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ABSTRACT

This paper challenges the common assumption that the weight β, in β-VAE, should
be larger than 1 in order to effectively disentangle latent factors. We demonstrate
that β-VAE, with β < 1, can not only attain good disentanglement but also signifi-
cantly improve reconstruction accuracy via dynamic control. The paper removes
the inherent trade-off between reconstruction accuracy and disentanglement for
β-VAE. Existing methods, such as β-VAE and FactorVAE, assign a large weight to
the KL-divergence term in the objective function, leading to high reconstruction
errors for the sake of better disentanglement. To mitigate this problem, a Con-
trolVAE has recently been developed that dynamically tunes the KL-divergence
weight in an attempt to control the trade-off to more a favorable point. However,
ControlVAE fails to eliminate the conflict between the need for a large β (for
disentanglement) and the need for a small β (for smaller reconstruction error).
Instead, we propose DynamicVAE that maintains a different β at different stages
of training, thereby decoupling disentanglement and reconstruction accuracy. In
order to evolve the weight, β, along a trajectory that enables such decoupling, Dy-
namicVAE leverages a modified incremental PI (proportional-integral) controller, a
variant of proportional-integral-derivative controller (PID) algorithm, and employs
a moving average as well as a hybrid annealing method to evolve the value of
KL-divergence smoothly in a tightly controlled fashion. We theoretically prove the
stability of the proposed approach. Evaluation results on three benchmark datasets
demonstrate that DynamicVAE significantly improves the reconstruction accuracy
while achieving disentanglement comparable to the best of existing methods. The
results verify that our method can separate disentangled representation learning
and reconstruction, removing the inherent tension between the two.

1 INTRODUCTION

The goal of disentangled representation learning is to encode input data into a low-dimensional
space that preserves information about the salient factors of variation, so that each dimension of the
representation corresponds to a distinct factor in the data (Bengio et al., 2013; Locatello et al., 2020;
van Steenkiste et al., 2019). Learning disentangled representations benefits a variety of downstream
tasks (Higgins et al., 2018; Lake et al., 2017; Locatello et al., 2019c;a; Denton et al., 2017; Mathieu
et al., 2019), including abstract visual reasoning (van Steenkiste et al., 2019), zero-shot transfer
learning (Burgess et al., 2018; Lake et al., 2017; Higgins et al., 2017a) and image generation (Nie
et al., 2020), just to name a few. Due to its central importance in various downstream applications,
there is abundant literature on learning disentangled representations. Roughly speaking, there are
two lines of methods towards this goal. The first category includes supervised methods (Chen &
Batmanghelich, 2019; Locatello et al., 2019c; Shu et al., 2019; Bouchacourt et al., 2018; Nie et al.,
2020; Yang et al., 2015), where external supervision (e.g., data generative factors) is available during
training to guide the learning of disentangled representations. The second line of works focus on
unsupervised methods (Chen et al., 2016; 2018; Burgess et al., 2018; Kim & Mnih, 2018; Denton
et al., 2017; Kumar et al., 2018; Fraccaro et al., 2017), which substantially relieve the needs to have
external supervisions. For this reason, in this paper, we mainly focus on unsupervised disentangled
representation learning.
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One major challenge of unsupervised disentanglement learning is that there exists a trade-off between
reconstruction quality of the input signal and the degree of disentanglement in the latent represen-
tations. Let us take β-VAE and its variants (Burgess et al., 2018; Chen et al., 2018; Higgins et al.,
2017a) as an example. These methods assign a large and fixed weight β in the objective function
to improve the disentanglement at the cost of reconstruction quality, which is highly correlated
with accuracy in downstream tasks (van Steenkiste et al., 2019; Locatello et al., 2020). In order to
improve the reconstruction quality, researchers have proposed a dynamic learning approach, Con-
trolVAE (Shao et al., 2020), to dynamically adjust the weight on the KL term in the VAE objective to
better balance the quality of disentangled representation learning and reconstruction error. However,
while ControlVAE allows better control of the trade-off between disentangled representation learning
and reconstruction error, it does not eliminate it. One is still achieved at the expense of the other. The
contribution of this paper, compared to the above state of the art, lies in demonstrating that with the
proper design, the trade-off between disentangled representation learning and reconstruction error
is completely eliminated. Both objectives can be attained at the same time in a decoupled fashion,
without affecting each other. More specifically, we observe that if β was kept high in the beginning
of training then lowered later in the process, the two objectives are decoupled allowing each to be
independently optimized. To the authors’ knowledge, this work is the first to attain such decoupled
optimization of both quality of disentanglement and reconstruction error.

Our Contributions: In this paper, we propose a novel unsupervised disentangled representation
learning method, dubbed as DynamicVAE, that turns the weight of β-VAE (β > 1) (Burgess et al.,
2018; Higgins et al., 2017a) into a small value (β ≤ 1) to achieve not only good disentanglement but
also a high reconstruction accuracy via dynamic control. We summarize the main contributions of
this paper as follows.

• We propose a new model, DynamicVAE, that leverages an incremental PI controller and moving
average to evolve the desired KL-divergence along a trajectory that enables decoupling of two
objectives: high-quality disentanglement and low reconstruction error.

