
HoliTom : Holistic Token Merging for Fast Video
Large Language Models

Kele Shao1,2,3, Keda Tao1,3, Can Qin4, Haoxuan You5, Yang Sui6, Huan Wang3,∗
1Zhejiang University 2Shanghai Innovation Institute 3Westlake University

4Salesforce AI Research 5Columbia University 6Rice University
https://github.com/cokeshao/HoliTom

Video Input

Large Language Model

Vision Encoder

Projector

Spatial Merging

Temporal Merging

Tokenizer

Prompt Input

Inner-LLM

Merging

…

O
u

te
r-

L
L

M
 M

e
rg

in
g

Language Response

<system> What is Tom doing?

2 4 6 8 10
Prefilling FLOPs (T)

52

54

56

58

Av
g.

 S
co

re

Better

40 42

LLaVA-OV 7B
FastV (ECCV'24)
PDrop (CVPR'25)
VisionZip (CVPR'25)

PruneVid (arxiv'24/12)
DyCoke (CVPR'25)
HoliTom (w/o M)
HoliTom

Figure 1: Left: We introduce HoliTom, a training-free holistic token merge method for fast video
LLMs. Its key innovation lies in its global, redundancy-aware outer-LLM spatio-temporal compres-
sion and robust, token similarity-based inner-LLM compression. Right: The Efficiency/Performance
trade-off curve of multiple training-free methods on four widely used video understanding bench-
marks: MVBench, EgoSchema, LongVideoBench, and VideoMME. Our method, HoliTom, surpasses
the SoTA approaches by maintaining 99.1% average performance while reducing FLOPs to 6.9%.

Abstract

Video large language models (video LLMs) excel at video comprehension but face
significant computational inefficiency due to redundant video tokens. Existing
token pruning methods offer solutions. However, approaches operating within the
LLM (inner-LLM pruning), such as FastV, incur intrinsic computational overhead
in shallow layers. In contrast, methods performing token pruning before the LLM
(outer-LLM pruning) primarily address spatial redundancy within individual frames
or limited temporal windows, neglecting the crucial global temporal dynamics
and correlations across longer video sequences. This leads to sub-optimal spatio-
temporal reduction and does not leverage video compressibility fully. Crucially,
the synergistic potential and mutual influence of integrating these strategies remain
unexplored. To further reduce redundancy, we introduce HoliTom, a novel training-
free holistic token merging framework. HoliTom employs outer-LLM pruning
through global redundancy-aware temporal segmentation, followed by spatial-
temporal merging to reduce visual tokens by over 90%, significantly alleviating the
LLM’s computational burden. Complementing this, we introduce a robust inner-
LLM token similarity-based merging approach, designed for superior performance
and compatibility with outer-LLM pruning. Evaluations demonstrate our method’s
promising efficiency-performance trade-off on LLaVA-OneVision-7B, reducing
computational costs to 6.9% of FLOPs while maintaining 99.1% of the original
performance. Furthermore, we achieve a 2.28× reduction in Time-To-First-Token
(TTFT) and a 1.32× acceleration in decoding throughput, highlighting the practical
benefits of our integrated pruning approach for efficient video LLMs inference.

∗Corresponding authors: wanghuan@westlake.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/cokeshao/HoliTom
mailto:wanghuan@westlake.edu.cn

1 Introduction

Video large language models (video LLMs) [25, 70, 56, 8, 9, 27, 30, 63, 67, 18, 51] show remarkable
potential in understanding complex video content. However, their practical deployment is hindered
by significant computational inefficiency. This inefficiency stems from processing high volumes of
video tokens generated by encoding sampled frames, leading to substantial overhead, particularly
due to the quadratic complexity of the attention mechanism in the LLMs. For videos with numerous
frames, the input token count can easily reach tens of thousands, making inference computationally
expensive. While prior works [6, 65, 61, 48, 19, 34, 36] have explored model compression and token
pruning, achieving a desirable balance between efficiency and performance in video tasks remains
an open challenge. Thus, developing effective methods to reduce video token redundancy while
preserving critical semantic information is crucial for the widespread adoption of video LLMs.

Table 1: Compression scope of vision-
language model acceleration methods. This
table outlines where different methods apply
compression. Spatial and Temporal refer to
compression of the input visual data, while
Inner-LLM indicates compression mecha-
nisms applied within the model’s processing.

Methods Spatial Temporal Inner-LLM

FastV [6]
PDrop [61]
LLaVA-PruMerge [42]
VisionZip [65]
DyCoke [48]
FastVID [44]
Ours

Token pruning is a promising direction. These ap-
proaches generally fall into two categories depending
on where pruning occurs. Inner-LLM pruning meth-
ods, such as FastV [6], TopV [64], and PDrop [61],
operate within the LLM layers. However, they in-
cur intrinsic computational and memory costs in the
initial layers before pruning takes effect, limiting
overall FLOPs reduction. Outer-LLM pruning meth-
ods process tokens before the main LLM compu-
tation. Some methods address spatial redundancy
(VisionZip [65], PruMerge [42]), others tackle tem-
poral aspects within limited temporal windows (Dy-
Coke [48], PruneVid [21]), thus preventing a global
understanding of video dynamics and comprehensive
spatio-temporal optimization. Furthermore, despite
the potential for synergy, no prior work has systemat-
ically explored integrating inner-LLM and outer-LLM pruning strategies or analyzed their mutual
benefits. The current methods, while offering some benefits, still leave room for improvement.

To address these limitations, we propose a holistic token pruning for video LLMs that leverages
external and internal strategies. Our method first tackles temporal redundancy through a global
redundancy-aware video segmentation process, followed by spatio-temporal merging. This external
step reduces visual tokens to less than 10%, significantly alleviating the computational burden on the
subsequent LLM. Complementing this, we introduce a new and robust inner-LLM token similarity-
based merging method, specifically designed for integration with our outer-LLM pruning method,
enabling mutual benefits. This integrated strategy offers a more holistic and efficient solution to
handle long videos with LLMs, as summarized in Tab. 1, which contrasts the compression achieved
by our approach in both the spatio-temporal domain and within the inner-LLM against other methods.

Empirical evaluations validate the effectiveness of our proposed method in achieving a compelling
efficiency-performance trade-off. Specifically, as shown in Fig. 1 (right), on the LLaVA-OneVision-
7B model [25], our approach reduces computational costs to just 6.9% of the original FLOPs while
remarkably preserving 99.1% of the original model’s performance. Moreover, we observe significant
gains in inference efficiency, achieving a 2.28× reduction in Time-To-First-Token (TTFT) and a
1.32× acceleration in decoding throughput. These results clearly demonstrate the substantial practical
advantages of our holistic token merging framework for efficient video LLM inference.

Our key contributions are summarized as follows:

1. We analyze the phenomenon of temporal redundancy in the context of video LLMs and propose
a global redundancy-aware temporal merging method to effectively address the inefficiency in
video LLMs before LLM processing in a plug-and-play fashion.

2. We introduce a robust inner-LLM similarity-based merging technique specifically designed for
integration with the outer-LLM pruning method, facilitating synergistic optimization.

3. Extensive evaluations on LLaVA-OneVision and LLaVA-Video demonstrate that our integrated
pruning framework achieves a state-of-the-art efficiency-performance trade-off, significantly
reducing computational costs and accelerating inference while preserving model performance.

2

2 Related Work

2.1 Video Large Language Models

The rapid progress of multimodal large language models has led to the integration of video encoders,
creating video LLMs that excel in video understanding and question answering tasks [63, 17, 25, 2,
56, 3, 27, 28, 30, 67, 47, 50, 23, 1, 46, 29]. However, the substantial number of tokens generated by
processing numerous video frames hinders inference efficiency, thereby impeding the widespread
adoption of video LLMs. Existing approaches have attempted to mitigate this issue. For instance,
VideoLLaMA [67] employs a Q-Former module [26] to aggregate video tokens, while MovieChat [47]
introduces a memory module to merge and store token representations. Although pooling mechanisms
in LLaVA-OneVision [25] reduce token counts, each video frame still produces hundreds of tokens
for downstream processing. Consequently, handling tens of thousands of visual tokens for long
video inputs substantially increases inference time and memory consumption. While works such
as VILA [32] and NVILA [35] aim to optimize token usage, these methods often require model
fine-tuning, demanding considerable hardware resources [22, 30, 32, 35, 55, 33]. This underscores a
critical need for developing more efficient, training-free token compression methods specifically for
video LLMs, bypassing the need for costly model adaptations and significant hardware investment.

