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ABSTRACT

Retrieval-augmented generation (RAG) has shown some success in augmenting
large language models (LLMs) with external knowledge. However, as a non-
parametric knowledge integration paradigm for LLMs, RAG methods heavily rely
on external retrieval modules and the retrieved textual context prior. Especially
for very large scale knowledge augmentation, they would introduce substantial
inference latency due to expensive searches and much longer relevant context.
In this paper, we propose a parametric knowledge integration method, called
AtlasKV, a scalable, effective, and general way to augment LLMs with billion-scale
knowledge graphs (KGs) (e.g. 1B triples) using very little GPU memory cost (e.g.
less than 20GB VRAM). In AtlasKV, we introduce KG2KV and HiKVP to integrate
KG triples into LLMs at scale with sub-linear time and memory complexity. It
maintains strong knowledge grounding and generalization performance using the
LLMs’ inherent attention mechanism, and requires no external retrievers, long
context priors, or retraining when adapting to new knowledge.
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Figure 1: The simple illustrations of two kinds of popular knowledge augmentation paradigms
for LLMs and a new parametric knowledge augmentation paradigm adopted by AtlasKV: (a) Non-
parametric methods usually rely on external retrievers and long context prior, which have retriever-
limited performance and substantial inference latency. (b) Traditional parametric methods require
re-training the model when adapting to new knowledge, which are also expensive. (c) AtlasKV can
achieve injecting external knowledge efficiently at scale without need for external retrievers or long
context prior with strong generalization ability.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive generation abilities in various down-
stream tasks (Brown et al., 2020; Touvron et al., 2023; Kung et al., 2023; Li et al., 2024; Dagdelen
et al., 2024), where their expanding parameter scales enable them to function as comprehensive
knowledge stores by encoding factual information directly into their parameters (Petroni et al., 2019;
Jiang et al., 2020; Rae et al., 2021; Bubeck et al., 2023; Morris et al., 2025). Retrieval-augmented
generation (RAG) (Gao et al., 2023; Fan et al., 2024) is a more cost-efficient solution to enhance
the capabilities of LLMs in knowledge-intensive tasks, which may require vast amount of external
knowledge, without altering an LLM’s parametric representation. RAG methods usually retrieve text
chunks (Sarthi et al., 2024; Jimenez Gutierrez et al., 2024) or subgraphs (Edge et al., 2024; Huang
et al., 2025) that are relevant to a query from an external textual knowledge base (KB) or knowledge
graph (KG), which serve as the context prior for LLMs to generate responses.

Although RAG methods have achieved some success in efficiently augmenting LLMs with external
knowledge, they still face some critical limitations. As shown in (a) of Figure 1, these non-parametric
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methods heavily rely on external retrieval modules and the textual context prior, which introduce
substantial inference latency due to expensive searches (e.g. nearest-neighbor searches) (Khandelwal
et al., 2019; He et al., 2021a; Shi et al., 2023) and longer context (Ram et al., 2023; Cao et al., 2025)
specially for very large scale knowledge augmentation.

In contrast, parametric approaches (Gururangan et al., 2020; Wang et al., 2024; Cao et al., 2025)
can achieve the integration of external knowledge into LLMs without need for external retrievers
or long context prior. Traditional knowledge adaptation techniques (Hu et al., 2022; Diao et al.,
2023), as shown in (b) of Figure 1, require retraining the model when adapting to a new distribution
of knowledge, which significantly limits their application scenarios. A new parametric knowledge
augmentation paradigm introduced by KBLaM (Wang et al., 2024) like (c) of Figure 1, well addresses
this issue by encoding external knowledge into a series of key-value parametric representations
and seamlessly injecting them into the self-attention layers of an LLM, which well preserves the
advantages of parametric methods and can also adapt to any new KB in a training-free manner.

Nevertheless, we found that there are two critial challenges of this novel knowledge augmentation
paradigm that restrict its real-world applications: (1) Lack of high quality training data. It
requires query-key-value (Q-K-V) sentences of the external knowledge as the training data. Directly
synthesizing Q-K-V training data from unformatted documents with fixed pre-defined schemas
suffers from limited query diversity, which could result to poor generalization performance in out-
of-distribution (OOD) scenarios. (2) Poor scalability. When augmenting LLMs with very large
scale external KB or KGs, the computational and memory overhead of this knowledge augmentation
paradigm becomes prohibitively high, even with linear time and memory complexity.

To this end, we propose AtlasKV, a scalable method that enables end-to-end knowledge augmentation
of LLMs with billion-scale KGs (e.g. 1B triples) using very little GPU memory cost (e.g. less than
20GB VRAM) while achieving superior knowledge grounding and generalization performance in
OOD scenarios. We achieve this by two innovative designs from both data and algorithm perspectives.
Specifically, to address the training data quality issue, we observe that each triple in KGs can be
naturally converted into Q-K-V data, which shares very similar structure with the Q-K-V vectors of
self-attention networks in LLMs. So we introduce the concept of KGKV and propose the KG2KV
pipeline that naturally converts each KG triple into high-quality Q-K-V data for both training and
inference, enabling a better injection of KGs into LLMs. To solve the scalability challenge, we propose
a hierarchical key-value pruning (HiKVP) algorithm that can dramatically reduce computational and
memory overhead while maintaining high knowledge grounding accuracy during inference time.