• We provide the theoretical conditions on parameters of the PI controller to guarantee stability of
DynamicVAE.

• We experimentally demonstrate that our approach turns the weight of β-VAE (β > 1) to β ≤ 1,
achieving higher reconstruction quality yet comparable disentanglement compared to prior
approaches (e.g., FactorVAE). Thus, our results verify that the proposed method indeed decouples
disentanglement and reconstruction accuracy without hurting each other’s performance.

2 PRELIMINARIES

β-VAE and its Variants: β-VAE (Higgins et al., 2017b; Chen et al., 2018) is a popular unsupervised
method for learning disentangled representations of the data generative factors (Bengio et al., 2013).
Compared to the original VAE, β-VAE incorporates an extra hyperparameter β(β > 1) as the weight
of the KL term in the VAE objective:

Lβ = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x) ‖ p(z)). (1)
In order to discover more disentangled factors, in other variants, practitioners further add a constraint
on the total information capacity, C, to control the capacity of the latent channels (Burgess et al.,
2018) to transmit information. The constraint can be formulated as an optimization method:

Lβ = Eqφ(z|x)[log pθ(x|z)]− β · |DKL(qφ(z|x)‖p(z))− C|, (2)
where β is a large and fixed hyperparameter. As a result, when the weight β is large (e.g. 100), the
algorithm tends to optimize the second term in (2), leading to much higher reconstruction error.

PID Control Algorithm: The PID is a simple yet effective control algorithm that can stabilize
system output to a desired value via feedback control (Stooke et al., 2020; Åström et al., 2006). The
PID algorithm calculates an error, e(t), between a set point (in this case, the desired KL-divergence)
and the current value of the controlled variable (in this case, the actual KL-divergence), then applies
a correction in a direction that reduces that error. The correction is the weighted sum of three terms,
one proportional to the error (called P), one that is the integral of error (called I), and one that is the
derivative of error (called D); thus, the term PID. The derivative term is not recommended for noisy
systems, such as ours, reducing the algorithm to PI control. The canonical form of a PI controller
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(applied to control β(t)) is the following:

β(t) = Kpe(t) +Ki

t∑
j=0

e(j), (3)

where β(t) is the output of a controller, which (in our case) is the used β during training at time t; e(t)
is the error between the output value and the desired value at time t; Kp,Ki denote the coefficients
for the P term and I term, respectively. Eq. (3) may be rewritten in incremental form, as follows:

β(t) = ∆β(t) + β(t− 1), (4)
where β(0) can be set as needed (as we show later), and:

∆β(t) = Kp[e(t)− e(t− 1)] +Kie(t). (5)
This paper adopts a nonlinear incremental form of the PI controller, described later in Section 3.

3 THE DYNAMICVAE ALGORITHM

The goal of disentangled representation learning (Burgess et al., 2018) is to maximize the log
likelihood and simultaneously stabilize the KL-divergence to a target value C. It can be formulated
as the following constrained optimization problem:

max
φ,θ

Eqφ(z|x)[log pθ(x|z)], s.t. DKL(qφ(z|x) ‖ p(z)) = C (6)

In order to achieve a good trade-off between disentanglement and reconstruction accuracy, we attempt
to design a controller to dynamically adjust β(t) in the following VAE objective to stabilize the
KL-divergence to the desired value C:

Ld = Eqφ(z|x)[log pθ(x|z)]− β(t)DKL(qφ(z|x) ‖ p(z)). (7)

The contribution of DynamicVAE is to evolve β(t) along a good trajectory to achieve decoupling
between disentanglement and reconstruction error.

To reach this goal, we need to address the following two challenges:

1. β(t) should dynamically change from a large value to small one. Specifically, at the beginning
of training, β(t) should be large enough to disentangle latent factors. After that, β(t) is required
to gradually drop to a small value to optimize the reconstruction.

2. β(t) should not change too fast or oscillates too frequently. When β(t) drops too fast or
oscillates, it may cause KL-divergence to grow with a large value. Consequently, some latent
factors may emerge earlier so that they can potentially be entangled with each other.

In this paper, we propose methods to deal with these two challenges, summarized below.

A non-linear incremental PI controller: Fig. 1 (a) shows the designed non-linear PI controller that
dynamically adjusts the weight β(t) in the KL term of the β-VAE, based on the actual KL-divergence,
yKL(t). Specifically, it first samples the output KL-divergence, yKL(t), at training step t. Then we
use the difference e(t) between the sampled KL-divergence at time t with the desired value, C, as the
feedback to PI controller to tune β(t). The corresponding PI algorithm is denoted by

β(t) = Kpσ(−e(t))−Ki

t∑
j=0

e(j), (8)

where σ(.) is a sigmoid function; Kp, Ki are positive hyper-parameters for P and I term respectively.
As mentioned earlier, we need a large β(t) in the beginning to control the KL-divergence from a small
value to a large target value so that the information can be transmitted through the latent channels per
data sample. Accordingly, we adopt an incremental form of the PI controller in Eq. (8), and initialize
it to a large value:

β(t) = ∆β(t) + β(t− 1), (9)
where

∆β(t) = Kp[σ(−e(t))− σ(−e(t− 1))]−Kie(t). (10)
and β(0) is a large initial value. When the PI controller is initialized to a large value β(0), it can
quickly produce a (small) KL-divergence during initial model training, preventing emergence of
entangled factors.
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Figure 1: (a) PI control algorithm. (b) Time response of KL-divergence when β = 130.