2.2 Visual Token Compression

Token compression [43] has emerged as an effective strategy for reducing token redundancy in vision
transformers and large language models. ToMe [4] merges similar tokens in ViTs to alleviate spatial
redundancy, while TempMe [45] focuses on minimizing temporal redundancy by merging adjacent
video clips. TESTA [40] achieves up to a 75% reduction in processed tokens by employing temporal
and spatial aggregation modules. For MLLMs, FastV [6] prunes non-essential visual tokens in
early layers of LLM. TopV [64] proposes an optimization framework to prune unnecessary visual
tokens. DyMU [57] introduces token merging in the visual encoder and virtual unmerging in the
LLM decoder. PDrop [61] performs progressive pruning of tokens at different stages within the LLM.
LLaVA-PruMerge [42] and VisionZip [65] leverage attention weight analysis in visual encoders to
eliminate spatial redundancy. However, the inherent temporal dependencies between video frames
necessitate specialized compression designs. Consequently, recent methods specifically for video
token compression have gained increasing attention. DyCoke [48] consolidates tokens across frames
and implements dynamic key-value cache reduction. PruneVID [21] clusters video tokens, whereas
FastVID [44] enhances compression by combining temporal segmentation with spatio-temporal token
merging. In this paper, we propose a new token merging strategy specifically designed for video
LLMs, which fully considers spatio-temporal characteristics to maximize performance retention.

3 Method

3.1 Background on Video LLMs Inference

The inference process of video LLMs involves three key stages: before LLM, prefilling, and decoding.

(1) Before LLM. Given an input video with B frames, a vision encoder processes each frame to
produce Nv embedding vectors. These are projected into the text embedding space, yielding visual
tokens Hv ∈ RBNv×d, where d represents the dimension of the hidden state space. A text prompt
T = {ti}

Nq

i=1 is tokenized and embedded into text tokens Hq ∈ RNq×d similarly. Finally, the visual
and text tokens are concatenated to form H = concat[Hv, Hq], which serves as the LLM input.

(2) Prefilling Stage. During prefilling, each transformer layer l of the LLM performs self-attention
operations on the concatenated input H . It begins with linear transformations to compute query
Ql = HWl

Q, key Kl = HWl
K , and value Vl = HWl

V , where Wl
Q, Wl

K , Wl
V ∈ Rd×d are

learnable projection matrices. The resulting key-value pairs (Kl and Vl) are then cached (KV cache)
to enhance the efficiency of token generation during the subsequent decoding phase.

(3) Decoding Stage. The decoding stage generates tokens autoregressively, leveraging the KV
cache. At each time step t, only the new token ht is processed to compute its key and value
representations, avoiding recalculating attention weights over the entire history. The KV cache is
updated by appending the new key-value pairs: K← [K, htWK] ,V← [V, htWV]. This caching
mechanism substantially reduces the computational complexity of the generation process.

3

Temporal Redundancy Merging

1 52 4

Global Redundancy-Aware Segmentation

3 6

1 52 4

Temporal Merged Tokens

3 6

Stage I: Temporal Merging

1 2 3

1 2 3

sim>τ

Redundant

Non-Redundant

1

1 52 4

Spatial Merged Tokens

3 6

Stage II: Spatial Merging

1

Redundant

Non-Redundant

1 1

1

Cluster-based Merging

Attention-based Select

Vision Encoder

Tokenizer

Tokens in Frame 1-N

Transformer Block K+1

Transformer Block K

Projector

Stage III: Inner-LLM Merging

…

Text Tokens

Large Language Model

…

Video Input

1

Token of One Frame

Pruned Token of One Framemerge

…

Non-TopK Attnention Tokens

TopK Attention Tokens

Merged Tokens

Vision Tokens

Pruned Tokens

Spatial Merging

Temporal Merging
Prompt Input

<system> What is Tom doing?

Figure 2: Overview of our HoliTom method. HoliTom compresses video LLMs across three scopes;
the first two are outer-LLM pruning. Temporal Merging maximizes temporal compression via global
redundancy-aware segmentation, merging similar tokens into their first occurrence. Spatial Merging
further reduces redundancy by applying tailored spatial compression based on the characteristics of
remaining temporal variations. Inner-LLM Merging leverages attention within the LLM to identify
key tokens and merges less important, similar tokens, streamlining information within the LLM.

3.2 Global Redundancy-Aware Temporal Merging

Temporal redundancy describes feature persistence at fixed spatial locations across consecutive
frames. We identify this redundancy for the k-th feature between frames m and m+ 1 using their
respective feature vectors hm,k and hm+1,k. A feature is considered temporally redundant if its
normalized similarity, sim(hm,k, hm+1,k), exceeds a defined threshold τ ∈ [0, 1].

For a temporal segment defined by a start frame ts and an end frame te (covering [ts, te)), the total
number of prunable tokens, g(ts, te), is calculated. This involves counting tokens N(ts, te) that are
consecutively redundant across all frames from ts to te − 1, and then multiplying by the number of
subsequent frames (te − ts − 1) within the segment where these tokens can be pruned. Our method
prunes the redundant by merging these subsequent occurrence tokens into their first appearance at
start frame ts, treating them as temporal redundant tokens, as shown in Fig. 2. The formulation is:

g(ts, te) =

(
Nv∑
k=1

te−2∏
m=ts

I(sim(hm,k, hm+1,k) > τ)

)
︸ ︷︷ ︸

N(ts,te)

×(te − ts − 1), (1)

where Nv is the total number of features per frame, and I(·) the indicator function.

Given a video of B frames, our objective is to find a segmentation into K consecutive segments
[ti, ti+1) (with t1 = 1, tK+1 = B + 1, and ti < ti+1) that maximizes the total prunable features:

max
K,{ti}K+1

i=1

K∑
i=1

g(ti, ti+1). (2)

This optimization is solved using dynamic programming to achieve global optimization. Let dp[i]
be the maximum prunable features for a video ending at frame i (exclusive, i.e., considering frames
1, ..., i− 1), where frame i marks the exclusive end of the last segment. The value prev[i] stores the
optimal starting frame j∗ of this final segment [j∗, i). The state transition is given by:

dp[i] = max
1≤j<i

{dp[j] + g(j, i)}, with prev[i] = argmax
1≤j<i

{dp[j] + g(j, i)}. (3)

The base case is dp[1] = 0. The maximum prunable features for the entire video are dp[B + 1]. The
optimal segmentation is reconstructed by backtracking from B + 1 using the prev array.

4

3.3 Spatial Merging

After temporal merging, tokens are classified as non-redundant or redundant temporal tokens. We
first process the former. Inspired by works [42, 65, 69, 52], we utilize the CLS tokens for spatial
feature selection. For vision encoders like Siglip [66] that do not have an explicit CLS token, a
method is detailed to derive CLS-equivalent attention. Specifically, we compute the attention matrix:

A = Softmax(QKT /
√
d) ∈ RB×Nv×Nv , (4)

where d is the state dimension. Token importance is quantified by averaging the attention weights
each token receives from all other tokens within the same frame in the vision tower, yielding a score
vector Aavg ∈ RB×Nv . Tokens receiving higher average attention are considered more salient.

Consistent with video LLMs of applying spatial pooling (e.g., after the projector to reduce tokens), we
reshape Aavg to its original spatial grid dimensions (H ×W = Nv) and apply an analogous pooling
operation. This results in a spatially downsampled importance map Aavg ∈ RB×H×W . Ultimately,
we select the visual features corresponding to the highest scores in Aavg as the representative and
most informative spatial tokens, known as attention-based select, discarding all others.

