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Unified (Semi) Unbalanced and Classic Optimal Transport with Equivalent
Transformation Mechanism and KKT-Multiplier Regularization

Anonymous Authors1

Abstract
Semi-Unbalanced Optimal Transport (SemiUOT)
shows great promise in matching two probability
measures by relaxing one of the marginal con-
straints. Previous solvers often incorporate an
entropy regularization term, which can result in in-
accurate matching solutions. To address this issue,
we focus on determining the marginal probabil-
ity distribution of SemiUOT with KL divergence
using the proposed Equivalent Transformation
Mechanism (ETM) approach. Furthermore, we
extend the ETM-based method into exploiting the
marginal probability distribution of Unbalanced
Optimal Transport (UOT) with KL divergence for
validating its generalization. Once the marginal
probabilities of UOT/SemiUOT are determined,
they can be transformed into a classical Optimal
Transport (OT) problem. Moreover, we propose
a KKT-Multiplier regularization term combined
with Multiplier Regularized Optimal Transport
(MROT) to achieve more accurate matching re-
sults. We conduct several numerical experiments
to demonstrate the effectiveness of our proposed
methods in addressing UOT/SemiUOT problems.

1. Introduction
Optimal Transport (OT) technique is a powerful tool for
discerning and comparing distinct probability distributions.
Nowadays, OT has multiple successful applications in tradi-
tional machine learning (Frogner et al., 2015; Feydy et al.,
2019; Zhuang et al., 2022; Chuang et al., 2023; Riaz et al.,
2023), unsupervised clustering (Asano et al., 2019; Caron
et al., 2020), domain adaptation (Damodaran et al., 2018;
Courty et al., 2017; Redko et al., 2019), diffusion (Khrulkov
et al., 2023; Lipman et al., 2023), generative modeling (Ko-
rotin et al., 2023; Onken et al., 2021; Tong et al., 2023)
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and many others. Nevertheless, directly solving OT dis-
tances could have relatively high computation cost with
around super-cubic time. Although one can adopt entropy-
based Sinkhorn algorithm (Cuturi, 2013) for solving OT
efficiently, it still suffers from the dilemma of dense and
inaccurate solutions (Liu et al., 2023; Lorenz et al., 2021;
Dessein et al., 2018). Moreover, classical OT strictly as-
sume that the masses on both source and target domains
should be equal. It further hurdles the generalization of OT
when the data samples inherit noise or outliers.

Recently, Unbalanced Optimal Transport (UOT) (Benamou,
2003; Chizat, 2017; Séjourné et al., 2023; Scetbon et al.,
2023; Séjourné et al., 2022b) and Semi-Unbalanced Opti-
mal Transport (SemiUOT) (Le et al., 2021) have become
more attractive in adapting outliers since it allows relax-
ing marginal constraints for transportation results. UOT
adopts several divergences such as Kullback-Leiber (KL)
divergence (Pham et al., 2020), ℓ1 norm (Caffarelli & Mc-
Cann, 2010) and ℓ2 norm (Blondel et al., 2018) for the
relaxation on OT mass equality constraints by adjusting
the corresponding coefficients τ . Meanwhile, KL diver-
gence is the most commonly-used in UOT formulation in
real practice (Séjourné et al., 2022a). UOT also provides
great applications in transfer learning (Tran et al., 2023;
Mukherjee et al., 2021; Pariset et al., 2023), computer vi-
sion (Bonneel & Coeurjolly, 2019; De Plaen et al., 2023;
Choi et al., 2023; Neklyudov et al., 2023; Chang et al., 2022;
Ma et al., 2021; Zhan et al., 2021), structure data exploration
(Sato et al., 2020), natural language processing (Arase et al.,
2023) and many areas. Previous solvers always involves
extra regularization terms including entropy regularization
term and proximal point term (Fatras et al., 2021) for tack-
ling UOT problem. While adding additional entropy terms
will lead to dense and inaccurate matching solutions. Latest,
(Chapel et al., 2021) and (Nguyen et al., 2023) further re-
consider solving UOT problem with majority maximization
algorithm without the requirements of regularization terms.
However, these methods are sensitive to the choice of τ , i.e.,
providing sparse and accurate solutions when τ is small, but
unsatisfying solutions when τ is much larger. Therefore, it
is quite challenging to efficiently exploit accurate solutions
for both UOT and SemiUOT problems.
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In this paper, we propose a new method, i.e., equivalent
transformation mechanism (ETM), which relieves the need
for extra regularization terms in solving SemiUOT and
UOT with KL divergence. Specifically, ETM first finds
the marginal probability distributions for SemiUOT and
UOT problems based on Karush-Kuhn-Tucker (KKT) con-
ditions and their dual forms. We can further observe that
the essence of SemiUOT and UOT lies in correspondingly
adjusting the initial weights of different data samples. This
provides us with new insights for understanding SemiUOT
and UOT problems, i.e., we can transform SemiUOT and
UOT problems into classic optimal transport problems based
on initial marginal weights. Though we can exactly solve
the marginal distributions via conventional iterative meth-
ods, e.g., L-BFGS, we further propose ETM-Approx to
achieve the approximate results efficiently and convergently.
Moreover, ETM-Refine resolves exact solutions via quasi-
Newton optimization where the start points are these ap-
proximate solutions. Compared with original ETM, ETM-
Apporx and ETM-Refine obtain accurate solutions while
competitively balancing computational cost. Beyond solv-
ing the marginal distribution, we also discover that the KKT
multipliers provide valuable guidance for addressing the OT
problem, which is transformed from the SemiUOT and UOT
problems with marginal weights. Therefore we further pro-
posed Multiplier Regularized Optimal Transport (MROT)
for achieving more sparse and accurate OT matching so-
lutions. We summarize our contributions: (1) To our best
knowledge, we first propose both exact and approximate
solutions for ETM on two problems, i.e., SemiUOT and
UOT. After optimizing these problems, one can obtain the
sample marginal probabilities and transfer SemiUOT/UOT
into standard optimal transport problems. (2) We first in-
novatively propose multiplier constraint terms to establish
MGOT for achieving more accurate results. (3) We con-
duct extensive experiments on both synthetic and real-world
datasets to demonstrate the performance of proposed ETM.

2. Preliminary
We first provide a brief preliminary definition of OT, UOT
and SemiUOT. Let us consider two sets of data samples
X ∈ RM×D and Z ∈ RN×D in source and target domains,
where M , N denote the number of samples and D denotes
the data dimension. Each data samples has corresponding
prior-given mass weights a ∈ RM×1 and b ∈ RN×1. Mean-
while the total masses of these data samples are equal as
a⊤1M = b⊤1N . The classical OT problem was defined by
(Kantorovich, 1942) with a linear problem to measure the
minimum transportation cost among data sampleX and Z:

min
πij≥0

JOT = ⟨C,π⟩ s.t. π1N = a, π⊤1M = b,

where C ∈ RM×N denotes the pairwise distance matrix.
Meanwhile π ∈ RM×N denotes the coupling matching ma-
trix among the data samples X and Z. One can directly

solve JOT via utilizing network-flow algorithm (Kenning-
ton & Helgason, 1980; Ahuja et al., 1988). To consider
more general cases (e.g., filtering out the noise or outliers),
one can relax two marginal constraints, i.e., π1N ̸= a
and π⊤1M ̸= b, to achieve unbalanced optimal transport
problem (Pham et al., 2020):

min
πij≥0

JUOT = ⟨C,π⟩+ τaKL (π1N∥a) + τbKL(π⊤1M∥b),

where KL (·) denotes Kullback-Leiber (KL) divergence
which has been widely used in dealing with UOT. τa and τb
denote the balanced hyper parameters between the min-
imizing cost and marginal relaxation. Note that when
τa, τb → +∞ and a⊤1M = b⊤1N , UOT problem will turn
into classical OT. Moreover, we can add one marginal con-
straints to formulate SemiUOT. For instance, we relax the
constraint π1N ̸= a and keep the constraint π⊤1M = b:

min
πij≥0

JSemiUOT = ⟨C,π⟩+ τKL (π1N∥a) s.t. π⊤1M = b.

Previous researches always add entropy regularization term
for solving OT, UOT and SemiUOT. Although entropy regu-
larization term can enhance the scalability of solving π∗, it
still suffers from the dense and inaccurate solution dilemma.
In the following, we will first investigate the problem of
UOT/SemiUOT from the perspective of marginal probabil-
ity distribution, in order to find out the accurate solution of
π∗ for OT, UOT and SemiUOT.

3. Methodology
In this section, we will provide the calculation details
on finding the solutions for commonly-existed UOT and
SemiUOT. Previous methods (Pham et al., 2020; Chizat
et al., 2018) always directly adopted entropy-based reg-
ularization term into tackling UOT and SemiUOT prob-
lem. Although such approaches can provide fast computa-
tion speed, it will lead to relatively ambiguous and dense
solution which does not match most of situations in real
practices (Li et al., 2023; Scetbon et al., 2021). Latest,
(Chapel et al., 2021) adopted majorization-minimization
algorithm or regularization path for solving UOT/SemiUOT
problem. However, majorization-minimization algorithm is
sensitive to the choice of τ , and still causes inaccurate and
dense solutions when τ → +∞. Worse still, regularization
path could involve heavy matrix computation on inversion,
requiring complicated optimization procedure. To solve
the above problem, we change the perspective of solving
the UOT/SemiUOT problem, i.e., originally exploiting the
marginal probability of UOT/SemiUOT via our proposed
Equivalent Transformation Mechanism (ETM) approach. In
this way, we can obtain some interesting insights on un-
derstanding the intrinsic characteristics of UOT/SemiUOT.
Moreover, we further propose KKT-Multiplier Regulariza-
tion with Multiplier Regularized Optimal Transpor (MROT)
with theorems and corollaries to achieve more accurate
matching solution on SemiUOT and UOT respectively.
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3.1. Equivalent Transformation Mechanism

In this section, we will first introduce the proposed equiva-
lent transformation mechanism approach. Specifically, we
propose an ETM-based method to determine the marginal
probabilities of source data samples in SemiUOT, accom-
panied by detailed illustrations. We then extend the ETM-
based method to address the more complex UOT problem.

Equivalent Transformation Mechanism for SemiUOT.
To start with, we first exploit the marginal probability dis-
tributions for SemiUOT via the proposed ETM method.
Specifically, ETM includes three different approaches, i.e.,
ETM-Exact, ETM-Approx and ETM-Refine. By utilizing
the methods above, one can transform SemiUOT into classic
optimal transport problem. In this section, we will intro-
duce the deduction and optimization details for the proposed
ETM-based method on SemiUOT.

Proposition 1. (Principles of Equivalent Transformation
Mechanism for SemiUOT) Given SemiUOT with KL-
Divergence JSemiUOT, one can obtain its Fenchel-Lagrange
multipliers form as:

min
f ,g,ζ

[
τ

M∑
i=1

aie
− fi+ζ

τ −
N∑

j=1

bj(gj − ζ)

]
s.t. fi + gj + sij = Cij , sij ≥ 0.