Moving average: Since our model is trained with mini-batch data, it often contains noise that causes
β(t) to oscillate. In particular, when β(t) plunges during training, it would cause KL-divergence to
rise too quickly. This may lead to multiple latent factors coming out together to be entangled. To
mitigate this issue, we adopt moving average to smooth the output KL-divergence as the feedback of
PI controller below.

y(t) = αtyKL(t) + αt−1yKL(t− 1) + · · ·+ αt−T yKL(t− T ) =

t∑
i=t−T

αiyKL(i), (11)

where αi denotes weight and T denotes the window size of past training steps.

Hybrid annealing: Control systems with step (input) function (i.e., those where the set point can
change abruptly) often suffer from an overshoot problem. An overshoot is temporary overcompensa-
tion, where the controlled variable oscillates around the set point. In our case, it means that the actual
KL-divergence may significantly (albeit temporarily) exceed the desired value, when set point is
abruptly changed. This effect would cause some latent factors to come out earlier than expected, and
be entangled, thereby producing poor-quality disentanglement. To address this problem, we develop a
hybrid annealing method that changes the set point more gradually, as illustrated in Fig. 7 in Appendix.
It combines step function with ramp function to smoothly increase the target KL-divergence in order
to prevent overshoot and thus better disentangle latent factors one by one.

The combination of the above three methods allows DynamicVAE to evolve β(t) along a favorable
trajectory to separate disentanglement learning and reconstruction optimization. We summarize the
proposed incremental PI algorithm in Algorithm 1 in Appendix B.

3.1 STABILITY ANALYSIS OF DYNAMICVAE

We further theoretically analyze the stability of the proposed DynamicVAE. This work is the first
to offer the necessary and sufficient conditions that control hyperparameters should satisfy in order
to guarantee the stability of KL-divergence, when β is manipulated dynamically during the training
process of a (variant of) β-VAE.

To this end, our first step is to build the state space model for our control system. Throughout the
paper, the state variable at training step t is defined as x(t) = β(t). Accordingly, the model of
incremental PI controller can be written as:

x(t+ 1)− x(t) = Kp[σ(−e(t))− σ(−e(t− 1))]−Kie(t), (12)
where error e(t), as shown in Fig. 1(a), is given by e(t) = C − y(t − 1). Here y(t) is a dynamic
model about the time response of the output KL divergence, yKL(t). According to Liu & Theodorou
(2019), stochastic gradient descent (SGD) for optimizing an objective function can be described by a
first-order dynamic model. Our experiment, as illustrated in Fig. 1(b), also shows that the response
y(t) in the open loop system approximately meets a negative exponential function, which further
verifies that our system is a first-order dynamic system. We hence use the first-order dynamic model
to describe it below.

dy

dt
+ ay = ag(x), (13)

where a is a positive hyperparameter to describe the dynamic property, and g(x) is a mapping function
between the actual KL-divergence and β(t). Since DynamicVAE is a discrete control system with
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sampling period Ts = 1, the above first-order dynamic model can be reformulated as

y(t)− y(t− 1) + ay(t) = ag(x(t)) =⇒ y(t) =
1

1 + a
y(t− 1) +

a

1 + a
g(x(t)). (14)

Now let x1(t) = x(t), x2(t) = y(t− 1), x3(t) = y(t− 2), then Eqs. (12) and (14) can be rewritten
as the following state space equations.

x1(t+ 1) = x1(t)−Ki[C − x2(t)] +Kp[σ(x2(t)− C)− σ(x3(t)− C)] , f1(x1(t), x2(t), x3(t))

x2(t+ 1) =
a

1 + a
g(x1(t)) +

1

1 + a
x2(t) , f2(x1(t), x2(t), x3(t))

x3(t+ 1) = x2(t) , f3(x1(t), x2(t), x3(t)).
(15)

In order to analyze the stability of the above non-linear state space model, one commonly used
method is to linearize it at an equilibrium point (Hughes, 2015). In this paper, we use the following
equilibrium point:

x∗ = (x∗1, x
∗
2, x
∗
3) = (g−1(C), C, C), (16)

where g−1(·) denotes the inverse function and x∗2 = x∗3. Next, we apply the first-order Taylor
expansion to the above Eq. (15), yielding

X(t+ 1) = AX(t), (17)
where

X(t) = [x1(t)− x∗1, x2(t)− x∗2, x3(t)− x∗3]T , (18)

and A is the Jacobian matrix at equilibrium point x∗, as defined in Eq. (20) in Appendix C. After this
linearization, we can prove the stability of the proposed method as the modulus of eigenvalue λ of A
is smaller than 1, as described in the following theorem.

