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Abstract

Multilingual language models are widely used
to extend NLP systems to low-resource lan-
guages. However, concrete evidence for the
effects of multilinguality on language model-
ing performance in individual languages re-
mains scarce. Here, we pre-train over 10,000
monolingual and multilingual language mod-
els for over 250 languages, including multi-
ple language families that are under-studied in
NLP. We assess how language modeling per-
formance in each language varies as a func-
tion of (1) monolingual dataset size, (2) added
multilingual dataset size, (3) linguistic simi-
larity of the added languages, and (4) model
size (up to 45M parameters). We find that in
moderation, adding multilingual data improves
low-resource language modeling performance,
similar to increasing low-resource dataset sizes
by up to 33%. Improvements depend on the
syntactic similarity of the added multilingual
data, with marginal additional effects of vo-
cabulary overlap. However, high-resource lan-
guages consistently perform worse in multilin-
gual pre-training scenarios. As dataset sizes in-
crease, adding multilingual data begins to hurt
performance for both low-resource and high-
resource languages, likely due to limited model
capacity (the “curse of multilinguality”). These
results suggest that massively multilingual pre-
training may not be optimal for any languages
involved, but that more targeted models can
significantly improve performance.

1 Introduction

Multilingual language models have been a fixture
of natural language processing (NLP) research
nearly since the introduction of Transformer lan-
guage models (Devlin et al., 2019; Conneau et al.,
2020a). These models are often pre-trained on over
100 languages simultaneously, and they are widely
used for NLP tasks in low-resource languages (Ade-
lani et al., 2021; Ebrahimi et al., 2022; Hangya

et al., 2022; Imani et al., 2023), cross-lingual trans-
fer learning (Pires et al., 2019; Conneau et al.,
2020a), and multilingual text generation (Lin et al.,
2022; Scao et al., 2022). However, while mul-
tilingual language models produce strong results
across many languages, multilingual pre-training
work almost exclusively focuses on pre-training
a small number of models with some fixed dis-
tribution over languages (e.g. mBERT, XLM-R,
XGLM, and BLOOM; Devlin et al., 2019; Con-
neau et al., 2020a; Blevins et al., 2022; Lin et al.,
2022; Scao et al., 2022). This distribution over
languages typically favors high-resource languages
spoken in regions with high economic influence
(Bender, 2011; Joshi et al., 2020).

Thus, it is largely unknown how different pre-
training language distributions, such as different
quantities of multilingual data or different selec-
tions of languages, affect multilingual language
model performance in different languages. Multi-
lingual models have been studied extensively dur-
ing inference and fine-tuning (Pires et al., 2019;
Conneau et al., 2020b; Karthikeyan et al., 2020;
Winata et al., 2021; Chai et al., 2022; Alabi et al.,
2022; Guarasci et al., 2022; Winata et al., 2022;
Wu et al., 2022; Eronen et al., 2023), but these stud-
ies generally rely on the same sets of pre-trained
models. For pre-training, there is mixed evidence
for the benefits of multilingual vs. monolingual
data (Conneau et al., 2020a; Wu and Dredze, 2020;
Pyysalo et al., 2021; §2). As multilingual language
models are increasingly used without task-specific
fine-tuning (e.g. for text generation; Scao et al.,
2022; Lin et al., 2022),1 it is critical to understand
how multilingual pre-training affects raw language
modeling performance in individual languages.

In our work, we investigate the effects of dif-
ferent multilingual pre-training distributions on

1The multilingual text generation capabilities of recent
commercial models also indicate likely multilingual pre-
training (OpenAI, 2023; Google DeepMind, 2023).
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Figure 1: Left: Map of the 252 languages used in our study. Right: Effects of adding multilingual pre-training data
in similar languages, for low-resource (1M token) through high-resource (1B token) languages in small models.
Effects are quantified using the estimated monolingual dataset size that would achieve similar performance. Adding
1B tokens of multilingual data is similar to adding 22% (low-resource) or removing 63% (high-resource) of the
monolingual dataset. Shaded regions are 99% confidence intervals for the mean across languages.

language modeling performance in 252 languages.
Our main contributions are:2

• We pre-train over 1900 monolingual baseline
models for 252 languages, and we estimate loss
in each language based on monolingual dataset
size (§4). We use these estimates to quantify
multilingual model performance in individual
languages (§4.3).

• We pre-train over 8400 multilingual language
models, and we evaluate how performance in in-
dividual languages varies as a function of mono-
lingual dataset size, multilingual dataset size,
linguistic similarity of the training languages,
and model size (up to 45M parameters; §5).

• We find that moderate amounts of multilin-
gual data improve performance for low-resource
languages, similar to increasing low-resource
dataset sizes by up to 33% (§6.1). These im-
provements depend primarily on the syntactic
similarity of the added multilingual data, with
marginal additional effects of lexical (vocabu-
lary) similarity.

• We find that multilingual data consistently hurts
high-resource language performance, similar
to reducing dataset sizes by over 85% in some
cases (§6.2). Likely due to limited model ca-
pacity, as dataset sizes increase, adding multi-
lingual data begins to hurt performance for both
low-resource and high-resource languages (the
curse of multilinguality; §2).

Thus, the benefits of multilinguality on raw lan-
guage modeling performance appear restricted to

2Code is available at: https://github.com/
tylerachang/curse-of-multilinguality

cases where both (1) the model targets perfor-
mance in low-resource languages and (2) the model
has enough capacity for the added multilingual
data. If these assumptions hold, the multilingual
data should be from languages that are linguisti-
cally similar to the target low-resource languages.
However, when optimizing performance for high-
resource languages, multilingual models are likely
to degrade performance in individual languages.

2 Related Work

The curse of multilinguality. To extend lan-
guage models to low-resource languages, re-
searchers often train a single model on a large num-
ber of languages, including low-resource languages
(Devlin et al., 2019; Conneau et al., 2020a; Lin
et al., 2022; Scao et al., 2022; Imani et al., 2023).
Oftentimes, better performance is observed when
languages are either closely related or focused in a
specific region (Kakwani et al., 2020; Ogueji et al.,
2021; Ogunremi et al., 2023). However, Conneau
et al. (2020a) find that pre-training on an excessive
number of languages hurts model performance in
each language, evaluating five subsets of languages
on downstream tasks in 16 languages. This phe-
nomenon is known as the curse of multilinguality or
negative interference (Wang et al., 2020). Indeed,
monolingual language models often have better lan-
guage modeling performance than massively mul-
tilingual models (Pyysalo et al., 2021). However,
Rust et al. (2021) find that the curse of multilin-
guality may simply be a result of lower quality
tokenization per language. Further contradicting
the curse of multilinguality, Wu and Dredze (2020)
find that for low-resource languages, multilingual
pre-training does improve downstream task perfor-
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mance relative to monolingual pre-training, and
Fujinuma et al. (2022) observe better cross-lingual
transfer performance when a wider variety of lan-
guages is seen during during pre-training. Thus, the
precise effects of multilinguality on low-resource
and high-resource languages remains unclear.

To isolate these effects, we evaluate language
modeling performance in 252 languages while sys-
tematically varying monolingual dataset size, mul-
tilingual dataset size, model size, and linguistic
similarity of added languages during pre-training.
This contrasts with previous studies that focus on
individual (massively) multilingual models such
as mBERT or XLM-R. Our approach allows us to
determine how such models perform after varying
pre-training languages and language distributions.

3 Collecting a Multilingual Dataset

Conducting controlled multilingual language mod-
eling experiments requires a large multilingual
dataset. Notably, broad language coverage is a
consistent issue in NLP research (Bender, 2009,
2011; Joshi et al., 2020; Blasi et al., 2022). Here,
we collect text corpora from 24 multilingual data
sources such as OSCAR (Ortiz Suárez et al., 2019;
Abadji et al., 2021), Wikipedia (Wikipedia, 2023),
and NLLB (Costa-jussà et al., 2022). Our sources
are reported in §A. We merge the corpora per lan-
guage, and we deduplicate repeated sequences of
100 UTF-8 bytes (Lee et al., 2022). Restricting
each language to a maximum of 1B tokens, our
dataset contains 41.4B tokens in 1572 languages.
This includes 252 languages with the required 1.5M
tokens for our language modeling study. Despite
this fairly stringent token requirement, our 252
languages cover five continents, 29 language fami-
lies, and 30 scripts (i.e. writing systems). Figure
1 shows a geographic map of our 252 languages,
using coordinates from Glottolog (Hammarström
et al., 2023). Our list of languages with correspond-
ing token counts is reported in §G.