(1)

where f , g, s and ζ denotes Lagrange multipliers. More-
over, SemiUOT problem can be transformed into classic
optimal transport as follows:

min
π≥0

JP = ⟨C,π⟩ s.t.

π1N = a⊙ exp

(
−f

∗ + ζ∗

τ

)
= α

π⊤1M = b
(2)

Note that when τ → ∞, the source marginal probability can
be determined as π1N = ωa where ω = ⟨b,1N ⟩/⟨a,1M ⟩.

The proof of Proposition 1 can be found in Appendix A.
We can observe that SemiUOT is set to assign different
weights on data samples. To further simplify the calculation
by reducing variable g, we set gj = infk∈[M ] (Ckj − fk)
according to the c-transform theorem (Villani et al., 2009).
Therefore, we only need to optimize f and ζ without addi-
tional constraints as follows:

min
f ,ζ

LP = τ
M∑
i=1

aie
− fi+ζ

τ −
N∑

j=1

[
inf

k∈[M ]
[Ckj − fk]− ζ

]
bj ,

(3)
We refer to LP as the newly proposed Exact SemiUOT
Equation. Specifically, we initialize ζ = 0 for the opti-
mization. We first fix ζ then adopting L-BFGS method
(Berahas et al., 2016; Virtanen et al., 2020) to reach optimal
results of f ℓ and gℓj = infk∈[M ](Ckj − f ℓk) at the ℓ-th itera-
tion. Then we optimize ζ = τ [log(

∑M
i=1 ai exp(−f ℓi /τ))−

log(
∑N
j=1 bj)] which is obtained by considering ∇ζLP = 0

and it guarantees
∑M
i=1 aie

−(fℓ
i +ζ)/τ =

∑N
j=1 bj . We it-

eratively update LU to reach the optimal solution on ζ∗,
f∗ and g∗. Here we refer to the entire optimization pro-
cedure as the ETM-Exact approach for addressing the Ex-
act Semi-UOT Equation. Although LP is convex and has
unique solutions, the presence of inf(·) renders it a non-
smooth function, leading to inefficient optimization (An
et al., 2022). To further accelerate the optimization process,
we consider to make a smooth approximation on replac-

ing inf(·) as infk∈[M ][Ckj − fk] ≈ −ϵ log[
∑M
k=1 e

fk−Ckj
ϵ ].

Note that ϵ > 0 denotes the balanced hyper parameters
among the accuracy and function smoothness. Smaller ϵ
(e.g., ϵ approaches to 0) could lead to more accurate while
less smooth solutions. Then we can obtain the proposed
Approximate SemiUOT Equation as L̂P by replacing inf(·)
with the smoothness term for f̂ as below:

min
f̂ ,ζ

L̂P = τ

M∑
i=1

aie
− f̂i+ζ

τ +

N∑
j=1

bj

[
log

[
M∑
k=1

e
f̂k−Ckj

ϵ

]ϵ
+ ζ

]
(4)

Proposition 2. (Calculation for Approximate SemiUOT
Equation) Given Approximate SemiUOT equation L̂P, it
can be optimized via Equivalent Transformation Mechanism
with Approximation (ETM-Approx). That is, ETM-Approx
aims to solve the following equation for each f̂s:

∂L̂P

∂f̂s
= −ase−

f̂s+ζ
τ + e

f̂s
ϵ

N∑
j=1

 bj exp
(
−Csj

ϵ

)
∑M

k=1 exp
(

f̂k−Ckj

ϵ

)
 = 0.

(5)
Specifically, we can adopt fixed-point iteration method for
solving Eq.(5) at the ℓ-th iteration as follows:

f̂ ℓ+1
1 = ν

[
log
(
a1e

− ζ
τ

)
− log

[
N∑

j=1

(
bje

−C1j/ϵ

Wϵ,j(f̂ ℓ)

)]]
...

f̂ ℓ+1
M = ν

[
log
(
aMe

− ζ
τ

)
− log

[
N∑

j=1

(
bje

−CMj/ϵ

Wϵ,j(f̂ ℓ)

)]]
,

(6)
where ν = τϵ/(τ + ϵ) for simplification and Wϵ,j(f̂

ℓ) de-
notes the corresponding calculation as shown below:

Wϵ,j(f̂
ℓ) =

M∑
k=1

exp

(
f̂ ℓ
k − Ckj

ϵ

)
. (7)

The proposed procedure can be convergence with theo-
retical guarantee after T -th inner iteration. Finally, up-
dating variable ζ by further considering ∇ζL̂P = 0 via
ζ = τ [log(

∑M
i=1 ai exp(−f̂∗i /τ)) − log(

∑N
j=1 bj)]. One

can achieve the optimal solution on f̂ and ζ accordingly.

The proof of Proposition 2 can be found in Appendix B.
Generally, Proposition 2 outlines the optimization proce-
dure using the newly proposed ETM-Approx approach for
addressing the Approximate Semi-UOT Equation. We can
observe that the ETM-Approx approach is easy to compute
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Figure 1. The SemiUOT matching solutions on π∗ when τ = 0.1 or τ = 100 among the Robust-SemiSinkhorn (Le et al., 2021) and
our proposed ETM + MROT-Ent, ETM + MROT-Norm with ηG = 102 and ϵ = 10−2. We set ηReg = 0.1 for entropy or L2-norm
regularization term. Our proposed method can avoid ambiguous matching solution and achieve more accurate results.

and implement, while avoiding complex calculations (such
as finding the step size and estimating the Hessian matrix)
and not requiring a large amount of storage space against
previous methods. Therefore, the ETM-Approx approach is
an efficient method for determining the optimal result of f̂∗

and ĝ∗j = −ϵ log[
∑M
k=1 exp((f̂

∗
k − Ckj)/ϵ)], transforming

SemiUOT into a classical optimal transport problem.

Moreover, we can finally figure out the exact optimal so-
lution f∗ via the approximate optimal solution f̂∗ on L̂P

using Proposition 2. That is, if we directly optimize LP

from a randomly initial point, we could cost more time on
gradient descent for reaching f∗. Since f̂∗ is close to f∗,
it should be more efficient to use f̂∗ as the initial guess
for optimizing f∗ in the quasi-Newton optimization proce-
dure on LP (Jin & Mokhtari, 2021; 2023; Rodomanov &
Nesterov, 2021) and we regard it as ETM-Refine method.
In summary, one can utilize ETM-based approach (e.g.,
ETM-Exact, ETM-Approx and ETM-Refine) to transform
SemiUOT into classic optimal transport problem. We also
summarize the optimization details in Appendix C.

Equivalent Transformation Mechanism for UOT. We
have obtained the marginal probability of SemiUOT via tack-
ling Proposition 1 with proposed ETM-based method. In
this section, we will further extend our methods for solving
the marginal probability on UOT which is also a commonly
exist optimization problem. That is, we will generalize
ETM-based method on solving UOT problem accordingly.

Proposition 3. (Principles of Equivalent Transformation
Mechanism for UOT) Given UOT with KL-Divergence
JUOT, its Fenchel-Lagrange multipliers form is given:

min
u,v,ζ

[
τa

M∑
i=1

aie
−ui+ζ

τa + τb

N∑
j=1

bje
−

vj−ζ

τb

]
s.t. ui + vj + sij = Cij , sij ≥ 0.

(8)

where u, v, s and ζ denotes Lagrange multipliers. More-
over, UOT problem can also be transformed into classic
optimal transport as follows:

min
π≥0

JU = ⟨C,π⟩ s.t.


π1N = a⊙ exp

(
−u

∗ + ζ∗

τa

)
= α

π⊤1M = b⊙ exp

(
−v

∗ − ζ∗

τb

)
= β

(9)
Note that when τa, τb → ∞, the source and target marginal
probability can be determined as π1N =

√
ωa and

π⊤1M = b/
√
ω where ω = ⟨b,1N ⟩/⟨a,1M ⟩ respectively.

The proof of Proposition 3 can be found in Appendix D.
Likewise, we set vj = infk∈[M ] (Ckj − uk) according to
the c-transform theorem (Villani et al., 2009) to simplify the
calculation. Therefore we can obtain Exact UOT Equation:

min
u,ζ

LU = τa

M∑
i=1

aie
−ui+ζ

τa + τbe
ζ
τb

N∑
j=1

bje

sup
k∈[M]

(uk−Ckj)
τb .

(10)
We first fix ζ then adopting L-BFGS method to optimize LU.
Then we optimize ζ = κ[log(

∑M
i=1 ai exp(−uℓi/τa)) −

log(
∑N
j=1 bj exp(−vℓj/τb))] at the ℓ-th iteration where

vℓj = infk∈[M ](Ckj − uℓk) and κ = τaτb/(τa + τb) by
considering ∇ζLU = 0. Here we regard the above process
as the ETM-Exact approach for solving UOT problem. Note
that the non-smooth function sup(·) will result in inefficient
optimization. However, if we directly apply the similar func-
tion approximation to replace sup(·) following Eq.(4), the
optimization problem becomes quite complex, making it
relatively difficult to determine the iterative solutions. Mean-
while Proposition 2 enlightens us with a completely new
ETM-Approx approach for optimizing UOT.

Optimization 1. (Calculation of ETM-Approx approach for
UOT) Since the optimization problem in Eq.(8) is convex,
we can also utilize block gradient descend to optimize the
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Figure 2. The UOT matching solutions on π∗ when τa = τb = 0.1 or τa = τb = 100 among the Ent-UOT (Pham et al., 2020), MM-UOT
(Chapel et al., 2021), GEMUOT (Nguyen et al., 2023) and our proposed ETM + MROT-Norm with ηG = 102 and ηReg = 0.1.

problem. Specifically, we first fix v̂l and optimize variable
ûl at the l-th iteration by replacing the original marginal
probability b in Eq.(4) with b ⊙ exp(−(v̂ − ζ)/τb) = β
accordingly to transform UOT into SemiUOT problem:

min
û
L̂u

U = τa

M∑
i=1

aie
− ûi+ζ

τa +

N∑
j=1

βj

[
log

[
M∑
k=1

e
ûk−Ckj

ϵ

]ϵ
+ ζ

]
.

(11)
Note that it is equivalent to solve the following equation by
taking the differentiation w.r.t. on ûs over L̂uU and set it 0:

∂L̂u
U

∂ûs
= −ase−

ûs+ζ
τa + e

ûs
ϵ

N∑
j=1

 βj exp
(
−Csj

ϵ

)
∑M

k=1 exp
(

ûk−Ckj

ϵ

)
 = 0.

(12)
Obviously, it is equivalent to replace b with β in Eq.(5) for
solving Eq.(12). Then we can utilize the iteration step shown
in Eq.(6) to obtain ûl+1. After that we fix ûl+1 and opti-
mize variable v̂l+1 via v̂l+1

j = −ϵ log[
∑M
k=1 exp((û

l+1
k −

Ckj)/ϵ)]. We can achieve the optimal solution on û∗

and v̂∗ via iteratively computing via the above procedure
accordingly. Finally, we update variable ζ via consider-
ing ζ = (τaτb/(τa + τb))[log(

∑M
i=1 ai exp(−û∗i /τa)) −

log(
∑N
j=1 bj exp(−v̂∗j /τb))]. Due to the space limits, the

deduction details are provided in Appendix E.