Theorem 3.1. Let a > 0 and assume g′(x) < 0,∀x > 0. Then DynamicVAE is stable at the
equilibrium point C if and only if the parameters of the PI controller, Ki and Kp, satisfy the
following conditions

Kp +Ki < −
4(1 + a)

ag′(x∗1)

− 0.5K2
pag
′(x∗1)2 − 2[Kp − 8Ki(1 + a)]g′(x∗1) + 8(1 + a) > 0

Ki > 0,Kp > 0

(19)

We provide the detailed proof in Appendix C.

Remark 3.1. The assumption of g′(x) < 0,∀x basically asks that the KL term in the objective to be a
monotonously decreasing function of the coefficient β(t), and we also further empirically corroborate
its validity on two benchmark datasets as shown in Appendix C.1. In addition, we choose Kp and Ki

that meet the above conditions (19) to verify the stability of DynamicVAE in Appendix C.1.

4 EXPERIMENTS

In this section we evaluate the performance of DynamicVAE and compare it against existing baselines,
including ControlVAE (Shao et al., 2020), β-VAEH (Higgins et al., 2017b), β-VAEB (Burgess
et al., 2018), FactorVAE (Kim & Mnih, 2018), and VAE (Kingma & Welling, 2013). We conduct
experiments on three benchmark datasets: dSprites (Burgess et al., 2018), MNIST (Chen et al., 2016)
and 3D Chairs (Aubry et al., 2014). The detailed model configurations and hyperparameter settings
are presented in Appendix A. Source code will be publicly available upon publication.

4.1 RESULTS AND ANALYSIS

Dsprites Dataset: We first evaluate the performance of DynamicVAE on learning disentangled
representations using dSprites. Fig. 2 (a) and (b) illustrate the comparison of reconstruction error
and the hyperparameter β(t) (using 5 random seeds) for different approaches. We can observe from
Fig. 2 (a) that DynamicVAE (KL=20) has much lower reconstruction error (about 11.8) than β-VAE
and FactorVAE, and is comparable to the basic VAE and ControlVAE. This is because DynamicVAE
dynamically adjusts the weight, β(t), to balance the disentanglement and reconstruction. Specifically,
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Figure 2: (a) shows the comparison of reconstruction error on dSprites using 5 random seeds.
DynamicVAE (KL=20) has comparable reconstruction errors as the basic VAE. (b) shows that
DynamicVAE turns the weight of β-VAE into a small value less than 1. (c) shows an example of
DynamicVAE on disentangling factors as the total KL-divergence increases.

Table 1: RMIG for different methods averaged over 5 random seeds. The higher the better.

Models/Metric pos. x pos. y Shape Scale Orientation RMIG

DynamicVAE (KL=20) 0.7166 0.7179 0.2004 0.6530 0.1024 0.4781 ± 0.0172
ControlVAE (KL=20) 0.6802 0.6597 0.0956 0.6040 0.1081 0.4295 ± 0.0865
FactorVAE (γ = 10) 0.7482 0.7276 0.1383 0.6262 0.1412 0.4763 ± 0.0513
β-VAEB (γ = 100) 0.5666 0.5763 0.4353 0.3814 0.0631 0.4045 ± 0.0345
β-VAEH (β = 4) 0.1635 0.1047 0.1391 0.3958 0.0127 0.1632 ± 0.0626
VAE 0.0359 0.0243 0.0116 0.1507 0.0039 0.0452 ± 0.0326

DynamicVAE automatically assigns a large β(t) at the beginning of training in order to obtain good
disentanglement, and then its weight gradually drops to less than 1 at the end of optimization, as
shown in Fig. 2 (b). In contrast, β-VAE and FactorVAE have a large and fixed weight in the objective
so that their optimization algorithms tend to optimize the KL-divergence term (total correlation term
for FactorVAE), leading to higher reconstruction error. For ControlVAE, it can also dynamically tune
β(t) to control the value of KL-divergence, but its disentanglement performance degrades with the
increase of KL-divergence (i.e., decrease of weight) as illustrated in Table 1. In addition, Fig. 2(c)
illustrates an example of per-factor KL-divergence in the latent code as the total information capacity
(KL-divergence) increases from 0.5 to 20. We can see that DynamicVAE disentangles all the five
data generative factors, starting from position (x and y) to scale, followed by orientation and shape.

Next, we use a robust disentanglement metric, robust mutual information gap (RMIG) (Do &
Tran, 2020), to evaluate the disentanglement of different methods. We can see from Table 1 that
DynamicVAE has a comparable RMIG score to the FactorVAE, but it has much lower reconstruction
error as illustrated in Fig. 2. Moreover, DynamicVAE has higher RMIG score but lower reconstruction
error than β-VAE models. We also find that our method achieves much better disentanglement than
ControlVAE for comparable reconstruction accuracy. Hence, DynamicVAE is able to improve the
reconstruction quality yet obtain good disentanglement.

