

1066 1067

1068 1069

1087

1093 1094

1095 1096

$$\left[\widehat{u}_{M}^{\ell+1} = \frac{\tau_{a}\epsilon}{\tau_{a}+\epsilon} \left[\log\left(a_{M}e^{-\frac{\zeta}{\tau_{a}}}\right) - \log\left[\sum_{j=1}^{N}\left(\frac{\beta_{j}e^{-C_{Mj}/\epsilon}}{\mathscr{W}_{\epsilon,j}(\widehat{\boldsymbol{u}}^{\ell})}\right)\right]\right] = \mathcal{U}_{M}\left(\widehat{u}_{1}^{\ell}, \cdots, \widehat{u}_{M}^{\ell}\right),$$

The iteration process can be shown to converge based on Proposition 2. After that we fix \hat{u} and optimize variable \hat{v} via $\hat{v}_j = -\epsilon \log[\sum_{k=1}^{M} \exp((\hat{u}_k - C_{kj})/\epsilon)]$. We can achieve the optimal solution on \hat{u}^* and \hat{v}^* via iteratively computing via the above procedure accordingly. Finally, we update ζ via $\zeta = (\tau_a \tau_b / (\tau_a + \tau_b)) [\log(\sum_{i=1}^M a_i \exp(-\widehat{u}_i^* / \tau_a)) - (\sum_{i=1}^M a_i \exp(-\widehat{u}_i^* / \tau_a))]$ $\log(\sum_{j=1}^{N} b_j \exp(-\widehat{v}_j^*/\tau_b))].$

F. Algorithm for ETM-Based Method on UOT

We also provide the pseudo algorithm of the proposed ETM-Based approachs (e.g., ETM-Exact, ETM-Approx and ETM-Refine) for solving UOT in Alg.2 to make a more clear illustration. 1079

G. Proof of Proposition 4 1081

1082 Proposition 4. (The Definition and Usage of KKT-Multiplier Regularization) Given any OT with multiplier s, one can 1083 obtain accurate solution π^* via proposed KKT-multiplier regularization term $\mathcal{G}(\pi, s) = \langle \pi, s \rangle$, which formulates Multiplier Regularized Optimal Transport (MROT):

$$\min_{\boldsymbol{\pi} \ge 0} \mathcal{J}_{\mathrm{G}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \eta_{G} \langle \boldsymbol{\pi}, \boldsymbol{s} \rangle + \eta_{\mathrm{Reg}} \mathcal{L}_{\mathrm{Reg}}(\boldsymbol{\pi})$$

s.t. $\boldsymbol{\pi} \mathbf{1}_{N} = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^{\top} \mathbf{1}_{M} = \boldsymbol{\beta},$ (52)

where $\mathcal{L}_{\text{Reg}}(\pi)$ denotes the regularization term on π . α , β denote the final marginal probabilities obtained by ETM-based 1090 approach and η_{Reg} , η_G denotes the hyper parameter. Ideally, η_G should be set as a relatively large number. Meanwhile the 1091 dual form of MROT is given as: 1092

$$\max_{\boldsymbol{\psi},\boldsymbol{\phi}} L_{\rm G} = \langle \boldsymbol{\alpha}, \boldsymbol{\psi} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{\phi} \rangle - \eta_{\rm Reg} \mathcal{L}_{\rm Reg}^* \left(\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\rm Reg}} \right)$$
(53)

1097 where $\hat{C}_{ij} = C_{ij} + \eta_G s_{ij}$ and ϕ and ψ denote the Lagrange multipliers for MROT. $\mathcal{L}^*_{\text{Reg}}(\cdot)$ denotes the conjugate function 1098 of $\mathcal{L}_{\text{Reg}}(\cdot)$ and one can figure out the matching results of π via solving $\nabla_{\pi_{ij}}\mathcal{L}_{\text{Reg}}(\pi_{ij}) = (\psi_i + \phi_j - \widetilde{C}_{ij})/\eta_{\text{Reg}}$. 1099