In summary, we make the following main contributions:

• We propose AtlasKV, a scalable method that enables end-to-end augmentation of LLMs
with billion-scale KGs (e.g. 1B triples) using very little GPU memory (e.g. less than
20GB VRAM) while achieving superior knowledge grounding performance and strong
generalization abilities.

• We introduce KG2KV and HiKVP as complementary designs to address data and algo-
rithmic challenges respectively: KG2KV naturally transforms KG triples into high-quality
Q-K-V data to enhance generalization, while HiKVP enables scalable integration through
hierarchical pruning that dramatically reduces computational and memory overhead during
inference.

• Extensive experiments and analysis demonstrate the superior effectiveness and scalability
of AtlasKV compared to ICL, KBLaM, and RAG methods, with comprehensive ablation
studies validating the contribution of each component.

2 RELATED WORK

Non-parametric Knowledge Augmentation Methods For LLMs. The most popular non-parametric
knowledge augmentation methods for LLMs is RAG (Lewis et al., 2020; Gao et al., 2023; Fan et al.,
2024), which significantly enhances LLMs by incorporating an external retriever that fetches relevant
context from external KBs (Zhang et al., 2024a; Sarthi et al., 2024) or KGs (Mavromatis & Karypis,
2024; Edge et al., 2024; Jimenez Gutierrez et al., 2024; Huang et al., 2025). Their retrievers usually
heavily rely on either the separately pretrained sentence transformers (Wang et al., 2020a; Izacard
et al., 2021; Zhang et al., 2025a), or a well-designed tuning process with the LLM’s output as the
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feedback signal (Shi et al., 2023; Chang et al., 2025). However, the performance of this knowledge
augmentation paradigm could be significantly limited by the capabilities of the retrievers. And the
long context retrieved from large KBs or KGs could also introduce substantial inference latency.

Parametric Knowledge Augmentation Methods For LLMs. Parametric knowledge augmentation
approaches are much more native to LLMs. Because the inherent memory of LLMs is integrated
by pretraining and supervised fine-tuning (Geva et al., 2020; Petroni et al., 2019; Morris et al.,
2025), which are also parametic methods. Some early attempts to efficiently integrate new external
knowledge into LLMs such as LoRA (Hu et al., 2022) and adapter (He et al., 2021b; Diao et al.,
2023) still suffer from retraining the model when integrating new external knowledge into LLMs.
MemDec (Cao et al., 2025) provides a domain-specific memory module that enhances various frozen
LLMs without parameter modifications. KBLaM (Wang et al., 2024) introduces a new knowledge
augmentation paradigm that augments knowledge into the attention layers of LLMs, achieving linear
computational complexity while enabling training-free adaptation to new KBs after initial training.

Knowledge Graph Augmentation Methods For LLMs. There are many works augmenting KGs
into LLMs in both parametric and non-parametric ways. Except for the graph-based RAG methods
mentioned above, some LLM-based KGQA methods like RAR (Shen et al., 2025), KnowGPT (Zhang
et al., 2024b), and the work done by Ji et al. (2024) also depend on the training of their retrievers
or path aligner to find the most relevant knowledge from KGs as context. KELP (Liu et al., 2024)
explores latent semantic matching to improve path-level knowledge selection from KGs. They are
still limited by the performance of the retrievers and also face inference latency issues.

3 BACKGROUNDS AND DEFINITIONS

3.1 KNOWLEDGE GRAPHS

As most of the existing works on graph-based RAG systems did, we use the textual triples (h, r, t) as
the basic knowledge unit of KGs in our work, which could be extracted from unstructured text with
any existing KG extraction method (Angeli et al., 2015; Huang et al., 2024; Mo et al., 2025). Then
the KGs can be defined as G = {(h, r, t)|h, t ∈ E , r ∈ R}, where E is the set of entities and R is
the set of relations. Note that h, t could be either named entities, or other types of entities, such as
concepts, events, etc (Zhang et al., 2020; Tan et al., 2024; Bai et al., 2025). In our work, G will be
integrated as external factual knowledge for LLMs to ground facts and answer questions. And the
process of extracting KGs from documents is not the focus of our work.

3.2 ATTENTION NETWORKS

In this section, we will first give the definitions of self-attention layers, which are the key components
of the transformer (Vaswani et al., 2017) backbone. Then we will describe the definitions of the
rectangular attention in KBLaM (Wang et al., 2024), which is a new knowledge augmentation
paradigm adopted by AtlasKV.

Self-Attention Layers. In each attention layer, we input a query x ∈ RN×1 with N token length,
which embedding vector can be denoted as x(l) ∈ RN×D. D is the embedding dimension of attention
layers and l ∈ {1, .., L}, where L is the number of attention layers. There are also three attention
heads W

(l)
Q ,W

(l)
K ,W

(l)
V ∈ RD×D, which are designed to project each input token into Q-K-V

embeddings q(l),k(l),v(l) ∈ RN×D. Then the output at the l-th layer and n-th token is computed as

y(l)
n =

∑n
i=1 exp(⟨q(l)

n ,k
(l)
i ⟩/

√
D)v

(l)
i∑n

i=1 exp(⟨q(l)
n ,k

(l)
i ⟩/

√
D)

, (1)

where ⟨·, ·⟩ denotes the inner product of two vectors. This standard implementation of self-attention
can have a time complexity of O(N2 ·D) and memory complexity of O(N · (N +D)), which could
lead to significant computational overheads and time delay as the input length N gets larger.

