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ABSTRACT

In recent studies, line search methods have been demonstrated to significantly
enhance the performance of conventional stochastic gradient descent techniques
across various datasets and architectures, while making an otherwise critical choice
of learning rate schedule superfluous (Vaswani et al., 2019; Mahsereci & Hennig,
2015; Vaswani et al., 2021). In this paper, we identify problems of current state-of-
the-art of line search methods (Vaswani et al., 2019; 2021), propose enhancements,
and rigorously assess their effectiveness. Furthermore, we evaluate these methods
on orders of magnitude larger datasets and more complex data domains than
previously done.
More specifically, we enhance the Armijo line search method by speeding up
its computation and incorporating a momentum term into the Armijo criterion,
making it better suited for stochastic mini-batching. Our optimization approach
outperforms both the previous Armijo implementation and a tuned learning rate
schedule for the Adam and SGD optimizers. Our evaluation covers a diverse range
of architectures, such as Transformers, CNNs, and MLPs, as well as data domains,
including NLP and image data.
Our work is publicly available as a Python package, which provides a hyperparam-
eter free Pytorch optimizer.

1 INTRODUCTION

In the field of modern machine learning, there are numerous optimization algorithms available
(Schmidt et al., 2021). However, determining the most suitable algorithm for a specific problem and
finding the appropriate learning rate or learning rate schedule often requires extensive expertise and
computational resources. In particular, the prevailing approach involves treating the learning rate
as a hyperparameter and training the network repeatedly until the optimal value that yields the best
performance is discovered. To simplify and expedite this process, recent research in deep learning
(Vaswani et al., 2019; Mahsereci & Hennig, 2015; Bollapragada et al., 2018; Paquette & Scheinberg,
2020) has proposed the reintroduction of line search methods as popular optimization technology,
which effectively identify an adaptive learning rate by evaluating the loss function at different points
along the gradient direction, thus eliminating costly hyperparameter tuning.

As traditional line search requires multiple forward passes per gradient update, a more efficient
approach is desirable. In Vaswani et al. (2019), a Stochastic Line Search (SLS) has been combined
with a smart re-initialization of the step size to alleviate the need for multiple forward passes for every
step. This approach was shown in Vaswani et al. (2019) to improve a variety of optimization methods,
such as Stochastic Gradient Descent (SGD) on tasks such as matrix factorization as well as image
classification for small networks and datasets. In Vaswani et al. (2021) the authors adapt this line
search to preconditioned optimizers like Adam (Kingma & Ba, 2015) further increasing its usability.

In this paper we extend upon this work, by introducing a momentum term to the SLS, critically
improving its performance and stability. Furthermore, we introduce a limitation on the frequency with
which a line search is performed, greatly reducing the computation needed. Additionally, we conduct
extensive experiments to evaluate the performance of various optimization methods across different
datasets domains and architecture options. Our findings demonstrate that, our improved Stable Armijo
Line Search Adaptation algorithm, called SaLSa, consistently outperforms the previously introduced
SLS as well as tuned optimizers, with very little computational overhead (about 3% compared to no
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line search). We observe the SaLSa optimizers have on average an 1.5% advantage on accuracy and a
50% lower average log loss at end of training. Additionally, the stability of the training is improved
compared to previously introduced versions of SLS.

To make our work easy to reproduce and use, we implement all methods as PyTorch optimizers. The
source code is open-source and free software (MIT licensed) and available at [anonymized URL for
review. Code is available in the supplementary material]

2 BACKGROUND

The stochastic Armijo line search described in Vaswani et al. (2019) is designed to set a step size for
all network parameters wk at iteration k. In this section, we formulate a modification of the Armijo
criterion to handle the ADAM (Kingma & Ba, 2015) direction instead of the classical SGD direction.
This is based upon Vaswani et al. (2019; 2021) Moreover, we introduce an improved Armijo criterion,
which mitigates the effect of noise in the mini-batch setting by calculating an exponential moving
average smoothing on both sides of the Armijo equation.

We define the following notation: The loss function is denoted by f(w). || · || denotes the Euclidean
norm and ∇f denotes the gradient of f . Given the iteration counter k, fk and ∇fk denote the
mini-batch loss and its mini-batch gradient.