Algorithm 2 The algorithm of ETM-Based method on UOT **Input:** C: cost matrix; a, b: initial marginal probability; τ_a, τ_b, ϵ : Hyper parameters. Randomly initialize the value of u^{init} . Choose ETM-Exact, ETM-Approx or ETM-Refine on UOT for optimization. (1) Function: ETM-Exact on UOT($C, a, b, \tau_a, \tau_b, u^{t=0} = u^{\text{init}}$) Optimize u L-BFGS algorithm to optimize $L_{\rm U}$ as: $\min_{\boldsymbol{u}} L_{\mathrm{U}} = \tau_a \sum_{i=1}^{M} a_i e^{-\frac{u_i + \zeta}{\tau_a}} + \tau_b e^{\frac{\zeta}{\tau_b}} \sum_{i=1}^{N} b_j e^{\frac{\sup_{k \in [M]} (u_k - C_{kj})}{\tau_b}},$ Optimize \boldsymbol{v} via $v_j = \inf_{k \in [M]} (C_{kj} - u_k).$ Optimize ζ via $\zeta = \frac{\tau_a \tau_b}{\tau_a + \tau_b} \left[\log \left\langle \boldsymbol{a}, \exp \left(-\frac{\boldsymbol{u}}{\tau_a} \right) \right\rangle - \log \left\langle \boldsymbol{b}, \exp \left(-\frac{\boldsymbol{v}}{\tau_b} \right) \right\rangle \right]$ as shown in Eq.(45). **Return**: The optimal solutions of $\boldsymbol{u}^*, \boldsymbol{v}^*$ and ζ^* . (2) Function: ETM-Approx on UOT($C, a, b, \tau_a, \tau_b, \widehat{u}^{t=0} = u^{\text{init}}$) Randomly initialize the value of $\hat{v}^{t'=1}$. for t' = 1 to T' do Optimize $\hat{u}^{t'}$ via Proposition 2 to optimize \hat{L}_{U}^{u} as: $\min_{\widehat{\boldsymbol{u}}} \widehat{L}_{\mathrm{U}}^{u} = \tau_{a} \sum_{i=1}^{M} a_{i} \exp\left(-\frac{\widehat{u}_{i} + \zeta}{\tau_{a}}\right) + \sum_{i=1}^{N} b_{j} \exp\left(-\frac{\widehat{v}_{j} - \zeta}{\tau_{b}}\right) \left|\epsilon \log\left|\sum_{i=1}^{M} e^{\frac{\widehat{u}_{k} - C_{kj}}{\epsilon}}\right| + \zeta\right|$ Optimize $\widehat{\boldsymbol{v}}^{t'}$ via $\widehat{v}_{i}^{t'} = -\epsilon \log[\sum_{k=1}^{M} \exp((\widehat{u}_{k}^{t'} - C_{kj})/\epsilon)].$ end for Optimize ζ via $\zeta = \frac{\tau_a \tau_b}{\tau_a + \tau_b} \left[\log \left\langle \boldsymbol{a}, \exp\left(-\frac{\hat{\boldsymbol{u}}}{\tau_a}\right) \right\rangle - \log \left\langle \boldsymbol{b}, \exp\left(-\frac{\hat{\boldsymbol{v}}}{\tau_b}\right) \right\rangle \right]$ as shown in Eq.(45). **Return**: The optimal solutions of $\hat{\boldsymbol{u}}^*, \hat{\boldsymbol{v}}^*$ and ζ^* . (3) Function: ETM-Refine on UOT($C, a, b, \tau_a, \tau_b, \hat{u}^{t=0} = u^{\text{init}}$) Obtain $\widehat{u}^* = \text{ETM-Approx on UOT}(C, a, b, \tau_a, \tau_b, \widehat{u}^{t=0} = u^{\text{init}}).$ Obtain $\boldsymbol{u}^* = \text{ETM-Exact on UOT}(\boldsymbol{C}, \boldsymbol{a}, \boldsymbol{b}, \tau_a, \tau_b, \boldsymbol{u}^{t=0} = \widehat{\boldsymbol{u}}^*).$ **Return**: The optimal solutions of u^* , v^* and ζ^* . *Proof.* We first provide the Lagrange multiplier of MROT as: $\max_{\boldsymbol{\psi},\boldsymbol{\phi}} \min_{\boldsymbol{\pi} \geq 0} \mathcal{J}_{\mathrm{MROT}} = \langle \boldsymbol{C}, \boldsymbol{\pi} \rangle + \eta_G \langle \boldsymbol{\pi}, \boldsymbol{s} \rangle + \eta_{\mathrm{Reg}} \mathcal{L}_{\mathrm{Reg}}(\boldsymbol{\pi}) - \langle \boldsymbol{\psi}, \boldsymbol{\pi} \mathbf{1}_N - \boldsymbol{\alpha} \rangle - \langle \boldsymbol{\phi}, \boldsymbol{\pi}^\top \mathbf{1}_M - \boldsymbol{\beta} \rangle$ $= \langle \boldsymbol{\alpha}, \boldsymbol{\psi} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{\phi} \rangle + \eta_{\text{Reg}} \inf_{\boldsymbol{\pi}} \left| \sum_{i,i} \left[\frac{C_{ij} + \eta_G s_{ij} - f_i - g_j}{\eta_{\text{Reg}}} \pi_{ij} + \mathcal{L}_{\text{Reg}}(\pi_{ij}) \right] \right|$ (54) $= \langle oldsymbol{lpha}, oldsymbol{\psi}
angle + \langle oldsymbol{eta}, oldsymbol{\phi}
angle - \eta_{ ext{Reg}} \sup_{oldsymbol{\pi}} \left| \sum_{i,j} \left[rac{f_i + g_j - \widetilde{C}_{ij}}{\eta_{ ext{Reg}}} \pi_{ij} - \mathcal{L}_{ ext{Reg}}(\pi_{ij})
ight|
ight|$ $= \langle oldsymbol{lpha}, oldsymbol{\psi}
angle + \langle oldsymbol{eta}, oldsymbol{\phi}
angle - \eta_{ ext{Reg}} \mathcal{L}^*_{ ext{Reg}} \left(rac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{ ext{Reg}}}
ight)$ At that time we have the following results: $\begin{cases} \frac{\partial \mathcal{J}_{\text{MROT}}}{\partial \psi_i} = 0 \\ \frac{\partial \mathcal{J}_{\text{MROT}}}{\partial \phi_j} = 0 \end{cases} \Rightarrow \begin{cases} \nabla_{\psi_i} \mathcal{L}^*_{\text{Reg}} \left(\frac{\psi_i + \phi_j - C_{ij}}{\eta_{\text{Reg}}} \right) = \alpha_i \\ \nabla_{\phi_j} \mathcal{L}^*_{\text{Reg}} \left(\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\text{Reg}}} \right) = \beta_j \end{cases}$ (55)By taking the differentiation on π_{ij} we have: $\frac{\partial \mathcal{J}_{\text{MROT}}}{\partial \pi_{ij}} = \widetilde{C}_{ij} + \eta_{\text{Reg}} \nabla_{\pi_{ij}} \mathcal{L}_{\text{Reg}}(\pi_{ij}) - \psi_i - \phi_j = 0$ (56)