The computation of vision tower attention is intra-frame. Averaging these attention weights across
frames lacks theoretical justification, invalidating the attention-based method for redundant temporal
tokens. To process these features, we employ a cluster-based merging method utilizing density peak
clustering based on k-nearest neighbors (DPC-KNN) [13, 41]. Given a set of N redundant temporal
tokens [v1, v2, ..., vN] within the first frame of the segmentation. For each token vi, we calculate its
local density ρi, distance to the closest higher-density token δi and the final density score γi = ρi×δi:

ρi = exp

−1

k

∑
vj∈kNN(vi)

d(vi, vj)
2

 , δi =

max
j ̸=i

d(vi, vj) if ρi = max
k

ρk

min
j:ρj>ρi

d(vi, vj) otherwise
. (5)

Tokens with high γi are selected as cluster centers. After selecting the cluster centers, each remaining
feature is assigned to the cluster whose center is closest in feature space. Finally, the representative
feature for each cluster is then computed by averaging the features assigned to it. Ultimately, the
compressed features, derived from this clustering process, along with the non-redundant features, are
concatenated according to their original spatial order, thereby preserving positional characteristics.

3.4 Inner-LLM Merging

Inefficient visual attention in large vision language models has been widely discussed [6, 61]. Existing
methods, such as FastV [6] and PDrop [61], directly discard redundant visual tokens, which may
lead to performance degradation due to information loss. Unlike these approaches, our proposed
method addresses it by merging the information from potentially redundant tokens instead of simply
discarding them. Specifically, at the K-th layer of the LLM, to reduce the number of visual tokens by
R%, we employ a token selection strategy based on attention scores. We use the attention weights
of the last token to rank all vision tokens at layer K. The R% of visual tokens exhibiting the lowest
attention scores are identified as candidates for merging. We find its most similar visual token within
the set of tokens designated for retention. For a retained token vr and its associated set of low
attention tokens Vm = {vm1

, vm2
, ..., vmn

}. The updated retained token v′r is:

v′r = average(vr, vm1 , ..., vmn). (6)

This selective merging preserves relevant features from tokens that would otherwise be removed,
mitigating information loss while achieving the desired token reduction.

4 Experimental Results

4.1 Experimental Settings

Benchmarks. We evaluate our method on four widely-used video understanding benchmarks:
MVBench [28], EgoSchema [37], LongVideoBench [59], and VideoMME [17]. Comprising videos
of varying lengths and complex scenarios, these benchmarks provide a comprehensive testbed for
assessing the effectiveness and generalization of our method.

5

Table 2: Comparison of state-of-the-art methods across benchmarks. Best and most efficient
results are in bold, second best underlined. Here, "HoliTom" means the full version of our method;
"HoliTom (w/o M)" means our method without inner-LLM merging, for reference.

Method Prefilling
FLOPs (T) ↓

FLOPs
Ratio ↓

Before LLM
Retained Ratio

MVBench
↑

EgoSchema
↑

LongVideo
Bench ↑

VideoMME
↑

Avg. ↑
Score %

LLaVA-OV-7B 40.8 100% 100% 58.3 60.4 56.4 58.6 58.4 100
FastV [6] 9.3 22.8% 100% 55.9 57.5 56.7 56.1 56.5 96.7
PDrop [61] 10.5 25.7% 100% 56.1 58.0 54.1 56.4 56.2 96.2
DyCoke [48] 8.7 21.3% 25% 53.1 59.5 49.5 54.3 54.1 92.6
VisionZip [65] 8.7 21.3% 25% 57.9 60.3 56.5 58.2 58.2 99.7
PruneVid [21] 8.7 21.3% 25% 57.4 59.9 55.7 57.4 57.6 98.6
FastVID [44] 8.7 21.3% 25% 56.5 - 56.3 58.0 - -
HoliTom (w/o M) 8.7 21.3% 25% 58.5 60.8 56.5 59.1 58.7 100.5
HoliTom 7.1 17.4% 25% 58.4 61.2 56.7 58.9 58.8 100.7
VisionZip [65] 7.0 17.2% 20% 57.7 59.8 55.2 57.9 57.7 98.8
PruneVid [21] 7.0 17.2% 20% 57.2 59.7 54.7 56.9 57.1 97.8
FastVID [44] 7.0 17.2% 20% 56.3 - 57.1 57.9 - -
HoliTom (w/o M) 7.0 17.2% 20% 58.5 60.7 56.3 58.6 58.5 100.2
HoliTom 5.8 14.2% 20% 58.7 61.0 57.1 58.6 58.8 100.7
VisionZip [65] 5.2 12.7% 15% 56.5 59.8 54.4 56.1 56.7 97.1
PruneVid [21] 5.2 12.7% 15% 56.8 59.7 55.4 56.6 57.1 97.8
FastVID [44] 5.2 12.7% 15% 56.0 - 56.2 57.7 - -
HoliTom (w/o M) 5.2 12.7% 15% 58.1 61.0 57.0 58.1 58.5 100.2
HoliTom 4.3 10.5% 15% 58.1 61.2 56.4 57.3 58.2 99.7

VisionZip [65] 3.4 8.3% 10% 53.5 58.0 49.3 53.4 53.5 91.6
PruneVid [21] 3.4 8.3% 10% 56.2 59.8 54.5 56.0 56.6 96.9
FastVID [44] 3.4 8.3% 10% 55.9 - 56.3 57.3 - -
HoliTom (w/o M) 3.4 8.3% 10% 56.9 61.1 56.5 56.9 57.8 99.0
HoliTom 2.8 6.9% 10% 57.3 61.2 56.3 56.8 57.9 99.1

Compared Methods. We compare our proposed HoliTom against 6 strong training-free baselines:
1) FastV [6], identifies key tokens during prefilling using attention scores between predicted and
vision tokens; 2) PDrop [61], prunes visual tokens within partitioned LLM stages, guided by image
and instruction tokens; 3) Visionzip [65], prunes tokens before LLM via spatial token merging; 4)
DyCoke [48], employs temporal merging before LLM and dynamic KV cache pruning in decoding; 5)
PruneVid [21], minimizes video redundancy via spatio-temporal token clustering; and 6) FastVID [44],
a concurrent work, partitions videos and applies density-based token pruning. Due to the lack of
public code, we compare FastVID to its reported results. For all other baselines and our method,
experiments use their open-source code under identical hardware condition.

Inference Cost Evaluation. We evaluate the inference cost of transformer layers, each composed
of multi-head attention (MHA) and feed-forward network (FFN) modules. Following previous
work [6, 61, 48], the FLOPs for processing ni vision tokens in layer i, with hidden state size d and
FFN intermediate size m, are defined as 4nid

2 + 2n2
i d+ 2nidm. For an LLM with T transformer

layers, the total FLOPs span the prefilling and decoding phases, calculated as:

T∑
i=1

(4nid
2 + 2n2

i d+ 2nidm)︸ ︷︷ ︸
Prefilling FLOPs per layer

+R((4d2 + 2dm) + 2(dni +
1

2
d(R+ 1)))︸ ︷︷ ︸

Decoding FLOPs per layer

. (7)

For consistency, the decoding calculation is fixed for predicting R = 100 tokens, accounting for the
the KV cache. In video LLMs, the decoding phase FLOPs contribute only approximately 2% of
the total. Consequently, our primary optimization focus is on the prefilling stage. When considering
prefilling optimization, inner-LLM pruning methods like FastV [6], the FLOPs incurred in the first
2 shallow layers can amount to 2.9 TFLOPs in LLaVA-OneVision-7B. Even pruning 100% token
in the layer, these methods cannot match the potential efficiency compared to outer-LLM pruning
methods. Thus, outer-LLM pruning offers a more impactful optimization approach for this domain.

Implementation Details. Our method is implemented on LLaVA-OneVision-7B/72B [25] and
LLaVA-Video-7B [70] models. Evaluation uses NVIDIA A100 GPUs, while inference is on an RTX
A6000. Inference cost is measured by prefilling FLOPs, with baselines configured for comparable
FLOPs (details in the appendix A). The default τ is 0.8; for 10% compression, τ is 0.65. Following
official practice, LLaVA-OneVision models utilize 32 input video frames (Nv = 196), while LLaVA-
Video uses 64 frames (Nv = 169). All benchmarks are conducted using LMMs-Eval [68, 24].