2.1 ARMIJO LINE SEARCH

The Armijo line search criterion is defined in Vaswani et al. (2019) as:

fk(wk + ηkdk) ≤ fk(wk)− c · ηk||∇fk(wk)||2, (1)

where dk is the direction (e.g., dk = −∇fk(wk) in case of SGD), c ∈ (0, 1) is a constant (commonly
fixed to be 0.1 Vaswani et al. (2019)). The step size ηk which satisfies Condition 1 is practically
obtained by employing a backtracking procedure, i.e., starting with a high initial step-size η0k and
iteratively decreasing it by a constant factor δ ∈ (0, 1) until Condition 1 is satisfied (in practice
δ = 0.9).

To avoid a monotonically decreasing step size, ηk is increased each step by the following formula:

η0k = ηk−1 · 21/b (2)

as described in Vaswani et al. (2019). In practice for b = 500, this will usually avoid backtracking
multiple times per step, since the increase in step size is small. Henceforth, we will refer to this
algorithm as SLS.

2.2 INCLUDING ADAM’S UPDATE STEP IN SLS

Figure 1: The step size of ADAM + SLS as well
as ADAM + SaLSa on ImageNet. Colored areas
indicate variance between runs. Notice the large
variations for ADAM + SLS compared to the con-
sistent and stable behavior of ADAM + SaLSa.

In case of SGD, the direction dk is the negative
mini-batch gradient.

dk = −∇fk(wk)

Adam’s direction defined in Kingma & Ba
(2015) can be written as:

gk = ∇fik(wk)

mk = β1 ·mk−1 + (1− β1) · gk
vk = β2 · vk−1 + (1− β2) · g2k
m̂k = mk−1/(1− βk

1 )

v̂k = vk−1/(1− βk
2 )

dk = −m̂k/(
√

v̂k + ϵ)

(3)

Adam combines a momentum-based approach
together with a step size correction built upon
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the gradients variance. In the training of Trans-
formers, these modifications have been shown
to be important enhancements over the simpler SGD algorithm (Kunstner et al., 2023). The weight
update rule is generally defined as

wk+1 = wk + ηkdk. (4)

The Armijo line search criterion from Eq. 1 must be adjusted for the Adam optimizer. We perform
this adjustment based on Vaswani et al. (2019; 2021). To check if the Armijo line search criterion is
satisfied in the Adam case, we use the direction dk defined in Eq. 3, with momentum β1 = 0. Note
that, the Armijo criterion is only guaranteed to be satisfy-able by adjusting the step size ηk, if the
update direction and the gradient direction are identical. However, this condition is not met when
β1 ̸= 0 in Eq. 3. Additionally, we replace the gradient norm term ||∇fk(wk)||2 by the preconditioned
gradient norm ||∇fk(wk)||2√

v̂k+ϵ
as in Vaswani et al. (2021) resulting in Eq. 5.

fk(wk + ηkdk) ≤ fk(wk)− c · ηk
||∇fk(wk)||2√

v̂k + ϵ
(5)

Note that to perform final weight updates each step we use β1 ̸= 0.

2.3 SLS FAILURE CASES

Figure 2: The step size of ADAM + SLS (black)
compared to ADAM + SaLSa (brown) visual-
ized during a training run of BERT on the MNLI
dataset.

As shown in Vaswani et al. (2019; 2021) the pre-
viously described line search methods perform
well on smaller datasets and neural network ar-
chitectures. However, here we show that these
methods have problems to consistently perform
during larger scale training.

The first of these Problems we call "mini-batch
noise": Eq. 1 and 5 describe criterions which are
checked for every mini-batch. This is problem-
atic, since the criteria will be violated subject
to inherent noise in the mini-batch data. The
phenomenon is amplified by small mini-batch
sizes. As can be seen in Figure 2 in a typical
training run the Armijo line search method leads
to frequent changes of the step size, see Figure
2.

Figure 3: The step size of ADAM + SLS (black)
on the CIFAR10 dataset. We sometimes observed
drastic drops in step size due to computational
precision problems. When training with SaLSa
(red) we do not observe any such drops.

Another frequently occuring Problem is mini-
batch gradient approximations ∇fk(wk) ≈ 0.
These are due to computational precision prob-
lems, even with float32 precision enabled. For
an example see Figure 3. In the original im-
plementation by Vaswani et al. (2021), when-
ever ∇fk(wk) ≤ 10−8 no line search was per-
formed.