4 Monolingual Baselines and Metrics

To study effects of multilinguality on language
modeling performance in individual languages, we
first need a method to quantify performance in
those languages. Thus, we pre-train monolingual
baseline models for our 252 languages, to use as
comparison points for multilingual models. For
each language L, we estimate the number of mono-
lingual tokens in L required to achieve a given

level of performance in L with a given model size.
We later use this estimated number of monolingual
tokens as an interpretable performance metric for
multilingual models.

4.1 Model Architectures and Pre-Training

We pre-train autoregressive GPT-2 Transformer lan-
guage models from scratch (Radford et al., 2019)
with three sizes from Turc et al. (2019): tiny (4.6M
parameters), mini (11.6M parameters), and small
(29.5M parameters). For each language, we pre-
train models with four dataset sizes when available:
1M, 10M, 100M, and 1B tokens, not including
500K tokens for evaluation in each case. We call
these dataset sizes low, med-low, med-high, and
high resource respectively. We have 252 languages
with at least the low-resource dataset size, 167 with
med-low resource, 48 with med-high resource, and
28 with high-resource. Resource categories for all
252 languages are included in §G. Hyperparameter
details are reported in §C.

Monolingual tokenizers. We train a monolin-
gual SentencePiece tokenizer with maximum vo-
cabulary size 32K for each of our 252 languages
(Kudo and Richardson, 2018), and we fix this tok-
enizer for all models pre-trained for that language.
We train each tokenizer on 10K randomly-sampled
lines of text in the language; for languages where
more lines are available, the 10K-line tokenizers
have reasonable vocabulary overlap with tokenizers
trained on more lines (§B). For example, a 10K-
line tokenizer on average covers 93.7% of the 4K
most frequent tokens in the vocabulary of a 10M-
line tokenizer. We restrict tokenizer training to 10K
lines for all languages to control for tokenization
quality across languages.

4.2 Perplexity and Log-Likelihood

As an initial performance metric, we compute the
log-likelihood assigned by a language model M to
the unseen evaluation dataset for language L. Each
of our monolingual models is evaluated on its corre-
sponding pre-training language, but these methods
also apply to our multilingual models (which each
have a tokenizer fixed for one target language; §5).
Averaging over tokens, evaluation log-likelihood
is equivalent to negative log-perplexity, mean to-
ken log-probability, or the negative of the language
model’s cross-entropy loss (Equation 1). Because
our tokenization is fixed across all models with
a given target language, log-likelihoods are com-
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parable within each target language. Higher log-
likelihood scores indicate better language modeling
performance, they are predictive of model perfor-
mance on other natural language tasks (Xia et al.,
2023), and they can be computed even for lan-
guages without any labeled data.

Although log-likelihood scores are comparable
for models with the same target language, they vary
substantially across languages. This can be due
to features of individual languages, their datasets,
or their tokenization (Gerz et al., 2018). Thus,
when model M is pre-trained on language L, we
subtract the log-likelihood score of the baseline tiny
monolingual model (M0) trained on 1M tokens for
that language, obtaining a relative log-likelihood
as follows:

meanw
(
log2 PM(w)

)
− meanw

(
log2 PM0(w)

)

(1)
Here, w are tokens in the evaluation dataset for L.
As is standard, token probabilities are produced by
the language models M and M0 based on preced-
ing context (Brown et al., 2020). Equation 1 is then
equivalent to the log-odds of observing the evalua-
tion dataset for L using the model M versus M0.
A relative log-likelihood of ℓ indicates that M as-
signs the evaluation dataset 2ℓ times the likelihood
assigned by M0. Equivalently, M has perplex-
ity 2ℓ times lower than M0. In future sections,
log-likelihoods refer to relative log-likelihoods that
account for the target language baseline.

4.3 Estimating Monolingual Token Counts

Relative log-likelihoods are difficult to interpret
when quantifying language model performance
in practice; a log-likelihood change of 1.0 does
not have concrete practical implications. Log-
likelihoods are also difficult to compare across
model sizes (§D). Therefore, when evaluating mul-
tilingual models in later sections, we quantify per-
formance in a language L as the estimated number
of monolingual tokens in L that would achieve
the same log-likelihood with the same size model.
Measuring model performance in terms of esti-
mated monolingual token counts allows us to quan-
tify the effects of adding multilingual pre-training
data across languages and model sizes.

Estimating monolingual token counts for models
across 252 languages is nontrivial. Previous work
has found that language modeling loss (negative
log-likelihood) has a power law relationship with
dataset size (Kaplan et al., 2020). Indeed, we find
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Figure 2: Curves predicting monolingual model per-
formance from dataset size. Top: Curves fitted to all
languages for each model size. Bold lines are fitted
curves, and lighter lines are ground truth curves for in-
dividual languages. Bottom: Sample language-specific
curves for small models, extrapolating from only two
data points (1M and 10M tokens). This still produces
reasonable estimates for 100M and 1B tokens. Bold
lines are estimated curves, and dashed lines are ground
truth values.

that −ax−b + c provides a good fit on average to
relative log-likelihood in all 252 languages, where
x is the monolingual dataset size in log10 tokens
(Figure 2, top). However, there is significant vari-
ability in the log-likelihood vs. dataset size curve
across languages. For high-resource languages, we
can fit a language-specific power law to the data
points for 1M, 10M, 100M, and 1B tokens. For
lower-resource languages, there are too few data
points to fit the power law from scratch (e.g. three
power law parameters with two data points). For
these languages, we fix a as the median parameter
value from languages where the curve can be fit.
Using this, we fit a monolingual log-likelihood vs.
token count curve for each language in each model
size (Figure 2, bottom; details in §D).

These curves produce reasonable estimates for
the number of monolingual tokens required to
achieve a given level of performance in a language
L (§D). Even when token estimation accuracy is
imperfect, our estimated monolingual token count
is always a monotonic increasing function of eval
log-likelihood, and thus performance rankings be-
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tween models are preserved. In future sections, we
measure the performance of a multilingual model
with target language L in terms of the estimated
number of monolingual pre-training tokens in L
that would achieve the same performance.

5 Pre-Training Multilingual Models

Finally, we pre-train multilingual language models
that vary along four dimensions: monolingual data
quantity, added multilingual data quantity, model
size, and linguistic similarity of the added lan-
guages. Each multilingual model is pre-trained
with a specified target language, keeping mono-
lingual tokenization for that language fixed dur-
ing both pre-training and evaluation. The multi-
lingual models are pre-trained identically to the
monolingual baselines in §4, except with added
multilingual data (10M, 100M, or 1B tokens). The
multilingual data is randomly interspersed with
the monolingual pre-training data in the target lan-
guage. Target language evaluation loss curves are
included in §C. In total, we pre-train 8454 multi-
lingual language models ranging from 8M to 45M
parameters.

Multilingual tokenizers. Perplexity and log-
likelihood evaluations within a language L are
only comparable when they use the same tokenizer.
Thus, we must keep the monolingual tokenizer
fixed for any model evaluated on L. However, fix-
ing tokenization for multiple languages simultane-
ously results in intractable vocabulary sizes. For
example, 252 languages × 32K tokens would re-
sult in a vocabulary size of 8.1M tokens, requiring
1.0B embedding parameters even with our smallest
embedding size of 128. To avoid intractable pa-
rameter counts, we pre-train multilingual language
models that each keep tokenization fixed for only
one language, which we call the target language
for that model. In each multilingual model, the non-
target languages share a multilingual tokenizer with
vocabulary size 32K, trained on 10K randomly-
sampled lines from each added language. The tar-
get language and added multilingual datasets are
tokenized separately, and the token IDs are merged
for the shared vocabulary items. This merged tok-
enization process ensures that the target language
tokenization remains unchanged across models.