In summary, Optimization 1 for solving the UOT can be
seen as an extension of Proposition 2 applied to SemiUOT,
demonstrating the robust generalization capability of the
proposed ETM method. Likewise, one can utilize û∗ and
v̂∗ as the initial guess for solving Exact UOT Equation on
Eq.(10) as ETM-Refine. Hence, UOT can be transformed
into classic optimal transport using the ETM-based method.

3.2. KKT-Multiplier Regularization

According to the Proposition 1-3 that discussed in Section
3.1, we have figured out the marginal probability distribu-
tions on both UOT and SemiUOT with commonly used
KL Divergence via proposed ETM-based method. Moti-
vated by this, we can observe that the core mechanism of

UOT/SemiUOT is carefully reweighting the weights of dif-
ferent samples accordingly. If the samples are noise or
outliers, the corresponding weights will be much smaller
than the corresponding weights among similar data samples.
Therefore, UOT/SemiUOT has better adaptability than tra-
ditional OT that commonly treats all data samples equally.
In this section, we will further exploit the matching results
of π for SemiUOT and UOT using the following corollary:

Corollary 1. Given any UOT/SemiUOT with KL divergence,
we can transfer the original problem into classical optimal
transport via adopting proposed ETM approach flexibly. We
can further utilize existing OT solver for solving π∗ as:

(UOT,SemiUOT)
ETM Method−−−−−−−−→ OT

OT Solver−−−−−−→ π∗.

This observation provides us with entirely new unified in-
sights into solving the matching results of π∗ for UOT and
SemiUOT. It is essential to utilize the proposed ETM-based
method, as it offers a variety of OT solvers that yield more
efficient and accurate results than directly optimizing UOT
or SemiUOT. Specifically, one can further adopt Sinkhorn
(Cuturi, 2013; Carlier, 2022), ℓ2-norm term (Blondel et al.,
2018) or some other sparsification OT solver (Liu et al.,
2023; Genevay et al., 2016) with different regularization
terms to achieve the transportation solution on π∗.

Although previous efficient OT solvers (e.g., Sinkhorn (Cu-
turi, 2013)) could figure out π∗ efficiently, they often pro-
duce ambiguous matching results that may deviate signifi-
cantly from the correct solutions (Montesuma et al., 2023;
Liu et al., 2023). Therefore, finding an accurate matching
solution for π∗ efficiently remains a challenge. Recalling
the whole process of ETM-based approach, we not only
obtain the marginal probabilities for each data sample, but
also derive the multipliers s which can be further utilized.

Corollary 2. Given the optimal u∗ and v∗ in UOT via
ETM-based approach, one can obtain s on UOT by sij =
max(0, Cij − u∗i − v∗j ). Likewise, the multipliers s on
SemiUOT can be obtained via ETM-based approach as
sij = max(0, Cij − f∗i − g∗j ). Multipliers s indicates the
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value of π, i.e., (case 1) sij > 0 when πij = 0 and (case 2)
sij = 0 when πij > 0 according to the KKT conditions.

The Corollary 2 demonstrates that the value of πij can be
reflected via sij . This observation inspires us to further
utilize such useful information in calculating π∗.

Proposition 4. (The Definition and Usage of KKT-
Multiplier Regularization) Given any OT with multiplier
s, one can obtain accurate solution π∗ via proposed KKT-
multiplier regularization term G(π, s) = ⟨π, s⟩, which for-
mulates Multiplier Regularized Optimal Transport (MROT):

min
π≥0

JG = ⟨C,π⟩+ ηG⟨π, s⟩+ ηRegLReg(π)

s.t. π1N = α, π⊤1M = β,
(13)

where LReg(π) denotes the regularization term on π. α, β
denote the final marginal probabilities obtained by ETM-
based approach and ηReg, ηG denotes the hyper parameter.
Ideally, ηG should be set as a relatively large number. Mean-
while the dual form of MROT is given as:

max
ψ,ϕ

LG = ⟨α,ψ⟩+ ⟨β,ϕ⟩ − ηRegL∗
Reg

(
ψi + ϕj − C̃ij

ηReg

)
(14)

where C̃ij = Cij+ηGsij andϕ andψ denote the Lagrange
multipliers for MROT. L∗

Reg(·) denotes the conjugate func-
tion of LReg(·) and one can figure out the matching results
of π via solving ∇πij

LReg(πij) = (ψi + ϕj − C̃ij)/ηReg.

The deduction process of MROT can be found in Appendix
G. That is, minimizing sijπij to 0 could result in sijπij = 0
which is consistent with the KKT complementary condition.
Generally, we can adopt different kinds of regularization
term LReg(·) on MROT for optimization. For instance,
one can use the widely adopted entropy regularization term
LReg(π) = −⟨π, log(π) − 1⟩ to formulate Entropic Mul-
tiplier Regularized Optimal Transport (MROT-Ent). The
matching results of π in MROT-Ent can be obtained as:

πij = exp

(
−ηGsij
ηReg

)
exp

(
ψi + ϕj − Cij

ηReg

)
(15)

Obviously, the multipliers information s has been involved
for achieving more accurate solutions. Specifically, the
non-matching samples pairs will get lower value on πij
since G(π, s) = ⟨π, s⟩ avoids rigorous results. Otherwise,
the matching results on πij will mainly be determined by
the transportation cost. Similarly, one can also adopt L2-
norm regularization term LReg(π) =

1
2 ⟨π,π⟩ to formulate

Sparse Multiplier Regularized Optimal Transport (MROT-
Norm) with similar characteristics. More discussions on
MROT-Norm can be found in Appendix. In conclusion, we
can integrate the ETM-based approach with MROT method
to solve UOT and SemiUOT, achieving accurate results for
both marginal probabilities and the matching solution πij .

4. Related Works

Unbalanced and Semi-Unbalanced Optimal Transport.
(1) Related works on UOT: UOT with KL divergence has
been widely investigated for dealing with diverse applica-
tions (Peyré et al., 2019; De Plaen et al., 2023; Séjourné
et al., 2019; Le et al., 2022). Different types of UOT solu-
tions can be distinguished in terms of using entropy regular-
ization term or not. Involving entropy in UOT can enhance
the model scalability, yet resulting in dense matching re-
sults (Sinkhorn & Knopp, 1967; Balaji et al., 2020). Latest,
(Chapel et al., 2021) further considers UOT without en-
tropy terms by Majorization-Minimization (MM) (Chizat
et al., 2018; Sun et al., 2016) or regularization path methods
(Mairal & Yu, 2012; Massias et al., 2018; Liu & Nocedal,
1989). However, the nature of MM algorithm inherits inex-
act proximal point of KL term (Xie et al., 2020), which still
causes dense mapping when τ becomes larger. Meanwhile
regularization path methods could be quite slow in computa-
tion especially when τ → +∞. Furthermore, as the number
of samples increases, it can lead to high storage space con-
sumption which can be problematic. (2) Related works on
SemiUOT: SemiUOT with KL divergence only relaxes one
of the marginal constraints comparing with UOT. (Le et al.,
2021) first fully investigated the corresponding problem and
proposed Robust-SemiSinkhorm algorithm. Nevertheless, it
still suffers from inaccurate matching solutions with entropy
regularization term. Currently, there only exists extremely
few works for solving SemiUOT (Montesuma et al., 2024).
Therefore, how to efficiently provide accurate solution on
both UOT and SemiUOT is still a challenging problem.

5. Experiments
In this section, we conduct experiments on both synthetic
and real-world datasets to evaluate our proposed methods.

5.1. Experimental setup

Synthetic Datasets. We first conduct the experiments on
the synthetic datasets. That is, we set the source and target
domain distributions as PX = N

([
−1
−1

]
,

[
1 0
0 1

])
and PZ =

N
([

4
4

]
,

[
1 −0.8

−0.8 1

])
following previous works (Flamary

et al., 2021; Chapel et al., 2021). We will sample a num-
ber of source and target data via x ∼ PX and z ∼ PZ
respectively to establish the synthetic datasets.

Datasets for Domain Adaptation. We conduct the unsuper-
vised domain adaptation tasks on Digits (Lecun et al., 1998;
Hull, 2002; Netzer et al., 2011), Office-Home (Venkateswara
et al., 2017), and VisDA (Peng et al., 2018). More details on
these datasets are provided in Appendix H.

Baselines. We compare ETM-Refine with MGOT method
with the following state-of-the-art UOT/SemiUOT solvers
on the synthetic datasets. (1) Ent-UOT (Pham et al., 2020)
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Table 1. Classification accuracy (%) on Office-Home for UDA and Partial UDA
Method for Partial UDA Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet (He et al., 2016) 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.4
ETN (Cao et al., 2019) 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5

JUMBOT (Fatras et al., 2021) 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5
AR (Gu et al., 2021) 67.4 85.3 90.0 77.3 70.6 85.2 79.0 64.8 89.5 80.4 66.2 86.4 78.3

m-POT (Nguyen et al., 2022) 64.6 80.6 87.2 76.4 77.6 83.6 77.1 63.7 87.6 81.4 68.5 87.4 78.0
MOT (Luo & Ren, 2023) 63.1 86.1 92.3 78.7 85.4 89.6 79.8 62.3 89.7 83.8 67.0 89.6 80.6

MOT + UOT(ETM + MROT-Ent) 65.2 87.3 92.8 79.5 86.4 91.0 80.8 64.5 90.7 84.5 67.9 90.4 81.8
MOT + UOT(ETM + MROT-Norm) 65.8 88.0 93.1 79.9 86.2 91.3 81.4 64.9 91.2 84.9 68.3 90.7 82.1

MOT + SemiUOT(Robust-SemiSinkhorn) 66.0 88.2 93.0 80.5 86.8 91.5 81.3 65.2 91.6 85.2 68.5 90.9 82.4
MOT + SemiUOT(ETM + MROT-Ent) 68.6 90.4 94.2 83.7 89.5 93.9 83.5 67.4 93.9 88.4 71.8 92.1 84.8

MOT + SemiUOT(ETM + MROT-Norm) 69.1 90.7 94.6 84.0 90.3 94.0 83.8 67.9 94.4 88.5 71.3 93.6 85.2
Method for UDA Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DeepJDOT (Damodaran et al., 2018) 50.7 68.6 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5

ROT (Balaji et al., 2020) 47.2 71.8 76.4 58.6 68.1 70.2 56.5 45.0 75.8 69.4 52.1 80.6 64.3
JUMBOT (Fatras et al., 2021) 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0
JUMBOT + UOT(MMUOT) 56.3 76.2 81.6 66.0 75.3 75.1 66.4 52.9 79.2 73.8 60.7 84.1 70.6
JUMBOT + UOT(GEMUOT) 57.5 77.4 82.7 67.2 76.0 75.6 66.1 54.5 80.5 74.9 61.8 85.2 71.6

JUMBOT + UOT(ℓ2-Norm Solver) 57.0 76.7 81.8 66.1 74.5 75.5 65.9 53.4 79.6 74.2 60.6 83.3 70.7
JUMBOT + UOT(Sparse Solver) 57.8 77.1 82.3 66.7 76.2 75.8 67.0 54.1 80.7 75.4 61.3 84.6 71.5