Additionally, a problem which only occurs on
large datasets, can be seen in Figure 1. The step
size and its variance over 5 different runs on Im-
ageNet is visualized. We observe that the step
sizes of SLS are very sensitive to initial condi-
tions, the only difference between the runs is
the random parameter initialization of the net-
work and the shuffled dataset. This problem
only seems to occur on larger datasets and is quite impactful, as some runs do not converge properly,
or take very long to even begin converging.
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3 METHODS

To obtain a line search method with better properties in the mini-batch scenario, we propose to
extend the Armijo criterion with a momentum term. Below we provide a detailed explanation of
the modifications we made, the theoretical basis behind them, and our reasoning. Furthermore, we
introduce a method to greatly reduce the computational overhead introduced by a line search.

3.1 ADDRESSING MINI-BATCH NOISE

As an extension to Eq. 1 we propose an exponential smoothing (also called momentum term) of all
factors which are dependent on the mini batch in this equation. First we rewrite Eq. 1:

fk(wk)− fk(wk + ηkdk) ≥ c · ηk||∇fk(wk)||2 (6)

fk(wk)− fk(wk + ηkdk) denotes the decrease in loss and ||∇fk(wk)||2 denotes the gradient norm.
In order to apply exponential smoothing to both terms we define hk and sk as follows:

hk = hk−1 · β3 + (fk(wk)− fk(wk + ηkdk)) · (1− β3)

sk = sk−1 · β3 + ||∇fk(wk)||2 · (1− β3)
(7)

hk represents the smoothed decrease of the loss with the current step size, sk the smoothed gradient
norm and β3 ∈ (0, 1) the smoothing factor used for the exponential moving average.

We introduce the Stable Armijo Line Search Adaptation (SaLSa) criterion as:

hk ≥ c · ηk · sk (8)

Combining SaLSa and the Adam optimizer is done by computing sk as follows:

sk = sk−1 · β3 +
||∇fk(wk)||2√

v̂k + ϵ
· (1− β3) (9)

and computing dk as described in Equation 3, but with β1 = 0. We keep the calculation procedure
for the step size ηk the same as previously described.

3.2 INTUITIVE MOTIVATION

As mentioned in Section 3 due to the inherent noise in mini-batches we expect some of them to
violate the original Armijo line search, even if the step size ηk is appropriate for the majority of
mini-batches around step k in training.

Let us assume that all mini-batches are normally distributed with respect to the Armijo criterion, e.g.
some mini-batches fulfill the condition with a wide margin, most fulfill it with a small margin and
some rare exceptional batches violate the criterion. In this scenario we do not want to decrease the
step size by a large amount each time we get an exceptionally bad mini-batch, since the step size
is still fitting for most batches and Equation 2 is only increasing the step size slowly. The stable
Armijo line search adaptation in Equation 8 is implementing exactly this behaviour. Note that the
exact distribution is not relevant in this thought experiment.

If we analyze Equation 8, we notice that the right hand side is affected by the current step size ηk
to the same degree as in the original Armijo line search Equation1. However, the left hand side is
substantially less affected since ηk is part of the exponential smoothing process. This results in a
slower reduction of the step size ηk as the criterion is fulfilled more easily than the original criterion
by lowering ηk.

3.3 THEORETICAL ANALYSIS

We extend the convergence Theorem introduced in the original Armijo paper (Armijo, 1966) for
the full batch setting and the SaLSa criterion with SGD from Eq.8. We additionally require that
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every found learning rate yields an improved loss f(wk) − f(wk + ηkdk) ≥ 0. This condition
ensures the convergence for an infinite sequence, which may otherwise not be guaranteed due to the
exponential smoothing. In practice, enforcing this condition did not yield a significant difference in
the optimization process and is thus not implemented in our experiments. The proof for the theorem
below, as well as training runs with this condition, can be found in the Appendix A.3.
Theorem 1 (Convergence Theorem). Let f ≡ fk. For w0 ∈ Rd let S(w0) := {w | f(w) ≤ f(w0)}
and assume that f(w∗) := infw∈Rd f(w) exists for a unique point w∗ ∈ Rd with ∇f(w) = 0 for
w ∈ S(w0) if and only if w = w∗. Any sequence {wk}∞k=1 found by the SaLSa criterion with
f(wk)− f(wk + ηkdk) ≥ 0 and c < 1 converges to w∗.

