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Abstract
Modelling longitudinal data is an important yet
challenging task. These datasets can be high-
dimensional, consist of non-linear effects, and
contain time-varying covariates. In this work, we
leverage linear mixed models (LMMs) and amor-
tized variational inference to provide conditional
priors for VAEs, and propose LMM-VAE, a model
that is scalable, interpretable, and shares theoret-
ical connections to the GP-based VAEs. We em-
pirically demonstrate that LMM-VAE performs
competitively compared to existing approaches.

1. Introduction
Longitudinal datasets, which contain repeated measure-
ments of individuals typically over time, have applications in
numerous fields, such as the social sciences and the biomed-
ical field. Longitudinal study designs are particularly useful
for revealing associations between explanatory covariates
and a response variable, such as the relationship between
risk factors and disease progression (Caruana et al., 2015),
but require appropriate statistical tools that can account
for correlations both within subjects as well as across sub-
jects. Analysis of univariate or low-dimensional longitu-
dinal data is currently dominated by various linear mixed
models (LMMs) and other additive models. However, exist-
ing methods scale poorly to currently popular longitudinal
datasets, such as electronic health records, as the datasets
are often high-dimensional (Zipunnikov et al., 2014), con-
tain non-linear effects and time-varying covariates, and may
contain missing values (Ramchandran et al., 2021).

Variational autoencoders (VAEs) are a class of models com-
monly used for representation learning and generative mod-
elling (Rezende et al., 2014; Kingma & Welling, 2022).
Nevertheless, they cannot be directly applied to longitudi-
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Figure 1: Overview of LMM-VAE. The latent space is
modulated by auxiliary covariates parametrized by a linear
mixed model.

nal data as they assume that observations are independent
and identically distributed, thereby failing to capture cor-
relations between samples. Another challenge concerns
fully exploiting the rich auxiliary covariates available for
modelling. While conditional VAEs (CVAEs) can easily
incorporate any number of covariates, limited work has
tackled the problem of finding an appropriate time-series or
longitudinal model that can effectively scale to large number
of covariates in the VAE prior. Considering the potential
upside in model performance, addressing the prior model’s
scalability, specifically to include more covariates, is a fruit-
ful avenue of research. Different from previous work, we
propose modelling the prior using LMMs. While simple in
idea, this model class is scalable, vastly simplifies the train-
ing procedure within standard deep learning frameworks,
and enjoys several advantages as summarized below.

Contributions. We propose the Linear Mixed Model
VAE (LMM-VAE), a natural extension of the commonly
used univariate LMM, which is capable of handling high-
dimensional data and large dataset sizes, modelling an ar-
bitrary number of covariates in the prior, can be adapted
to problems of various complexities via basis functions,
and enjoys the advantages of being interpretable by way of
parametrization. We demonstrate that LMM-VAE is com-
petitive against commonly used GP-based VAE methods for
integrating auxiliary covariates into the prior. From a practi-
cal standpoint, LMMs show promise as an alternative VAE
prior for longitudinal modelling, especially in the presence
of high dimensional covariates.
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2. Background
Linear Mixed Models. Consider a pair (x, z), where
x = (x1, . . . , xQ)

T ∈ X =
∏Q

i=1 Xi is Q-dimensional
covariate vector and z ∈ Z = RL is a L-dimensional
response variable. The standard linear model (LM) for
(x, z) is

z = a1x1 + · · ·+ aQxQ + ϵ = Ax+ ϵ, (1)

where ai ∈ RL, A = (a1, . . . ,aQ) ∈ RL×Q, and
ϵ ∼ N(0, σ2

zI) assuming equal variance across L dimen-
sions. For N pairs of covariates and response variables,
{(xn, zn)}Nn=1, the linear model is given as

Z = AX + E,

where Z = (z1, . . . ,zN ), X = (x1, . . . ,xN ) and
E = (ϵ1, . . . , ϵN ) such that

p(Z|X) ≜
N∏

n=1

N (zn|Axn, σ
2
zI). (2)

Without loss of generality (w.l.o.g.), we assume that each
covariate is either continuous or binary since categorical
covariates can be one-hot encoded into binary values. To
model non-linear effects in Z , we follow common practice
and extend the standard linear model with non-linear basis
functions for continuous covariates, xj = ϕ(x), such as
xj = x2

i , xk = sin(xi), xl = cos(xi), etc.