JUMBOT + UOT(ETM + MROT-Ent) 59.0 78.5 83.4 68.7 77.1 77.6 68.3 57.2 82.4 76.2 62.5 86.4 73.1
JUMBOT + UOT(ETM + MROT-Norm) 59.4 78.7 84.1 68.5 77.3 78.5 68.6 57.9 82.8 76.3 62.5 86.5 73.4

Table 2. Classification accuracy (%) on Digits (Source: LeNet)
and VisDA dataset (Source:ResNet50) for UDA task

Method S→M M→U U→M Avg VisDA
Source 68.3±0.3 65.3±0.5 66.2±0.2 66.6 52.4

DeepJDOT (Damodaran et al., 2018) 95.4±0.1 95.6±0.4 96.4±0.3 95.8 68.0
JUMBOT (Fatras et al., 2021) 98.9±0.1 96.7±0.5 98.2±0.1 97.9 72.5

JUMBOT + UOT(ETM + MROT-Ent) 99.4±0.1 98.7±0.3 99.2±0.1 99.1 73.6
JUMBOT + UOT(ETM + MROT-Norm) 99.7±0.1 99.3±0.2 99.6±0.1 99.5 74.2

utilizes the entropy regularization term on tackling UOT
problem. (2) MMUOT (Chapel et al., 2021) adopts major-
ity maximization algorithm for solving UOT. (3) GEMUOT
(Nguyen et al., 2023) adopts ℓ2-norm term for reaching
transport solutions on UOT which is the state-of-the-art ap-
proach. (4) Robust-SemiSinkhorn (Le et al., 2021) adopts
the entropy regularization term for solving SemiUOT prob-
lem. We also involve DeepJDOT (Damodaran et al., 2018),
ROT (Balaji et al., 2020), JUMBOT (Fatras et al., 2021),
ETN (Cao et al., 2019), AR (Gu et al., 2021), m-POT
(Nguyen et al., 2022), MOT (Luo & Ren, 2023) as the
model baselines for the domain adaptation task. The model
details will be provided in Appendix.I.

Implemented details. For both synthetic and real-world
datasets, we set ϵ = 0.01 on both L̂U and L̂P. We set
ηG = 102 and ηReg = 0.1 for MROT in the calculation.
The initial value of û(0) and f̂ (0) as set as zero vectors.
The initial sample weights are set to be equal, i.e., ai = 1

M
and bj = 1

N . And we adopt square Euclidean distance
for the cost Cij . Besides, we follow the same framework
and experimental settings as UDA model JUMBOT (Fatras
et al., 2021) for domain adaptation. Meanwhile, we adopt
the same framework and experimental settings as partial
UDA model MOT (Luo & Ren, 2023) for partial domain
adaptation. For all the experiments, we perform five random
experiments and report the average results.

5.2. Performance on Synthetic and Real-World Datasets

Performance on Synthetic Datasets. We sample 50 data
samples on both source and target distributions for find-

ing π∗ on UOT/SemiUOT. We first set τ = {0.1, 100} on
SemiUOT and the matching solutions are shown in Fig.1(a)-
(b). Note that we randomly sample 20% of noise in the
source datasets. We can observe that previous method
Robust-SemiSinkhorn could lead to ambiguious results.
Our proposed ETM-Refine with MROT+Ent can reach rela-
tively clear results even if τ is large (e.g., τ = 100). More
importantly, ETM-Refine with MROT+Norm can achieve
more precise results comparing with ETM-Refine with
MROT+Ent shown in Fig.1. Then we also set τa = τb =
{0.1, 100} on UOT and the matching solutions are shown
in Fig.2(a)-(b). From that we can observe: (1) Ent-UOT
could merely provide dense transport solutions which are in-
accurate. (2) MMUOT obtains relatively accurate solutions
when τ is small. However, MMUOT cannot better handle
the case when τ is large (e.g., τ = 100) due to the deteriora-
tion of majority maximization algorithm. (3) GEMUOT can
even reach more sparse matching solution against Ent-UOT
and MMUOT with the aid of ℓ2-norm term. However, the
matching results obtained from GEMUOT remain coarse
and ambiguous, especially when τ is large. (4) ETM-Refine
with MGOT-Norm can reach more accurate results with a
smaller error compared to the standard UOT solutions.

Performance on Real-World Datasets. We further conduct
the experiments on the real-world datasets to validate the our
proposed method. The experimental UDA task results on
Office-Home, Digits and VisDA are shown in Table.1 and Ta-
ble.2. We also directly adopt ℓ2-norm (Blondel et al., 2018)
and sparse solver (Liu et al., 2023) on solving JU. We can
observe that replacing entropy-based UOT with other regu-
larization term (e.g., GEMUOT or JU with ℓ2-norm) could
lead to better results. Moreover, our proposed ETM-Refine
with MROT obtains the best performance, which indicates
the method efficacy for finding more accurate results. Then
we adopt the same experimental protocol as MOT to es-
tablish the partial UDA task where target label space is a
subset of source label space and it is more challenging than
classic UDA task (Cao et al., 2018; Luo et al., 2020). The
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(c) The absolute error on SemiUOT (d) The absolute error on UOT(a) The time consumption on SemiUOT (b) The time consumption on UOT

Figure 3. The time consumption and computation error analysis e =
∑

ij ||πij − π∗
ij ||1 on UOT and SemiUOT. (Best viewed in color)

(b) The number iterations on training 𝑳𝑼(a) The number iterations on training 𝑳𝒑 (c) The computation error on SemiUOT (d) The computation error on UOT

Figure 4. The effects on tuning different values of ϵ = {0.01, 0.1} with the loss descent curve and computation error eα = ||α̂−α∗||∞
for the proposed ETM-Approx methods on solving SemiUOT and UOT problems.

partial UDA results on Office-Home are also shown in Ta-
ble.1. We can easily observe that MOT + SemiUOT (ETM +
MROT-Norm) achieves the best performance on the partial
UDA task. UOT relaxes the dual transportation constraints,
thus resulting in that some target samples cannot be trans-
ported to the source domain. Meanwhile, SemiUOT could
overcome the mentioned issue while avoid negative transfer
in partial UDA, which boosts the model performance. We
also conduct more experiments with applications and please
kindly refer to Appendix.I, J, K for more details.

5.3. Analysis

Solver Comparison. To further analyses the proposed
ETM-based method with MROT, we conduct the solver com-
parison on the aspects of computation time, computation
error, and model performance on real-world datasets. We
first sample the same number of source/target data samples
from PX and PZ respectively. Then we conduct the experi-
ments on both UOT and SemiUOT with τa = τb = τ = 1
and the results are shown in Fig.3(a)-(b). We can con-
clude that ETM-Exact with MROT-Norm is most time-
consuming. Meanwhile ETM-Refine reaches similar com-
putation time with ETM-Approx suggests that utilizing û∗

or f̂∗ could accelerate the process for finding u∗ or f∗ via
L-BFGS algorithm. Moreover, we calculate the computa-
tion error e between matching solution π learned by ETM
with MROT and the standard UOT/SemiUOT solution with
CVXPY as π∗ via absolute error e =

∑
i,j ||πij − π∗

ij ||1.
We sample 500 number of data samples ranging from
τa = τb = τ = {0.01, 0.1, 1, 10, 100} for calculation and
the results are shown in Fig.3(c)-(d). We can observe that
although ETM-Approx with MROT-Ent has the fastest com-
putation speed, the provided results π still have the highest
error compared to the ground truth π∗. Meanwhile ETM-
Refine with MROT-Norm can further reach more accurate

solutions against MROT-Ent. We also collect the compu-
tation error on UOT using MMUOT and GEMUOT. We
can observe that our propose ETM-Refine method achieves
much better results, especially when τ is relatively large,
which is consistent with our discovery in Fig.1-Fig.2.

Parameter sensitivity. We finally study the effects of hyper-
parameters on model performance. We tune ϵ in range of
ϵ ∈ {0.01, 0.1} and show the results in Fig.4(a)-(d). We can
observe that smaller ϵ could provide good approximation on
UOT/SemiUOT, reducing the iteration steps for optimizing
LU and LP. Although ϵ could hardly effect the performance
on ETM-Refine, larger value on ϵ could consume more
iteration steps for solving LU and LP since the initial values
are less accurate. Additionally, we collect the computation
error eα = ||α̂− α∗||∞, which measures the discrepancy
between the marginal probability learned via ETM-Approx
α̂ and the ground truth α∗. Larger values of ϵ may fail to
reduce the computation error eα when compared to smaller
values of ϵ. Hence we set ϵ = 0.01 empirically and more
experimental results can be found in Appendix.L, M.

6. Conclusion
In this paper, we propose Equivalent Transformation Mech-
anism (ETM) approach with ETM-Exact, ETM-Approx
and ETM-Refine to solve the marginal probabilities of
SemiUOT and UOT. We illustrate that the essence of
UOT/SemiUOT is reweighting data samples accordingly
and thus UOT/SemiUOT problem can be transformed into
standard optimal transport. Moreover, we propose KKT-
Multiplier Regularization with Multiplier Regularized Opti-
mal Transport (MROT) to obtain more accurate solutions.
We conduct experiments to demonstrate the superior perfor-
mance of our proposed ETM with MROT, on both synthetic
and real-world datasets of different tasks and applications.
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7. Potential Broader Impact
This paper provides a new insight on solving (semi) unbal-
anced optimal transport problem. Moreover, we first utilize
multipliers information into solving transportation solutions.
The extensive experiments on both real-world and synthetic
datasets with diverse domain adaptation problems show the
efficacy of the proposed ETM method with MROT.
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anced optimal transport: Translation invariant sinkhorn
and 1-d frank-wolfe. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4995–5021. PMLR,
2022b.
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Appendix

A. Proof of Proposition 1
Proposition 1. (Principles of Equivalent Transformation Mechanism for SemiUOT) Given SemiUOT with KL-Divergence
JSemiUOT, one can obtain its Fenchel-Lagrange multipliers form as:

min
f ,g,ζ

τ M∑
i=1

aie
− fi+ζ

τ −
N∑
j=1

bj(gj − ζ)


s.t. fi + gj + sij = Cij , sij ≥ 0.

(16)

where f , g, s and ζ denotes Lagrange multipliers. Moreover, SemiUOT problem can be transformed into classic optimal
transport as follows:

min
π≥0

JP = ⟨C,π⟩

s.t.

π1N = a⊙ exp

(
−f

∗ + ζ∗

τ

)
= α

π⊤1M = b

(17)

Note that when τ → ∞, the source marginal probability can be determined as π1N = ωa where ω = ⟨b,1N ⟩/⟨a,1M ⟩.

Proof. To start with, we first review the definition of SemiUOT as shown below:
min
πij≥0

JSemiUOT = ⟨C,π⟩+ τKL (π1N∥a)

s.t. π⊤1M = b.
(18)

Then we can rewrite the optimization problem:
min
π≥0

J = ⟨C,π⟩+ τKL (π1N∥a)

s.t.