Linguistic similarity. Motivated by work demon-
strating the importance of linguistic similarity for
crosslingual transfer performance (Pires et al.,

2019; Conneau et al., 2020b; Gerz et al., 2018;
Winata et al., 2022; Fujinuma et al., 2022; Ahuja
et al., 2022; Imani et al., 2023; Oladipo et al., 2022;
Eronen et al., 2023), we select added languages for
multilingual data based on their similarity to each
target language. Due to limits on computational re-
sources, we only consider two linguistic similarity
levels: similar and dissimilar languages.

Our linguistic similarity metric is based on three
features: syntactic similarity, geographic proxim-
ity, and lexical similarity (i.e. tokenizer vocabu-
lary overlap). Syntactic and geographic metrics
are computed as cosine similarities between lan-
guages’ syntactic and geographic vector represen-
tations from lang2vec (Littell et al., 2017), which
pulls from the World Atlas of Language Structures
(Dryer and Haspelmath, 2013). Lexical similarity
is computed as the log number of shared tokens
in the monolingual tokenizers for two languages
(§4.1). We Z-score normalize the syntactic, geo-
graphic, and lexical similarity metrics over all lan-
guage pairs, and we define the linguistic similarity
between any two languages as the mean of the three
similarity scores. For example, the four most simi-
lar languages to English are Dutch, Swedish, Nor-
wegian, and German. The four most dissimilar lan-
guages to English are Nepali, Japanese, Tamil, and
Korean. To allow us to vary the multilingual data
quantity without changing the added languages, we
restrict our added languages to those with at least
100M tokens in our dataset (i.e. our 48 med-high
resource languages).

Manipulated variables. We manipulate four
variables in our multilingual language modeling
experiments:

• Monolingual data quantity. As in §4, we con-
sider four monolingual dataset sizes when avail-
able in the target language: 1M, 10M, 100M,
and 1B tokens.

• Multilingual data quantity. We always add
multilingual data from 10 languages, selected
according to linguistic similarity as described
above. We add an equal number of tokens from
each language, totaling either 10M, 100M, or
1B tokens. To save computation resources, we
omit the 10M added tokens scenario when the
monolingual data is 100M or 1B tokens.

• Linguistic similarity. When adding multilin-
gual data for each target language, we select
either the 10 most or 10 least similar languages
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Figure 3: Results for low and med-low resource scenarios. Higher y-axis values indicate better performance. For
example, a small model with 1M monolingual tokens (top right) and 1B added tokens of multilingual data in
similar languages has similar performance to 1.2M monolingual tokens alone. Light-colored lines indicate results
for individual languages, and bold lines indicate the mean across languages. Shaded regions are 95% confidence
intervals for the mean.

using the similarity metric described above.

• Model size. We use the same model sizes as
§4. With the added multilingual vocabulary em-
beddings, the models have roughly 8.7M (tiny),
19.8M (mini), and 45.8M (small) parameters.

6 Multilingual Model Results

To reflect low-resource to high-resource language
scenarios, we primarily separate results based on
monolingual data quantity (low and med-low re-
source in §6.1, high and med-high resource in §6.2).
In each scenario, we consider the effects of adding
different multilingual data quantities with differ-
ent levels of linguistic similarity, across all three
model sizes. Overall, we find that performance
in low-resource languages improves when we add
moderate amounts of multilingual data (§6.1). The
amount of improvement depends on the syntactic
similarity of the added languages, with small ad-
ditional effects of lexical (vocabulary) similarity.
High-resource language performance consistently
degrades when we add multilingual data (§6.2).
Larger models have smaller degradations for high-
resource languages and larger improvements for
low-resource languages in multilingual scenarios,
suggesting that many drawbacks of multilinguality
are due to limited model capacity.

6.1 Low-Resource Language Results

In moderation, multilinguality improves low-
resource performance. As shown in Figure 3
(top), low-resource languages exhibit performance
improvements when adding 100M or 1B tokens
of multilingual data (p < 0.001 for 11 out of
12 comparisons, using paired sample t-tests; §E).
Performance improvements are significantly larger
when the added languages are similar vs. dissim-
ilar to the target language (analogous to an av-
erage 33% vs. 22% increase in target language
dataset size for small models in the optimal sce-
nario; p < 0.001). Performance improvements are
also larger for larger model sizes (33% vs. 12%
equivalent dataset increases for small vs. tiny mod-
els; p < 0.001). Regardless of model size, per-
formance is essentially unaffected when adding
only 10M multilingual tokens (1M tokens in each
added language); this result also holds for med-low
resource scenarios (Figure 3, bottom). This sug-
gests that a nontrivial amount of multilingual data
is required for language models to leverage shared
characteristics across languages.

However, the benefits of adding more multi-
lingual data quickly plateau in low-resource sce-
narios (e.g. adding 100M vs. 1B multilingual
tokens). In med-low resource scenarios (Figure
3, bottom), adding multilingual data hurts perfor-
mance (p < 0.001 adding 1B multilingual tokens)
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Figure 4: Left: Correlation between the mean syntactic similarity of the added languages and a model’s relative
log-likelihood score for the target language (Pearson’s r = 0.494). Added languages are selected to be either similar
or dissimilar (§5). A relative log-likelihood of 1.0 indicates that the model assigns the eval dataset 21.0 times the
likelihood assigned by the baseline model for that language. Center: Correlation (r = 0.346) between the mean
lexical (vocabulary) similarity of the added languages and a model’s relative log-likelihood score. Right: Variance
partitioning into syntactic, geographic, and lexical similarity of the added languages when predicting a model’s
relative log-likelihood score. Additional results in §F.

except in our largest models. Even in the larger
models, the benefits of multilinguality decrease
when too much multilingual data is added (Figure
3, right). This suggests that adding multilingual
data is beneficial only in moderation, before mod-
els have reached their capacity limits.

Syntactic similarity of added languages drives
results. We then investigate whether syntactic,
geographic, or lexical (vocabulary) similarity of
the added languages appears to drive multilingual
model improvement. We focus on the low-resource
small model scenario (Figure 3, top right) with
100M tokens of added multilingual data. This setup
leads to our largest performance improvement on
average for low-resource languages; other scenar-
ios are considered in §F. We compute the mean
syntactic, geographic, and lexical similarity of the
added languages for each target language, both
when selecting languages based on similarity and
dissimilarity. All three similarity metrics correlate
with model performance (relative log-likelihood
scores), with Pearson’s r = 0.494, r = 0.341, and
r = 0.346 respectively (Figure 4). For each type of
similarity, more similar added languages correlate
with better performance in the target language.

However, syntactic, geographic, and lexical sim-
ilarity are also significantly correlated with one
another (r = 0.242 to 0.602). We use variance
partitioning to determine the amount of variance
in model performance accounted for by each fea-
ture, along with the variance accounted for by each
feature after regressing out the effects of other fea-
tures (Borcard et al., 1992; QCBS, 2023). We find
that syntactic similarity of the added languages ac-
counts for 24.2% of variance in multilingual model
performance; adding geographic and lexical simi-

larity increases this to only 26.4% (Figure 4, right).
We note that syntactic similarity might reflect other
typological features of languages or be serving as
a proxy for taxonomic relatedness (Rama and Ko-
lachina, 2012). Still, these results suggest that ab-
stract linguistic similarity drives the benefits of
multilinguality more so than surface level features
such as vocabulary overlap. This aligns with re-
sults for cross-lingual transfer during fine-tuning
(Karthikeyan et al., 2020).