Rectangular Attention in KBLaM. The KB in KBLaM is a set of key-value pairs, which is denoted
as M = {(k(l)m,v(l)m)}Mm=1 at the l-th attention layer, where k(l)m,v(l)m ∈ RM×DE are the
base embedding vectors of the m-th key-value pair. M is the size of the KB and DE is the output

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dimension of the sentence encoder. Then the knowledge augmented output at the l-th attention layer
and n-th token is computed as

ỹ(l)
n =

∑M
m=1 exp(⟨q̃(l)

n , k̃(l)m⟩/
√
D)ṽ(l)m +

∑n
i=1 exp(⟨q(l)

n ,k(l)i⟩/
√
D)v(l)i∑M

m=1 exp(⟨q̃(l)
n , k̃(l)m⟩/

√
D) +

∑n
i=1 exp(⟨q(l)

n ,k(l)i⟩/
√
D)

, (2)

where q̃
(l)
n = W̃

(l)
Q x

(l)
n , k̃(l)m = W̃

(l)
K k(l)m, ṽ(l)m = W̃

(l)
V v(l)m denote the Q-K-V embedding

vectors after projection of the KB part. W̃
(l)
Q ∈ RD×D,W̃

(l)
K ,W̃

(l)
V ∈ RD×DE are the specific

projection heads for the Q-K-V vectors of the KB. This rectangular attention have a time complexity
of O ((M +N) ·N ·D) and memory complexity of O ((M +N) · (N +D)). Its computational
overhead would grow linearly with M , which is more efficient than standard self-attention.

However, as the size of KB M scales up heavily, the linearly growing time and memory complexity
would still be a critical problem. AtlasKV can further improve the scalability of the KG augmented
LLM with O

(
(Ct

3
√
M +N) ·N ·D

)
time complexity and O

(
(Cm

3
√
M +N) · (N +D)

)
mem-

ory complexity, where Ct and Cm are constants that much smaller than M .

4 METHODOLOGY

Overview of AtlasKV. Augmenting LLMs with super large and complex external knowledge, e.g.
general KGs with billions of triples, often struggles with low generalization abilities and unbearable
computational and memory overhead (Wang et al., 2024; Zhang et al., 2024b; Jin et al., 2024). To
overcome these fundamental challenges, we propose AtlasKV, a scalable, effective and general
method to integrate massive KGs into LLMs through two key innovations: (1) KG2KV, a new KG
integration paradigm that naturally converts KG triples into Q-K-V data, enabling LLMs to achieve
both enhanced generalization performance and efficient knowledge integration, and (2) HiKVP,
a hierarchical key-value pruning algorithm that dramatically reduces computational and memory
overhead while maintaining high knowledge grounding accuracy during inference time.

4.1 KG TO KV

John founded 
StockLemon.c

om

John has made profits 
every year since he 
started short selling

because

cause
What is the /
Tell me the /
…

of John founded 
StockLemon.com

? 

Tail-Masked Triple Transformation

John founded 
StockLemon.c

om

John has made profits 
every year since he 
started short selling

because

result
What is the /
Tell me the /
…

of ? 
John has made profits 

every year since he 
started short selling

Head-Masked Triple Transformation
Figure 2: An example of how we transform the KG triples to Q-K-V data.

Building on the observation that every triple in KGs can be naturally decomposed into Q-K-V
strings (Verga et al., 2020), which shares very similar structure with the Q-K-V vectors of self-
attention networks in LLMs, we introduce the concept of KGKV and employ the KG2KV pipeline to
transform each KG triple into Q-K-V strings and their corresponding sentence embedding vectors.

For a given KG triple (h, r, t), we firstly mask its head h or tail entity t (could be named entity, event
or concept entity). Then the masked entity can be the value we need in this triple. And then we will
rewrite r into a noun words according to the position we masked, which could be considered as the
attribute of the entity that is not masked. For example, as shown in Figure 2, if we mask the tail entity
in the triple, the relation “because” can be directly rewritten into its noun word “cause” through
LLMs. And the key string of this tail-masked triple can be represented as “the cause of John founded
StockLemon.com”. If we mask the head entity in the triple, we need to rewrite the relation into its
reversed noun word “result”. And the key string of this head-masked triple can be represented as
“the result of John has made profits ...”. In this KG2KV pipline, we consider the masked entity as
the value data, and the other entity as well as the relation as the key data, which complete KGKV
data. Note that for the training data, we usually select named entities as the key to mask, and select
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event entities and relations as the value due to the reasons elaborated in Section 5.3. Then through
a sentence encoder, KGKVs can be compressed and encoded into sentence embeddings km,vm to
integrate to the attention layers of LLMs.

We also need the query sentence of each triple to serve as the training data. The query string can be
obtained by adding various questioning prefix to the key strings. For example, the questioning prefix
can be “What is ...”, “Tell me ...”, or “Provide details on ..”. This design can ensure the model would
not overfit to a specific type of questioning way.