Longitudinal datasets consist of repeated measurements
of instances (e.g. patients) over time and are commonly
modeled using linear mixed models (LMM) (Laird & Ware,
1982). While standard LMs are designed to model effects
that are shared across all instances (shared effects), LMMs
can simultaneously model so-called random effects, i.e., ef-
fects that are specific to subsets of instances. Again, w.l.o.g.,
we assume that the covariates are ordered as

x = (x1, . . . , xS︸ ︷︷ ︸
xT

S

, xS+1, . . . , xS+R︸ ︷︷ ︸
xT

R

)T ,

where Q = S+R and we use the first S covariates to model
shared effects and the remaining R to model random effects.
For example, xS may include the age of an individual that
we would like to model as a shared effect. Similarly, xR

may include binary covariates that correspond to the identity
of all instances (patients) and we would include instance-
specific random offset terms into the model. Covariates xR

can also include other types of variables, such as interaction
terms that can be used to specify random effects for arbitrary
subgroups of individuals. We write the LMM as

z = (a1, . . . ,aS)︸ ︷︷ ︸
AS

xS + (aS+1, . . . ,aS+R)︸ ︷︷ ︸
AR

xR + ϵ

= ASxS︸ ︷︷ ︸
shared effects

+ ARxR︸ ︷︷ ︸
random effects

+ ϵ = (AS , AR)︸ ︷︷ ︸
A

x+ ϵ.

Variational Autoencoders. We assume D-dimensional
observations, y ∈ Y = RD, and L-dimensional latent vari-
ables, z ∈ Z = RL, where L ≪ D. Given a dataset
Y = (y1, . . . ,yN ) containing N observations, we assume
that Y is generated by latent variables Z = (z1, . . . ,zN ).
and write the joint generative model for a single observa-
tion as pω(y, z) = pθ(y|z)pφ(z), where ω = {θ, φ}. For
vanilla latent variable models, z typically assumes a stan-
dard normal prior, i.e., z ∼ N (0, I), where I is the L-by-L
identity matrix.

VAEs (Rezende & Mohamed, 2016; Kingma & Welling,
2022) rely on amortized variational inference, by specifying
a parameterized approximation qϕ(z|y) to the intractable
true posterior p(z|y), commonly known as an encoder. Its
parameters ϕ are optimized jointly with ω by maximizing
the evidence lower bound (ELBO) as given by

log pω(Y ) ≥ Eqϕ [log pθ(Y |Z)]− KL (qϕ(Z|Y ) ∥ pφ(Z)) ,

where KL denotes the Kullback-Leibler divergence.

CVAEs (Sohn et al., 2015) extend the standard VAEs by
conditioning the generative model with auxiliary covariates,
x ∈ X . The joint distribution of CVAEs can be written, e.g,
as pω(y, z|x) = pθ(y|z,x)pφ(z|x). The ELBO objective
for a CVAE is obtained, as the standard VAE above, by con-
ditioning the probabilities of the generative model as well
as the encoder network with covariates X = (x1, . . . ,xN ).

3. Linear Mixed Model VAEs
We incorporate Linear Mixed Models (LMMs) into the prior
of the VAE, and propose the LMM-VAE. This model can
accommodate an arbitrary number of auxiliary covariates
in the prior, model both shared and random effects, and
allow efficient model learning via the global parametrization.

zn

yn

xn A

θ

N

Figure 2: Priors. A
plate diagram of the
LMM-VAE with proba-
bilistic priors on all pa-
rameters. Shaded and
blank circles refer to ob-
served and latent vari-
ables, respectively.

Assuming a prior on the matrix
A and an optionally probabilis-
tic decoder, we formulate the
generative model for a sample
y with covariates x as

θ ∼ p(θ) (3)
A ∼ p(A) (4)

z|A,x ∼ N (z|Ax, σ2
zI) (5)

y|z, θ ∼ p(y|z, θ), (6)

where θ parameterizes a de-
coder fθ : Z → Y represent-
ing the Gaussian (or other) like-
lihood model. See Figure 2 for
the corresponding plate. We
can define different priors for
shared and random effects, p(A) = p(AS)p(AR).
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We assume a factorizing variational posterior
qϕ(A, θ, Z|Y ) =

∏
n qϕ(zn|yn)q(A)q(θ), where all

approximate posteriors are mean-field Gaussian, and
qϕ denotes an encoder network that maps an individual
observation yn into parameters of the Gaussians, mean µn

and diagonal covariance σ2
n. The ELBO is given as

log p(Y |X) ≥
∑
n

(
Eq(θ)qϕ(zn|yn) [log p(yn|zn, θ)]

− Eq(A) [KL (qϕ(zn|yn) ∥ p(zn|A,xn))]
)

− KL (q(A) ∥ p(A))− KL (q(θ) ∥ p(θ)) .