6.2 High-Resource Language Results

Multilinguality hurts high-resource perfor-
mance. For all model sizes, multilinguality hurts
language model performance in med-high and high
resource languages (Figure 5; p < 0.001 in all
scenarios adding 1B tokens, using paired sample
t-tests; §E). For high-resource languages in our
largest model size, adding 1B multilingual tokens
is similar to removing 63% of the target language
dataset. Degradations are larger when more mul-
tilingual tokens are added. Degradations are also
larger for smaller models (88% vs. 63% equiva-
lent dataset decrease in the target language for tiny
vs. small models; p < 0.001). This suggests that
degradations are likely driven by language models
reaching capacity limits. Interestingly, degrada-
tions are slightly larger given more similar added
languages to the target language (all scenarios in
Figure 5; p < 0.05 in 7 out of 12 scenarios). This
indicates that although more similar languages tend
to improve low-resource language performance
(§6.1), they surprisingly tend to hurt high-resource
language performance more. One possible expla-
nation is that more similar languages simply have
larger effects on target language predictions. In
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Figure 5: Results for med-high and high resource scenarios, using the same format as the low-resource scenarios
in Figure 3. For example, adding 1B tokens of multilingual data to a small model with 1B monolingual tokens
(high-resource; bottom right) is similar to removing over 600M tokens of the monolingual dataset.

low-resource scenarios, these influences from other
languages improve predictions; however, in high-
resource scenarios, when models are learning more
fine-grained language-specific nuances, these in-
fluences might hurt performance, making similar
languages hurt performance more.

7 Discussion

Our results demonstrate that for low-resource lan-
guages, multilingual language models yield some
benefits. In the optimal case from our study, the
benefits are similar to increasing the low-resource
dataset size by about 33% (§6.1). Hence, in scenar-
ios where collecting additional data is difficult (e.g.
languages spoken in remote geographic locations
or with few speakers), pre-training multilingual
models may be a worthwhile endeavor. In these
cases, the models should be pre-trained with mul-
tilingual data from maximally similar languages,
and it should be ensured that the models have ca-
pacity for the added multilingual data along with
the target language data. However, in other cases, it
may be more practical to find or collect more data
in the target language itself (e.g. if collecting 50%
more target language data is feasible).

For high-resource languages, multilingual lan-
guage models yield worse performance than the
comparable monolingual model in essentially all
cases. Degradations can be similar to reducing
high-resource dataset sizes by over 85% (§6.2).
These degradations can be mitigated by pre-

training larger models, which also appear to max-
imize benefits for low-resource languages. How-
ever, when pre-training language models even on
the order of tens of high-resource languages (Con-
neau et al., 2020a; Scao et al., 2022; Lin et al.,
2022), a model sufficiently large to accommodate
all of the languages’ data without hitting capac-
ity limitations would likely be impractically large.
Even if existing language models are severely
over-parameterized, there is evidence that 70B-
parameter models are required just for English
(Hoffmann et al., 2022). If only considering indi-
vidual language performance, pre-training targeted
language-specific models is likely to be far more ef-
ficient than a single massively multilingual model.

8 Conclusion

Our work systematically evaluates the effects of
multilingual pre-training on language modeling
performance in 252 languages. We pre-train over
10,000 monolingual and multilingual language
models, varying monolingual dataset sizes, mul-
tilingual dataset sizes, linguistic similarity of the
multilingual data, and model sizes. We find that
adding multilingual data in similar languages im-
proves performance for low-resource languages,
but improvements decrease as models reach capac-
ity limitations. Multilingual data consistently hurts
high-resource language performance. We quantify
both of these effects in terms of comparable mono-
lingual dataset sizes. Our results suggest that while
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multilingual language models may be beneficial
for low-resource scenarios, massively multilingual
models may be far less practical than previously
assumed for raw language modeling.

Limitations

Model size. We only pre-train language models
up to 45M parameters. Larger models are less
likely to hit the capacity limitations that appear to
drive the “curse of multilinguality”, but we select
our model sizes as a compromise between infor-
mativity of results and computational cost. When
pre-training thousands of models for controlled
experiments, larger models may not be worth ad-
ditional computational and environmental costs if
results can reasonably be extrapolated to larger
models (Strubell et al., 2019). In our experiments,
directions of effect are consistent across all three
model sizes we evaluate.

In fact, for low-resource scenarios, smaller
models can achieve similar performance to larger
models (Figure 2) while remaining accessible to
communities with fewer computational resources.
This makes small models useful for efficient low-
resource language technologies and low-compute
settings such as laptops and mobile phones. Pre-
training smaller models in our experiments also al-
lows us to include a much larger and more typolog-
ically diverse set of languages in our study, making
our results more representative of human languages
overall and more likely to generalize to languages
not included in our study. Our results are much less
likely to be skewed by over-representation of the
small number of languages that dominate the field
of NLP (Joshi et al., 2020; Blasi et al., 2022).

Language coverage. While we have included far
more low-resource languages than the vast majority
of recent studies in NLP, we do not have coverage
of some regions and language families. For ex-
ample, our study does not include any languages
indigenous to modern-day Australia or many from
the Americas. This imperfect coverage may skew
our results towards languages that have larger text
corpora available on the Internet. Specifically, as
discussed in §5, because we restrict added multilin-
gual data to our 48 med-high resource languages (to
allow us to vary multilingual dataset sizes), our low-
resource target languages are less likely to have
highly similar languages in the multilingual pre-
training scenarios. Allowing added multilingual
data from our low and med-low resource languages

would increase the mean similarity of added similar
languages in §6.1, so we would expect to see larger
performance improvements for low-resource lan-
guages in these cases (i.e. the observed equivalent
33% dataset increase for low-resource languages
would likely be greater); this can be tested em-
pirically in future work. Our work demonstrates
that low-resource performance improvements can
be predicted by the syntactic similarity of added
languages (moreso than lexical overlap; §6.1), but
future research might investigate more specific syn-
tactic and semantic features that result in high
crosslingual transfer.

Of course, as with all multilingual datasets, it
is likely that there are still some language label-
ing mismatches and contaminated examples in our
dataset. We also note that the delineations defin-
ing languages versus different dialects of the same
language are inherently fuzzy. For example, North-
ern Frisian (frr), Eastern Frisian (frs), and Western
Frisian (fry) are considered individual languages
with separate codes; conversely, Tamil (tam) is con-
sidered an individual language (one language code)
with at least 18 dialects (Hammarström et al., 2023).
We defer to the ISO 639-3 language code system,
as it is the most widely used system of its type.

Measuring performance. Finally, our results ap-
ply primarily to language modeling performance.
Effects of multilingual pre-training may be differ-
ent for specific downstream tasks (e.g. reason-
ing tasks or machine translation; Bandarkar et al.,
2023; Costa-jussà et al., 2022) or for cross-lingual
transfer learning using fine-tuning (Fujinuma et al.,
2022). Unfortunately, few existing multilingual
benchmarks cover the wide variety of languages
used in our study. There are several evaluations
used in Imani et al. (2023); however, with the ex-
ception of perplexity, all of the Glot500 evals are
designed primarily for bidirectional models, or they
evaluate crosslingual performance rather than a sin-
gle target language: sentence retrieval, Bible text
classification, NER, POS tagging, and roundtrip
alignment. Bidirectional (encoder) models remain
quite useful for representation learning (e.g. sen-
tence representation and classification tasks; Ban-
darkar et al., 2023; Imani et al., 2023; Conneau
et al., 2020a), but the majority of recent language
model training efforts have focused on autoregres-
sive models (e.g. XGLM and BLOOM, along with
multilingual capabilities of GPT-4, Claude, Gem-
ini, etc). To best align our work with current pre-
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training efforts, we focus on autoregressive models.
Of the datasets that do exist for low-resource lan-

guage evaluation, Belebele is a massively multilin-
gual reading comprehension dataset, which covers
only 122 language variants (Bandarkar et al., 2023),
and the XTREME benchmark covers only 40 lan-
guages (Hu et al., 2020), all of which are at least
medium-low resource (i.e. not low-resource) in
our study. We use evaluation log-likelihoods (neg-
ative log-perplexities) to measure language mod-
eling performance in our experiments in order to
evaluate all the languages in our sample with the
same metric. Evaluation log-likelihoods require
no annotated data in the target language, they are
predictive of language model behavior on a vari-
ety of tasks (Xia et al., 2023), and they have been
used to quantify language model quality in previ-
ous work (Kaplan et al., 2020; Hoffmann et al.,
2022). As multilingual language models are in-
creasingly used without fine-tuning for raw text
generation (e.g. Scao et al., 2022; Lin et al., 2022;
OpenAI, 2023; Google DeepMind, 2023), raw lan-
guage modeling performance across languages is
increasingly important to evaluate.
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A Dataset Details