Table 1: Comparison of the data diversity ratio and
average token cost between KG2KV and synthetic
method.

Method Diversity Ratio ↑ Avg. Token Cost ↓
Synthetic 0.003% 349.9
KG2KV 7.864% 165.7

Compared to directly synthesizing Q-K-V data
from documents with limited human-defined
schemas, the massive relations from KGs can
guarantee the diversity of the enquiry attributes
in the constructed training data with KG2KV
method. Besides, due to the only strings we need
input into the LLMs in KG2KV is the masked
position and the relation, KG2KV needs fewer token cost than directly synthetic method. We also
provide the prompt template in Appendix H. As shown in Table 1, KG2KV holds a significantly higer
diversity ratio (number of unique enquiry attributes divided by the total number of triples) of 7.864%
and a lower average token cost of 165.7 than the synthetic method. We also provide some samples of
the training data constructed by synthetic and KG2KV methods respectively in Appendix G.1.

4.2 AUGMENTING LLM WITH KGKVS

In this section, we will introduce how AtlasKV integrates the KGKVs constructed in the previous
section into the LLMs with the help of hierarchical key-value pruning (HiKVP), which makes it more
scalable than other methods.

Hierarchical Clustering on KGKVs. Inspired by various works (Sarthi et al., 2024; Zhang et al.,
2024a; Huang et al., 2025; Zhang et al., 2025b) that achieve some success by organizing hierarchical
knowledge structure on textual chunks, which is an intuitive way to organize the world’s knowledge,
we employ the hierarchical clustering to cluster the keys of KGKVs into a hierarchical structure. This
design aims to share the computational and memory burden during inference time on each layer of
the hierarchical knowledge keys. Specifically, as previous works (Sarthi et al., 2024; Huang et al.,
2025) did, we first employ Uniform Manifold Approximation and Projection (UMAP) to reduce the
dimension of the knowledge keys, and then employ Gaussian Mixture Models (GMMs) to cluster
the knowledge keys into a hierarchical structure. Each key vector in a higer layer is the pooling
of the key vectors in the lower layer. In AtlasKV, we set the number of layers to be 3, which can
also be larger according to the actual situation. We select 3 layers because that is the minimum
number of layers to include all of the definitions we need in AtlasKV. To share the computational
and memory burden equally, we set the size of clusters in each layer to be the same, which is
S =

⌈
3
√
M

⌉
. Then we can have the base embeddings of three layer knowledge keys km

L ∈ RML×DE ,

km
I ∈ RMI×DE , km

R ∈ RMR×DE , where ML = M,MI =
⌈
M

2
3

⌉
,MR =

⌈⌈
M

2
3

⌉
M− 1

3

⌉
. And

DE is the embedding dimension of the sentence encoder.

Knowledge Augmentation. During the tuning process of AtlasKV, we do not need to prune the
KGKV pairs. Because due to the generalization capability of AtlasKV as verified in Section 5, we do
not need such large scale KGKVs in the tuning process. And we use an equivalent attention method
to replace the rectangular attention in KBLaM for knowledge augmentation. At the l-th attention
layer and n-th token, it is computed as

ỹ(l)
n = λkg · Softmax

(
logitskgL

)
· ṽ(l) + λseq · Softmax

(
logitsseq

)
· v(l), (3)

where logitskgL is the KG part of the attention output, logitsseq is the sequence part of the attention
output. For the weights λkg and λseq of these two softmax results, we have

λkg =

∑M
i=1 exp(logitsikgL)∑M

i=1 exp(logitsikgL) +
∑n

i=1 exp(logitsiseq)
, (4)

λseq =

∑n
i=1 exp(logitsiseq)∑M

i=1 exp(logitsikgL) +
∑n

i=1 exp(logitsiseq)
. (5)
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And we also have

logitsikgL = ⟨q̃(l)
n , k̃

(l)i
L ⟩/

√
D, logitsiseq = ⟨q(l)

n ,k(l)i⟩/
√
D, (6)

where k̃
(l)i
L = W̃

(l)
K ki

L and k(l)i = W
(l)
K ki. The only learnable variables are the KG-specific query

heads W̃Q and KG projection heads W̃K ,W̃V . It is also very intuitive that the attention output at
both the prefilling process and each decoding step is a weighted combination of the KG part and the
sequence part values. And the weights are determined dynamically according to the logits of the
KG and sequence part. The equivalence to the rectangular attention can be proven in Appendix C.
Hierarchical Key-Value Pruning. During inference time, usually there are only a few relevant KG

Root-Layer Keys

Inter-Layer Keys

KGKVs

GPU

Leaf-Layer Keys

Selected Keys

Pruned ValuesLeaf-Layer Values

Mapping

idx

idx

Mapping

idx

Selected Keys Select

Figure 3: An overview of hierarchical key-value pruning (HiKVP) with three layers of knowledge
keys at the l-th attention layer. The gray background indicate that the part is stored and computed in
the GPU memory.

values needed for the query. And the injection of irrelevant knowledge would also introduce noise.
So we use a hierarchical key-value pruning (HiKVP) pipeline as shown in Figure 3 to efficiently and
scalably find the most relevant KGKVs for the query. And the attention will be computed as

ỹ(l)
n = λ̄kg · Softmax

(
¯logitskg

)
· ¯̃v(l) + λseq · Softmax

(
logitsseq

)
· v(l), (7)

where the ¯logitskg and ¯̃v(l) are the pruned KG logits and values in the leaf-layer. λ̄kg is the weight
based on the pruned KG logits. They can be obtained by the following steps.