Qualitatively, we also visualize the disentanglement results of different models in Fig. 3. We
can observe that DynamicVAE disentangles all the five generative factors on dSprites. However,
ControlVAE is not very effective to disentangle all the factors when its KL-divergence is set to a
large value, such as 20. Furthermore, β-VAEB (γ = 100) disentangles four generative factors and
mistakenly combines the scale and shape factors together (in the third row). The other methods do
not perform well for disentanglement.

MNIST and 3D Chair Datasets We also evaluate the proposed method on the other two datasets:
MNIST and 3D Chairs. Fig. 4 illustrates some samples of the disentangled factors for DynamicVAE
on MNIST. We also verify that our method achieves better disentanglement compared with the other
methods, shown in Appendix D. In addition, our method with β < 1 can significantly improve the
reconstruction accuracy than β-VAE as illustrated in Fig. 10 in Appendix D.

We also demonstrate that DynamicVAE can learn many different data generative factors on another
challenging dataset, 3D Chairs. We can observe from Fig. 5 that our method disentangles six different
latent factors, such as wheels, and leg height and azimuth, same as FactorVAE (Kim & Mnih, 2018).
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Figure 3: Rows: latent traversals ordered by the value of KL-divergence with the prior in a descending
order. We initialize the latent representation from a seed image, and then traverse a single latent code
in a range of [−3, 3], while keeping the remaining latent code fixed.
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Figure 4: Latent traversals on MNIST for DynamicVAE. It can be seen that our method can disentangle
four different factors: rotation, thickness, size(width) and writing style.

Decoupled Reconstruction and Disentanglement Additionally, we show that the proposed Dy-
namicVAE is able to decouple the reconstruction and disentanglement learning into two phases,
overcoming the problem of balancing the trade-off between reconstruction and disentanglement.
Fig. 6 illustrates the RMIG score and reconstruction loss with the increase of training steps after
all the factors are disentangled (before 800, 000). It can be seen that RMIG score of our method
remains stable as the reconstruction loss drops. Therefore, the proposed method does not introduce
any conflict between reconstruction optimization and disentangled representation learning.
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Figure 5: Sample traversals for the six latent fac-
tors in our model on 3D Chairs.
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4.2 ABLATION STUDIES

To compare the performance of DynamicVAE and its variants, we perform following ablation studies:

• DynamicVAE-P: it uses positional PI controller with no initialization to a large β(0), instead of
the incremental PI initialized to a large β(0), to tune the weight on KL term in the VAE objective.
• DynamicVAE-step: it solely adopts step function without ramp function for our annealing method.
• DynamicVAE-t: this model directly uses the output KL-divergence at time t as a feedback of PI

controller without using moving average to smooth it.
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Table 2: RMIG for different methods averaged over 5 random seeds. The higher is better.

Models/Metric pos. x pos. y Shape Scale Orientation RMIG

DynamicVAE 0.7166 0.7179 0.2004 0.6530 0.1024 0.4781 ± 0.0172
DynamicVAE-P 0.7376 0.7317 0.0992 0.6400 0.1120 0.4641 ± 0.0240
DynamicVAE-step 0.7209 0.7143 0.0664 0.6218 0.1543 0.4555 ± 0.0355
DynamicVAE-t 0.7152 0.7110 0.0997 0.6267 0.1322 0.4570 ± 0.0182

Table 2 shows the comparison of RMIG score for DynamicVAE and its variants. It can be observed
that DynamicVAE outperforms the other methods in terms of overall RMIG score. We also find that
DynamicVAE-step does not perform well because the ramp function is removed from our annealing
method, leading to overshoot of PI controller. As a result, it makes the other factors come out earlier
and entangled to each other. Thus, we can conclude the importance of adding ramp function for our
annealing method. In addition, we can see that the proposed moving average and incremental PI
control algorithm also play a critical role to improve the disentanglement.

5 RELATED WORK

Disentangled representation learning can be divided into two main categories: unsupervised learning
and supervised learning.

Supervised disentanglement learning (Mathieu et al., 2016; Siddharth et al., 2017; Kingma et al.,
2014; Reed et al., 2014) requires the prior knowledge of some data generative factors from human
annotation to train the model. Some studies (Locatello et al., 2019a;b;c) figure out that it is hard
to achieve reliable and good disentanglement without supervision. For supervised learning, the
limited labeling information can help ensure a latent space of the VAE with desirable structure w.r.t
to the ground-truth latent factors. In order to reduce human annotations, researchers tried to develop
weakly supervised learning (Bouchacourt et al., 2018; Hosoya, 2019; Locatello et al., 2020) to learn
disentangled representations. However, these methods still require explicit human labeling or assume
the change of the two observations is small. In practice, it is unrealistic for initial learners to discover
the data generative factors in most real world scenarios.

For unsupervised learning methods, the recent approaches mainly build on Variational Autoencoders
(VAEs) (Kingma & Welling, 2013) and Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014). InfoGAN (Lin et al., 2020) is the first scalable unsupervised learning method for disentan-
gling. It, however, suffers from training instabilities and does not perform well in disentanglement
learning (Higgins et al., 2018), so most recent works are largely based on VAEs models. The VAE
models, such as β-VAE (β > 1), FactorVAE and β-TCVAE (Chen et al., 2018), often suffer from
high reconstruction errors in order to obtain better disentanglement, since they add a large weight to
terms in the objective. To address this issue, Shao et al. (2020) develops a controllable variational
autoencoder (ControlVAE) to dynamically tune β to achieve the trade-off between reconstruction
quality and disentanglement. However, ControlVAE fails to decouple disentanglement and recon-
struction accuracy because the computed β may oscillate during training, since it uses step function
as annealing method and frequently adjusts β at each step. In this paper, we propose a new method,
DynamicVAE, that can separate disentangled representation learning and reconstruction.