6

Table 3: Cross-backbone method comparison. Performance comparison of our method against
state-of-the-art methods across different backbones, demonstrating consistent effectiveness.

Model Method Prefilling
FLOPs (T) ↓

FLOPs
Ratio ↓

Before LLM
Retained Ratio

MVBench
↑

EgoSchema
↑

LongVideo
Bench ↑

VideoMME
↑

Avg. ↑
Score %

LLaVA-
OneVision-72B

Vanilla 429.3 100% 100% 60.9 61.1 62.7 65.7 62.6 100
FastV [6] 86.4 20.1% 100% 56.1 57.1 57.0 61.2 57.9 92.5
Visionzip [65] 59.0 13.7% 15% 58.4 59.3 57.4 63.8 59.7 95.4
PruneVid [21] 59.0 13.7% 15% 56.8 57.7 57.4 62.7 58.6 93.6
HoliTom (w/o M) 59.0 13.7% 15% 58.5 60.0 57.8 64.1 60.1 96.0
HoliTom 51.6 12.0% 15% 58.7 60.1 57.2 64.3 60.1 96.0

LLaVA-
Video-7B

Vanilla 80.2 100% 100% 60.4 57.2 58.9 64.3 60.2 100
FastV [6] 17.1 21.3% 100% 54.3 54.1 55.0 58.8 55.6 92.4
PDrop [61] 19.5 24.3% 100% 55.9 54.3 54.7 61.9 56.7 94.2
VisionZip [65] 9.3 11.6% 15% 56.7 54.7 54.7 60.7 56.7 94.2
HoliTom (w/o M) 9.3 11.6% 15% 57.8 54.8 55.6 61.9 57.5 95.5
HoliTom 7.6 9.5% 15% 57.7 54.8 56.2 62.1 57.7 95.8

2 7 14 18 21
Number of Layers (K)

54

56

58

Av
er

ag
e

Sc
or

e

55.2
55.7 55.7

57.9 57.7

55.4
56.1 56.3

57.9 57.7FastV
HoliTom

0.3 0.4 0.5 0.6 0.7
Pruning Rate (R)

57.1
56.6

55.7

54.7
54.0

57.2
56.6 56.3

55.4

54.5

FastV
HoliTom

Figure 3: Left: Performance of our method vs. FastV when
pruning various layers at rate R=50%. Right: Performance
comparison with varying pruning rates at a fixed layer (K=14).

16 32 64 128
Number of Frames

54

56

58

60

Av
er

ag
e

Sc
or

e

56.6

58.5 58.9 59.3

Vanilla
VisionZip
PruneVid
HoliTom (w/o M)

Figure 4: Performance vs. number
of frames for our method and other
token compression methods.

4.2 Main Results

Comparison with State-of-the-Art Methods. Tab. 2 benchmarks Holitom against state-of-the-art
approaches on the LLaVA-OneVision-7B model, analyzing performance and inference cost (FLOPs)
at various token retention ratios (25%, 20%, 15%, and 10%) prior to LLM processing. Inner-LLM
pruning methods, such as FastV [6] and PDrop [61], often struggle to balance performance and
efficiency, especially at lower token retention ratios (25%). DyCoke [48], which segments video
frames into groups of 4 and prunes all but the first frame, is limited by its design, capping its lowest
retention ratio at 25%. Spatial pruning methods like VisionZip [65] show a significant performance
drop (up to 8.4%) at 10% retention. This decline stems from relying solely on spatial compression,
less effective at preserving crucial temporal information needed for performance under aggressive
pruning. Crucially, even without our inner-LLM merging technique, our method achieves state-of-
the-art performance and efficiency consistently across the evaluated retention ratios. This highlights
the superior robustness and adaptability of our approach compared to prior methods. Our inner-LLM
merging method further enhances efficiency, driving optimization further. For instance, we retain
only 6.9% of the original FLOPs, while preserving 99.1% of the baseline performance.

Performance Comparison Across Different Backbones. Tab. 3 assesses our method’s performance
across various backbones. For the powerful LLaVA-OneVision-72B model, sensitive to aggressive
compression, our approach reduces computational cost to 11.3%, keeping 96% of its original perfor-
mance. LLaVA-Video-7B presents a greater compression challenge due to its higher initial pooling
rate (169 vs. 196 tokens/frame in LLaVA-OneVision). Despite this, our method achieves a reduction
to just 9.5% of the original FLOPs, retaining 95.8% performance and outperforming existing methods.
Overall, achieving significant token compression with minimal performance drop is indeed tougher
for LLaVA-OneVision-72B and LLaVA-Video-7B than for LLaVA-OV-7B.

HoliTom vs. FastV under Outer-LLM Compression. Building on the challenges faced by inner-
LLM pruning methods discussed in Section 4.1, we compare our inner-LLM merging method with
FastV, specifically in scenarios where outer-LLM compression is already applied. In this compressed
context, the property "an image is worth 1/2 tokens after layer 2" [6] is not consistently observed.
This is because outer-LLM compression concentrates information, making trivial token discarding
more difficult using attention mechanisms. As illustrated in Fig. 3, our method demonstrates superior
performance compared to FastV when pruning 50% at shallower layers. Furthermore, at equivalent
layers, our approach consistently surpasses FastV across a wide range of pruning rates, underscoring
its effectiveness. This effectiveness stems from our inner-LLM merging method, which better
preserves information rather than directly discarding it.

7

0 250 500 750 1000 1250 1500 1750
Time-To-First-Token (TTFT) breakdown (ms)

Full Tokens
HoliTom

HoliTom (w/o M)
PruneVid
VisionZip

PDrop
FastV

500 45 1142
500 85 156
500 85 175
500 75 214
500 48 271
500 45 363
500 45 372

2.22×
2.28×

Vision Tower Other LLM Backbone

26 28 30 32 34 36 38 40
Throughput of decoding stage (tokens/sec)

29.5
38.8
38.8

38.2
37.5

36.7
36.8

1.32×

Avg.
Score

58.4
57.9 (-0.5)
57.8 (-0.6)
57.1 (-1.3)
57.7 (-0.7)
56.2 (-2.2)
56.5 (-1.9)

Decoding Throughput

Figure 5: Achieving superior inference. "Other" indicates token pre-processing time (e.g., pooling).
Our proposed method reduces Time-To-First-Token (TTFT) by 2.28× and achieves 1.32× higher
decoding throughput, outperforming all other token compression methods and the vanilla model.

Table 4: Ablation study on merging modules. Our temporal merging module reduces FLOPs to
75.7% without performance loss, alleviates the performance degradation caused by aggressive spatial
pruning. The integration of all 3 modules achieves the best performance-efficiency trade-off.

Method Prefilling
FLOPs (T) ↓

FLOPs
Ratio ↓

Before LLM
Retained Ratio

MVBench
↑

EgoSchema
↑

LongVideo
Bench ↑

VideoMME
↑

Avg. ↑
Score %

Vanilla 40.8 100% 100% 58.3 60.4 56.4 58.6 58.4 100
Only Temporal 30.9 75.7% 79% 58.9 60.5 56.5 59.1 58.8 100.7
Only Spatial 5.2 12.7% 15% 57.9 60.8 54.2 56.8 57.4 98.3
HoliTom (w/o M) 5.2 12.7% 15% 58.1 61.0 57.0 58.1 58.5 100.2
HoliTom 4.3 10.5% 15% 58.1 61.2 56.4 57.3 58.2 99.7

Performance Scaling with more frames. Our method scales performance robustly with increasing
input frames (Fig. 4). A challenge for video LLMs is that uniformly sampled frames may miss
crucial information required for accurate answers. Therefore, an effective token pruning method
is essential to process more frames and capture sufficient context. Fig. 4 shows our approach
consistently outperforms other compression methods across frame rates. At 16 frames, where
less temporal redundancy exists, our method, while slightly below the vanilla, still outperforms
all other compression techniques. With 64 frames, our method is more efficient and achieves
superior performance over the vanilla model. Furthermore, when processing 128 frames, our token
compression approach avoids the maximum context length limitations that bottleneck vanilla models.
This capability is particularly beneficial for tasks that require an extensive temporal context or to
answer complex questions with long text, resulting in improved performance.