It is straightforward to optimize this ELBO with mini-
batch-based stochastic gradient descent (SGD) because the
parametrization of the LMM-VAE model is global. The
first expectation can be approximated via Monte Carlo sam-
pling, while the remaining terms are analytically tractable
assuming Gaussian priors and posteriors.

4. GP-prior VAEs as LMM-VAEs
LMs and LMMs can be made arbitrarily complex by incor-
porating additional basis functions, while at the same time
preserving linearity with respect to the parameters. Using
a basis function extension, we draw a useful link between
LMM-VAEs and GP-prior VAEs, which have received con-
siderable attention in the existing literature. This connection
builds upon a well-known result that GPs correspond to
Bayesian linear regression with infinitely many basis func-
tions (see, e.g., Rasmussen & Williams, 2006). Here, we use
the spectral domain representation, but similar constructions
could also be derived for other basis, such as eigenfunctions
from the Mercer’s theorem (Rasmussen & Williams, 2006)
or Laplace eigenfunctions (Solin & Särkkä, 2019).

Based on the spectral domain representation, a univariate
stationary covariance function k(r), where r = x− x′, can
be approximated using a finite basis function expansion
(Rasmussen & Williams, 2006)

k(r) =
1

2π

∫ ∞

−∞
s(ω)eiωrdω ≈ σ2

M

M∑
m=1

cos(ωmr) = k̃(r),

where s(ω) is the kernel’s spectral density at frequency ω, i
is the imaginary unit, σ2 is the kernel variance, ωm are either
regular or random Fourier frequencies (with a distribution
proportional to the spectral density s(ω)), and M is the
number of terms in the approximation. To construct the
basis functions, we can exploit the trigonometric identity
cos(u− v) = cos(u) cos(v) + sin(u) sin(v) (Tompkins &
Ramos, 2018), and represent k̃(r) using the feature map

ϕ(x) = ( cos(ω1x), . . . , cos(ωMx),

sin(ω1x), . . . , sin(ωMx))T .

Following Hensman et al. (2018), the approximate GP is
then given as

f(x) ∼ GP
(
0,

σ2

M
ϕ(x)Tϕ(x′)

)
= GP

(
0, k̃(x− x′)

)
with an equivalent parametric expression

f(x) = ϕ(x)
T
a = aTϕ(x) = a · ϕ(x),

where a = aT , p(a) = N (0,S) with
S = diag(s(ω1), . . . , s(ωM ), s(ω1), . . . , s(ωM )) for
regular Fourier features, and p(a) = N

(
0, σ2

M I
)

for
random Fourier features.

For notational brevity, consider a GP-prior VAE with a
stationary covariance that is conditioned with a single con-
tinuous covariate x. Existing GP-prior VAE models assume
that the prior for the latent space factorizes across the dimen-
sions, i.e., p(z|x) =

∏L
l=1 GP(0, kl(x, x

′)). Assuming the
reduced-rank approximation for a GP-prior with M Fourier
features, the GP-prior VAE can be directly implemented by
LMM-VAE by setting z = Aϕ(x), where

A =
(
aT1 , . . . ,a

T
L

)T
,

p(A) =
∏L

l=1 p(al) as defined above, and letting σ2
z → 0.

It is straightforward to establish a similar connection be-
tween the longitudinal GP-prior VAE (LVAE, Ramchandran
et al. (2021)) and LMM-VAE. Assuming the same Fourier
features ϕ(x) for all additive kernels, we can construct a
linear basis function approximation z(j) = A(j)ϕ(x) for
each of the kernels j and define the final model as

z =

R∑
j=1

z(j) =
(
A(1), . . . , A(R)

)
ϕ(x), (7)

where R is the number of kernels in a L-VAE model and
p(A) =

∏R
j=1 p(A

(j)).