Step 1. Initially, only the root-layer projected key vectors k̃(l)
R are uploaded in the GPU memory,

while other layer key and value vectors (k̃(l)
I , k̃(l)

L , and ṽ(l)) remain in the CPU memory. We first
compute attention weights between the query and root-layer keys:

logitskgR = ⟨q̃(l)
n , k̃

(l)
R ⟩/

√
D. (8)

After calculating the softmax of it, we prune root keys by selecting the keys with top-kR highest
scores and use a mapping to obtain the included inter-layer keys ¯̃k(l)

I ∈ R(kRS)×D. And the root-layer
keys will be offloaded back to the CPU memory.

Step 2. We conduct the similar process to the step 1, but with the selected inter-layer keys. We upload
the selected inter-layer keys to the GPU memory, and compute the attention weights:

¯logitskgI = ⟨q̃(l)
n ,

¯̃
k
(l)
I ⟩/

√
D. (9)

Then we can prune the selected inter-layer keys and obtain the selected leaf-layer keys ¯̃
k
(l)
L ∈

R(kIS)×D in the same way. And the selected inter-layer keys will be offloaded to the CPU memory.

Step 3. Finally, we upload the selected leaf-layer keys from the CPU to GPU memory. Then we
compute the attention weights after the softmax calculation and prune the leaf-layer keys by directly
selecting the corresponding logits with top-kL highest softmax scores:

¯logitskg = TopK_logits(Softmax
(

¯logitskgL
)
, kL) ∈ RkL×1, ¯logitskgL = ⟨q̃(l)

n ,
¯̃
k
(l)
L ⟩/

√
D. (10)

And through the mapping indices, we can also obtain the pruned values ¯̃v(l) ∈ RkL×D and upload
them to the GPU memory. Then ¯logitskg, ¯̃v

(l) and λ̄kg can be obtained and the attention output of
Equation 7 during the inference time can be finally computed.
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All these steps of HiKVP can be done in O
(
(Ct

3
√
M +N) ·N ·D

)
time complexity and

O
(
(Cm

3
√
M +N) · (N +D)

)
memory complexity, respectively, where Ct and Cm are constants

that are much smaller than M . We also provide the detailed derivation in Appendix D.

5 EXPERIMENTS

In this section, we report the performance of AtlasKV from GPU memory cost, knowledge grounding
accuracy and the relevance of the generation results perspectives. And we also compare the perfor-
mance of AtlasKV with other knowledge integration baseline methods to demonstrate the superiority
of AtlasKV. We also report the training and evaluation details of AtlasKV in Appendix A.1 and
Appendix A.2.

5.1 EXPERIMENTAL SETTINGS

Baselines. Following the settings in KBLaM (Wang et al., 2024), we compare AtlasKV with both non-
parametric and parametric methods. For non-parametric methods, we include in-context learning
(ICL), which is the basic knowledge augmentation paradigm used in RAG methods. For parametric
methods, we include KBLaM, which is an advanced parametric knowledge augmentation paradigm.
We also include zero-shot learning to provide some boundaries of our experimental results.

Training Datasets. In AtlasKV, we construct the Q-K-V training dataset ATLAS-Wiki-QKV with
ATLAS-Wiki, which is one of ATLAS (Bai et al., 2025) family KGs with 900+ million nodes and
5.9 billion edges containing both event and named entities. Because it offer sufficiently large KGs
that enable us to train the model and comprehensively assess the performance of AtlasKV and other
baseline methods across various KG sizes. And we also use the Synthetic training dataset used in
KBLaM (Wang et al., 2024) to compare with.

Evaluation Datasets. To comprehensively assess the performance of AtlasKV and other baseline
methods in a scenario closer to the real world, we test all methods in the OOD settings. We not only
include the Enron dataset (Klimt & Yang, 2004), which is an OOD dataset used in KBLaM (Wang
et al., 2024), but also introduce the ATLAS-CC-QKV dataset (Bai et al., 2025) and ATLAS-Pes2o-
QKV dataset (Bai et al., 2025), which are also constructed from ATLAS-CC and ATLAS-Pes2o
in ATLAS (Bai et al., 2025) with the KG2KV method, respectively, to evaluate the performance of
different methods in a more comprehensive way. Note that ATLAS-CC-QKV and ATLAS-Pes2o-
QKV are much harder than Enron dataset because they are constructed from more complex KGs and
include much more unique enquiry attributes that are closer to the real world scenarios. With these
OOD datasets, we can better evaluate the generalization capabilities of various methods.

5.2 EXPERIMENTAL RESULTS

Method Time Complexity Memory Complexity

ICL O
(
(MT +N)2 ·D

)
O ((MT +N) · (MT +N +D))

RAG O
(
M +RT + (RT +N)2

)
·D O ((RT +N) · (RT +N +D))

KBLaM O ((M +N) ·N ·D) O ((M +N) · (N +D))

AtlasKV O
(
(Ct

3
√
M +N) ·N ·D

)
O
(
(Cm

3
√
M +N) · (N +D)

)
Table 2: Comparison of the time and memory complexity of AtlasKV, KBLaM, RAG, and ICL
methods, where the parts marked in teal color represent they could be very large.