For instance, when $\mathcal{L}_{\text{Reg}}(\pi) = -\langle \pi, \log(\pi) - 1 \rangle$ denotes as the entropy regularization term, the dual form of MROT-Ent is 1155 $\begin{cases} \max_{\boldsymbol{\psi},\boldsymbol{\phi}} \mathcal{J}_{\mathrm{MROT-Ent}} = \langle \boldsymbol{\alpha}, \boldsymbol{\psi} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{\phi} \rangle - \eta_{\mathrm{Reg}} \sum_{i,j} \exp\left(\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\mathrm{Reg}}}\right) \\ \pi_{ij} = \exp\left(\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\mathrm{Reg}}}\right) \end{cases}$ 1156 shown as: 1157 1158 1159 (57)1160 1161 1162 When $\mathcal{L}_{\text{Reg}}(\boldsymbol{\pi}) = \langle \boldsymbol{\pi}, \boldsymbol{\pi} \rangle / 2$ denotes as the square-norm regularization term, the dual form of MROT-Norm is shown as: $\begin{cases}
\max_{\boldsymbol{\psi}, \boldsymbol{\phi}} \mathcal{J}_{\text{MROT-Norm}} = \langle \boldsymbol{\alpha}, \boldsymbol{\psi} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{\phi} \rangle - \frac{\eta_{\text{Reg}}}{2} \sum_{i,j} \left[\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\text{Reg}}} \right]_+ \\
\pi_{ij} = \left[\frac{\psi_i + \phi_j - \widetilde{C}_{ij}}{\eta_{\text{Reg}}} \right]_+
\end{cases}$ (5) 1163 1164 1165 1166 (58)1167 1169 Therefore we conclude the proof of the Proposition 1170 1171 1172