6 CONCLUSION

This paper proposed a novel dynamic learning method, DynamicVAE, to address the trade-off
problem between reconstruction and disentanglement. Our method is able to turn the weight of
β-VAE to a small value (β ≤ 1) to achieve good disentanglement against the previous default
consumption, β > 1. Specifically, we leveraged an incremental PI controller, moving average and a
hybrid annealing to stabilize the KL-divergence to decouple the disentanglement and reconstruction.
We further theoretically prove the stability of the proposed DynamicVAE. The evaluation results
demonstrate DynamicVAE can significantly improve the reconstruction accuracy meanwhile attaining
good disentanglement. It decouples disentanglement and reconstruction accuracy without introducing
a conflict between them.
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A MODEL CONFIGURATIONS AND HYPERPARAMETER SETTINGS

We summarize the detailed model configurations and hyperparameter settings for DynamicVAE
below.

Following the same model architecture of β-VAE, we adopt a convolutional layer and deconvolutional
layer for our experiments. We use Adam optimizer with β1 = 0.90, β2 = 0.99 and a learning rate
tuned from 10−4. We setKp andKi for PI algorithm to 0.01 and 0.005, respectively. The weight β(t)
for incremental PI controller is initialized with 150, 100 and 50 for dSprites, MNIST and 3D Chairs,
respectively. The batch size is set to 128. Using the similar methodology in (Burgess et al., 2018),
we train a single model by gradually increasing KL-divergence from 0.5 to a desired value C with a
step function s and ramp function for every M training steps, as shown in Fig. 7. In the experiment,
we set the step, s, to 0.15 per M = 6, 000 training steps (including 5, 000 in step function and 1, 000
in ramp function) as the information capacity (desired KL- divergence) increases from 0.5 until to 20,
26 and 18 for dSprites, MNIST and 3D Chairs datasets respectively. In addition, the window size
of moving average is T = 5 with equal weight α. Our model adopts the same encoder and decoder
architecture as β-VAEH and ControlVAE except for plugging in PI control algorithm, as illustrated
in Table 3 and Table 4.

Table 3: Encoder and decoder architecture for disentangled representation learning on dSprites and
MNIST.

Encoder Decoder

Input 64× 64 binary image Input ∈ R10

4× 4 conv. 32 ReLU. stride 2 FC. 256 ReLU.

4× 4 conv. 32 ReLU. stride 2 4× 4 upconv. 256 ReLU. stride 2

4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 64 ReLU. stride 2.

4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 64 ReLU. stride 2

4× 4 conv. 256 ReLU. stride 1 4× 4 upconv. 32 ReLU. stride 2

FC 256. FC. 2× 10 4× 4 upconv. 32 ReLU. stride 2

Table 4: Encoder and decoder architecture for disentangled representation learning on 3D Chairs.

Encoder Decoder

Input 64× 64× 3 Input ∈ R16

4× 4 conv. 32 ReLU. stride 2 FC. 256 ReLU.

4× 4 conv. 32 ReLU. stride 2 4× 4 upconv. 256 ReLU. stride 2

4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 64 ReLU. stride 2.

4× 4 conv. 64 ReLU. stride 2 4× 4 upconv. 64 ReLU. stride 2

4× 4 conv. 256 ReLU. stride 1 4× 4 upconv. 32 ReLU. stride 2

FC 256. FC. 2× 10 4× 4 upconv. 32 ReLU. stride 2

A.1 PI PARAMETER TUNING AND SET POINT GUIDELINES

We can tune PI parameters by following the conditions that guarantee the stability of the proposed
method in Eq.(19) in Appendix C. In addition, β(0) is initialized to a sufficiently large value in order
to guarantee the KL-divergence is closed to zero at the beginning of model training. On the other
hand, the choice of desired value of KL-divergence (set point) is very simple. Since our method
achieves good disentanglement when β = 1, we can set its desired value to equal or lower than the
KL-divergence of the original VAE as it converges.
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Figure 7: Top: A hybrid annealing method that combines step function with ramp function. Bottom:
dimwise KL divergence.

Algorithm 1 Incremental PI Control

1: Input: desired KL C, coefficients Kp, Ki, βmin,
iterations N , window T

2: Output: weight β(t) at training step t
3: Initialization: β(0) = 150 (100), yKL(0) = 0
4: for t = 1 to N do
5: Sample KL-divergence, yKL(t)
6: y(t) =

∑t
t−T αiyKL(i)

7: e(t)← C − y(t)
8: dP (t)← Kp[σ(−e(t))− σ(−e(t− 1))]
9: dI(t)← Kie(t)

10: if β(t− 1) < βmin then
11: dI(t)← 0 // wind up
12: end if
13: dβ(t)← dP (t) + dI(t)
14: β(t)← dβ(t) + β(t− 1)
15: if β(t) < βmin then
16: β(t)← βmin

17: end if
18: Return β(t)
19: end for

A.2 HYBRID ANNEALING METHOD

Fig. 7 shows the hybrid annealing method that combines step function with ramp function to gradually
increase the desired value of KL-divergence for DynamicVAE.