Discussion: Improved Performance after Token Compression Tabs. 2, 4, and Fig. 4 present a key
finding: models employing our token compression technique outperform the original models on
various benchmarks. This surprising result underscores a fundamental principle for achieving superior
performance at the input stage: the value of key information over exhaustive information. Excessive,
irrelevant, or redundant data acts as noise, obscuring essential signals critical for effective processing.
This information overload impedes the capacity of the model to accurately identify and process
critical details, thereby degrading understanding and response generation. By providing a refined
input that retains pertinent information while shedding redundant information, our compression
method facilitates deeper comprehension and yields more accurate, relevant outputs. Collectively,
these results underscore the efficacy of our technique in distilling key information and demonstrate
that intelligent input refinement is crucial for superior model performance.

4.3 Efficiency Results

Fig. 5 summarizes the impact of various token compression methods on the inference efficiency of
video LLMs. As shown, all the evaluated methods demonstrably reduce LLM prefilling time. Our
method, in particular, reduces it to just 13.7% of the original. For VisionZip [65], PruneVid [21], and
our HoliTom require token pre-processing, which introduces additional "other" time. Furthermore,
both PruneVid and our method produce a variable number of tokens per frame, complicating batch
processing, which contributes to extra overhead. Our method, designed to maximize temporal redun-
dancy pruning, leads to finer-grained segmentation, further influencing this observation. Nevertheless,
our method achieves the maximum reduction in Time-To-First-Token latency, reducing it by 2.28×,
while maintaining optimal performance. Although we did not specifically optimize for decoding, our
model’s decoding speed still benefits from the reduced number of vision tokens. Our throughput
increased by 1.32× compared to the original model, the highest among all methods evaluated.

8

0.2 0.4 0.6 0.8
Prune Ratio

0

10

20

Co
un

t

Mean: 43.0%
MVBench

0.0 0.2 0.4 0.6
Prune Ratio

0

50

100 Mean: 9.3%
EgoSchema

0.0 0.2 0.4 0.6
Prune Ratio

0

10

20 Mean: 19.1%
LongVideoBench

0.0 0.2 0.4 0.6
Prune Ratio

0

50

Mean: 10.5%
VideoMME

Figure 6: Histogram of temporal pruning rates across four benchmarks (τ = 0.80). The average
pruning ratio for each benchmark is annotated in the top right. MVBench (16s duration) exhibits the
highest ratio, reflecting greater temporal redundancy, while EgoSchema is the least.

Table 5: Ablation study on video segmentation methods.
This table compares different video segmentation strategies:
Fixed-interval segmentation partitions the video at equal inter-
vals; DySeg adaptively segments based on transition similarity;
and our proposed global redundancy-aware segmentation.

Methods MVBench EgoSchema LongVideo
Bench VideoMME Avg.

Fixed-interval 57.0 60.9 53.8 56.4 57.0
DySeg [44] 56.8 60.8 54.1 56.6 57.1
HoliTom (w/o M) 56.9 61.1 56.5 56.9 57.8

0.5 0.6 0.7 0.8 0.9
54

55

56

57

58

Lo
ng

Vi
de

oB
en

ch

55.5
54.7

55.9

57.0

55.2

LongVideoBench
Avg

57

58

59

Av
g.

58.1
57.9

58.1
58.5

58.2

Figure 7: Ablation study on τ . Per-
formance of our method is analyzed
with varying τ at a target before
LLM retained ratio of 15%.

4.4 Ablation Study

Ablation study on merging modules. Tab. 4 provides a detailed ablation study on the contribution of
our proposed merging modules. We first evaluated the temporal merging module (τ = 0.8), designed
to eliminate temporal redundancy, which demonstrated efficiency gains while preserving performance.
Across the four benchmarks, our method achieved 100.7% of the baseline performance while reducing
FLOPs to 75.7%. Note that the reported average pruning rate is calculated over four datasets. The
average pruning rate varied across datasets is illustrated in Fig. 6. For instance, MVBench(16s), with
its shortest duration, exhibits the highest temporal redundancy, allowing approximately 43% pruning,
whereas EgoSchema contains the least, permitting only about 9.3%. We then investigate combining
temporal with spatial pruning. Applying our temporal pruning method significantly mitigates the
performance degradation typically associated with aggressive spatial pruning alone. Furthermore,
incorporating the inner merging module allowed us to push the efficiency boundaries even further,
ultimately retaining 99.7% performance with a mere 10.5% of the original FLOPs.

Ablation study on temporal segmentation method. Tab. 5 compares different temporal segmenta-
tion methods. Fixed-interval Segmentation generates 8 segments with an interval of 4. DySeg [44]
selects segment start points using the 8 largest inter-frame differences and includes frames below a
0.90 similarity threshold. Our proposed global redundancy-aware segmentation maximally leverages
spatial redundancy and achieves a better performance.

Ablation study on τ . The hyperparameter τ controls the sensitivity of the temporal pruning mecha-
nism, with lower values leading to more aggressive pruning. For a fixed retained ratio, τ also governs
the balance between the amount of spatial and temporal pruning applied. Fig. 7, demonstrates the easy
tunability of τ , with peak performance observed around τ = 0.8. This value is adopted uniformly
without performance degradation, as shown in Tab. 4. For a 10% pruning target, we set τ = 0.65 to
mitigate performance degradation from aggressive spatial pruning.

5 Conclusion

This paper presents HoliTom, a new training-free holistic token merging framework for boosting
the efficiency of video LLMs by effectively handling redundant visual tokens. HoliTom achieves
this through a synergistic integration of outer-LLM spatio-temporal reduction, drastically reducing
initial token counts, and a robust inner-LLM token merging mechanism tailored for compatibility
and further optimization. Evaluated on prominent video LLMs, HoliTom achieves a state-of-the-art
efficiency-performance trade-off, substantially reducing computational costs (e.g., to 6.9% FLOPs)
while preserving high performance (e.g., 99.1% accuracy), and accelerating inference (2.28× TTFT,
1.32× throughput). These results underscore the effectiveness of HoliTom in enabling practical and
efficient video LLMs inference for complex, long-form video understanding.

9

Acknowledgment

This paper is supported by Young Scientists Fund of the National Natural Science Foundation of China
(No. 62506305), Zhejiang Leading Innovative and Entrepreneur Team Introduction Program (No.
2024R01007), Key Research and Development Program of Zhejiang Province (No. 2025C01026),
Scientific Research Project of Westlake University (No. WU2025WF003), Chinese Association for
Artificial Intelligence (CAAI) & Ant Group Research Fund - AGI Track (No. 2025CAAI-ANT-13),
and the Special Support Talents Program of "Xi Hu Ming Zhu Program" in Hangzhou.

References

[1] Kirolos Ataallah, Xiaoqian Shen, Eslam Abdelrahman, Essam Sleiman, Deyao Zhu, Jian Ding,
and Mohamed Elhoseiny. Minigpt4-video: Advancing multimodal llms for video understanding
with interleaved visual-textual tokens. arXiv preprint arXiv:2404.03413, 2024.

[2] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding,
localization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

[3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
arXiv preprint arXiv:2502.13923, 2025.

[4] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your vit but faster. In ICLR, 2023.

[5] Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei
Liu, Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large
language model for streaming video. In CVPR, 2024.

[6] Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao
Chang. An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for
large vision-language models. In ECCV, 2024.

[7] Xueyi Chen, Keda Tao, Kele Shao, and Huan Wang. Streamingtom: Streaming token compres-
sion for efficient video understanding. arXiv preprint arXiv:2510.18269, 2025.

[8] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

[9] Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu,
Wenqi Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling
and audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024.

[10] Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris Kitani, and László Jeni.
Don’t look twice: Faster video transformers with run-length tokenization. In NeurIPS, 2024.

[11] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
ICLR, 2024.

[12] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In NeurIPS, 2022.