3.4 ADDRESSING COMPUTATIONAL COSTS

It is unnecessary and computationally expensive to perform a line search for every step during
training, as for most steps the step size does not need to be changed. The overall training compute
cost increases by roughly 30% when performing a line search every step. To address this, we propose
to perform a line search more regularly when a high rate of change of the step size is detected and
less regularly otherwise. We realize this by keeping 2 different exponential moving averages of the
step size ηk which we update after every line search procedure:

η̄k(β) = βη̄k−1 + (1− β) · ηk−1 (10)

We calculate the average rate of change as follows:

rk =
η̄k(0.9)

η̄k(0.99)
(11)

and invert it if rk ≤ 1:

r̄k =

{
rk if rk ≥ 1

r−1
k otherwise

(12)

we set the line search frequency Lk to the closest integer of:

Lk =
1

r̄k − 1
(13)

and clamp it to the range Lk+1 ∈ [1, 10]. We perform the line search every Lk+1 steps. This reduces
the extra compute needed from roughly 30% to approximately 3% for longer runs. In practice, we
did not notice any performance degradation, see the Appendix for ablation studies A.5.

3.5 PRACTICAL CONSIDERATIONS

In the original Armijo line search implementation a few outliers dominated the determination of
ηk as shown in Figure 2. The hyperparameter c was set with this in mind. In our experiments we
found good values for c to be in the range c ∈ [0.3, 0.5]. For all our experiments we used c = 0.3
(compared to c = 0.1 for the original Armijo line search criterion). Ablation studies on the impact of
different c values can be found in the Appendix.

Furthermore, we tuned the hyperparameter β3 ∈ [0.9, 0.999] from Eq. 7 on a variety of datasets.
We found that although performance is robust to the choice of β3, a value of β3 = 0.99 is the best
general choice. Larger β3’s result in slower adaptation of the step size to the loss landscape, but less
susceptibility to noise. Ablation studies on the impact of different β3 values can be found in the
Appendix A.4.

4 EXPERIMENTAL APPROACH

In this section, we detail our experimental design to investigate the performance of our proposed
optimization method. We utilize datasets, model implementations and weights from the Huggingface
library (Wolf et al., 2019), the pytorch datasets library and the nanoGPT (Karpathy, 2023) github
repository.
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4.1 CANDIDATES

A quick overview of all candidates we are evaluating can be seen below:

• SGD with tuned learning rate and learning rate schedule

• ADAM with tuned learning rate and learning rate schedule

• SGD + SLS, see Section 2.1

• ADAM + SLS, see Section 2.2

• SGD + SaLSa, see Section 3

• ADAM + SaLSa, see Section 3

As a baseline comparison we evaluate the ADAM and SGD optimizers with a cosine decay with
warm starting for 10% of the total training time. For NLP tasks this warm starting and cosine decay
is common practice. For the image tasks we compare to a flat learning rate as done in Vaswani et al.
(2019).

We take the peak learning rate for ADAM on natural language tasks η = 2 · 10−5 from the original
Bert paper by Devlin et al. (2019), which presents a good value for a variety of classification tasks,
including the Glue (Wang et al., 2018) tasks upon which we are evaluating. We found the value for
the peak learning rate for SGD on the NLP task η = 2 · 10−3 using a grid search.

We found the value η = 1 · 10−3 for image classification for ADAM using a grid search. The same
procedure resulted in η = 1 · 10−1 for SGD.

4.2 DATASETS AND MODELS

To evaluate an optimization method it is necessary to perform large scale runs of complex real world
datasets and tasks. This is especially important as many optimization methods perform well on small
scale or clean theoretical tasks, but fail to perform well on real world data.

Natural Language Processing - Transformers

We consider a common scenario in natural language processing, where a large pre-trained language
model (in our case Bert (Devlin et al., 2019)) is fine-tuned on a small to medium sized dataset. The
Glue dataset by Wang et al. (2018) is a collection of various popular classification tasks in NLP, and
it is widely used to evaluate common natural language processing capabilities. All datasets used are
the version provided by tensorflow-datasets 4.0.1.

More specifically of the Glue collection (Wang et al., 2018), we use the datasets Stanford Sentiment
Treebank SST2, Microsoft Research Paraphrase Corpus MRPC, Stanford Question Answering Dataset
QNLI, and the Multi-Genre Natural Language Inference Corpus MNLI. These datasets range from
500 - 400.000 training samples and represent a variety of fine-tuning tasks.

As a further evaluation metric for language models, we fine-tune GPT-2 (Radford et al., 2019) on the
Shakespeare dataset as described in Karpathy (2023) implementation.