While theoretically connected to the GP-based VAEs, LMM-
VAE greatly simplifies the overall training procedure by
sidestepping the O(N3) computations a GP requires. This is
done via the spectral representation and global parametriza-
tion that allows for straightforward SGD optimization.

5. Experiments
We compare LMM-VAE to the GP-prior VAEs, which are
most closely aligned with our work in modelling the prior
via regression methods. We prioritize this approach as re-
gression techniques remain important and extensively used
in longitudinal studies (see, e.g., Sauty & Durrleman, 2022).
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Table 1: Imputation MSEs for the GP-based models and
LMM-VAE on the Health MNIST Dataset with latent di-
mension 32.

MODEL IMPUTATION MSE ↓
GPP-VAE (CASALE ET AL., 2018) 0.021 ±0.0012

SVGP-VAE (JAZBEC ET AL., 2021) 0.015 ±0.0012

LVAE (RAMCHANDRAN ET AL., 2021) 0.018 ±0.0006

LMM-VAE (OURS) 0.002 ±0.0000

LMM-VAE (OURS) 0.002 ±0.0000

LMM-VAE (OURS) 0.002 ±0.0000

5.1. Health MNIST

Following prior work (Ramchandran et al., 2021), we gener-
ate a longitudinal dataset with missing pixels by augmenting
the MNIST dataset. This modified dataset replicates vari-
ous characteristics present in real medical data, where each
snapshot of the time series corresponds to the health state
of a patient. We select the digits ‘3’ and ‘6’ to represent
two biological sexes. In total, there are Q = 6 covariates
describing the dataset, which are age, id, diseasePresence,
diseaseAge, sex, and location. Further details of the dataset
and train-test splits are discussed in Appendix B.1.

GPP-VAE and SVGP-VAE are parametrized by two kernels
describing the object and view. As such, we train these
two models using the id and age covariates per respective
kernel. Meanwhile, we parametrize LVAE using the optimal
set-up as reported in their paper, i.e. id, age, sex×age, and
diseasePresence×diseaseAge (Ramchandran et al., 2021).
To demonstrate different ways of parametrizing LMM-VAE,
we train three model variants, and summarize the included
covariates per configuration in Figure 3. Note that the color-
coding in Table 1 follows this mapping.

Missing Value Imputation. We report missing data impu-
tation performance based on the training set in Table 1. Note
that LMM-VAE’s imputation MSE remains robust across
the different parametrizations of the linear model. In addi-
tion, LMM-VAE’s imputation MSE is significantly smaller
than those of the the GP-based baselines. The results ob-
tained with a smaller latent dimension for LMM-VAE can
be found in Appendix B.4.

Future Prediction. By design, the data generation mech-
anism is a complex function of several key covariates. As
shown in Figure 3, given LMM-VAE’s ability to model all
of these covariates, it is unsurprising to learn that it achieves
a lower conditional test MSE compared to GPP-VAE and
SVGP-VAE. In addition, the sensitivity of LMM-VAE’s
results to different prior parametrizations demonstrates the
importance of including relevant covariates that could reveal
information about the data generation process.

GPP-VAE
 (Casale et al.,

 2018)

SVGP-VAE
 (Jazbec et al.,

 2021)

LVAE
 (Ramchandran et al.,

 2021)

16 32Latent dimension
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f(id, age, sex × age, location × age, diseasePresence × diseaseAge)

Figure 3: Predictive test MSEs on the Health MNIST dataset.
The latent dimension used for the baselines is 32.

In addition, Figure 3 shows that LMM-VAE reports com-
petitive MSE as compared to LVAE when the covariates
used for training are identical.1 Interestingly, the flexibility
provided by a GP-prior may not translate into significant
gain in predictive performance.

6. Conclusion
We present LMM-VAE, a novel method for modelling high
dimensional longitudinal data that scales to large datasets
with numerous covariates, and inherits interpretability from
the additive LMM prior, which could appeal to practition-
ers. Theoretical analysis demonstrates connections to GP-
based VAEs. This connection provides a foundation to adapt
LMM-VAE to different modeling tasks by adaptively incor-
porating basis functions, as well as establishes LMM-VAE
as a reduced-rank approximation method for GP prior VAEs.
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APPENDIX
A. Related Work
The literature on extending VAEs’ modelling capacity is vast. This spans from extending the flexibility of variational
posterior distributions, e.g., via normalizing flows (Rezende & Mohamed, 2016), to enabling a more informative prior
over the standard normal used in plain VAEs (Sohn et al., 2015; Tomczak & Welling, 2017; Kingma & Welling, 2019).
Additionally, alternative research efforts focus on endowing the model with desirable characteristics, such as a disentangled
latent space (Higgins et al., 2016; Zhao et al., 2018). Our work enhances the latent space representation by incorporating
auxiliary covariates into the prior, such as time-varying side-profile information.