[13] Mingjing Du, Shifei Ding, and Hongjie Jia. Study on density peaks clustering based on k-nearest
neighbors and principal component analysis. Knowledge-Based Systems, 99:135–145, 2016.

[14] Sicheng Feng, Kaiwen Tuo, Song Wang, Lingdong Kong, Jianke Zhu, and Huan Wang. Re-
wardmap: Tackling sparse rewards in fine-grained visual reasoning via multi-stage reinforcement
learning. arXiv preprint arXiv:2510.02240, 2025.

[15] Sicheng Feng, Song Wang, Shuyi Ouyang, Lingdong Kong, Zikai Song, Jianke Zhu, Huan
Wang, and Xinchao Wang. Can mllms guide me home? a benchmark study on fine-grained
visual reasoning from transit maps. arXiv preprint arXiv:2505.18675, 2025.

10

[16] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. In ICLR, 2023.

[17] Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang,
Chenyu Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive
evaluation benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075,
2024.

[18] Zhangwei Gao, Zhe Chen, Erfei Cui, Yiming Ren, Weiyun Wang, Jinguo Zhu, Hao Tian,
Shenglong Ye, Junjun He, Xizhou Zhu, et al. Mini-internvl: a flexible-transfer pocket multi-
modal model with 5% parameters and 90% performance. Visual Intelligence, 2(1):32, 2024.

[19] Yuhang Han, Xuyang Liu, Zihan Zhang, Pengxiang Ding, Junjie Chen, Donglin Wang, Hong-
gang Chen, Qingsen Yan, and Siteng Huang. Filter, correlate, compress: Training-free token
reduction for mllm acceleration. arXiv preprint arXiv:2411.17686, 2024.

[20] Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo,
Xiaojuan Qi, Xianglong Liu, and Michele Magno. An empirical study of llama3 quantization:
From llms to mllms. Visual Intelligence, 2(1):36, 2024.

[21] Xiaohu Huang, Hao Zhou, and Kai Han. Prunevid: Visual token pruning for efficient video
large language models. arXiv preprint arXiv:2412.16117, 2024.

[22] Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
visual representation empowers large language models with image and video understanding. In
CVPR, 2024.

[23] Yang Jin, Zhicheng Sun, Kun Xu, Liwei Chen, Hao Jiang, Quzhe Huang, Chengru Song,
Yuliang Liu, Di Zhang, Yang Song, et al. Video-lavit: Unified video-language pre-training with
decoupled visual-motional tokenization. In ICML, 2024.

[24] Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu, Xinrun Du, Yuhao Dong, Haotian Liu,
Yuanhan Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating the
development of large multimoal models, 2024.

[25] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024.

[26] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

[27] KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355,
2023.

[28] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo
Chen, Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark.
In CVPR, 2024.

[29] Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhan Zhu, Haian Huang, Jianfei Gao,
Kunchang Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for
long-context video modeling. arXiv preprint arXiv:2501.00574, 2024.

[30] Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large
language models. In ECCV, 2024.

[31] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. In MLSys, 2024.

[32] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila:
On pre-training for visual language models. In CVPR, 2024.

[33] Xuyang Liu, Yiyu Wang, Junpeng Ma, and Linfeng Zhang. Video compression comman-
der: Plug-and-play inference acceleration for video large language models. arXiv preprint
arXiv:2505.14454, 2025.

[34] Xuyang Liu, Ziming Wang, Junjie Chen, Yuhang Han, Yingyao Wang, Jiale Yuan, Jun Song,
Linfeng Zhang, Siteng Huang, and Honggang Chen. Global compression commander: Plug-and-
play inference acceleration for high-resolution large vision-language models. arXiv preprint
arXiv:2501.05179, 2025.

11

[35] Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng
Xi, Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models.
arXiv preprint arXiv:2412.04468, 2024.

[36] Yongdong Luo, Wang Chen, Xiawu Zheng, Weizhong Huang, Shukang Yin, Haojia Lin,
Chaoyou Fu, Jinfa Huang, Jiayi Ji, Jiebo Luo, et al. Quota: Query-oriented token assignment
via cot query decouple for long video comprehension. arXiv preprint arXiv:2503.08689, 2025.

[37] Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
benchmark for very long-form video language understanding. In NeurIPS, 2023.

[38] Rui Qian, Shuangrui Ding, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahua Lin,
and Jiaqi Wang. Dispider: Enabling video llms with active real-time interaction via disentangled
perception, decision, and reaction. In CVPR, 2025.

[39] Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Shuangrui Ding, Dahua Lin, and Jiaqi Wang.
Streaming long video understanding with large language models. In NeurIPS, 2024.

[40] Shuhuai Ren, Sishuo Chen, Shicheng Li, Xu Sun, and Lu Hou. Testa: Temporal-spatial token
aggregation for long-form video-language understanding. In EMNLP, 2023.

[41] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks.
science, 344(6191):1492–1496, 2014.

[42] Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive
token reduction for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

[43] Kele Shao, Keda Tao, Kejia Zhang, Sicheng Feng, Mu Cai, Yuzhang Shang, Haoxuan You,
Can Qin, Yang Sui, and Huan Wang. When tokens talk too much: A survey of multimodal
long-context token compression across images, videos, and audios. arXiv, 2025.

[44] Leqi Shen, Guoqiang Gong, Tao He, Yifeng Zhang, Pengzhang Liu, Sicheng Zhao, and
Guiguang Ding. Fastvid: Dynamic density pruning for fast video large language models.
arXiv preprint arXiv:2503.11187, 2025.

[45] Leqi Shen, Tianxiang Hao, Sicheng Zhao, Yifeng Zhang, Pengzhang Liu, Yongjun Bao, and
Guiguang Ding. Tempme: Video temporal token merging for efficient text-video retrieval. In
ICLR, 2025.

[46] Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
In CVPR, 2025.

[47] Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu,
Haozhe Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse
memory for long video understanding. In CVPR, 2024.

[48] Keda Tao, Can Qin, Haoxuan You, Yang Sui, and Huan Wang. Dycoke: Dynamic compression
of tokens for fast video large language models. In CVPR, 2025.

[49] Keda Tao, Kele Shao, Bohan Yu, Weiqiang Wang, Huan Wang, et al. Omnizip: Audio-
guided dynamic token compression for fast omnimodal large language models. arXiv preprint
arXiv:2511.14582, 2025.

[50] Keda Tao, Haoxuan You, Yang Sui, Can Qin, and Huan Wang. Plug-and-play 1. x-bit kv cache
quantization for video large language models. arXiv preprint arXiv:2503.16257, 2025.

[51] Xiaoguang Tu, Zhi He, Yi Huang, Zhi-Hao Zhang, Ming Yang, and Jian Zhao. An overview of
large ai models and their applications. Visual Intelligence, 2(1):34, 2024.

[52] Ao Wang, Fengyuan Sun, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. [cls] token
tells everything needed for training-free efficient mllms. arXiv preprint arXiv:2412.05819,
2024.

[53] Haicheng Wang, Zhemeng Yu, Gabriele Spadaro, Chen Ju, Victor Quétu, Shuai Xiao, and
Enzo Tartaglione. Folder: Accelerating multi-modal large language models with enhanced
performance. arXiv preprint arXiv:2501.02430, 2025.

[54] Hanzhen Wang, Jiaming Xu, Jiayi Pan, Yongkang Zhou, and Guohao Dai. Specprune-vla:
Accelerating vision-language-action models via action-aware self-speculative pruning. arXiv
preprint arXiv:2509.05614, 2025.

12

[55] Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and
evaluating large video description models. arXiv preprint arXiv:2407.00634, 2024.

[56] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-
language model’s perception of the world at any resolution. arXiv preprint arXiv:2409.12191,
2024.

[57] Zhenhailong Wang, Senthil Purushwalkam, Caiming Xiong, Silvio Savarese, Heng Ji, and
Ran Xu. Dymu: Dynamic merging and virtual unmerging for efficient vlms. arXiv preprint
arXiv:2504.17040, 2025.

[58] Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu,
Wenzhe Cai, Hanqing Wang, Yilun Chen, et al. Streamvln: Streaming vision-and-language
navigation via slowfast context modeling. arXiv preprint arXiv:2507.05240, 2025.