1172 **H. Datasets on Domain Adaptations**

1193 1194

1195

1196

1197 1198

1199

1200

Datasets. We conduct the unsupervised domain adaptation tasks on *Digits*, *Office-Home*, and *VisDA*. *Digits* is the classical dataset for digit classification which contains three standard digit classification datasets: MNIST (Lecun et al., 1998),
USPS(Hull, 2002) and SVHN (Netzer et al., 2011). Each dataset consists of 10 classes of digits, ranging from 0 to 9. *Office-Home* (Venkateswara et al., 2017) is a standard benchmark dataset which includes 15,500 images in 65 object classes in office and home settings, forming four dissimilar domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr) and Real-World (Rw). *VisDA* (Peng et al., 2018) is the large-scale cross-domain dataset in computer vision on two domains, i.e., Synthetic and Real with 280K images in 12 classes.

11821183I. Experiments on Partial Domain Adaptations

Datasets. We further conduct the domain adaptation tasks on new datasets, i.e., *Office-31* (Saenko et al., 2010) and *ImageCLEF* (Caputo et al., 2014). **Office-31** is the commonly-used computer vision dataset for domain adaptation with 4,652 images from three different domains: *Amazon* (**A**), *Webcam* (**W**) and *DSLR* (**D**). Target domain has the first 10 classes (alphabetical order) following (Cao et al., 2018). **ImageCLEF** contains 3 domains with 12 classes, i.e., *Caltech* (**C**), *ImageNet* (**I**) and *Pascal* (**P**). Target domain has the first 6 classes (alphabetical order) following (Luo et al., 2020).

Baselines. We involve DeepJDOT (Damodaran et al., 2018), ROT (Balaji et al., 2020), JUMBOT (Fatras et al., 2021),
ETN (Cao et al., 2019), AR (Gu et al., 2021), m-POT (Nguyen et al., 2022), MOT (Luo & Ren, 2023), DMP (Luo et al., 2020) as the model baselines for the domain adaptation task.

- **DeepJDOT** (Damodaran et al., 2018) first adopts optimal transport into solving domain adaptation problem with deep learning framework.
- ROT (Balaji et al., 2020) adopts robust optimal transport into adversarial training for domain adaptation.
- JUMBOT (Fatras et al., 2021) adopts mini-batch unbalanced optimal transport method for domain adaptation.
- ETN (Cao et al., 2019) utilizes example transfer network to jointly learn domain-invariant representations and the progressive weighting scheme.
- AR (Gu et al., 2021) adopts adversarial reweighting strategy on source domain data for alignment.
- **m-POT** (Nguyen et al., 2022) adopts partial optimal transport method in the mini-batch settings for domain adaptation.
- **DMP** (Luo et al., 2020) adopt discriminative manifold propagation for domain adaptation.
- MOT (Luo & Ren, 2023) adopts masked unbalanced optimal transport technique on considering label information for PDA tasks.

Submission and Formatting Instructions for ICML 2025

Table 3. Classification accuracy (%) on Office-31 for partial unsupervised domain adaptation								
Method	$A {\rightarrow} W$	$D{\rightarrow}W$	$W {\rightarrow} D$	$A{\rightarrow} D$	$D {\rightarrow} A$	$W {\rightarrow} A$	Avg	
ResNet (He et al., 2016)	75.6	96.3	98.1	83.4	83.9	85.0	87.1	
ETN (Cao et al., 2019)	84.7	97.4	99.2	91.3	90.2	92.8	92.6	
JUMBOT (Fatras et al., 2021)	90.2	98.9	99.3	94.5	93.8	93.4	95.0	
AR (Gu et al., 2021)	93.5	100.0	99.7	96.8	95.5	96.0	96.9	
m-POT (Nguyen et al., 2022)	96.2	99.5	100.0	97.6	94.4	95.3	97.2	
MOT (Luo & Ren, 2023)	99.3	100.0	100.0	98.7	96.1	96.4	98.4	
MOT + UOT(ETM + MROT-Ent)	99.4	100.0	100.0	98.9	96.8	97.3	98.7	
MOT + UOT(ETM + MROT-Norm)	99.6	100.0	100.0	99.2	97.3	97.7	99.0	
MOT + SemiUOT(ETM + MROT-Ent)	99.8	100.0	100.0	99.4	97.8	98.4	99.2	
MOT + SemiUOT(ETM + MROT-Norm)	99.7	100.0	100.0	99. 7	98.4	98.6	99.4	