B ALGORITHM

We summarize the incremental PI algorithm in Algorithm 1.

C PROOF OF STABILITY IN THEOREM 3.1

In this section we provide the omitted proof in the main paper about Theorem 3.1. For convenience
purpose, we first restate Theorem 3.1 below.

Theorem 3.1. Let a > 0 and assume g′(x) < 0,∀x > 0. Then DynamicVAE is stable at the
equilibrium point C if and only if the parameters of the PI controller, Ki and Kp, satisfy the
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following conditions
Kp +Ki < −

4(1 + a)

ag′(x∗1)

− 0.5K2
pag
′(x∗1)2 − 2[Kp − 8Ki(1 + a)]g′(x∗1) + 8(1 + a) > 0

Ki > 0,Kp > 0

(19)

Proof. At a high level, the proof goes by showing the spectral norm of the Jacobian matrix A to be
strictly less than 1 under the given condition, which is both sufficient and necessary for stability. To
start with, recall that the Jacobian matrix A at equilibrium point x∗ is defined by

A =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3


|x=x∗

=

[
K1 K2 K3

K4 K5 0
0 1 0

]
, (20)

where

K1 =
∂f1
∂x1
|x1=x∗

1
= 1 (21a)

K2 =
∂f1
∂x2
|x2=x∗

2
= Ki +Kpσ(x∗2 − C)[1− σ(x∗2 − C)] =

1

4
Kp +Ki (21b)

K3 =
∂f1
∂x3
|x3=x∗

3
= −Kpσ(x∗3 − C)[1− σ(x∗3 − C)] = −1

4
Kp (21c)

K4 =
∂f2
∂x1
|x1=x∗

1
=

a

1 + a
g′(x∗1) (21d)

K5 =
∂f2
∂x2
|x2=x∗

2
=

1

1 + a
(21e)

∂f2
∂x3
|x3=x∗

3
= 0 (21f)

∂f3
∂x1
|x1=x∗

1
= 0,

∂f3
∂x2
|x2=x∗

2
= 1,

∂f3
∂x3
|x3=x∗

3
= 0. (21g)

In order to guarantee the stability of our state space model, the modulus of eigenvalue λ of A should
be smaller than 1, i.e., |λ| < 1. By definition, the eigenvalues of A can be obtained by computing the
roots of the following characteristic polynomial:

det(λI −A) =

[
λ−K1 −K2 −K3

−K4 λ−K5 0
0 −1 λ

]
= λ3 − (K1 +K5)λ2 + (K1K5 −K2K4)λ−K3K4 = 0

(22)

Instead of computing the (complex) roots of the above cubic polynomial analytically, we use the
following bilinear transformation (Jury, 1964) to map the unit circle |λ| < 1 to the left half plane
such that its real root is less than 0 (Hughes, 2015):

ξ =
λ− 1

λ+ 1
⇐⇒ λ = −ξ + 1

ξ − 1
. (23)

Substituting λ in Eq.(22) with (23) , we have
b3ξ

3 + b2ξ
2 + b1ξ + b0 = 0, (24)

where 
b3 = K1 +K5 +K1K5 −K2K4 +K3K4 + 1
b2 = K1 +K5 −K1K5 +K2K4 − 3K3K4 + 3
b1 = −K1 −K5 −K1K5 +K2K4 + 3K3K4 + 3
b0 = −K1 −K5 +K1K5 −K2K4 −K3K4 + 1

(25)

Clearly, using the above transformation, we know that |λ| < 1 iff the real part of λ is less than 0, i.e.,
Re{ξ} < 0. In order to ensure Re{ξ} < 0, based on Routh–Hurwitz stability criterion (Zabczyk,
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Figure 8: (a) g(x(t)) on MNIST dataset. (b) g(x(t)) on dSprites dataset.

1992), b0, b1, b2, b3 should satisfy the following sufficient and necessary condition.
b0 > 0
b1 > 0
b2 > 0
b1b2 > b0b3

(26)

Substitute Eqs. (21), (24) and (26) into the above system of inequalities, yielding

b3 =
4a+ 8− (Kp + 2Ki)ag

′(x∗1)

2(1 + a)
> 0

b2 =
4(1 + a) + (Kp +Ki)ag

′(x∗1)

(1 + a)
> 0

b1b2 − b3b0 =
−0.5K2

pa
2g′(x∗1)

2 − 2a[Kp − 8Ki(1 + a)]g′(x∗1) + 8a(1 + a)

(1 + a)2
> 0

b0 =
−Kia

1 + a
g′(x∗1) > 0

(27)

To complete the proof, recall that a > 0 and we assume g′(x) < 0,∀x. Hence the coefficients of PI
controller, Kp and Ki in Eq.(27), need to satisfy the following conditions.