[59] Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for
long-context interleaved video-language understanding. In NeurIPS, 2024.

[60] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In ICML, 2023.

[61] Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao,
Conghui He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language
models via pyramid visual redundancy reduction. In CVPR, 2025.

[62] Jiaming Xu, Jiayi Pan, Yongkang Zhou, Siming Chen, Jinhao Li, Yaoxiu Lian, Junyi Wu, and
Guohao Dai. Specee: Accelerating large language model inference with speculative early
exiting. In ISCA, 2025.

[63] Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava:
Parameter-free llava extension from images to videos for video dense captioning. arXiv preprint
arXiv:2404.16994, 2024.

[64] Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Chendi Li, Jinghua Yan, Yu Bai,
Ponnuswamy Sadayappan, Xia Hu, et al. Topv: Compatible token pruning with inference time
optimization for fast and low-memory multimodal vision language model. In CVPR, 2025.

[65] Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia.
Visionzip: Longer is better but not necessary in vision language models. In CVPR, 2025.

[66] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for
language image pre-training. In ICCV, 2023.

[67] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. In EMNLP, 2023.

[68] Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai
Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check
on the evaluation of large multimodal models, 2024.

[69] Qizhe Zhang, Aosong Cheng, Ming Lu, Zhiyong Zhuo, Minqi Wang, Jiajun Cao, Shaobo Guo,
Qi She, and Shanghang Zhang. [cls] attention is all you need for training-free visual token
pruning: Make vlm inference faster. arXiv preprint arXiv:2412.01818, 2024.

[70] Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the problem, propose a new
solution combining external and internal pruning, and list key contributions that align with
the methods and goals described in the text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix D details the limitations of our current method and outlines future
research directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]
Justification: No formal theorem or proposition is provided in the main manuscript.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have made our best efforts to ensure the reproducibility of our method.
The algorithmic details are provided in Section 3, and the experimental setup and procedures
are detailed in Section 4.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The datasets are from publicly available online sources. We guarantee the code
will be open-sourced after the review period.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details, including the model structure, hyperparameters, and
comparison methods, have been elaborated in detail in Section 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: For evaluation, we did not report error bars, consistent with previous work in
this area. Due to the computational cost, we cannot replicate the experiments multiple times.
This said, we have evaluated our method on multiple datasets and models (see Tab. 2, 3) to
confirm the performance robustness of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 4.1, we have detailed the computational resources required for our
evaluation and inference tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe we have followed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As shown in appendix E, the societal impact of our method has been fully
discussed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method is training-free and plug-and-play, which means this is no risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all datasets and baseline models used in our experiment.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not provide new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve any crowd sourcing or experiments with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Table 6: Comparison of state-of-the-art methods on Qwen2.5-VL 7B. Qwen2.5-VL accepts video
input at 2 fps, capped at a maximum of 768 frames, maximum video token limit to 24,576 (as the
technical report recommends). A/B in the # Token column indicates that A tokens are first provided
to the LLM, and then compressed to B tokens during the LLM forward pass. The token number is
derived from the average video token count per task within VideoMME. FastV performs full attention
matrix calculation in memory, causing OOM errors due to the large number of video tokens.

Method # Token ↓ TFLOPs ↓ VideoMME ↑
Short Medium Long Overall

Qwen2.5-VL-7B 18442 100% 377.2 100% 77.4 68.1 55.6 67.0 100%

FastV [6] 18442 / 9221 100% / 50.0% 170.4 45.2% OOM
Visionzip [65] 9221 50.0% 154.5 41.0% 74.9 66.6 55.7 65.7 98.1%
PruneVid [21] 9173 49.7% 153.5 40.7% 72.3 64.8 54.7 63.9 95.4%
HoliTom (w/o M) 6513 34.9% 102.0 27.0% 74.4 66.4 56.4 65.8 98.2%
FastV [6] 18442 / 4610 100% / 25.0% 90.7 24.0% OOM
Visionzip [65] 4610 25.0% 68.7 18.2% 73.1 63.3 55.9 64.1 95.7%
PruneVid [21] 4632 25.1% 69.1 18.3% 69.3 61.1 53.2 61.2 91.3%
HoliTom (w/o M) 4504 24.4% 66.9 17.7% 72.7 65.7 56.1 64.8 96.7%

A Supplemental Implementation Details

Our method is implemented on the LLaVA-OneVision-7B/72B [25] and LLaVA-Video-7B [70]
models. Evaluation utilized NVIDIA A100 (80GB) GPUs; inference was performed on an NVIDIA
RTX A6000 GPU. To ensure a fair comparison of computational cost, we used total prefilling FLOPs
as the primary metric. Baselines are configured for comparable FLOPs: FastV [6] prunes 80% of
tokens at layer 2; PDrop [61] retains 50%, 25%, and 12.5% of vision tokens at layers 2, 7, and 14,
respectively; VisionZip [65] and PruneVid [21] maintain a consistent proportion of input tokens with
our method. Performance results for FastVID [44] are adopted directly from their original paper.
For our proposed method, the default threshold τ is 0.8. In the specific experiments conducted on
Qwen2.5-VL [3] with a maximum sampling of 768 frames, a lower threshold of τ = 0.2 was used.
This adjustment accounts for the higher temporal redundancy present when sampling is dense. In
experiments targeting a 10% compression ratio, τ was set to 0.65. Experimental setups include
pruning K=18 layers of the 7B model and K=60 layers of the 72B model, both at a ratio of R=50%.
Following the official LLaVA-OneVision specifications, the default input video frames are 32 and
Nv = 196. For LLaVA-Video, the default input consisted of 64 video frames with Nv = 169. All
benchmark evaluations are performed using the LMMs-Eval [68, 24].

B Supplemental Experimental Results

B.1 Experiments on Qwen2.5-VL with High Frame Sampling

Existing models like LLaVA-OV [25] and LLaVA-Video [70] utilize a fixed input of 32/64 video
frames, each resized to a static resolution (Tab. 2, 3). In contrast, frontier models, such as Qwen2.5-
VL [3], introduce advanced features including FPS frame sampling, which extend input sequences
(up to 768 frames), and dynamic resolution support. These new capabilities pose new challenges to
existing token compression methods in maintaining performance for video understanding tasks.

As shown in Tab. 6, HoliTom surpasses state-of-the-art methods across both token compression rates,
especially for long videos. Due to Out-of-Memory (OOM) issues arising from the full attention
matrix calculation, we were unable to report results for FastV and the inner-LLM merging execution.

B.2 Impact of Token Compression on Fine-Grained Object Understanding

HoliTom applies aggressive video token compression. Does this aggressive compression impair
the model’s ability to comprehend fine-grained details? Tab. 7 presents the performance results on
selected subtasks from the MVBench benchmark (originally detailed in Table 2).

21

Table 7: Fine-grained object tasks. Performance
on MVBench object subtasks (object existence (OE),
object interaction (OI), and object shuffle (OS)) im-
proves with more aggressive token compression.

Method FLOPs (%) MVBench
OE OI OS Overall

OV 7B 100 57.5 84.0 35.5 58.3

+HoliTom 17.4 61.0 83.5 36.5 58.4
+HoliTom 14.2 63.0 84.0 37.5 58.7
+HoliTom 10.5 60.5 84.5 38.0 58.1

Table 8: Improved performance with en-
hanced efficiency. Using more input frames,
token compression boosts performance while
controlling computational overhead.

Method # Frame FLOPs (%) Avg. Score

OV 7B 32 100 58.4

+HoliTom 32 12.7 58.5
+HoliTom 64 26.5 58.9
+HoliTom 128 56.6 59.3

0.2 0.4 0.6 0.8
Prune Ratio

0

20

Co
un

t

Mean: 56.2%
MVBench

0.2 0.4 0.6
Prune Ratio

0

50
Mean: 20.6%

EgoSchema

0.2 0.4 0.6 0.8
Prune Ratio

0

5

10
Mean: 26.5%

LongVideoBench

0.2 0.4 0.6
Prune Ratio

0

20

40 Mean: 17.6%
VideoMME

Figure 8: Histogram of temporal pruning rates across four benchmarks (τ = 0.65). The average
pruning ratio for each benchmark is annotated in the top right. MVBench (16s duration) exhibits the
highest ratio, reflecting greater temporal redundancy, while VideoMME is the least (τ = 0.65).