{
(Constraint) : π⊤1M = b

(Optional) : π1N = α

(19)

Note that we do not need to know the exact value of α beforehand. We adopt this optional constraint only for simplifying
the following deduction. The Lagrange multipliers of SemiUOT with KL-Divergence is given as:

max
s≥0,f ,g,ζ

min
π≥0

JSemiUOT = τKL (π1N∥a) + ⟨f + ζ,π1N ⟩+ ⟨g − ζ, b⟩ +

⟨C − u⊗ 1⊤
N − 1M ⊗ v⊤ − s,π⟩

(20)

where f , g, s and ζ are dual variables. By taking the differentiation on πij we have:

∂JSemiUOT

∂πij
=

τ log
N∑
j=1

πij

ai
+ fi + ζ

+ (Cij − fi − gj − sij)

= Cij + τ log

N∑
j=1

πij

ai
+ ζ − gj − sij

= 0

(21)

Therefore we can obtain the results as: 

N∑
j=1

πij = ai exp

(
−fi + ζ

τ

)
M∑
i=1

πij = bj

Cij − fi − gj − sij = 0

(22)
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After that, we can take these back into KL-Divergence to simplify the calculation:
τKL (π1N∥a) + ⟨f + ζ,π1N ⟩

= τKL

(〈
a, exp

(
−f + ζ

τ

)〉
∥a
)
+

〈
f + ζ,a exp

(
−f + ζ

τ

)〉

= τ

M∑
i=1

ai exp(−fi + ζ

τ

)
log

ai exp
(
− fi+ζ

τ

)
ai

− ai exp

(
−fi + ζ

τ

)
+ ai

+

M∑
i=1

(fi + ζ)ai exp

(
−fi + ζ

τ

)

=

M∑
i=1

[
−τai exp

(
−fi + ζ

τ

)
+ τai

]
(23)

Therefore we can obtain its Fenchel-Lagrange multipliers form of SemiUOT as:
min
f ,g,ζ

JSemiUOT = −τKL (π1N∥a)− ⟨f + ζ,π1N ⟩ − ⟨g − ζ,π⊤1M ⟩

= τ exp

(
− ζ
τ

)〈
a, exp

(
−f
τ

)〉
− ⟨g − ζ, b⟩+OConst

s.t. fi + gj ≤ Cij

(24)

where OConst = −
∑M
i=1 τai and we can neglect it during the following calculation. Once we obtain the optimal solution

on f∗, g∗ and ζ∗, we will discover that:

τKL (π1N∥a) = τKL

(〈
a, exp

(
−f

∗ + ζ∗

τ

)〉
∥a
)

= Const (25)

Hence SemiUOT problem can be transformed into classic optimal transport accordingly. Finally we can obtain the optimal
solution on ζ by considering ∂JSemiUOT

∂ζ = 0 as below:

ζ = τ

log( M∑
i=1

ai exp

(
−fi
τ

))
− log

 N∑
j=1

bj

 . (26)

Once we set τ → ∞, the results of the limitation will be shown as:

lim
τ→+∞

ai exp

(
−fi + ζ

τ

)
= lim
τ→+∞

ai exp

(
− ζ
τ

)
= ai

⟨b,1N ⟩
⟨a,1M ⟩

= ωai (27)

Therefore we conclude the proof of the Proposition 1.

B. Proof of Proposition 2

Proposition 2. (Calculation for Approximate SemiUOT Equation) Given Approximate SemiUOT equation L̂P, it can be
optimized via Equivalent Transformation Mechanism with Approximation (ETM-Approx). That is, ETM-Approx aims to
solve the following equation for each f̂s:

∂L̂P

∂f̂s
= −ase−

f̂s+ζ
τ + e

f̂s
ϵ

N∑
j=1

 bj exp
(
−Csj

ϵ

)
∑M
k=1 exp

(
f̂k−Ckj

ϵ

)
 = 0. (28)

Specifically, we can adopt fixed-point iteration method for solving Eq.(28) at the ℓ-th iteration as follows:

f̂ ℓ+1
1 = ν

log (a1e− ζ
τ

)
− log

 N∑
j=1

(
bje

−C1j/ϵ

Wϵ,j(f̂ ℓ)

)
...

f̂ ℓ+1
M = ν

log (aMe− ζ
τ

)
− log

 N∑
j=1

(
bje

−CMj/ϵ

Wϵ,j(f̂ ℓ)

) ,
(29)

where ν = τϵ/(τ + ϵ) for simplification and Wϵ,j(f̂
ℓ) denotes the corresponding calculation as shown below:

Wϵ,j(f̂
ℓ) =

M∑
k=1

exp

(
f̂ ℓk − Ckj

ϵ

)
. (30)
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The proposed procedure can be convergence with theoretical guarantee after T -th inner iteration. Finally, updating the
Lagrange multiplier ζ by considering ∇ζL̂P = 0 via ζ = τ [log(

∑M
i=1 ai exp(−f̂i/τ))− log(

∑N
j=1 bj)]. One can achieve

the optimal solution on f̂ and ζ via iterative computing accordingly.

Proof. We first review the proposed Approximate SemiUOT Equation L̂P as below:

min
f̂ ,ζ

L̂P = τ

M∑
i=1

aie
− f̂i+ζ

τ +

N∑
j=1

bj

[
ϵ log

[
M∑
k=1

e
f̂k−Ckj

ϵ

]
+ ζ

]
(31)

Then we consider optimizing f̂s as follows:

∂L̂P

∂f̂s
= 0 ⇒ exp

(
τ + ϵ

τϵ
f̂s

)
=

ase
− ζ

τ

N∑
j=1

(
bj exp(−Csj/ϵ)

Wϵ,j(f̂)

) (32)

At that time we adopt fixed-point iteration method to optimize f̂ accordingly:

f̂ ℓ+1
1 = ν

log (a1e− ζ
τ

)
− log

 N∑
j=1

(
bje

−C1j/ϵ

Wϵ,j(f̂ ℓ)

) = F1

(
f̂ ℓ1 , · · · , f̂ ℓM

)
...

f̂ ℓ+1
s = ν

log (ase− ζ
τ

)
− log

 N∑
j=1

(
bje

−Csj/ϵ

Wϵ,j(f̂ ℓ)

) = Fs
(
f̂ ℓ1 , · · · , f̂ ℓM

)
...

f̂ ℓ+1
M = ν

log (aMe− ζ
τ

)
− log

 N∑
j=1

(
bje

−CMj/ϵ

Wϵ,j(f̂ ℓ)

) = FM
(
f̂ ℓ1 , · · · , f̂ ℓM

)
,

(33)

By taking the gradient on Fs(f̂ ℓs) w.r.t f̂ ℓs , we can observe that:

∂Fs(f̂ ℓs)
∂f̂ ℓs

= − τϵ

τ + ϵ

1

N∑
j=1

[
exp

(
−

Csj
ϵ

)
Wϵ,j(f̂ℓ)

]
bj

∂

∂f̂ ℓs

 N∑
j=1

exp
(
−Csj

ϵ

)
Wϵ,j(f̂ ℓ)

 bj


=
τ

τ + ϵ

1

N∑
j=1

[
exp

(
−

Csj
ϵ

)
Wϵ,j(f̂ℓ)

]
bj

N∑
j=1

bj exp
(
−Csj

ϵ

)
Wϵ,j(f̂ ℓ)

·
exp

(
f̂ℓ
s−Csj

ϵ

)
Wϵ,j(f̂ ℓ)


︸ ︷︷ ︸

<1

< 1

(34)

Likewise we can obtain the result:

Fs

(
f̂ ℓ1 , · · · , f̂ ℓM

)
=

∣∣∣∣∣∂Fs(f̂ ℓ1)∂f̂ ℓ1

∣∣∣∣∣+ · · ·+

∣∣∣∣∣∂Fs(f̂ ℓs)∂f̂ ℓs

∣∣∣∣∣+ · · ·+

∣∣∣∣∣∂Fs(f̂ ℓM )

∂f̂ ℓM

∣∣∣∣∣
=

τ

τ + ϵ

1

N∑
j=1

[
exp

(
−

Csj
ϵ

)
Wϵ,j(f̂ℓ)

]
bj

N∑
j=1

bj exp
(
−Csj

ϵ

)
Wϵ,j(f̂ ℓ)

·
M∑
u=1

exp
(
f̂ℓ
u−Cuj

ϵ

)
Wϵ,j(f̂ ℓ)


=

τ

τ + ϵ
< 1

(35)
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We can easily conclude that:



F1

(
f̂ ℓ1 , · · · , f̂ ℓM

)
< 1

...

Fs

(
f̂ ℓ1 , · · · , f̂ ℓM

)
< 1

...

FM

(
f̂ ℓ1 , · · · , f̂ ℓM

)
< 1

(36)

Therefore, we can conclude that the proposed method guarantees convergence according to Theorem 2.9 in (Mathews,
2004).

C. Algorithm for ETM-Based Method on SemiUOT
We also provide the pseudo algorithm of the proposed ETM-Based approachs (e.g., ETM-Exact, ETM-Approx and
ETM-Refine) for solving SemiUOT in Alg.1 to make a more clear illustration.

Algorithm 1 The algorithm of ETM-Based method on SemiUOT
Input: C: cost matrix; a, b: initial marginal probability; τ, ϵ: Hyper parameters.

Randomly initialize the value of f init.
Choose ETM-Exact, ETM-Approx or ETM-Refine on SemiUOT for optimization.

(1) Function: ETM-Exact on SemiUOT(C,a, b, τ,f t=0 = f init)
Optimize f via L-BFGS algorithm on LP as:

min
f
LP = τ

M∑
i=1

aie
− fi+ζ

τ −
N∑
j=1

[
inf
k∈[M ]

[Ckj − fk]− ζ

]
bj ,

Optimize g via gj = inf
k∈[M ]

(Ckj − f tk).

Optimize ζ via ζ = τ [log(
∑M
i=1 ai exp(−fi/τ))− log(

∑N
j=1 bj)] as shown in Eq.(26).

Return: The optimal solutions of f∗, g∗ and ζ∗.
(2) Function: ETM-Approx on SemiUOT(C,a, b, τ, f̂ t=0 = f init)

Optimize f̂ via Proposition 2 on L̂P as:

min
f̂
L̂P = τ

M∑
i=1

aie
− f̂i+ζ

τ +

N∑
j=1

bj

[
ϵ log

[
M∑
k=1

e
f̂k−Ckj

ϵ

]
+ ζ

]

Optimize ĝ via ĝj = −ϵ log[
∑M
k=1 exp((f̂k − Ckj)/ϵ)].

Optimize ζ via ζ = τ [log(
∑M
i=1 ai exp(−f̂i/τ))− log(

∑N
j=1 bj)] as shown in Eq.(26).

Return: The optimal solutions of f̂∗, ĝ∗ and ζ∗.
(3) Function: ETM-Refine on SemiUOT(C,a, b, τ, f̂ t=0 = f init)

Obtain f̂∗ = ETM-Approx on SemiUOT(C,a, b, τ, f̂ t=0 = f init).
Obtain f∗ = ETM-Exact on SemiUOT(C,a, b, τ,f t=0 = f̂∗).