Kp + 2Ki >
4(2 + a)

ag′(x∗1)

Kp +Ki < −
4(1 + a)

ag′(x∗1)

− 0.5K2
pag
′(x∗1)2 − 2[Kp − 8Ki(1 + a)]g′(x∗1) + 8(1 + a) > 0

Ki > 0

(28)

Since Kp > 0,Ki > 0 in our designed PI control algorithm and g′(x∗1) < 0, we can further simplify
it as 

Kp +Ki < −
4(1 + a)

ag′(x∗1)

− 0.5K2
pag
′(x∗1)2 − 2[Kp − 8Ki(1 + a)]g′(x∗1) + 8(1 + a) > 0

Ki > 0,Kp > 0

(29)

Therefore, as Kp and Ki meet the above conditions (29), our DynamicVAE would be stable at the set
point, which is verified by the following experiments on different datasets. �
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Figure 9: Time response of KL-divergence under different β on MNIST and dSprites datasets
respectively

C.1 VERIFICATION ON BENCHMARK DATASETS

We first verify the validity of our assumption that g′(x) < 0 in Theorem 3.1. Fig. 8 illustrates the
relationship between β(t) and the actual KL when model training converges on dSprites and MNIST
datasets. We can observe that the actual output KL-divergence and β(t) have a highly negative
correlation, which means g′(x) < 0.

Next, we are going to verify the stability of the proposed DynamicVAE on MNIST and dSprites
datasets. On MNIST dataset, its mapping function g(x) in Fig. 8 (a) can be approximately obtained
by curve fitting with the following negative exponential function:

g(x(t)) = 26.38 exp(−0.0476x(t)). (30)
And the corresponding derivative is

g′(x(t)) = −1.26 exp(−0.0476x(t)) ≤ −1.26. (31)

In addition, we introduce how to obtain the hyperparameter a in our dynamic model in Eq. (14).
Assume that KL-divergence converges to a certain value C ′ in the open loop control system during
model training, then the dynamic model in Eq. (14) can be rewritten as

y(t)− y(t− 1) + ay(t) = aC ′. (32)
When y(0) = 0, and the sampling period of our system is Ts = 1, the corresponding solution is given
by

y(t) = C ′(1− exp(−at)). (33)

In order to obtain the value of a, one commonly used method in control theory is to set a = 1
t∗ as

we have y(t∗) = C ′(1− exp(−1)) ≈ 0.632C ′. In this way, we can derive a based on the training
steps t∗ as KL-divergence reaches 63.2% of its final value C ′ (Isa et al., 2011) in the experiments, as
shown in Fig. 9. For MNIST dataset, we can get the hyperparameter a = 1

5000 around based on the
time response of KL-divergence in the open loop system, as shown in Fig. 9 (a).

Similarly, the derivative of mapping function on dSprites can be approximately expressed by
g′(x(t)) = −3.2 exp(−0.121x(t)) ≤ −3.2. (34)

In addition, we can get the hyperparameter a = 1
2500 around based on the time response of KL-

divergence in the open loop system, as shown in Fig. 9 (b).

We summarize the parameters a and g′(x(t)) for different datasets in the following Table 5.

In this paper, we choose Kp = 0.01 and Ki = 0.005 with the parameters in Table 5 to validate our
model meets the conditions in Eq. (29). In addition, our experimental results in Section 4 further
demonstrate that our method can stabilize the KL-divergence to the set points.
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Table 5: Parameters summary for different datasets

Dataset a g′(x(t))min

MNIST 1
5000 -1.26

dSprites 1
2500 -3.2

D EXTRA EXPERIMENTS ON MNIST

D.1 EVALUATION ON RECONSTRUCTION QUALITY

Fig. 10 shows the comparison of reconstruction loss and weight β(t) for different methods. It can be
observed that DynamicVAE and ControlVAE have comparable reconstruction accuracy to the basic
VAE, but they have better disentanglement than it, as shown in Fig. 4 and 15. In addition, we can see
that DynamicVAE has better reconstruction quality than the two β-VAE models.
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Figure 10: Performance comparison of different methods.

D.2 MNIST LATENT TRAVERSALS FOR BASELINES

We present some samples of latent traversals for the baseline methods. We find that DynamicVAE
outperforms ControlVAE in term of rotation factor as illustrated in Fig. 4 and 11, though they have
comparable disentanglement score. Moreover, DynamicVAE has a better disentanglement than
β-VAE and FactorVAE in the following figures.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 11: Latent traversals on MNIST for ControlVAE.
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(a) Rotation (b) Thickness (c) Style from left to right

Figure 12: Latent traversals on MNIST for FactorVAE.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 13: Latent traversals on MNIST for β-VAEH (β = 10).

(a) Rotation (b) Thickness (c) Style from left to right

Figure 14: Latent traversals on MNIST for β-VAEB (γ = 100).

(a) Rotation (b) Thickness (c) Style from left to right

Figure 15: Latent traversals on MNIST for the basic VAE.
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