We first download the first 32M lines for each lan-
guage in the deduplicated September 2021 release
of OSCAR (Ortiz Suárez et al., 2019; Abadji et al.,
2021). We collect additional corpora for languages
with less than 1M lines in OSCAR (approximately
50M tokens based on OSCAR line lengths) and
for languages that do not appear in OSCAR. Ad-
ditional corpora consist of: Wikipedia (Wikipedia,
2023), NLLB (Costa-jussà et al., 2022), the Leipzig
Corpora Collection (Goldhahn et al., 2012), eBible
translations (eBible, 2023), FLORES-200 (Costa-
jussà et al., 2022), Tatoeba (Tiedemann, 2012,
2020), AfriBERTa (Ogueji et al., 2021), NusaX
(Winata et al., 2023), AmericasNLP (Mager et al.,
2021), AmericasNLI (Ebrahimi et al., 2022), the
Nunavut Hansard Inuktitut–English Parallel Cor-
pus (Joanis et al., 2020), the Cherokee-English
ChrEn dataset (Zhang et al., 2020), the Chero-
kee Corpus (Cherokee Corpus, 2023), the Cree
Corpus (Teodorescu et al., 2022), Languages of
Russia (Zaydelman et al., 2016), the Evenki Life
newspaper (Zueva et al., 2020), the transcribed
Fula Speech Corpora (Cawoylel, 2023), IsiXhosa
(Podile and Eiselen, 2016), the Ewe Language
Corpus (Gbedevi Akouyo et al., 2021), the Mak-
erere Luganda Corpora (Mukiibi et al., 2022),
the CMU Haitian Creole dataset (CMU, 2010),
the Tigrinya Language Modeling Dataset (Gaim
et al., 2021), and Ulukau (Ulukau, 2023). Our
Wikipedia corpora use the Wikimedia dump from
August 20, 2023 (Wikimedia, 2023). All other
corpora use their publicly available versions as
of August 2023. Links to individual corpora are
included at https://github.com/tylerachang/
curse-of-multilinguality. While we are un-
able to redistribute our compiled dataset due to
redistribution licenses and out of respect for the
original data collectors, all of our sources are pub-
licly available. As a caveat, we note that many
low-resource language datasets prohibit commer-
cial use, and thus industry labs may be precluded
from using such datasets without explicit permis-
sion from the owners.

We clean each corpus by removing lines consist-
ing of only repetitive characters, exact duplicate
lines, and lines identified as English by the spaCy
language detection tool with confidence above 0.95
(except for the English dataset; Honnibal et al.,
2020). We find that English filtering is particu-
larly important for Wikipedia, from which we also

remove redundant lists of links and headers. We
manually inspect all files for egregious unclean
text lines, and we remove any patterns found. All
corpora outside of OSCAR are truncated to 2M
cleaned lines per language, which encompasses the
entire corpus for most datasets; for example, only
4 out of 239 downloaded Wikipedias are truncated
(recall that we only download additional corpora
for languages with less than 1M lines in OSCAR).
Corpora are unshuffled unless their public release is
already shuffled. This allows tokenized sequences
to span multiple consecutive lines; the tokenized
sequences are shuffled prior to language model pre-
training. Final token counts per language are listed
in §G.

B Tokenizer Details

To control for tokenization quality across lan-
guages, all of our monolingual tokenizers are Sen-
tencePiece tokenizers trained on 10K lines of text
with maximum vocabulary size 32K (§4.1; Kudo
and Richardson, 2018). We have at least 10K lines
of text in each of our 252 languages. All evalu-
ations (including for multilingual models, which
fix the target language monolingual tokenizer) are
conducted using these tokenizers. The multilin-
gual tokenizers in §5 are used only for added data
during multilingual pre-training; they are not used
for evaluation. To ensure that our monolingual
tokenizers have reasonable quality, we compare
their vocabularies with tokenizers trained on more
lines of text. Specifically, for each of our 28 high-
resource languages, we train tokenizers on 10K,
100K, 1M, and 10M lines of text. For each training
dataset size, we compute the vocabulary overlap
with the 4K and 8K most frequent tokens in the
10M-line tokenizer (the “reference vocabulary”).
Figure 6 shows the reference vocabulary overlap
for the different training dataset sizes. At 10K lines,
the tokenizer vocabularies on average cover 93.7%
of the 4K-token reference vocabulary and 87.8%
of the 8K-token reference vocabulary, indicating
reasonable tokenization quality.

C Language Model Pre-Training Details

Language models are pre-trained using the Hug-
ging Face Transformers library (Wolf et al., 2020)
and code from Chang and Bergen (2022). Hyper-
parameters are reported in Table 1 (left). All of our
models use the GPT-2 architecture (Radford et al.,
2019), changing only the number of layers, atten-
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Figure 6: Vocabulary overlap with the reference vocabu-
lary for tokenizers trained on different numbers of lines.
The reference vocabulary consists of the 4K (left) or
8K (right) most frequent tokens in a 10M-line tokenizer
for that language. We report the proportion of the ref-
erence vocabulary that is covered by 32K-vocabulary
tokenizers with different training dataset sizes. Gray
lines indicate individual languages, and the purple line
indicates the mean across languages.

tion heads, and embedding sizes as in Turc et al.
(2019). Models are pre-trained for 20 epochs of the
target language monolingual data in the low and
med-low resource scenarios, 10 epochs in the med-
high resource scenario, and 2 epochs in the high-
resource scenario. Based on initial results using
randomly-sampled languages, pre-training on more
than 20 epochs often leads to overfitting (increases
in eval loss) in low-resource scenarios. Multilin-
gual models include one epoch of the multilingual
data (§5) randomly interspersed with the target lan-
guage data. The numbers of pre-training steps for
different dataset configurations are reported in Ta-
ble 1 (right). Average evaluation loss curves during
pre-training are shown in Figure 7. For each target
language, the same 500K evaluation tokens are held
out in all cases. In the monolingual low-resource
scenario for each language (i.e. 1M pre-training
tokens), we pre-train three tiny models (instead
of one) and compute their average evaluation log-
likelihood, because these models are used as the

baseline models for relative log-likelihoods (§4.2).
All language model pre-training runs together

take a total of 1.87×1020 FLOPs. This is less than
1/1500× the computation used to train the original
175B-parameter GPT-3 model (Brown et al., 2020;
3.14× 1023 FLOPs). Models are each trained on
one NVIDIA GeForce GTX TITAN X, GeForce
RTX 2080 Ti, TITAN Xp, Quadro P6000, RTX
A4500, RTX A5000, or RTX A6000 GPU. Our
pre-training experiments take approximately 17700
A6000 GPU hours. Dataset cleaning, tokenization,
and merging takes approximately 5880 CPU core
hours, largely due to dataset tokenization with each
multilingual tokenizer.

D Monolingual Token Estimation Details

We overview our monolingual token estimation pro-
cess in §4.3, and we provide details here. As moti-
vation, we note that relative log-likelihood scores
are not comparable across model sizes. For exam-
ple, suppose that adding a multilingual dataset D
improves a model’s eval log-likelihood score by
1.0 in both small and large models. In this case, it
would be unclear whether the effect of D is intu-
itively “equal” in the two model sizes; doubling the
likelihood of the eval dataset is likely more diffi-
cult in the larger model, so we might interpret D as
having a larger effect on the larger model despite
the same change in log-likelihood. To avoid this
ambiguity, we measure model performance using
the estimated number of monolingual tokens in the
target language that would achieve similar perfor-
mance. In the case above, adding the multilingual
dataset D might be similar to adding n1 monolin-
gual tokens to the smaller model, but similar to
adding n2 > n1 monolingual tokens to the larger
model.