Return: The optimal solutions of f∗, g∗ and ζ∗.
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D. Proof of Proposition 3
Proposition 3. (Principles of Equivalent Transformation Mechanism for UOT) Given UOT with KL-Divergence JUOT, one
can obtain its Fenchel-Lagrange multipliers form as below:

min
u,v,ζ

τa M∑
i=1

aie
−ui+ζ

τa + τb

N∑
j=1

bje
−

vj−ζ

τb


s.t. ui + vj + sij = Cij , sij ≥ 0.

(37)

where u, v, s and ζ denotes Lagrange multipliers. Moreover, UOT problem can also be transformed into classic optimal
transport as follows:

min
π≥0

JU = ⟨C,π⟩

s.t.


π1N = a⊙ exp

(
−u

∗ + ζ∗

τa

)
= α

π⊤1M = b⊙ exp

(
−v

∗ − ζ∗

τb

)
= β

(38)

Note that when τa, τb → ∞, the source and target marginal probability can be determined as π1N =
√
ωa and

π⊤1M = b/
√
ω where ω = ⟨b,1N ⟩/⟨a,1M ⟩ respectively.

Proof. To start with, we first rewrite the optimization problem as below:
min
π≥0

J = ⟨C,π⟩+ τaKL (π1N∥a) + τbKL(π⊤1M∥b)

s.t. (Optional) : π1N = α, π⊤1M = β
(39)

where α and β denote the marginal probabilities for source and target domains respectively. Note that we do not need the
true value fo α and β beforehand. That is, the constraints here are optional for the following UOT deduction. The Lagrange
multipliers of UOT with KL-Divergence is given as:

max
s≥0,u,v,ζ

min
π≥0

JUOT = τaKL (π1N∥a) + ⟨u+ ζ,π1N ⟩+ τbKL(π⊤1M∥b) + ⟨v − ζ,π⊤1M ⟩+ CUOT (40)

where CUOT =
∑
i,j(Cij − ui − vj − sij)πij = ⟨C − u⊗ 1⊤

N − 1M ⊗ v⊤ − s,π⟩ and u, v and ζ are dual variables. By
taking the differentiation on πij we have:

∂JUOT

∂πij
=

τa log
N∑
j=1

πij

ai
+ ui + ζ

+

τb log
M∑
i=1

πij

bj
+ vj − ζ

+ (Cij − ui − vj − sij)

= Cij + τa log

N∑
j=1

πij

ai
+ τb log

M∑
i=1

πij

bj
− sij = 0

(41)

Then we can obtain the results: 

N∑
j=1

πij = ai exp

(
−ui + ζ

τa

)
M∑
i=1

πij = bj exp

(
−vj − ζ

τb

)
Cij − ui − vj − sij = 0

(42)

By taking the above results into KL-Divergence, we can further simplify the results:
τaKL (π1N∥a) + ⟨u+ ζ,π1N ⟩ =

M∑
i=1

[
−τaai exp

(
−fi + ζ

τa

)
+ τaai

]

τbKL
(
π⊤1M∥b

)
+ ⟨v − ζ,π⊤1M ⟩ =

N∑
j=1

[
−τbbj exp

(
−gj − ζ

τb

)
+ τbbj

] (43)
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Therefore we can obtain its Fenchel-Lagrange multipliers form of UOT as:

min
u,v,ζ

JUOT = −τaKL (π1N∥a)− ⟨u+ ζ,π1N ⟩ − τbKL(π⊤1M∥b)− ⟨v − ζ,π⊤1M ⟩

= τa exp

(
− ζ

τa

)〈
a, exp

(
− u
τa

)〉
+ τb exp

(
ζ

τb

)〈
b, exp

(
− v
τb

)〉
+OConst

s.t. ui + vj ≤ Cij

(44)

where OConst = −
∑M
i=1 τaai −

∑N
j=1 τbbj and we can neglect it during the following calculation. Once we obtain the

optimal solution on u∗, v∗ and ζ∗, the KL-Divergence will turn out to be constants and therefore the original optimization
problem can be transformed into classic optimal transport. Finally we can obtain the optimal solution on ζ by considering
∂JUOT

∂ζ = 0 as below:

ζ =
τaτb
τa + τb

[
log

〈
a, exp

(
− u
τa

)〉
− log

〈
b, exp

(
− v
τb

)〉]
. (45)

Once we set τa → ∞ and τb → ∞, the results of the limitation will be shown as:

lim
τa→+∞,τb→+∞

ai exp

(
−ui + ζ

τa

)
= lim
τa→+∞,τb→+∞

ai exp

(
− ζ

τa

)
= ai

√
⟨b,1N ⟩
⟨a,1M ⟩

=
√
ωai

lim
τa→+∞,τb→+∞

bj exp

(
−vj − ζ

τb

)
= lim
τa→+∞,τb→+∞

bj exp

(
− ζ

τb

)
= bj

√
⟨a,1M ⟩
⟨b,1N ⟩

=
1√
ω
bj

(46)

Therefore we conclude the proof of the Proposition 3.

E. Illustrations of Optimization 1
Optimization 1. (Calculation of ETM-Approx approach for UOT) To start with, we first review the Exact UOT Equation is
defined as:

min
u,ζ

LU = τa

M∑
i=1

ai exp

(
−ui + ζ

τa

)
+ τb exp

(
ζ

τb

) N∑
j=1

bj exp

(
−vj
τb

)

= τa

M∑
i=1

ai exp

(
−ui + ζ

τa

)
+ τb exp

(
ζ

τb

) N∑
j=1

bj exp

(
supk∈[M ] (uk − Ckj)

τb

) (47)

where vj = − supk∈[M ] (uk − Ckj) meanwhile the marginal probabilities are set as π1N = a⊙ exp (−(u+ ζ)/τa) = α

and π⊤1M = b⊙ exp (−(v − ζ)/τb) = β. Since the optimization problem in Eq.(8) is convex, we can also utilize block
gradient descend to optimize the problem. Specifically, we first fix vl and optimize variable ul at the l-th iteration by
replacing the original marginal probability b in Eq.(4) with β accordingly to transform UOT into SemiUOT problem:

min
π≥0

JuU = ⟨C,π⟩+ τaKL (π1N∥a)

s.t.


(Constraint) : π⊤1M = b⊙ exp

(
−v − ζ

τb

)
= β

(Optional) : π1N = a⊙ exp

(
−u+ ζ

τa

)
= α

(48)

At that time, the Fenchel-Lagrange multipliers form of Eq.(48) is given via the Proposition 1:

min
u
LuU = τa

M∑
i=1

ai exp

(
− ũi + ζ

τa

)
−

N∑
j=1

βj(ṽj − ζ)

= τa

M∑
i=1

ai exp

(
−ui + ζ

τa

)
−

N∑
j=1

(
inf
k∈[M ]

[Ckj − uk]− ζ

)
βj

(49)

Note that ũ and ṽ denote the Lagrange multiplier for Eq.(48) while we have ṽj = infk∈[M ] [Ckj − uk] = vj and ũ = u.
To further accelerate the optimization process, we consider to make a smooth approximation on replacing inf(·) as

infk∈[M ][Ckj − uk] ≈ −ϵ log[
∑M
k=1 e

uk−Ckj
ϵ ] = v̂j . Therefore, we first fix v̂l and optimize variable ûl at the l-th iteration
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to solve the following equation on L̂uU accordingly:

min
û
L̂uU = τa

M∑
i=1

ai exp

(
− ûi + ζ

τa

)
+

N∑
j=1

βj

[
ϵ log

[
M∑
k=1

e
ûk−Ckj

ϵ

]
+ ζ

]

= τa

M∑
i=1

ai exp

(
− ûi + ζ

τa

)
+

N∑
j=1

bj exp

(
− v̂j − ζ

τb

)[
ϵ log

[
M∑
k=1

e
ûk−Ckj

ϵ

]
+ ζ

] (50)

At that time we adopt fixed-point iteration method to optimize û accordingly based on the Proposition 2:

ûℓ+1
1 =

τaϵ

τa + ϵ

log (a1e− ζ
τa

)
− log

 N∑
j=1

(
βje

−C1j/ϵ

Wϵ,j(ûℓ)

) = U1

(
ûℓ1, · · · , ûℓM

)
...

ûℓ+1
s =

τaϵ

τa + ϵ

log (ase− ζ
τa

)
− log

 N∑
j=1

(
βje

−Csj/ϵ

Wϵ,j(ûℓ)

) = Us
(
ûℓ1, · · · , ûℓM

)
...

ûℓ+1
M =

τaϵ

τa + ϵ

log (aMe− ζ
τa

)
− log

 N∑
j=1

(
βje

−CMj/ϵ

Wϵ,j(ûℓ)

) = UM
(
ûℓ1, · · · , ûℓM

)
,

(51)

The iteration process can be shown to converge based on Proposition 2. After that we fix û and optimize variable v̂ via
v̂j = −ϵ log[

∑M
k=1 exp((ûk − Ckj)/ϵ)]. We can achieve the optimal solution on û∗ and v̂∗ via iteratively computing

via the above procedure accordingly. Finally, we update ζ via ζ = (τaτb/(τa + τb))[log(
∑M
i=1 ai exp(−û∗i /τa)) −

log(
∑N
j=1 bj exp(−v̂∗j /τb))].

F. Algorithm for ETM-Based Method on UOT
We also provide the pseudo algorithm of the proposed ETM-Based approachs (e.g., ETM-Exact, ETM-Approx and
ETM-Refine) for solving UOT in Alg.2 to make a more clear illustration.

G. Proof of Proposition 4
Proposition 4. (The Definition and Usage of KKT-Multiplier Regularization) Given any OT with multiplier s, one can
obtain accurate solution π∗ via proposed KKT-multiplier regularization term G(π, s) = ⟨π, s⟩, which formulates Multiplier
Regularized Optimal Transport (MROT):

min
π≥0

JG = ⟨C,π⟩+ ηG⟨π, s⟩+ ηRegLReg(π)

s.t. π1N = α, π⊤1M = β,
(52)

where LReg(π) denotes the regularization term on π. α, β denote the final marginal probabilities obtained by ETM-based
approach and ηReg, ηG denotes the hyper parameter. Ideally, ηG should be set as a relatively large number. Meanwhile the
dual form of MROT is given as:

max
ψ,ϕ

LG = ⟨α,ψ⟩+ ⟨β,ϕ⟩ − ηRegL∗
Reg

(
ψi + ϕj − C̃ij

ηReg

)
(53)

where C̃ij = Cij + ηGsij and ϕ and ψ denote the Lagrange multipliers for MROT. L∗
Reg(·) denotes the conjugate function

of LReg(·) and one can figure out the matching results of π via solving ∇πijLReg(πij) = (ψi + ϕj − C̃ij)/ηReg.
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Algorithm 2 The algorithm of ETM-Based method on UOT
Input: C: cost matrix; a, b: initial marginal probability; τa, τb, ϵ: Hyper parameters.

Randomly initialize the value of uinit.
Choose ETM-Exact, ETM-Approx or ETM-Refine on UOT for optimization.