Image Classification - Convolutional Neural Networks

In image classification common evaluation datasets are CIFAR10 and CIFAR100 (Krizhevsky, 2009),
both being small scale (50.000 samples, 32x32 resolution). To obtain more reliable results we
also compare on ImageNet (Deng et al., 2009) which consists of roughly 106 samples. We use the
ResNet34 (He et al., 2016) architecture without pre-training for small datasets and ResNet50 for
ImageNet.

4.3 IMPLEMENTATION DETAILS

The following details are the same for all experiments: All models are trained 5 times and the
averaged metrics are reported in Tables 1 and 2. The learning curves as well as standard errors are
visualized in Figures 4 and 5.
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(a) MNLI (b) MRPC (c) QNLI

(d) MNLI (e) MRPC (f) QNLI

Figure 4: The loss (top row) and accuracy curves (bottom row) of the experiments on the GLUE
dataset with standard error indicated around each line, starting after the first epoch. Accuracy was
calculated on the validation data, while loss was calculated on the training data.

A Bert Devlin et al. (2019) model was trained on the NLP dataset with the following hyperparameter
choices: Five epochs training time on each dataset. The pooling operation used in the Glue exper-
iments is [CLS]. The maximum sequence length is set to 256 tokens. The batch size used during
training is 32.

For the image datasets CIFAR10 and CIFAR100 (Krizhevsky, 2009) ResNet34 (He et al., 2016) was
used. For the ImageNet (Deng et al., 2009) dataset the ResNet50 (He et al., 2016) architecture was
used, a larger architecture was used due to the increased amount of complexity and size of the dataset.
The batch size used during training is set to 128 for Cifar10 and Cifar100 and 256 for ImageNet. We
applied pre-processing as described in the ResNet paper by He et al. (2016). Models were trained on
CIFAR10 and CIFAR100 for 100 epochs and on ImageNet for 12 epochs.

The computing time for all experiments was roughly 65 days on an A40 GPU. Roughly 15 of these
days were used for the NLP tasks and 50 for the image datasets.

5 EXPERIMENTAL RESULTS

In this section, we will describe the results of our experiments. We compare the 6 candidates as
described in Section 4.1. All metrics reported are average values obtained using 5 training runs. All
accuracies displayed are calculated on the validation sets. The losses displayed are calculated on the
training sets, smoothed with exponential moving average. The colored areas around each line indicate
the standard error of each experiment. We display the accuracies and losses during the training period
in Figures 4 and 5. The Tables 1 and 2 are displaying peak accuracies and final loss of each candidate.
Additional visualizations of experimental results can be found in the Appendix A.2. In summary,
we observe the SaLSa methods having on average an 1.5% advantage on accuracy and a 50% lower
average log loss at end of training.

5.1 NATURAL LANGUAGE PROCESSING - TRANSFORMER EXPERIMENTS

In our NLP experiments, as shown in Figure 4 and in the Appendix for GPT-2 and SST2, we have
observed that, on average, ADAM + SaLSa achieves a lower final loss compared to ADAM, ADAM
+ SLS, and SGD + SLS. However, this improvement in loss does not always translate to a significant
difference in the accuracy metric. ADAM + SLS and ADAM + SaLSa perform similarly in terms of
accuracy, but both outperform ADAM and SGD + SLS on average. Note that for similar final losses,
the convergence rate of SaLSa is generally faster than that of ADAM, as depicted in Figure 4.
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(a) ImageNet (b) Cifar 100 (c) Cifar 10

(d) ImageNet (e) Cifar 100 (f) Cifar 10

Figure 5: The loss (top row) and accuracy curves (bottom row) of the ResNet experiments on the
image datasets with standard error indicated around each line, starting after the first epoch. Accuracy
was calculated on the validation data, while loss was calculated on the training data.

Table 1: Peak classification accuracies, averaged over 5 runs, for all datasets and optimization
methods. Best performing optimization method is marked in bold.