Table 4. Classification accuracy (%) on ImageCLEF for partial unsupervised domain adaptation

Method	$I {\rightarrow} P$	$P {\rightarrow} I$	$I {\rightarrow} C$	$C{\rightarrow}I$	$C {\rightarrow} P$	$P {\rightarrow} C$	Avg
ResNet (He et al., 2016)	78.3	86.9	91.0	84.3	72.5	91.5	84.1
ETN (Cao et al., 2019)	79.6	88.5	92.9	87.2	74.1	93.4	86.0
JUMBOT (Fatras et al., 2021)	80.1	91.3	93.6	90.9	75.7	94.2	87.6
AR (Gu et al., 2021)	83.1	92.8	94.5	92.4	76.3	95.0	89.0
DMP (Luo et al., 2020)	82.4	94.5	96.7	94.3	78.7	96.4	90.5
MOT (Luo & Ren, 2023)	87.7	95.0	98.0	95.0	87.0	98.7	93.6
MOT + UOT(ETM + MROT-Ent)	88.3	95.6	98.4	95.3	87.6	99.0	94.0
MOT + UOT(ETM + MROT-Norm)	88.7	95.9	98.7	95.8	88.0	99.1	94.4
MOT + SemiUOT(ETM + MROT-Ent)	89.1	96.2	99.2	96.1	88.5	99.4	94.8
MOT + SemiUOT(ETM + MROT-Norm)	89.6	96.7	99.4	96.5	89.1	99.6	95.2

Performance. We also conduct the partial domain adaptation tasks on Office-31 and ImageCLEF and the results are shown
 in Table.4-5. We can observe that the proposed ETM-Refine with MROT-Norm on SemiUOT achieves state-of-the-art
 performance on Office-31 and ImageCLEF.

J. Experiments on Universal Domain Adaptations

We further conduct the experiments on universal domain adaptations. That is, there are shared labels between the source and target domains. Additionally, there are private labels specific to each domain (Farahani et al., 2021; Zhang & Gao, 2022). We conduct the universal domain adaptations on both Office-31 and Office-Home. Specifically, we set the first 10 classes in alphabetical order as the common label set, the next 10 classes as source private label and the rest 11 classes as target private label for Office-31. Likewise, we set the first 10 classes in alphabetical order as the common label set, the next 5 classes as source private label and the rest 55 classes as target private label for Office-Home. We involve the following models as baselines: (1) OSBP (Saito et al., 2018) adopts domain adversarial learning for open-set domain adaptation, (2) UAN (You et al., 2019) utilizes transferability criterion for universal domain adaptation, (3) CMU (Fu et al., 2020) learns to detect open classes with uncertainty estimation, (4) DCC (Li et al., 2021) adopts domain consensus clustering for adaptation, (5) TNT (Chen et al., 2022) adopts evidential neighborhood contrastive learning for adaptation, (6) UniOT (Chang et al., 2022) adopts unbalanced optimal transport with adaptive filtering for transferring.

We adopt the same experimental settings as UniOT (Chang et al., 2022). We utilize the commonly-used H-score (Fu et al., 2020) to validate the final results as shown in Table.6-7. Note that UniOT + UOT(ETM + MROT) only replaces the entropic UOT in UniOT with our proposed ETM-Refine method with MROT. From that we can observe that UniOT + UOT(ETM + MROT) reaches the best performance, indicating that UOT with ETM + MROT can provide more accurate matching results. Moreover, we adopt T-SNE method (Van der Maaten & Hinton, 2008) to plot the source and target data features in the latent space as shown in Fig.8(a)-(b). We can find that: (1) original UniOT could lead to rather scattered features in the latent space. That is because UniOT with entropic UOT could lead to dense and inaccurate matching solutions which limits the model potentials. (2) Our proposed UniOT + UOT(ETM + MROT-Norm) can provide more compact features since it provides more accurate solutions. Thus it further illustrates the efficacy of our proposed ETM + MROT-Norm method.