At compression rates ranging from 10% to 25%, HoliTom demonstrates increases in performance.
This result would be improbable if HoliTom discards critical information about small objects. Instead,
this outcome provides evidence of HoliTom’s robust ability to retain fine-grained details.

B.3 Enhanced Performance with Reduced Overhead

Tab. 8 extends the findings presented in Fig. 4. By sampling more frames with HoliTom while
maintaining constant or even reduced total FLOPs, we achieve better performance compared to
a vanilla model operating on fewer frames. We also observe that as the number of input frames
increases, the computational overhead contributed by the vision encoder becomes a non-negligible
factor. This performance and efficiency trade-off is further illustrated in Fig. 5 of our paper.

B.4 Supplemental Ablation Study on τ

0.50 0.60 0.65 0.70 0.80
54

55

56

57

58

Lo
ng

Vi
de

oB
en

ch

54.8
55.1

56.5

55.4
54.8

LongVideoBench
Avg

57

58

59

Av
g.

57.4
57.7 57.8 57.8

57.4

Figure 9: Ablation study on τ . Performance
of our method is analyzed with varying τ at
a target before LLM retained ratio of 10%.

In section 4.4, we discussed the selection of τ (τ =
0.8) and the corresponding histogram of temporal
pruning rates on four benchmarks for a retain ratio
of 15%. Next, we detail the selection of the hyperpa-
rameter τ for a 10% retain ratio and present the cor-
responding histogram. As illustrated in Fig. 9, peak
performance is observed around τ = 0.65. The Fig. 8
presents the histogram of temporal pruning rates on
the four datasets when τ = 0.65. It is evident that
controlling τ regulates the aggressiveness of temporal
pruning; a larger τ results in more aggressive pruning.

B.5 Ablation Study on Merge Strategy

The core of spatio-temporal merging in HoliTom is a hybrid strategy that integrates attention-guided
compression with similarity-guided clustering (DPC-KNN). As shown in Tab. 9, our mixed strategy
achieves the best performance. The key to this lies in distinguishing between the two token types
encountered during the merging process. For non-redundant tokens (within a single frame), the
encoder’s self-attention scores are excellent priors, making an attention-guided compression strategy
highly effective. However, for redundant tokens (formed by merging tokens from adjacent frames),
the original single-frame self-attention scores lack a theoretical basis as a merging metric. Therefore,

22

Table 9: Ablation Study on Merge Strategy. Our mixed strategy achieves the best performance.
Method MVBench EgoSchema LongVideoBench VideoMME Avg. Score

Attention 58.4 60.9 55.9 57.4 58.1
DPC-KNN 57.4 59.6 53.9 56.6 56.9
HoliTom 58.4 60.9 56.2 58.3 58.5

DPC-KNN clustering is adopted to group these merged tokens based on feature similarity, which
provides a more principled and effective approach in this specific spatio-temporal context.

C Compatible with Flash Attention

Our approach introduces two distinct merging strategies: inner-LLM and outer-LLM. The inner-LLM
strategy, similar to prior work [6, 61, 48], is designed for integration with highly optimized attention
implementations (e.g., Flash Attention [12, 11]). This requires obtaining attention scores from a
specific layer only once during the prefilling stage, an operation introducing negligible computational
overhead compared to total inference cost. In contrast, our outer-LLM merging strategy operates
externally to the model, decoupled from the attention mechanisms of LLM.

D Limitations and Future Work

While our work demonstrates an adequate acceleration of video LLMs by token merging for inference,
it is important to outline its current limitations. First, the approach is primarily designed for fixed-
length video clips and does not natively support online, arbitrary-length streaming video input. This
poses challenges for real-time processing [5, 39, 38] and maintaining long-term context understanding.
Second, as shown in Fig. 5, similar to other methods [6, 61, 65, 48] in the token pruning area, our
approach does not optimize the latency of the vision tower. Further work, such as quantization [31,
60, 16, 20], methods to accelerate the vision tower [10, 53, 57] and new application areas [58, 54, 62,
49, 7, 15, 14], is worth exploring for further optimization.

E Broader impacts

This work significantly enhances video LLM efficiency, addressing a key barrier to deployment and
scalability. By reducing computational needs, it broadens access to advanced video AI, enabling
wider application and fostering innovation.

F More Visualizations

23

User: FLOPS What color is the object that is stationary? What direction is the green ball moving in?

——

LLaVA-OV-7B 40.8T The object that is stationary is purple. The green ball moves towards the right side of the frame.

FastV 9.3T The object that is stationary is purple. The green ball moves towards the right side of the frame.

VisionZip 8.7T The object that is stationary is green. The green ball is moving towards the right side of the frame.

HoliTom (w/o M) 8.7T The object that is stationary is purple. The green ball moves towards the left side of the frame.

HoliTom 7.1T The object that is stationary is purple. The green ball moves towards the left side of the frame.

User: FLOPS Where is the hidden object at the end of the occlusion game from the camera's point of view?

——

LLaVA-OV-7B 40.8T The hidden object is under the black notebook.

FastV 9.3T The hidden object is under the black notebook.

VisionZip 8.7T The hidden object is under the black notebook

HoliTom (w/o M) 8.7T The hidden object is under the middle cup.

HoliTom 7.1T The hidden object is under the middle cup.

Top: Dynamic Object Tracking

Bottom: Memory; Motion Understanding

Figure 10: Comparison on Challenging Video Understanding. Green: correct results, Red:
incorrect results. Our method is able to produce correct answers on challenging video tasks.

User: Describe what's happening in this video.

———

LLaVA-OV-7B The video features a person standing on a stage with a dark background, wearing a black shirt and dark pants. A large hand appears from the top

left corner, reaching towards the person's waist area. The text 'Anyone know what this pocket is for?' appears at the bottom of the screen,

indicating curiosity about the purpose of a specific pocket on the person's clothing. The text changes to 'I’ve always wondered that' as the hand

continues to reach out. Eventually, the hand reveals a small white device attached to the pocket, which is identified as 'this is the new iPod

Nano 0'. The person holds up the iPod Nano 0, showing it to the audience. The video concludes with a close-up of the person holding the iPod

Nano 0, emphasizing its design and features.

HoliTom The video features a person standing on a stage, dressed in a dark outfit. A large hand appears from the background, reaching towards the

person. The text 'I’ve always wondered' (I’ve always wondered) is displayed at the top left corner of the screen, suggesting a sense of curiosity or

anticipation. As the hand moves closer, the text changes to 'well now we know' (well now we know), indicating a revelation or discovery. The

hand then reveals a small device labeled 'this new iPod Nano' (this new iPod Nano), which is white with a circular button and a small screen. The

text 'iPod Nano' (iPod Nano) appears below the device, confirming its identity. The video concludes with a close-up of the person holding the

iPod Nano, emphasizing the significance of the new product.

40.8 TFLOPS

100% Token

4.3 TFLOPS

15% Token

Figure 11: Qualitative generation comparison. Green indicates correctly detailed descriptions. Our
method achieves high-quality, accurate text generation even when retaining only 15% of input tokens.

24

	Introduction
	Related Work
	Video Large Language Models
	Visual Token Compression

	Method
	Background on Video LLMs Inference
	Global Redundancy-Aware Temporal Merging
	Spatial Merging
	Inner-LLM Merging

	Experimental Results
	Experimental Settings
	Main Results
	Efficiency Results
	Ablation Study

	Conclusion
	Supplemental Implementation Details
	Supplemental Experimental Results
	Experiments on Qwen2.5-VL with High Frame Sampling
	Impact of Token Compression on Fine-Grained Object Understanding
	Enhanced Performance with Reduced Overhead
	Supplemental Ablation Study on
	Ablation Study on Merge Strategy

	Compatible with Flash Attention
	Limitations and Future Work
	Broader impacts
	More Visualizations