A.1. Structured Variational Autoencoder

Our work builds upon the ideas presented in Johnson et al. (2016), wherein neural networks and probabilistic graphical
models are combined to provide structured latent representations. LMM-VAE can be seen as a specific case of the Structured
VAE (SVAE), but with enhancements designed to induce structure using arbitrarily many covariates characteristic of
longitudinal data. In real-world longitudinal applications, the incorporation of such structure remains relevant. For instance,
Sauty & Durrleman (2022) characterize the progression of Alzheimer’s disease via a mixed-effect longitudinal model in
the VAE setting. However, this model’s parametric structure is confined to disease progression and necessitates an internal
procedure of Markov chain Monte Carlo sampling. LMM-VAE, in contrast, emerges as a more generalized rendition of this
approach.

A.2. Gaussian Process Variational Autoencoder

The family of GP-based VAEs is most relevant as related work in modelling the prior via regression methods. Similar to
LMM-VAE, the GP-VAEs fall under the broad umbrella of SVAEs (Johnson et al., 2016). Already, within the GP-VAE
framework, there have been multiple developments (Casale et al., 2018; Ramchandran et al., 2021; Jazbec et al., 2021;
Ashman et al., 2020; Zhu et al., 2023), where the GP’s expressiveness and smoothness are leveraged to enable more flexible,
yet robust VAE priors. Here, we focus on the GP-VAEs that are most compatible with modelling longitudinal data, i.e.
repeated measurements with auxiliary covariates, including id-specific information.

While GP-based priors such as those in Casale et al. (2018); Jazbec et al. (2021); Ramchandran et al. (2021) can model
longitudinal data, using a GP model component comes with a host of difficulties. Firstly, learning scales cubically with
respect to the number of samples (Rasmussen & Williams, 2006), thereby constituting a bottleneck to the model’s scalability.
To this end, attempts have been made to reduce the training complexity via approximations of the GP-priors, such as by
Taylor approximation (Casale et al., 2018), or through inducing points (Ramchandran et al., 2021; Jazbec et al., 2021). For
the latter, optimizing the inducing point locations is not straightforward (Bauer et al., 2017) and may complicate training
due to the coupled learning of both the latent variables and the inducing points (Titsias, 2009; Hensman et al., 2013). This
complication may be exacerbated with categorical inputs, which are typically modelled in longitudinal set-ups. In addition,
unless appropriately designed and implemented, these approximations may result in diminished expressiveness of the
GP-priors.

Secondly, modelling all the available covariates via a GP is non-trivial. Jazbec et al. (2021)’s approach may be ill-suited
for this task as it assumes low-dimensional covariates. Casale et al. (2018) posit that the auxiliary information can be
represented by an object and a view kernel, where the dataset comprises of objects in different views. However, constructing
these kernels from high dimensional side-profile information consisting of continuous and categorical covariates remains
unclear. Meanwhile, Ramchandran et al. (2021) propose using additive kernels to include all available covariates, where
each component or pair of components implements one of the additive kernels. Nevertheless, any potential performance
gain may be limited by the challenges associated with training the GPs as a VAE prior.

B. Health MNIST
B.1. Dataset Description

We rely on the dataset construction script from Ramchandran et al. (2021).
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Table 2: Comparison of related methods.

MODEL PRIOR COVARIATES MINIBATCHING REFERENCES

CVAE (I.I.D)2GAUSSIAN ARBITRARY ✓ SOHN ET AL. (2015)
GPP-VAE GP LIMITED PSEUDO CASALE ET AL. (2018)
SVGP-VAE GP LIMITED ✓ JAZBEC ET AL. (2021)
LVAE GP ARBITRARY ✓ RAMCHANDRAN ET AL. (2021)
LONGITUDINAL VAE LM LIMITED ✓ SAUTY & DURRLEMAN (2022)

LMM-VAE LMM (OR GP) ARBITRARY ✓ OUR WORK

To generate a shared age-related effect, we gradually shift all digit instances towards the right corner over time. Half of the
instances of ‘3’ and ‘6’ are assumed to be healthy (diseasePresence = 0), while the other half are inflicted with a disease
(diseasePresence = 1). The diseased instances are rotated across 20 timepoints, with the rotation degree determined by the
time to disease diagnosis (diseaseAge).