Submission and Formatting Instructions for ICML 2025

Figure 5. The T-SNE of data features on $Ar \rightarrow Rw$ (Office-Home) and $Rw \rightarrow Ar$ (Office-Home). The first row shows the original data sample distribution: The brown and gray colors denote the source and target private classes respectively. The rest are common label set with different colors. The second row indicates the mapping between source and target domain: The red and blue points denote the source and target samples respectively.

Table	7. Experin	mental resul	ts on Treat	ment Effect	Estimatio	n tasks.		
	ACIC (PEHE)) ACIC (AUUC)		IHDP (PEHE)		IHDP (AUUC)	
	In-Sample	Out-Sample	In-Sample	Out-Sample	In-Sample	Out-Sample	In-Sample	Out-Sample
OLS (Angrist & Imbens, 1995)	3.749	4.340	0.843	0.496	3.856	5.674	0.652	0.492
TARNet (Shalit et al., 2017)	3.236	3.254	0.886	0.662	0.749	1.788	0.654	0.711
PSM (Rosenbaum & Rubin, 1983)	5.228	5.094	0.884	0.745	3.219	4.634	0.740	0.681
CFR-WASS (Shalit et al., 2017)	3.128	3.207	0.873	0.669	0.657	1.704	0.656	0.715
ESCFR (Wang et al., 2023)	2.252	2.316	0.796	0.754	0.502	1.282	0.665	0.719
ESCFR + UOT(ETM + MROT-Ent)	2.327	2.261	0.839	0.814	0.497	1.275	0.769	0.763
ESCFR + UOT(ETM + MROT-Norm)	2.104	2.216	0.883	0.839	0.475	1.146	0.798	0.802

1310 K. Experiments on Treatment Effect Estimation

1301

Datasets for Treatment Effect Estimation. We further conduct ETM on treatment effect estimation with two semi-synthetic datasets IHDP (Shalit et al., 2017) and ACIC (Yao et al., 2018). IHDP is set to estimate the effect of specialist home visits on infants' potential cognitive scores and it contains 747 observations and 25 covariates. ACIC includes 4802 observations and 58 covariates which comes from the collaborative perinatal project.

Results. We involve the following models as baselines: (1) OLS (Angrist & Imbens, 1995) utilizes least square regression
 with treatment as covariates, (2) TARNet (Shalit et al., 2017) adopts integral orobability metrics for adaptation, (3) PSM
 (Rosenbaum & Rubin, 1983) adopts propensity score for causal effects, (4) CFR-WASS (Rosenbaum & Rubin, 1983)

utilizes standard optimal transport for adaptation, (5) ESCFR (Wang et al., 2023) further utilizes unbalanced optimal
transport for adaptation. We adopt the same experimental settings as ESCFR (Wang et al., 2023). We utilize Precision in
Estimation of Heterogeneous Effect (PEHE) (Shalit et al., 2017) and Area Under the Uplift Curve (AUUC) (Betlei et al.,
2021) for the evaluation. Note that ESCFR + UOT(ETM + MROT) only replaces the entropic UOT in ESCFR with our
proposed approximate-to-exact ETM +MROT. The experimental results are shown in Table 8. From that we can observe
that ESCFR + UOT(ETM + MROT) achieves the best performance, indicating the efficacy of our proposed ETM method.

1357 L. More Experimental Results

Parameter sensitivity. We tune η_G on SemiUOT via ETM-Refine with MROT-Norm in range of $\eta_G \in \{0, 1, 100\}$ using the same data samples shown in Fig.1 and show the results in Fig.6. We can observe that when η_G is smaller (e.g., $\eta_G = 0$ or $\eta_G = 1$), the proposed KKT-multiplier regularization term $\mathcal{G}(\pi, s) = \langle \pi, s \rangle$ may struggle to play a significant role during the optimization process. Meanwhile when $\eta_G = 100$, ETM-Refine with MROT-Norm can achieve more accurate matching results comparing with the ground truth result. We can conclude that choosing larger value of η_G can fully utilize the knowledge provided by KKT multiplier and enhance the final results. Therefore we set $\eta_G = 100$ empirically.