AtlasKV is more scalable with HiKVP. To verify the scalability of AtlasKV with HiKVP, we compare
the GPU memory usage at inference time of AtlasKV and other methods across a wide range of KG
sizes from 1 to 1B triples. As shown in Figure 4, the colored areas represent how much VRAM is
saved compared with the other method. It demonstrates that with the help of HiKVP, AtlasKV can
save a huge amount of VRAM compared with ICL as well as KBLaM and achieve a much lower GPU
memory cost. With the increasing of KG scale, the VRAM usage of AtlasKV even just a little bit
higher than the zero-shot generation. And in AtlaskV, less than 20GB VRAM is required to augment
LLMs with 1B triples. However, in KBLaM, over 40GB VRAM is required to deal with even 100K
triples. The key reason why AtlasKV can achieve this is that HiKVP significantly reduces the time
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and memory complexity of KBLaM from linear to sub-linear, as demonstrated in Table 2, where
T denotes the average token length of the triples. In ICL-based RAG methods, when the size of
relevant triples R scales up, the inference latency and VRAM usage caused by long context prior
dependence would grow heavily. And their performance will also influenced by the lost-in-the-middle
dilemma (Liu et al., 2023), which would not exist in AtlasKV.

101 Triples 102 Triples 103 Triples 104 Triples
Method Steps ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5

Eval on Enron

KBLaM 3e3 100.0 100.0 50.9 76.4 29.1 56.4 9.1 20.0
2e4 90.0 100.0 50.9 83.6 25.5 47.3 7.3 23.6

AtlasKV (128-64-16) 3e3 100.0 (+0.0) 100.0 (+0.0) 67.3 (+16.4) 90.9 (+7.3) 41.8 (+12.7) 50.9 21.8 (+12.7) 32.7 (+12.7)
AtlasKV w/o HiKVP 3e3 100.0 (+0.0) 100.0 (+0.0) 76.4 (+25.5) 92.7 (+9.1) 56.4 (+27.3) 80.0 (+23.6) 27.3 (+18.2) 47.3 (+27.3)

Eval on ATLAS-Pes2o-QA

KBLaM 3e3 40.0 80.0 16.4 45.5 5.5 14.5 0.0 3.6
2e4 50.0 80.0 25.5 52.7 3.6 14.5 0.0 5.5

AtlasKV (128-64-16) 3e3 90.0 (+40.0) 100.0 (+20.0) 87.3 (+61.8) 92.7 (+40.0) 52.7 (+47.2) 70.9 (+56.4) 16.4 (+16.4) 49.0 (+43.5)
AtlasKV w/o HiKVP 3e3 100.0 (+50.0) 100.0 (+20.0) 92.7 (+67.2) 100.0 (+47.3) 72.7 (+67.2) 90.9 (+76.4) 47.3 (+47.3) 67.2 (+61.7)

Eval on ATLAS-CC-QA

KBLaM 3e3 60.0 90.0 21.8 38.2 12.7 23.6 3.6 10.9
2e4 50.0 100.0 23.6 56.4 10.9 21.8 3.6 10.9

AtlasKV (128-64-16) 3e3 100.0 (+0.0) 100.0 (+0.0) 89.1 (+65.5) 90.9 (+34.5) 61.8 (+49.1) 74.5 (+50.9) 40.0 (+36.4) 54.5 (+43.6)
AtlasKV w/o HiKVP 3e3 100.0 (+0.0) 100.0 (+0.0) 96.4 (+72.8) 100.0 (+43.6) 83.6 (+70.9) 96.4 (+72.8) 61.8 (+58.2) 81.8 (+70.9)

Table 3: The knowledge grounding performance of AtlasKV against KBLaM with all-MiniLM-L6-v2
as the sentence encoder on three OOD evaluation datasets across various tuning steps and KG sizes.
We defaultly set the top-k in HiKVP to 128, 64, and 16 for the kR, kI , kL respectively.
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Figure 4: GPU memory usage comparison of AtlasKV and other
methods across various KG sizes from 1 to 1B triples.

AtlasKV is more accurate and
generalizable with KGKVs. Not
only can AtlasKV save a huge
amount of inference cost with
strong scalability, but it can
also maintain a higher knowl-
edge grounding performance
with strong generalization abil-
ity. To quantitatively assess
the knowledge grounding perfor-
mance of AtlasKV, we extract
the averaged-over-heads KG part
post-softmax attention scores at the 15th layer due to the reason described in Appendix A.2, and
then we can obtain the Top-1 and Top-5 accuracy of the knowledge grounding performance. As
shown in Table 3, across all three OOD datasets and a wide range of KG sizes, AtlasKV achieves
significantly higher Top-1 and Top-5 accuracy than KBLaM with the KGKVs as the training data.
Especially in ATLAS-Pes2o-QKV and ATLAS-CC-QKV datasets, which are much harder due to
their complex and diverse enquiry attributes, KBLaM performs very bad because there are too limited
enquiry attributes in Synthetic training data to make it more generalizable. However, only 20K KGKV
samples as the training data are needed to make AtalsKV much more accurate and generalizable. It
also suggests KGKVs can make the training process more efficient with only 3K steps, compared
with the 20K training steps reported in KBLaM. We also experiment with different top-k settings in
HiKVP in Appendix B.2. Another interesting observation is that, even with HiKVP, there is not a
big performance drop of AtlasKV and it still performs better than KBLaM. This is mainly because
the specific heads trained in AtlasKV have the capabilities to conduct fuzzy retrieval at different
layers of semantic granularity. Besides, we observe the training dynamics of AtlasKV in Appendix E,
which is that from a specific training step, the model regularly start learning to retrieve relevant
knowledge from the external KG triples, instead of brute force over-fitting. We also report the
results with a larger model as the sentence encoder in Appendix B.1.