ADAM SGD ADAM SGD ADAM SGD
- - SLS SLS SaLSa SaLSa

MNLI 0.8340 0.8256 0.8446 0.8303 0.8409 0.8305
QNLI 0.9090 0.8972 0.9044 0.8971 0.9090 0.9014
MRPC 0.8279 0.8441 0.8667 0.8441 0.8745 0.8473
SST2 0.9271 0.9225 0.9261 0.9167 0.9216 0.9245

ResNet34
CIFAR10 0.9312 0.9229 0.9401 0.9453 0.9389 0.9384

CIFAR100 0.6733 0.7057 0.7128 0.6859 0.7114 0.7064
ResNet50
ImageNet 0.6486 0.5633 0.4836 0.6234 0.6684 0.6594

average 0.8215 0.8116 0.8111 0.8204 0.8378 0.8297
average rank 3.57 4.86 2.42 4.43 2.14 3.28

5.2 IMAGE - CONVOLUTIONAL NEURAL NETWORKS EXPERIMENTS

In our image experiments, we have observed that the combination of ADAM + SLS or SGD + SLS
yields good results for CIFAR10 and CIFAR100, but performs poorly for ImageNet, as depicted
in Figure 5. We attribute this outcome primarily to stability issues. Specifically, ADAM + SLS
occasionally produces excessively large step sizes η, or it diminishes them to unreasonably small
values η ≤ 10−10. On the other hand, our enhanced approaches ADAM + SaLSa and SGD + SaLSa,
do not encounter these problems and on average deliver the best performance among all methods.

6 RELATED WORK

The optimization of deep neural networks has been a central topic of research in the field of machine
learning. Various techniques and optimizers have been proposed, including but not limited to SGD
(Robbins & Monro, 1951), Adagrad (Duchi et al., 2011), RADAM (Liu et al., 2020), ADAMW
(Loshchilov & Hutter, 2019), RMSprop (Hinton & Swersky, 2014) and Adam (Kingma & Ba, 2015).
However, selecting the most suitable optimizer remains a challenge, and there is no clear consensus
on the best according to Schmidt et al. (2021).
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Table 2: Final losses, averaged over 5 runs, for all datasets and optimization methods. Best performing
(minimal loss) optimization method is marked in bold. The logarithmic average is taken due to the
logarithmic nature of the typical loss.

ADAM SGD ADAM SGD ADAM SGD
- - SLS SLS SaLSa SaLSa

MNLI 0.009567 0.08613 0.03713 0.06901 0.005867 0.02174
QNLI 0.00258 0.02079 0.00504 0.03667 0.000628 0.0091627
MRPC 0.01312 0.1978 0.007298 0.05262 0.003126 0.03862
SST2 0.005857 0.02561 0.009457 0.0412 0.006991 0.01837

GPT-2 2.86 3.572 2.917 3.566 2.772 3.559

ResNet34
CIFAR10 0.01394 0.00982 0.0009508 0.05646 0.003314 0.003773
CIFAR100 0.03739 0.01143 0.01337 0.08245 0.003774 0.01453
ResNet50
ImageNet 0.9122 1.547 2.036 1.144 0.8339 0.9788

log average 0.0355 0.0930 0.0315 0.134 0.0148 0.0477
average rank 2.75 4.625 3.125 5.5 1.25 3.75

In a recent study bySchmidt et al. (2021) on the topic of optimization methods, it was observed
that while there are various optimizers available, there is no definitive best optimizer. The authors
highlight that the introduction of more optimizers does not necessarily lead to improved results,
and therefore, alternative approaches should be explored to enhance optimization techniques. One
such approach with great potential is automatic step size determination. One of the most common
approaches for this are line search methods, which hold promise for enhancing optimization processes
(Nar & Sastry, 2018; Vaswani et al., 2019; Paquette & Scheinberg, 2020; Galli et al., 2023).

In this work we particularly build upon Vaswani et al. (2019). The Armijo line search method
introduced there, offers several important advantages over other optimization techniques: no hyperpa-
rameter tuning of the learning rate, faster convergence rates and better generalization. A significant
drawback of this method, along with other line search approaches, is that it requires at least an
additional forward pass per update step. Consequently, this leads to an increase of approximately
30% in computational resources required per training step.

Recent work has shown that Transformers are highly sensitive to the choice of learning rate and
learning rate schedule schedule during training Liu et al. (2020); Kenneweg et al. (2022). To address
this issue, various approaches have been proposed, such as RADAM Liu et al. (2020) and warm
starting. In this work, we show that our approach is able to train these highly sensitive architectures
well. Other related work includes Granziol et al. (2022) which studies the correlation between batch
size and learning rate, Streeter & Dillon (2022) which shows theoretical and practical results for
training using higher order gradients, Arous et al. (2022) which studies the scaling limit of SGD in
the high dimensional regime and Kunstner et al. (2023) which investigates why Adam is so effective
at training the Transformer architecture.