¹³⁶⁵ 1366 **M. Miscellaneous Discussions**

The role of ζ in ETM-based method. We first discuss why we should involve translation invariant ζ in both $L_{\rm U}$ and $L_{\rm P}$. Specifically, we first analyse the case of SemiUOT. The Fenchel-Lagrange conjugate form of SemiUOT without translation invariant mechanism is given as:

$$\min_{\boldsymbol{f},\boldsymbol{g},\boldsymbol{\zeta}} [\tau \sum_{i=1}^{M} a_i e^{-\frac{f_i}{\tau}} - \sum_{j=1}^{N} b_j g_j]$$
s.t. $f_i + g_j \le C_{ij}$
(59)

1372 1373 1374

We can adopt c-transform on Eq.(59) to obtain the unconstrained optimization problem as:

$$\min_{f} \widetilde{L}_{P} = \tau \sum_{i=1}^{M} a_{i} e^{-\frac{f_{i}}{\tau}} - \sum_{j=1}^{N} \inf_{k \in [M]} [C_{kj} - f_{k}] b_{j},$$
(60)

We adopt L-BFGS to optimize $\tilde{L}_{\rm P}$ using the same data samples as shown in Fig.1 with $\tau = 1$. Meanwhile, the translation invariant term ζ in SemiUOT should be calculated as follows:

$$\zeta = \tau \log\left(\sum_{i=1}^{M} a_i \exp\left(-\frac{f_i}{\tau}\right)\right) - \tau \log\left(\sum_{j=1}^{N} b_j\right)$$
(61)

Ideally, ζ should equals to 0 since $\sum_{i=1}^{M} a_i \exp\left(-\frac{f_i}{\tau}\right) = \sum_{j=1}^{N} b_j$. However, we can observe that $\zeta > 0$ during the iteration epoch on optimizing $\tilde{L}_{\rm P}$ as shown in Fig.7(a). Therefore we can conclude that ζ is imdispenable during the calculation on

SemiUOT. Likewise, the Fenchel-Lagrange conjugate form of UOT without translation invariant mechanism is given as:

$$\min_{\boldsymbol{v},\boldsymbol{u}} \left[\tau_a \langle \boldsymbol{a}, e^{-\frac{\boldsymbol{u}}{\tau_a}} \rangle + \tau_b \langle \boldsymbol{b}, e^{-\frac{\boldsymbol{v}}{\tau_b}} \rangle \right]$$
(62)

s.t.
$$u_i + v_j \le C_{ij}$$
.

Here we can adopt *c*-transform on Eq.(62) to obtain the unconstrained optimization problem as:

$$\min_{\boldsymbol{u}} \widetilde{L}_{U} = \tau_{a} \sum_{i=1}^{M} a_{i} e^{-\frac{u_{i}}{\tau_{a}}} + \tau_{b} \sum_{j=1}^{N} b_{j} e^{\frac{\sup_{k=1}^{M} \left(u_{k} - C_{kj}\right)}{\tau_{b}}}$$
(63)

We also adopt L-BFGS to optimize \tilde{L}_U using the same data samples as shown in Fig.2 with $\tau_a = \tau_b = 1$. Meanwhile, the translation invariant term ζ in UOT should be calculated as follows:

$$\zeta = \frac{\tau_a \tau_b}{\tau_a + \tau_b} \left[\log \left\langle \boldsymbol{a}, \exp\left(-\frac{\boldsymbol{u}}{\tau_a}\right) \right\rangle - \log \left\langle \boldsymbol{b}, \exp\left(-\frac{\boldsymbol{v}}{\tau_b}\right) \right\rangle \right]$$
(64)

Ideally, ζ should equals to 0 since $\left\langle a, \exp\left(-\frac{u}{\tau_a}\right) \right\rangle = \left\langle b, \exp\left(-\frac{v}{\tau_b}\right) \right\rangle$. However, we can observe that $\zeta > 0$ during the iteration epoch on optimizing $\tilde{L}_{\rm U}$ as shown in Fig.7(b). Therefore we can conclude that ζ is imdispenable during

the calculation on UOT. In conclusion, the concept of translation invariant was first proposed in (Séjourné et al., 2022b). However, (Séjourné et al., 2022b) only utilizes translation invariant for entropic UOT. We highlight that, in this paper, we further extend translation invariant for standard UOT/SemiUOT scenario. We illustrate that translation invariant is essential in solving UOT and SemiUOT problems.