(1) Function: ETM-Exact on UOT(C,a, b, τa, τb,ut=0 = uinit)
Optimize u L-BFGS algorithm to optimize LU as:

min
u
LU = τa

M∑
i=1

aie
−ui+ζ

τa + τbe
ζ
τb

N∑
j=1

bje

sup
k∈[M]

(uk−Ckj)
τb ,

Optimize v via vj = inf
k∈[M ]

(Ckj − uk).

Optimize ζ via ζ = τaτb
τa+τb

[
log
〈
a, exp

(
− u
τa

)〉
− log

〈
b, exp

(
− v
τb

)〉]
as shown in Eq.(45).

Return: The optimal solutions of u∗, v∗ and ζ∗.
(2) Function: ETM-Approx on UOT(C,a, b, τa, τb, ût=0 = uinit)
Randomly initialize the value of v̂t

′=1.
for t′ = 1 to T ′ do

Optimize ût
′

via Proposition 2 to optimize L̂uU as:

min
û
L̂uU = τa

M∑
i=1

ai exp

(
− ûi + ζ

τa

)
+

N∑
j=1

bj exp

(
− v̂j − ζ

τb

)[
ϵ log

[
M∑
k=1

e
ûk−Ckj

ϵ

]
+ ζ

]

Optimize v̂t
′

via v̂t
′

j = −ϵ log[
∑M
k=1 exp((û

t′

k − Ckj)/ϵ)].
end for
Optimize ζ via ζ = τaτb

τa+τb

[
log
〈
a, exp

(
− û
τa

)〉
− log

〈
b, exp

(
− v̂
τb

)〉]
as shown in Eq.(45).

Return: The optimal solutions of û∗, v̂∗ and ζ∗.
(3) Function: ETM-Refine on UOT(C,a, b, τa, τb, ût=0 = uinit)

Obtain û∗ = ETM-Approx on UOT(C,a, b, τa, τb, ût=0 = uinit).
Obtain u∗ = ETM-Exact on UOT(C,a, b, τa, τb,ut=0 = û∗).

Return: The optimal solutions of u∗, v∗ and ζ∗.

Proof. We first provide the Lagrange multiplier of MROT as:
max
ψ,ϕ

min
π≥0

JMROT = ⟨C,π⟩+ ηG⟨π, s⟩+ ηRegLReg(π)− ⟨ψ,π1N −α⟩ − ⟨ϕ,π⊤1M − β⟩

= ⟨α,ψ⟩+ ⟨β,ϕ⟩+ ηReg inf
π

∑
i,j

[
Cij + ηGsij − fi − gj

ηReg
πij + LReg(πij)

]
= ⟨α,ψ⟩+ ⟨β,ϕ⟩ − ηReg sup

π

∑
i,j

[
fi + gj − C̃ij

ηReg
πij − LReg(πij)

]
= ⟨α,ψ⟩+ ⟨β,ϕ⟩ − ηRegL∗

Reg

(
ψi + ϕj − C̃ij

ηReg

)
(54)

At that time we have the following results:
∂JMROT

∂ψi
= 0

∂JMROT

∂ϕj
= 0

⇒


∇ψiL∗

Reg

(
ψi + ϕj − C̃ij

ηReg

)
= αi

∇ϕj
L∗
Reg

(
ψi + ϕj − C̃ij

ηReg

)
= βj

(55)

By taking the differentiation on πij we have:
∂JMROT

∂πij
= C̃ij + ηReg∇πijLReg(πij)− ψi − ϕj = 0 (56)
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For instance, when LReg(π) = −⟨π, log(π)− 1⟩ denotes as the entropy regularization term, the dual form of MROT-Ent is
shown as: 

max
ψ,ϕ

JMROT−Ent = ⟨α,ψ⟩+ ⟨β,ϕ⟩ − ηReg

∑
i,j

exp

(
ψi + ϕj − C̃ij

ηReg

)

πij = exp

(
ψi + ϕj − C̃ij

ηReg

) (57)

When LReg(π) = ⟨π,π⟩/2 denotes as the square-norm regularization term, the dual form of MROT-Norm is shown as:
max
ψ,ϕ

JMROT−Norm = ⟨α,ψ⟩+ ⟨β,ϕ⟩ − ηReg

2

∑
i,j

[
ψi + ϕj − C̃ij

ηReg

]2
+

πij =

[
ψi + ϕj − C̃ij

ηReg

]
+

(58)

Therefore we conclude the proof of the Proposition 4.

H. Datasets on Domain Adaptations

Datasets. We conduct the unsupervised domain adaptation tasks on Digits, Office-Home, and VisDA. Digits is the classical
dataset for digit classification which contains three standard digit classification datasets: MNIST (Lecun et al., 1998),
USPS(Hull, 2002) and SVHN (Netzer et al., 2011). Each dataset consists of 10 classes of digits, ranging from 0 to 9.
Office-Home (Venkateswara et al., 2017) is a standard benchmark dataset which includes 15,500 images in 65 object classes
in office and home settings, forming four dissimilar domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr) and
Real-World (Rw). VisDA (Peng et al., 2018) is the large-scale cross-domain dataset in computer vision on two domains, i.e.,
Synthetic and Real with 280K images in 12 classes.

I. Experiments on Partial Domain Adaptations

Datasets. We further conduct the domain adaptation tasks on new datasets, i.e., Office-31 (Saenko et al., 2010) and
ImageCLEF (Caputo et al., 2014). Office-31 is the commonly-used computer vision dataset for domain adaptation with
4,652 images from three different domains: Amazon (A), Webcam (W) and DSLR (D). Target domain has the first 10
classes (alphabetical order) following (Cao et al., 2018). ImageCLEF contains 3 domains with 12 classes, i.e., Caltech (C),
ImageNet (I) and Pascal (P). Target domain has the first 6 classes (alphabetical order) following (Luo et al., 2020).

Baselines. We involve DeepJDOT (Damodaran et al., 2018), ROT (Balaji et al., 2020), JUMBOT (Fatras et al., 2021),
ETN (Cao et al., 2019), AR (Gu et al., 2021), m-POT (Nguyen et al., 2022), MOT (Luo & Ren, 2023), DMP (Luo et al.,
2020) as the model baselines for the domain adaptation task.

• DeepJDOT (Damodaran et al., 2018) first adopts optimal transport into solving domain adaptation problem with deep
learning framework.

• ROT (Balaji et al., 2020) adopts robust optimal transport into adversarial training for domain adaptation.

• JUMBOT (Fatras et al., 2021) adopts mini-batch unbalanced optimal transport method for domain adaptation.

• ETN (Cao et al., 2019) utilizes example transfer network to jointly learn domain-invariant representations and the
progressive weighting scheme.

• AR (Gu et al., 2021) adopts adversarial reweighting strategy on source domain data for alignment.

• m-POT (Nguyen et al., 2022) adopts partial optimal transport method in the mini-batch settings for domain adaptation.

• DMP (Luo et al., 2020) adopt discriminative manifold propagation for domain adaptation.

• MOT (Luo & Ren, 2023) adopts masked unbalanced optimal transport technique on considering label information for
PDA tasks.
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Table 3. Classification accuracy (%) on Office-31 for partial unsupervised domain adaptation
Method A→W D→W W→D A→D D→A W→A Avg

ResNet (He et al., 2016) 75.6 96.3 98.1 83.4 83.9 85.0 87.1
ETN (Cao et al., 2019) 84.7 97.4 99.2 91.3 90.2 92.8 92.6

JUMBOT (Fatras et al., 2021) 90.2 98.9 99.3 94.5 93.8 93.4 95.0
AR (Gu et al., 2021) 93.5 100.0 99.7 96.8 95.5 96.0 96.9

m-POT (Nguyen et al., 2022) 96.2 99.5 100.0 97.6 94.4 95.3 97.2
MOT (Luo & Ren, 2023) 99.3 100.0 100.0 98.7 96.1 96.4 98.4

MOT + UOT(ETM + MROT-Ent) 99.4 100.0 100.0 98.9 96.8 97.3 98.7
MOT + UOT(ETM + MROT-Norm) 99.6 100.0 100.0 99.2 97.3 97.7 99.0

MOT + SemiUOT(ETM + MROT-Ent) 99.8 100.0 100.0 99.4 97.8 98.4 99.2
MOT + SemiUOT(ETM + MROT-Norm) 99.7 100.0 100.0 99.7 98.4 98.6 99.4

Table 4. Classification accuracy (%) on ImageCLEF for partial unsupervised domain adaptation

Method I→P P→I I→C C→I C→P P→C Avg

ResNet (He et al., 2016) 78.3 86.9 91.0 84.3 72.5 91.5 84.1
ETN (Cao et al., 2019) 79.6 88.5 92.9 87.2 74.1 93.4 86.0

JUMBOT (Fatras et al., 2021) 80.1 91.3 93.6 90.9 75.7 94.2 87.6
AR (Gu et al., 2021) 83.1 92.8 94.5 92.4 76.3 95.0 89.0

DMP (Luo et al., 2020) 82.4 94.5 96.7 94.3 78.7 96.4 90.5
MOT (Luo & Ren, 2023) 87.7 95.0 98.0 95.0 87.0 98.7 93.6

MOT + UOT(ETM + MROT-Ent) 88.3 95.6 98.4 95.3 87.6 99.0 94.0
MOT + UOT(ETM + MROT-Norm) 88.7 95.9 98.7 95.8 88.0 99.1 94.4

MOT + SemiUOT(ETM + MROT-Ent) 89.1 96.2 99.2 96.1 88.5 99.4 94.8
MOT + SemiUOT(ETM + MROT-Norm) 89.6 96.7 99.4 96.5 89.1 99.6 95.2

Performance. We also conduct the partial domain adaptation tasks on Office-31 and ImageCLEF and the results are shown
in Table.4-5. We can observe that the proposed ETM-Refine with MROT-Norm on SemiUOT achieves state-of-the-art
performance on Office-31 and ImageCLEF.

J. Experiments on Universal Domain Adaptations
We further conduct the experiments on universal domain adaptations. That is, there are shared labels between the source and
target domains. Additionally, there are private labels specific to each domain (Farahani et al., 2021; Zhang & Gao, 2022).
We conduct the universal domain adaptations on both Office-31 and Office-Home. Specifically, we set the first 10 classes in
alphabetical order as the common label set, the next 10 classes as source private label and the rest 11 classes as target private
label for Office-31. Likewise, we set the first 10 classes in alphabetical order as the common label set, the next 5 classes as
source private label and the rest 55 classes as target private label for Office-Home. We involve the following models as
baselines: (1) OSBP (Saito et al., 2018) adopts domain adversarial learning for open-set domain adaptation, (2) UAN (You
et al., 2019) utilizes transferability criterion for universal domain adaptation, (3) CMU (Fu et al., 2020) learns to detect
open classes with uncertainty estimation, (4) DCC (Li et al., 2021) adopts domain consensus clustering for adaptation, (5)
TNT (Chen et al., 2022) adopts evidential neighborhood contrastive learning for adaptation, (6) UniOT (Chang et al., 2022)
adopts unbalanced optimal transport with adaptive filtering for transferring.