The optimization of neural networks continues to be an important area of research, to which, the
development of effective and reliable line search methods, which work on sensitive architectures such
as transformers or large scale convolutional neural networks, constitutes a significant contribution.

7 CONCLUSION

We have introduced SaLSa, an automatic step size selection method and built a hyperparameter free
general purpose optimizer on top. We have compared its performance against tuned learning rates
for larger datasets and architectures than previously done in optimizer evaluations for line search
methods. The SaLSa optimizer performance compares favorably in these cases, while requiring no
tuning of learning rates, or code overhead, as well as minimal compute overhead. We recommend
its use as a first choice for training deep neural networks in these domains and publish the code as a
Python package.
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8 REPRODUCIBILITY STATEMENT

We have taken great care to ensure reproducibility in this work. In the Appendix, we show all
assumptions and the proof for Theorem 1. In the supplementary materials, we provide the exact code
used for the experiments. We either described all pre-processing steps used in the experiments in
Section 4 or referenced papers in which they are detailed. All datasets used are publicly available and
are referenced accordingly.
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A APPENDIX

A.1 BATCH SIZE SCALING

(a) step size

(b) loss decrease (c) gradient norm

Figure 6: Comparison of learning rates of ADAM
+ SaLSa dependent on the batch size on the MNLI
dataset. Figure (b) depicts the loss decrease hk

dependend on the batch size, here no great changes
are present. Figure (c) depicts the gradient norm
sk dependent on the batch size. Larger batches
result in smaller gradient norms.

In a previous study by Granziol et al. (2022),
the impact of batch size on the optimal step size
was examined. Theoretical findings indicated
that for optimization methods such as SGD, the
optimal step size scales linearly with the batch
size,tthods like ADAM or AMSGRAD, the scal-
ing follows a square root relationship.

To investigate the behavior of the step size to
batch size ratio in the ADAM + SaLSa opti-
mizer, we conducted training runs with varying
batch sizes. Remarkably, we observed that the
step size to batch size ratio remained relatively
constant throughout the training process. More-
over, the step size exhibited a scaling behavior
of approximately η ∼

√
2, which aligns with the

theoretically predicted optimal value described
in Granziol et al. (2022). In Table 3, we present
the average multiplicative factor by which the
step size increased with respect to the batch size.

We take this as encouraging sign for the gener-
alization abilities of our method.

The Armijo criterion 1 determines the step size
by the ratio of loss decrease to gradient norm,
visualized in 6. Notably, we observed that the
primary factor influencing the reduction of step
size is the increase in gradient norm, for lower
batch sizes.

Table 3: Resulting average ratio of step size to previous step size of ADAM + SaLSa for doubling the
batch size

4⇒8 8⇒16 16⇒32 optimal from Granziol et al. (2022)

1.325 1.423 1.420
√
2 ≈ 1.414
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A.2 ADDITIONAL
EXPERIMENTAL RESULTS

Below we show additional accuracy and loss curves for the experiments.

Table 4: Ranking of classification accuracies, for all datasets and optimization methods. Best
performing optimization method is marked in bold.

ADAM SGD ADAM SGD ADAM SGD
- - SLS SLS SaLSa SaLSa

MNLI 3 6 1 5 2 4
QNLI 1 5 3 6 1 4
MRPC 6 4 2 4 1 3
SST2 1 4 2 6 5 3

ResNet34
CIFAR10 5 6 2 1 3 4

CIFAR100 6 4 1 5 2 3
ResNet50
ImageNet 3 5 6 4 1 2

average 3.57 4.86 2.42 4.43 2.14 3.28

(a) GPT-2 (b) SST2 loss (c) SST2 accuracy

Figure 7: The loss (top row) and accuracy curves of the EfficientNet experiment and the SST2
experiment and the GPT-2 experiment with standard error indicated around each line, starting after
the first epoch. Accuracy was calculated on the validation data, while loss was calculated on the
training data. No Accuracy is displayed for GPT-2, since it is not trained on a classification task.
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Table 5: Ranking of final losses, for all datasets and optimization methods. Best performing
optimization method is marked in bold.