We also use GPT-4o (Hurst et al., 2024) to score the relevance between the ground truth and generated
answers. As shown in Figure 5, AtlasKV achieves significantly higher GPTScores than KBLaM.
Although ICL can generate a very accurate result with over 0.9 scores, it is super time-consuming
to put all external knowledge into the context of LLMs. Expecially when there are more than 100
triples in a KG, over 48GB VRAM is required and can not be run on the limited GPU memory.
And KBLaM also performs poorly on the two difficult datasets, which is also due to the reasons
we explained above. Remarkably, despite having only limited training samples with enquiry
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Figure 5: Scored by GPT-4o between 0 and 1, the shaded area exhibits the standard error over 5
random seeds. The score of each random seed is also the average of 5 generation results.

attributes similar to Enron in ATLAS-Wiki-QKV, AtlasKV still outperforms KBLaM on both
knowledge grounding accuracy and answer relevance metrics, even though KBLaM’s training
data contains exactly the same enquiry attributes as Enron. This is mainly due the the diversity
of the enquiry attributes in ATLAS-Wiki-QKV, which is constructed by KG2KV module. We have
compared that with fully synthetic method in Table 1 and it makes AtlasKV have the capability to be
generalized to more unseen enquiry attributes in complex scenarios. We also provide some samples
of ATLAS-Wiki-QKV and Synthetic dataset in Appendix G.1.

5.3 ABLATION STUDY

101 Triples 102 Triples 103 Triples 104 Triples
Method Steps ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5

Eval on ATLAS-Pes2o-QA

AtlasKV w/o HiKVP 3e3 100.0 100.0 92.7 100.0 72.7 90.9 47.3 67.2
AtlasKV w/o HiKVP & Event 3e3 90.0 100.0 80.0 89.1 34.5 63.6 9.1 36.4
AtlasKV w/o HiKVP & Entity 3e3 100.0 100.0 49.0 67.3 20.0 30.9 3.6 5.5

Eval on Enron

AtlasKV w/o HiKVP 3e3 100.0 100.0 76.4 92.7 56.4 80.0 27.3 47.3
AtlasKV w/o HiKVP & Event 3e3 80.0 100.0 73.6 84.5 48.0 66.0 10.9 38.2
AtlasKV w/o HiKVP & Entity 3e3 40.0 100.0 40.0 74.5 16.4 27.3 1.8 9.1

Table 4: The knowledge grounding performance of different variants of AtlasKV with all-MiniLM-
L6-v2 as the sentence encoder on three OOD evaluation datasets across various tuning steps and KG
sizes.

Cooperating named and event entities together in KG2KV process helps with the model’s learning.
To analyze the reasonability of the design described in Section 4.1, we conduct experiments on the
variant with only KG2KV component, which are denoted as “AtalsKV w/o HiKVP”. Because we
need focus on the ablations of training data and avoid the influence of pruning process. We compare
the training data containing both named and event entities with the variants containing only named or
event entities, which are denoted as “AtalsKV w/o HiKVP & Event” and “AtalsKV w/o HiKVP &
Entity”. Here is the analysis based on the results in Table 4: (1) Without any one kind of entities,
there will be a drop of the knowledge grounding performance. (2) Especially when there are only
event entities, due to the high complex semantics in both key and value strings, it becomes very hard
for the specific heads to learn from scratch, which leads to a huge performance drop. (3) When only
named entities are employed in KG2KV, the performance drop is smaller because the key and value
strings of them are shorter and the semantics are simpler, which makes it easier for the specific heads
to learn from scratch. But the worse performance with only named entities suggests that we still need
some complex semantics in event entities to help the model to learn better.

6 CONCLUSION

In this paper, we presented AtlasKV, a scalable, effective, and general framework to augment LLMs
with billion-scale knowledge graphs under very low GPU memory budgets. Compared with non-
parametric methods, AtlasKV requires no external retrievers and does not depend on long context
prior, which could lead to substantial inference latency. Compared with traditional parametric
methods, AtlasKV can be adapted to new knowledge in a training-free manner. We achieve that by
(1) KG2KV which naturally converts KG triples into Q-K-V data, enabling LLMs to achieve both
enhanced generalization performance and efficient knowledge integration, and (2) HiKVP which
conducts hierarchical key-value pruning to dramatically reduces computational and memory costs
while maintaining high performance during inference time.
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7 ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. This work develops AtlasKV does not involve human
subjects or interventions. We use publicly available datasets (e.g., ATLAS family KGs, Synthetic,
and Enron datasets) under their licenses. We construct Q-K-V data via KG2KV without collecting
new personal data or attempting deanonymization. We also comply with model or API providers’
terms (e.g., LLaMA3.1-8B-Instruct, GPT-4o, and GPT-4o-mini) without uploading proprietary or
sensitive information. No undisclosed conflicts of interest exist. All experiments were performed on
a single 48GB GPU, and we encourage energy-efficient configurations.