We further include a binary noise covariate location, which is randomly assigned to each unique instance, and apply a
random rotational jitter to each data point to simulate noisy observations. Additionally, we mask out 25% of each image’s
pixels (to assess imputation capabilities).

In total, there are 1300 unique instances present in the dataset, where 650 correspond to the biological sex Male, and the
remaining 650 correspond to Female. Each of these unique instances have a sequence length of 20. We withhold the last 15
timepoints of 100 subjects to construct the test set. The first five timepoints of these aforementioned subjects are included in
the training set. The remaining dataset is then randomly split to construct the train and validation sets, in an approximate
ratio of 85 : 15.

B.2. Experimental details

We took the implementation of the baseline SVGP-VAE (Jazbec et al., 2021) from https://github.com/
ratschlab/SVGP-VAE, GPP-VAE (Casale et al., 2018) from https://github.com/fpcasale/GPPVAE, and
LVAE (Ramchandran et al., 2021) from https://github.com/SidRama/Longitudinal-VAE. To perform ex-
periments, we use the default hyperparameter setting specified in the respective repositories. Across all baselines, the
architecture used for the experiment can be found in Appendix C.

For experiments regarding LMM-VAE, we use Adam optimizer (Kingma & Ba, 2017) with a learning rate of 0.001. We
also use a step learning rate scheduler with a step size of 500, and a learning rate decay factor of 0.99. We monitor the loss
on the validation set and employ a strategy similar in spirit to early stopping, where we save the weights of the model with
the optimal validation loss. LMM-VAE was allowed to run for a maximum of 2500 epochs. We define σz = 1.

For all experiments, we report the mean and standard deviation obtained across five runs.

B.3. Additional illustrations of LMM-VAE’s predictions

We visualize two sets of trajectories corresponding to 2 individuals in Figure 4.

B.4. Supplementary tables for Health MNIST

The tables containing the experimental results for Health MNIST are described in Table 3 and Table 4.

C. Model Architectures
Table 5 contains the neural network architecture used in the Health MNIST experiments, which follows Ramchandran et al.
(2021).
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Figure 4: We illustrate 2 sets of images here, each corresponding to a different biological sex. Per image set, we visualize
the reconstructions and predictions obtained on the test set by LMM-VAE with 16 latent dimensions in the second and third
rows. The noisy data along with the original uncorrupted images are also depicted in the first and last rows, respectively.

Table 3: Imputation MSEs for LMM-VAE on the Health MNIST Dataset.

MODEL LATENT DIMENSION IMPUTATION MSE ↓
LMM-VAE

16
0.002 ±0.0000

LMM-VAE 0.002 ±0.0000

LMM-VAE 0.002 ±0.0000

LMM-VAE
32

0.002 ±0.0000

LMM-VAE 0.002 ±0.0000

LMM-VAE 0.002 ±0.0000

Table 4: Predictive Test MSEs for LMM-VAE on the Health MNIST Dataset.

MODEL LATENT DIMENSION PREDICTIVE MSE ↓
LMM-VAE

16
0.0284 ±0.0007

LMM-VAE 0.0183 ±0.0010

LMM-VAE 0.0185 ±0.0014

LMM-VAE
32

0.0285 ±0.0009

LMM-VAE 0.0177 ±0.0013

LMM-VAE 0.0177 ±0.0008
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Table 5: Neural Network Architecture used for the model in the Health MNIST experiments.

Hyperparameter Value

Inference Network

Dimensionality of input 36 × 36
Number of convolution layers 2

Kernel size 3 × 3
Stride 2

Pooling Max Pooling
Pooling kernel size 2 × 2

Pooling stride 2
Number of feedforward layers 2
Width of feedforward layers 300, 30

Dimensionality of latent space L
Activation function of layers ReLU

Generative Network

Dimensionality of input L
Number of transposed convolution layers 2

Kernel size 4 × 4
Stride 2

Number of feedforward layers 2
Width of feedforward layer 30, 300

Activation function of layers ReLU, Sigmoid
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