We adopt the same experimental settings as UniOT (Chang et al., 2022). We utilize the commonly-used H-score (Fu et al.,
2020) to validate the final results as shown in Table.6-7. Note that UniOT + UOT(ETM + MROT) only replaces the entropic
UOT in UniOT with our proposed ETM-Refine method with MROT. From that we can observe that UniOT + UOT(ETM +
MROT) reaches the best performance, indicating that UOT with ETM + MROT can provide more accurate matching results.
Moreover, we adopt T-SNE method (Van der Maaten & Hinton, 2008) to plot the source and target data features in the
latent space as shown in Fig.8(a)-(b). We can find that: (1) original UniOT could lead to rather scattered features in the
latent space. That is because UniOT with entropic UOT could lead to dense and inaccurate matching solutions which limits
the model potentials. (2) Our proposed UniOT + UOT(ETM + MROT-Norm) can provide more compact features since it
provides more accurate solutions. Thus it further illustrates the efficacy of our proposed ETM + MROT-Norm method.
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Table 5. H-score (%) on Office-Home for universal unsupervised domain adaptation
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet (He et al., 2016) 44.65 48.04 50.13 46.64 46.91 48.96 47.47 43.17 50.23 48.45 44.76 48.43 47.32
OSBP (Saito et al., 2018) 39.59 45.09 46.17 45.70 45.24 46.75 45.26 40.54 45.75 45.08 41.64 46.90 44.48
UAN (You et al., 2019) 51.64 51.70 54.30 61.74 57.63 61.86 50.38 47.62 61.46 62.87 52.61 65.19 56.58
CMU (Fu et al., 2020) 56.02 56.93 59.15 66.95 64.27 67.82 54.72 51.09 66.39 68.24 57.89 69.73 61.60
DCC (Li et al., 2021) 57.97 54.05 58.01 74.64 70.62 77.52 64.34 73.60 74.94 80.96 75.12 80.38 70.18

TNT (Chen et al., 2022) 61.90 74.60 80.20 73.50 71.40 79.60 74.20 69.50 82.70 77.30 70.10 81.20 74.70
UniOT (Chang et al., 2022) 67.27 80.54 86.03 73.51 77.33 84.28 75.54 63.33 85.99 77.77 65.37 81.92 76.57

UniOT + UOT(ETM + MROT-Ent) 68.63 81.72 87.94 75.88 79.03 86.21 77.29 68.77 87.14 78.59 73.62 82.83 78.97
UniOT + UOT(ETM + MROT-Norm) 69.02 81.95 88.36 76.12 79.36 86.49 77.03 69.25 87.30 78.93 74.18 82.96 79.25

Table 6. H-Score (%) on Office-31 for universal unsupervised domain adaptation
Method A→D A→W D→A D→W W→A W→D Avg

ResNet (He et al., 2016) 49.78 47.92 48.48 54.94 48.96 55.60 50.94
OSBP (Saito et al., 2018) 51.14 50.23 49.75 55.53 50.16 57.20 52.34
UAN (You et al., 2019) 59.68 58.61 60.11 70.62 60.34 71.42 63.46
CMU (Fu et al., 2020) 68.11 67.33 71.42 79.32 72.23 80.42 73.14
DCC (Li et al., 2021) 88.50 78.54 70.18 79.29 75.87 88.58 80.16

TNT (Chen et al., 2022) 85.70 80.40 83.80 92.00 79.10 91.20 85.37
UniOT (Chang et al., 2022) 86.97 88.48 88.35 98.83 87.60 96.57 91.13

UniOT + UOT(ETM + MROT-Ent) 88.25 89.62 89.47 99.48 89.10 97.94 92.31
UniOT + UOT(ETM + MROT-Norm) 88.67 90.14 90.03 99.58 89.42 98.46 92.72

(a) UniOT (b) UniOT + UOT (ETM+MROT-Norm)  (c) UniOT (d) UniOT + UOT (ETM+MROT-Norm) 

Office Home  Ar->Rw Office Home  Rw->Ar

Figure 5. The T-SNE of data features on Ar → Rw (Office-Home) and Rw → Ar (Office-Home). The first row shows the original data
sample distribution: The brown and gray colors denote the source and target private classes respectively. The rest are common label set
with different colors. The second row indicates the mapping between source and target domain: The red and blue points denote the source
and target samples respectively.

Table 7. Experimental results on Treatment Effect Estimation tasks.
ACIC (PEHE) ACIC (AUUC) IHDP (PEHE) IHDP (AUUC)

In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample
OLS (Angrist & Imbens, 1995) 3.749 4.340 0.843 0.496 3.856 5.674 0.652 0.492

TARNet (Shalit et al., 2017) 3.236 3.254 0.886 0.662 0.749 1.788 0.654 0.711
PSM (Rosenbaum & Rubin, 1983) 5.228 5.094 0.884 0.745 3.219 4.634 0.740 0.681

CFR-WASS (Shalit et al., 2017) 3.128 3.207 0.873 0.669 0.657 1.704 0.656 0.715
ESCFR (Wang et al., 2023) 2.252 2.316 0.796 0.754 0.502 1.282 0.665 0.719

ESCFR + UOT(ETM + MROT-Ent) 2.327 2.261 0.839 0.814 0.497 1.275 0.769 0.763
ESCFR + UOT(ETM + MROT-Norm) 2.104 2.216 0.883 0.839 0.475 1.146 0.798 0.802

K. Experiments on Treatment Effect Estimation

Datasets for Treatment Effect Estimation. We further conduct ETM on treatment effect estimation with two semi-synthetic
datasets IHDP (Shalit et al., 2017) and ACIC (Yao et al., 2018). IHDP is set to estimate the effect of specialist home visits
on infants’ potential cognitive scores and it contains 747 observations and 25 covariates. ACIC includes 4802 observations
and 58 covariates which comes from the collaborative perinatal project.

Results. We involve the following models as baselines: (1) OLS (Angrist & Imbens, 1995) utilizes least square regression
with treatment as covariates, (2) TARNet (Shalit et al., 2017) adopts integral orobability metrics for adaptation, (3) PSM
(Rosenbaum & Rubin, 1983) adopts propensity score for causal effects, (4) CFR-WASS (Rosenbaum & Rubin, 1983)
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ETM + MROT-Norm (𝜼𝑮 = 𝟎) ETM + MROT-Norm (𝜼𝑮 = 𝟏𝟎𝟎) Ground TruthETM + MROT-Norm (𝜼𝑮 = 𝟏)

Figure 6. The matching results on ETM + MROT-Norm on SemiUOT with different values of ηG = {0, 1, 100}.

(a) The result of 𝜁on SemiUOT (b) The result of 𝜁on UOT

𝜁 𝜁

Figure 7. The results of ζ and LP on UOT and SemiUOT.

utilizes standard optimal transport for adaptation, (5) ESCFR (Wang et al., 2023) further utilizes unbalanced optimal
transport for adaptation. We adopt the same experimental settings as ESCFR (Wang et al., 2023). We utilize Precision in
Estimation of Heterogeneous Effect (PEHE) (Shalit et al., 2017) and Area Under the Uplift Curve (AUUC) (Betlei et al.,
2021) for the evaluation. Note that ESCFR + UOT(ETM + MROT) only replaces the entropic UOT in ESCFR with our
proposed approximate-to-exact ETM +MROT. The experimental results are shown in Table 8. From that we can observe
that ESCFR + UOT(ETM + MROT) achieves the best performance, indicating the efficacy of our proposed ETM method.

L. More Experimental Results

Parameter sensitivity. We tune ηG on SemiUOT via ETM-Refine with MROT-Norm in range of ηG ∈ {0, 1, 100} using
the same data samples shown in Fig.1 and show the results in Fig.6. We can observe that when ηG is smaller (e.g., ηG = 0
or ηG = 1), the proposed KKT-multiplier regularization term G(π, s) = ⟨π, s⟩ may struggle to play a significant role
during the optimization process. Meanwhile when ηG = 100, ETM-Refine with MROT-Norm can achieve more accurate
matching results comparing with the ground truth result. We can conclude that choosing larger value of ηG can fully utilize
the knowledge provided by KKT multiplier and enhance the final results. Therefore we set ηG = 100 empirically.

M. Miscellaneous Discussions

The role of ζ in ETM-based method. We first discuss why we should involve translation invariant ζ in both LU and LP.
Specifically, we first analyse the case of SemiUOT. The Fenchel-Lagrange conjugate form of SemiUOT without translation
invariant mechanism is given as:

min
f ,g,ζ

[τ

M∑
i=1

aie
− fi

τ −
N∑
j=1

bjgj ]

s.t. fi + gj ≤ Cij

(59)



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Submission and Formatting Instructions for ICML 2025

We can adopt c-transform on Eq.(59) to obtain the unconstrained optimization problem as:

min
f
L̃P = τ

M∑
i=1

aie
− fi

τ −
N∑
j=1

inf
k∈[M ]

[Ckj − fk]bj , (60)

We adopt L-BFGS to optimize L̃P using the same data samples as shown in Fig.1 with τ = 1. Meanwhile, the translation
invariant term ζ in SemiUOT should be calculated as follows:

ζ = τ log

(
M∑
i=1

ai exp

(
−fi
τ

))
− τ log

 N∑
j=1

bj

 (61)

Ideally, ζ should equals to 0 since
∑M
i=1 ai exp

(
− fi
τ

)
=
∑N
j=1 bj . However, we can observe that ζ > 0 during the iteration

epoch on optimizing L̃P as shown in Fig.7(a). Therefore we can conclude that ζ is imdispenable during the calculation on
SemiUOT. Likewise, the Fenchel-Lagrange conjugate form of UOT without translation invariant mechanism is given as:

min
v,u

[
τa⟨a, e−

u
τa ⟩+ τb⟨b, e−

v
τb ⟩
]

s.t. ui + vj ≤ Cij .
(62)

Here we can adopt c-transform on Eq.(62) to obtain the unconstrained optimization problem as:

min
u
L̃U = τa

M∑
i=1

aie
− ui

τa + τb

N∑
j=1

bje

M
sup
k=1

(uk−Ckj)
τb (63)

We also adopt L-BFGS to optimize L̃U using the same data samples as shown in Fig.2 with τa = τb = 1. Meanwhile, the
translation invariant term ζ in UOT should be calculated as follows:

ζ =
τaτb
τa + τb

[
log

〈
a, exp

(
− u
τa

)〉
− log

〈
b, exp

(
− v
τb

)〉]
(64)

Ideally, ζ should equals to 0 since
〈
a, exp

(
− u
τa

)〉
=
〈
b, exp

(
− v
τb

)〉
. However, we can observe that ζ > 0 during

the iteration epoch on optimizing L̃U as shown in Fig.7(b). Therefore we can conclude that ζ is imdispenable during
the calculation on UOT. In conclusion, the concept of translation invariant was first proposed in (Séjourné et al., 2022b).
However, (Séjourné et al., 2022b) only utilizes translation invariant for entropic UOT. We highlight that, in this paper, we
further extend translation invariant for standard UOT/SemiUOT scenario. We illustrate that translation invariant is
essential in solving UOT and SemiUOT problems.