To estimate this, we first fit a power law −ax−b+
c for each of our 252 languages, predicting a
model’s relative log-likelihood score (§4.2) based
on its pre-training dataset size in log10 tokens.
Each language has up to four ground truth val-
ues, corresponding to our monolingual models
pre-trained on 1M, 10M, 100M, and 1B tokens.
When all four points are available (i.e. our 28 high-
resource languages), we are able to fit a power law
from scratch. From these languages, we estimate
the medians and standard deviations of a, b, and
c. For languages with fewer than four data points,
we constrain a, b, and c to be within 2.5 standard
deviations from the median parameter value. If this
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Hyperparameter Tiny Mini Small
Layers 2 4 4
Embedding size 128 256 512
Hidden size 128 256 512
Intermediate hidden size 512 1024 2048
Attention heads 2 4 8
Attention head size 64 64 64
Learning rate 1e-3 7e-4 5e-4
Activation function GELU
Max sequence length 128
Position embedding Absolute
Batch size 128
Learning rate decay Linear
Warmup steps 10% of pre-training
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1
Attention dropout 0.1

Mono. Mono. Multi. Pre-training
tokens epochs tokens steps

1M 20 0 1250
1M 20 10M 1875
1M 20 100M 7500
1M 20 1B 63750

10M 20 0 12500
10M 20 10M 13125
10M 20 100M 18750
10M 20 1B 75000

100M 10 0 62500
100M 10 100M 68750
100M 10 1B 125000

1B 2 0 125000
1B 2 100M 131250
1B 2 1B 187500

Table 1: Left: Language model pre-training hyperparameters (Devlin et al., 2019; Turc et al., 2019; Radford et al.,
2018). To prevent overfitting (increasing loss on the eval dataset), learning rates are halved for mini and small
models in the low-resource scenario, to 4e-4 and 2e-4 respectively (§4.1). Right: Pre-training steps for different
monolingual and multilingual dataset sizes. There is always one epoch of the multilingual dataset (§5).
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Figure 7: Target language evaluation loss curves during pre-training, for different model sizes and language resource
scenarios. Each individual curve corresponds to a dataset configuration in Table 1 (right), averaging the loss curve
over languages.

leads the curve fitting to diverge, we loosen this
constraint to 5.0, 7.5, then 10.0 standard deviations
from the median.

For languages where the curve fitting still does
not converge or languages with too few data points
(e.g. med-low resource languages with data points
only for 1M and 10M tokens), we fix a as the me-
dian parameter value from the high-resource lan-
guages. We fit only b and c, which we constrain
using standard deviations in the same way as de-
scribed above. If the curve fitting still does not con-
verge when fixing a (e.g. low-resource languages
with a data point only for 1M tokens), we fix both
a and b as their median values. In that case, we
only fit c, which is equivalent to simply shifting the
median curve up or down by a constant. All curve

fitting is implemented using scipy (Virtanen et al.,
2020).

Finally, in many cases, we compare multilin-
gual models to monolingual models with a specific
known dataset size. The multilingual models in
§6 are all compared to corresponding monolingual
models without any added multilingual data. For
example, a multilingual model with 10M monolin-
gual tokens and 100M added multilingual tokens
(relative log-likelihood score y1) would be com-
pared to a monolingual model with 10M monolin-
gual tokens alone (relative log-likelihood score y0).
In these cases, we constrain our curve-fitting to pass
through the point corresponding to the reference
monolingual model (e.g. in the example described,
the curve would be required to pass through the
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ground truth point (7.0, y0) for 107.0 monolingual
tokens alone). This only slightly alters the curve
predicting relative log-likelihood score from log10
tokens, but it ensures that our baseline monolingual
models in §6 lie exactly at 1M, 10M, 100M, and
1B tokens (Figure 3 and Figure 5).

Once we have fitted a curve predicting a
model’s relative log-likelihood score from log10
pre-training tokens in a language L, we use this
curve to estimate the number of tokens required to
achieve any relative log-likelihood score. Then, we
have two metrics for a multilingual model’s per-
formance on target language L: (1) the model’s
relative log-likelihood score itself and (2) the es-
timated number of monolingual tokens in L that
would achieve that relative log-likelihood. The lat-
ter metric is easily interpretable, and it facilitates
comparisons across languages and model sizes. We
note that the estimated token count is a monotonic
increasing function of relative log-likelihood score
in all cases. Thus, even if the estimated token
counts are not perfectly accurate, they preserve per-
formance rankings between models (e.g. between
our multilingual models and the monolingual base-
lines). A language model with target language L
will have a higher estimated token count if and
only if it assigns a higher log-likelihood score to
the evaluation dataset for L.

Still, we evaluate the quality of our monolingual
token count estimation process. For each language
L, we have up to four monolingual models (1M,
10M, 100M, and 1B pre-training tokens). We hold
out one (or multiple) of the models, and we esti-
mate its monolingual token count based on a curve
fitted to the other monolingual models for L. We
note that these estimations are extrapolating at min-
imum one order of magnitude away from the mod-
els used to fit the curve, because the models are
exactly one order of magnitude apart in terms of
pre-training tokens. The results in §6 do not need
to extrapolate this far. Still, even with this larger
extrapolation, we obtain reasonable estimates of
monolingual token counts in the held-out scenarios
(Figure 8). The root-mean-square errors are 0.340,
0.317, and 0.335 log10 tokens for tiny, mini, and
small models respectively. Again, regardless of
estimation quality, the estimated token counts are
simply a monotonic increasing function of relative
log-likelihood score.

E Statistical Tests

We run paired sample t-tests to assess the statisti-
cal significance of our results from §6. For each
reported p-value, we compare models that differ
by exactly one of: monolingual dataset size, mul-
tilingual dataset size, linguistic similarity of the
added languages, or model size. We pair models by
language, so each pair differs by only the manip-
ulated variable. To avoid potential artifacts from
our token estimation process, we compare model
relative log-likelihoods directly (§4.2) unless com-
paring across two model sizes (because relative
log-likelihood improvements and degradations are
difficult to compare across model sizes; §D). If
comparing across model sizes, we compare the es-
timated monolingual token counts of the models.
In both cases, we use a paired sample t-test. To de-
crease the chance of false positive results, we only
run the statistical tests whose p-values are reported
in the main text, and we account for multiple com-
parisons using Bonferroni correction (Bonferroni,
1936). For estimates of significance, the plots in §6
also include 95% confidence intervals for means.

F Additional Correlations

In §6.1, we find that the mean syntactic similarity
of the added languages accounts for more variance
in multilingual model performance (relative log-
likelihood scores) than geographic and lexical (vo-
cabulary) similarity. In that section, we consider
the low-resource scenario with 100M added mul-
tilingual tokens in small models. Here, we report
the same results for tiny, mini, and small models.
Variance partitioning results are shown in Figure
9. In all cases, syntactic similarity accounts for
more variance than geographic and lexical simi-
larity. Correlations between different similarity
measures and model performance for mini and tiny
models with 100M added multilingual tokens are
plotted in Figure 10.

G List of Languages

The 252 languages included in our language model-
ing study are listed in Table 2. These languages are
those with at least 1.5M tokens in our dataset (§A).
We restrict all languages to a maximum of 1B to-
kens. In lower resource scenarios, higher resource
languages are subsampled to mimic the lower re-
source scenario. For example, we have 167 med-
low resource languages when including the subsam-
pled med-high and high resource languages. We
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Figure 8: Estimated monolingual token counts for held-out monolingual models. Token counts are estimated from
each model’s relative log-likelihood score using a curve fitted to the specific language (§4.3). Estimations are
extrapolating one order of magnitude out from the points used to fit the curve. In practice, we generally do not need
to extrapolate this far for our results. The black line indicates perfect accuracy.
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Figure 9: Variance partitioning into syntactic, geographic, and lexical similarity of the added languages when
predicting a model’s performance (relative log-likelihood score) for tiny (left), mini (center), and small (right)
models with 100M tokens of added multilingual data.
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Figure 10: Top: Correlations between syntactic (r = 0.471), geographic (r = 0.305), and lexical (r = 0.306)
similarity of added languages and target language performance for mini models, as described in §6.1. Bottom:
Correlations between syntactic (r = 0.430), geographic (r = 0.345), and lexical (r = 0.233) similarity of added
languages and target language performance for tiny models.