ADAM SGD ADAM SGD ADAM SGD
- - SLS SLS SaLSa SaLSa

MNLI 2 6 4 5 1 3
QNLI 2 5 3 6 1 4
MRPC 3 4 2 6 1 5
SST2 1 5 3 6 2 4

GPT-2 2 6 3 5 1 4

ResNet34
CIFAR10 5 4 1 6 2 3
CIFAR100 5 2 3 6 1 4
ResNet50
ImageNet 2 4 6 5 1 3

average 2.75 4.625 3.125 5.5 1.25 3.75

A.3 PROOF FOR THEOREM 1

Below we show a theoretical proof for Theorem 1 and display training runs where we applied the non
decrease condition f(wk)− f(wk + ηkdk) ≥ 0, by lowering the step size until it is fulfilled for each
step, see Figure 10. The effect of this additional constraint does not affect the optimization process
significantly.

(a) MNLI (b) SST2

Figure 8: Average Loss curves of training on the MNLI and SST2 dataset over 5 runs with and
without the additional condition required in the proof.

Proof. The condition f(wk)− f(wk + ηkdk) ≥ 0 ensures that {f(wk)}Kk=1 is non-increasing and
thus any infinite sequence will converge to f(w∗), given the assumptions. It thus remains to show,
that in every step such a step size ηk can be found. By definition, we have that

hk = β3hk−1 + (1− β3) [f(wk)− f(wk + ηkdk)]

≥ β3cηk−1sk−1 + (1− β3) [f(wk)− f(wk + ηkdk)] .

If we assume, that there exists a learning rate ηk ≤ ηk−1, such that f(wk) − f(wk + ηkdk) ≥
cηk∥∇f(wk)∥2 (see proof of existence below), we can show that

β3cηk−1sk−1 + (1− β3) [f(wk)− f(wk + ηkdk)] ≥ cηk
[
β3sk−1 + (1− β3)∥∇f(wk)∥2

]
= cηksk,

which finishes the proof, as we have found a learning rate ηk that fulfills the SaLSa criterion.

We now prove the existence of ηk ≤ ηk−1 with f(wk) − f(wk + ηkdk) ≥ cηk∥∇f(wk)∥2 by
contradiction, i.e. we assume that such a ηk does not exist and thus f(wk) − f(wk + ηkdk) <
cηk∥∇f(wk)∥2 for ηk ≤ ηk−1. Using the Taylor expansion for f around f(wk) yields

f(wk)− f(wk + ηkdk) = −ηkdk∇f(wk)− o(ηk).
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For ηk ≤ ηk−1 it follows then

cηk∥∇f(wk)∥2 > −ηkdk∇f(wk)− o(ηk).

Dividing both sides by ηk and taking the limit for ηk → 0 yields

c∥∇f(wk)∥2 > −dk∇f(wk),

and thus with dk = −∇f(wk) it follows c > 1, which is a contradiction.
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A.4 HYPERPARAMETER STUDIES FOR β3 AND c

(a) MRPC (b) MNLI

Figure 9: Average loss curves of training on the MRPC and SST2 dataset over 5 runs with different
values for β3 for the SaLSa + ADAM optimizer

(a) MRPC (b) SST2

(c) MNLI (d) QNLI

Figure 10: Average loss curves with standard error indicated of training on the GLUE dataset over 5
runs with different values for c for the SaLSa + ADAM optimizer

In our Hyperparameter studies, we notice that the β3 parameter minimally affects performance, with
all training runs falling within the range of estimation error. The hyperarameter c however does have
a more substantial impact on the performance. All runs converge regardless of tested value, yet higher
c values exhibit a tendency to converge at a slower pace overall.
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A.5 LIMITING THE LINE SEARCH FREQUENCY

Here we show experimental results evaluating the impact of the proposed speed-up in Section 3.4.

The observed difference in performance in Figure 11 is minor and within the margin of error.

(a) QNLI (b) MNLI (c) SST2

Figure 11: Average loss curves with standard error indicated of training on the SST2, MNLI and
QNLI dataset over 5 runs with and without the speed-up for the SaLSa + ADAM optimizer

In 12 we can observe that Lk is maximal Lk = 10 during long plateaus of the step size, but decreases
for faster changes in the step size.

(a) Lk (b) step size

Figure 12: Lk and step size curves with standard error indicated of training on the MNLI dataset over
5 runs with the SaLSa + ADAM + Speed-up optimizer

Figure 13: Wall clock running times for different optimization methods and datasets. All experiments
done on a single A40 GPU. ImageNet times are scaled down by a factor of 100.
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