distinguish between the same language in multiple
scripts (e.g. Serbian in Cyrillic vs. Latin script) and
macrolanguages vs. their individual constituent lan-
guages (e.g. Quechua vs. Cusco Quechua and Ay-
acucho Quechua). The full list of 1572 languages in
our dataset can be found at https://github.com/
tylerachang/curse-of-multilinguality.
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Language Language Script Tokens Resource Language Family
(ISO 639-3) (ISO 15924) Category

1 Bulgarian bul cyrl 1024512000 high Indo-European
2 Chinese zho hans 1024512000 high Sino-Tibetan
3 Czech ces latn 1024512000 high Indo-European
4 Danish dan latn 1024512000 high Indo-European
5 Dutch nld latn 1024512000 high Indo-European
6 English eng latn 1024512000 high Indo-European
7 Finnish fin latn 1024512000 high Uralic
8 French fra latn 1024512000 high Indo-European
9 German deu latn 1024512000 high Indo-European
10 Hebrew heb hebr 1024512000 high Afro-Asiatic
11 Hungarian hun latn 1024512000 high Uralic
12 Indonesian ind latn 1024512000 high Austronesian
13 Iranian Persian pes arab 1024512000 high Indo-European
14 Italian ita latn 1024512000 high Indo-European
15 Japanese jpn jpan 1024512000 high Japonic
16 Korean kor hang 1024512000 high Koreanic
17 Modern Greek ell grek 1024512000 high Indo-European
18 Polish pol latn 1024512000 high Indo-European
19 Portuguese por latn 1024512000 high Indo-European
20 Romanian ron latn 1024512000 high Indo-European
21 Russian rus cyrl 1024512000 high Indo-European
22 Spanish spa latn 1024512000 high Indo-European
23 Standard Arabic arb arab 1024512000 high Afro-Asiatic
24 Swedish swe latn 1024512000 high Indo-European
25 Thai tha thai 1024512000 high Tai-Kadai
26 Turkish tur latn 1024512000 high Turkic
27 Ukrainian ukr cyrl 1024512000 high Indo-European
28 Vietnamese vie latn 1024512000 high Austro-Asiatic
29 Lithuanian lit latn 787855616 medhigh Indo-European
30 Hindi hin deva 774095488 medhigh Indo-European
31 Catalan cat latn 771223680 medhigh Indo-European
32 Slovak slk latn 746472192 medhigh Indo-European
33 Norwegian Bokmål nob latn 612469888 medhigh Indo-European
34 Estonian est latn 500367232 medhigh Uralic
35 Bengali ben beng 419860608 medhigh Indo-European
36 Latvian lav latn 379466368 medhigh Indo-European
37 Serbian srp cyrl 279173376 medhigh Indo-European
38 Slovenian slv latn 270027392 medhigh Indo-European
39 Tamil tam taml 257684608 medhigh Dravidian
40 Albanian sqi latn 240805504 medhigh Indo-European
41 Azerbaijani aze latn 178155008 medhigh Turkic
42 Urdu urd arab 143181312 medhigh Indo-European
43 Nepali npi deva 139989120 medhigh Indo-European
46 Macedonian mkd cyrl 124803328 medhigh Indo-European
47 Kazakh kaz cyrl 124020480 medhigh Turkic
48 Georgian kat geor 122249472 medhigh Kartvelian
49 Armenian hye armn 121111040 medhigh Indo-European
50 Belarusian bel cyrl 108812544 medhigh Indo-European
44 Esperanto epo latn 102911872 medlow Constructed
45 Croatian hrv latn 102911872 medlow Indo-European
51 Malayalam mal mlym 90062848 medlow Dravidian
52 Icelandic isl latn 88493056 medlow Indo-European
53 Welsh cym latn 86114176 medlow Indo-European
54 Telugu tel telu 81769088 medlow Dravidian
55 Galician glg latn 81455616 medlow Indo-European
56 Hausa hau latn 81195520 medlow Afro-Asiatic
57 Mongolian mon cyrl 79270528 medlow Mongolic
58 Marathi mar deva 78900992 medlow Indo-European
59 Asturian ast latn 76998272 medlow Indo-European
60 Afrikaans afr latn 75925632 medlow Indo-European
61 Basque eus latn 75490304 medlow Basque
62 Burmese mya mymr 75295104 medlow Sino-Tibetan
63 Bosnian bos latn 73321472 medlow Indo-European
64 Central Kanuri knc arab 72147840 medlow Nilo-Saharan
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65 Somali som latn 71963648 medlow Afro-Asiatic
66 Tatar tat cyrl 71448448 medlow Turkic
67 Cebuano ceb latn 71133568 medlow Austronesian
68 Kannada kan knda 69977600 medlow Dravidian
69 Central Khmer khm khmr 67915392 medlow Austro-Asiatic
70 Gujarati guj gujr 65388416 medlow Indo-European
71 Panjabi pan guru 64354560 medlow Indo-European
72 Bashkir bak cyrl 64024832 medlow Turkic
73 Central Kurdish ckb arab 60765440 medlow Indo-European
74 Maltese mlt latn 59164544 medlow Afro-Asiatic
75 Serbo-Croatian hbs latn 58518784 medlow Indo-European
76 Tajik tgk cyrl 57351424 medlow Indo-European
77 Tagalog tgl latn 55507456 medlow Austronesian
78 Kirghiz kir cyrl 55496576 medlow Turkic
79 Tigrinya tir ethi 55378816 medlow Afro-Asiatic
80 Malay msa latn 55249152 medlow Austronesian
81 Igbo ibo latn 53409920 medlow Niger-Congo
82 Sinhala sin sinh 53101952 medlow Indo-European
83 Irish gle latn 51020544 medlow Indo-European
84 Amharic amh ethi 49825536 medlow Afro-Asiatic
85 Uzbek uzb latn 49750144 medlow Turkic
86 Swahili swa latn 49580928 medlow Atlantic-Congo
87 Luxembourgish ltz latn 46355968 medlow Indo-European
88 Yoruba yor latn 45996544 medlow Niger-Congo
89 Haitian hat latn 43803264 medlow Creole
90 Kinyarwanda kin latn 42016128 medlow Niger-Congo
91 Samoan smo latn 41137664 medlow Austronesian
92 Javanese jav latn 40730368 medlow Austronesian
93 Norwegian Nynorsk nno latn 40680192 medlow Indo-European
94 Lao lao laoo 40182528 medlow Tai-Kadai
95 Nyanja nya latn 39635968 medlow Niger-Congo
96 Sindhi snd arab 39586304 medlow Indo-European
97 Southern Pashto pbt arab 39270656 medlow Indo-European
98 Sundanese sun latn 39227648 medlow Austronesian
99 Maori mri latn 39110528 medlow Austronesian
100 Occitan oci latn 39094784 medlow Indo-European
101 Plateau Malagasy plt latn 38467200 medlow Austronesian
102 Pushto pus arab 37981184 medlow Indo-European
103 Scottish Gaelic gla latn 37471488 medlow Indo-European
104 Shona sna latn 37057152 medlow Niger-Congo
105 Waray war latn 36727424 medlow Austronesian
106 Zulu zul latn 36472960 medlow Niger-Congo
107 Dari prs arab 36289920 medlow Indo-European
108 Northern Uzbek uzn latn 35988736 medlow Turkic
109 Uighur uig arab 35028992 medlow Turkic
110 Assamese asm beng 34396032 medlow Indo-European
111 Southern Sotho sot latn 34028544 medlow Niger-Congo
112 Lushai lus latn 33796480 medlow Sino-Tibetan
113 Standard Malay zsm latn 32638592 medlow Austronesian
114 Xhosa xho latn 31847680 medlow Niger-Congo
115 Sicilian scn latn 31407104 medlow Indo-European
116 Lombard lmo latn 31299456 medlow Indo-European
117 Eastern Yiddish ydd hebr 30456448 medlow Indo-European
118 Egyptian Arabic arz arab 30198528 medlow Afro-Asiatic
119 Limburgan lim latn 30182912 medlow Indo-European
120 Odia ory orya 29186688 medlow Indo-European
121 South Azerbaijani azb arab 29091584 medlow Turkic
122 Ayacucho Quechua quy latn 29080448 medlow Quechuan
123 West Central Oromo gaz latn 27978240 medlow Afro-Asiatic
124 Halh Mongolian khk cyrl 27626624 medlow Mongolic
125 Venetian vec latn 26978816 medlow Indo-European
126 Banjar bjn latn 26552448 medlow Austronesian
127 Gilaki glk arab 26084736 medlow Indo-European
128 Ganda lug latn 25706752 medlow Niger-Congo
129 Papiamento pap latn 24957568 medlow Creole
130 Sanskrit san deva 24549760 medlow Indo-European
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131 Rundi run latn 24451072 medlow Niger-Congo
132 Chinese zho hant 23736832 medlow Sino-Tibetan
133 Achinese ace latn 23719936 medlow Austronesian
134 Tswana tsn latn 23584384 medlow Niger-Congo
135 Western Panjabi pnb arab 22000640 medlow Indo-European
136 Twi twi latn 21262208 medlow Atlantic-Congo
137 Iloko ilo latn 21032576 medlow Austronesian
138 Chechen che cyrl 20793856 medlow Nakh-Daghestanian
139 Tsonga tso latn 20281984 medlow Niger-Congo
140 Yakut sah cyrl 19829248 medlow Turkic
141 Western Frisian fry latn 19808384 medlow Indo-European
142 Kurdish kur latn 19233152 medlow Indo-European
143 Ewe ewe latn 18750848 medlow Niger-Congo
144 Oriya ori orya 18473216 medlow Indo-European
145 Latin lat latn 17430272 medlow Indo-European
146 Chuvash chv cyrl 16924288 medlow Turkic
147 Minangkabau min latn 16113024 medlow Austronesian
148 Faroese fao latn 15750272 medlow Indo-European
149 Breton bre latn 14796032 medlow Indo-European
150 Yue Chinese yue hant 14777472 medlow Sino-Tibetan
151 Pedi nso latn 14619264 medlow Niger-Congo
152 Tosk Albanian als latn 14432000 medlow Indo-European
153 Crimean Tatar crh latn 13975296 medlow Turkic
154 Northern Kurdish kmr latn 13480832 medlow Indo-European
155 Kabyle kab latn 13282688 medlow Afro-Asiatic
156 Fon fon latn 13019904 medlow Niger-Congo
157 Low German nds latn 12879488 medlow Indo-European
158 Inuktitut iku cans 12683776 medlow Eskimo-Aleut
159 Maithili mai deva 12227712 medlow Indo-European
160 Lingala lin latn 12203136 medlow Niger-Congo
161 Guarani grn latn 12139904 medlow Tupian
162 Tibetan bod tibt 12052224 medlow Sino-Tibetan
163 Pangasinan pag latn 11895296 medlow Austronesian
164 Bemba bem latn 11693952 medlow Niger-Congo
165 Wolof wol latn 11647872 medlow Niger-Congo
166 Tumbuka tum latn 11176320 medlow Atlantic-Congo
167 Luo luo latn 11028992 medlow Eastern Sudanic
168 Malagasy mlg latn 10417152 low Austronesian
169 Oromo orm latn 10022016 low Afro-Asiatic
170 Dimli diq latn 9850112 low Indo-European
171 Yiddish yid hebr 9727872 low Indo-European
172 Tuvinian tyv cyrl 9700736 low Turkic
173 Min Nan Chinese nan latn 9654656 low Sino-Tibetan
174 Balinese ban latn 9067776 low Austronesian
175 Fijian fij latn 8515328 low Austronesian
176 Central Aymara ayr latn 8513792 low Aymaran
177 Aragonese arg latn 8144384 low Indo-European
178 Ligurian lij latn 7909120 low Indo-European
179 Dhivehi div thaa 7748608 low Indo-European
180 Luba-Lulua lua latn 7352192 low Niger-Congo
181 Silesian szl latn 7311872 low Indo-European
182 Nigerian Fulfulde fuv latn 6747136 low Niger-Congo
183 Swiss German gsw latn 6581888 low Indo-European
184 Swati ssw latn 6076160 low Niger-Congo
185 Betawi bew cyrl 5948160 low Creole
186 Friulian fur latn 5731584 low Indo-European
187 Sardinian srd latn 5723904 low Indo-European
188 Bavarian bar latn 5696512 low Indo-European
189 Tok Pisin tpi latn 5505792 low Creole
190 Umbundu umb latn 5479936 low Niger-Congo
191 Nigerian Pidgin pcm latn 5292160 low Creole
192 Eastern Mari mhr cyrl 5290752 low Uralic
193 Ido ido latn 4775808 low Constructed
194 Russia Buriat bxr cyrl 4556800 low Mongolic
195 Bhojpuri bho deva 4365440 low Indo-European
196 Bambara bam latn 4271232 low Mande
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197 Chokwe cjk latn 4177792 low Atlantic-Congo
198 Southwestern Dinka dik latn 4137728 low Nilotic
199 Dyula dyu latn 3980416 low Mande
200 Mossi mos latn 3948544 low Niger-Congo
201 Turkmen tuk latn 3940864 low Turkic
202 Piemontese pms latn 3818368 low Indo-European
203 Central Kanuri knc latn 3756288 low Nilo-Saharan
204 Wu Chinese wuu hans 3689728 low Sino-Tibetan
205 Kongo kon latn 3668224 low Atlantic-Congo
206 Dargwa dar cyrl 3564800 low Nakh-Daghestanian
207 Buginese bug latn 3539840 low Austronesian
208 Kabuverdianu kea latn 3463936 low Indo-European
209 Kabiyè kbp latn 3286272 low Niger-Congo
210 Kimbundu kmb latn 3169536 low Atlantic-Congo
211 Hawaiian haw latn 2996352 low Austronesian
212 Sango sag latn 2924928 low Niger-Congo
213 Mirandese mwl latn 2819584 low Indo-European
214 Kachin kac latn 2732160 low Sino-Tibetan
215 Ingush inh cyrl 2641408 low Nakh-Daghestanian
216 Kikuyu kik latn 2636544 low Niger-Congo
217 Romansh roh latn 2578304 low Indo-European
218 Kaqchikel cak latn 2560256 low Mayan
219 Kabardian kbd cyrl 2523264 low Northwest Caucasian
220 Volapük vol latn 2522880 low Constructed
221 Mandarin Chinese cmn hans 2511744 low Sino-Tibetan
222 Kituba mkw cyrl 2431872 low Creole
223 Magahi mag deva 2379776 low Indo-European
224 Central Bikol bcl latn 2348672 low Austronesian
225 Kashmiri kas deva 2302592 low Indo-European
226 Cusco Quechua quz latn 2273280 low Quechuan
227 Literary Chinese lzh hant 2267648 low Sino-Tibetan
228 Walloon wln latn 2234880 low Indo-European
229 Akan aka latn 2143360 low Niger-Congo
230 Berber ber latn 2132352 low Afro-Asiatic
231 Chhattisgarhi hne deva 2104576 low Indo-European
232 Interlingua ina latn 2066816 low Constructed
233 Upper Sorbian hsb latn 2062720 low Indo-European
234 Latgalian ltg latn 2061952 low Indo-European
235 Santali sat olck 1973888 low Austro-Asiatic
236 Susu sus arab 1948160 low Mande
237 Nuer nus latn 1941760 low Eastern Sudanic
238 Vlaams vls latn 1928064 low Indo-European
239 Quechua que latn 1901184 low Quechuan
240 Udmurt udm cyrl 1857664 low Uralic
241 Veps vep latn 1844736 low Uralic
242 Avaric ava cyrl 1772288 low Nakh-Daghestanian
243 Swahili swh latn 1768960 low Niger-Congo
244 Lak lbe cyrl 1715328 low Nakh-Daghestanian
245 Erzya myv cyrl 1714432 low Uralic
246 Urdu urd deva 1697408 low Indo-European
247 Ossetian oss cyrl 1697024 low Indo-European
248 Uighur uig latn 1627648 low Turkic
249 Lezghian lez cyrl 1625344 low Nakh-Daghestanian
250 Goan Konkani gom deva 1604096 low Indo-European
251 Shan shn mymr 1589248 low Tai-Kadai
252 Serbian srp latn 1543424 low Indo-European

Table 2: Languages included in our language modeling study.
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