8 REPRODUCIBILITY STATEMENT

LLMs for Training and Evaluation. Three LLMs are used in our AtlasKV experiments: LLaMA3.1-
8B-Instruct, GPT-4o, and GPT-4o-mini. We use LLaMA3.1-8B-Instruct as the backbone of AtlasKV
and it can be obtained at Hugging Face. GPT-4o and GPT-4o-mini are used to score the generated
answers and rewrite the relations in KG2KV process, respectively. They can be accessed via OpenAI
API calls.

Training and Evaluation Details. We provide comprehensive descriptions about our training and
evaluation settings in Appendix A, including the hyper-parameter settings and detailed processing
steps. All of the datasets we used in our work can be obtained through public resources (Bai et al.,
2025; Wang et al., 2024; Klimt & Yang, 2004). We will also release our source code soon after the
submission.
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A TRAINING AND EVALUATION DETAILS OF ATLASKV

For the reproducibility of our work, we provide the training and evaluation details of AtlasKV in this
section. All training and evaluation experiments are conducted in a single 48GB GPU under bfloat16
precision.

A.1 TRAINING SETTINGS

We use the same training settings and methods to construct training samples as in KBLaM (Wang
et al., 2024), where we also use the instruction fine-tuned version of LLaMA3.1-8B (Dubey et al.,
2024), which is represented as LLaMA3.1-8B-Instruct. As an essential part in AtalsKV, any sentence
encoder can be employed in our method to compute the base key and value embeddings. We conduct
experiments with open-source all-MiniLM-L6-v2 (Wang et al., 2020b) (DE = 384) and closed-
source text-embedding-3-large (DE = 3072) through API respectively to serve as the sentence
encoders.

To initialize the parameters we need to train in AtlasKV, the KG-specific query heads W̃
(l)
Q are

initialized from W
(l)
Q at each layer and the KG projection heads W̃K ,W̃V are initialized randomly.

We sample and select only 20K triples from ATLAS-Wiki, which contains 1.492B triples, to construct
the Q-K-V training dataset. We use AdamW (Loshchilov & Hutter, 2017) as the optimizer with a
step size of 1× 10−3 and a cosine learning rate decay to 1× 10−5 for 3K iterations. Each iteration
consists a batch size of 10. And the KG sizes at each iteration will increase 4 every 100 iterations.
The reason why we only need a small number of training steps (KG sizes for training) is that we
found AtlasKV also exhibits some generalization capabilities across various KG sizes as verified in
Section 5.2. For example, within 3K iterations, even though the maximum size of KG that is used to
train the AtlasKV is only 120. However, it can already perform well with larger scale of KGs. And
we integrate the KGKVs into the LLM’s attention every 3 layers for efficient training and inference.

Note that all of the base embeddings of the KGKVs are computed offline. So during both of the
training and inferencing processes, we only need to load them from hard disk and project some of
them into the embedding space of LLMs.

A.2 EVALUATION SETTINGS

In the knowledge grounding experiments, to verify AtlasKV can exhibit superior knowledge ground-
ing accuracy even with small sentence encoders, we employ a lightweight open-source sentence
transformer (Reimers & Gurevych, 2019) all-MiniLM-L6-v2 (Wang et al., 2020b) 1 to serve as the
sentence encoder here. In the generation relevance experiments, we need stronger sentence encoder
to let the value embeddings in KGKV2 have enough semantics. So in these experiments, we select a
bigger OpenAI sentence encoder text-embedding-3-large through API. And we also demonstrate in
Appendix B.1 that with text-embedding-3-large as the encoder, AtlasKV can also achieve a higher
knowledge grounding accuracy.

For knowledge grounding performance evaluation, we extract the averaged-over-heads attention scores
of the KG parts that are computed by softmax at the 15th attention layer (for LLaMA3.1-8B-Instruct
that has attention layers from 0-31). We did that due to this attention layer is mainly responsible to
retreive the accurate external knowledge keys and the external knowledge key embeddings after this
attention layer show a higher degree of variation, which has been verified in KBLaM (Wang et al.,
2024).

For generation relevance evaluation, like many previous works did (Edge et al., 2024; Huang et al.,
2025; Guo et al., 2024; Es et al., 2024), we employ GPT-4o as the evaluator to score the relevance
between the generated results and ground truth answers. And the prompt template is shown in
Figure 10. To make that statistically significant, we run 5 random seeds for each experiment and we
also generate the score 5 times for each seed to get the average score.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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B EXTENDED EXPERIMENTS

B.1 KNOWLEDGE GROUNDING WITH DIFFERENT ENCODERS

In this section, we conduct experiments with text-embedding-3-large as the sentence encoder to verify
that AtlasKV can achieve superior knowledge grounding accuracy with different sentence encoders.
Because the output dimension of text-embedding-3-large is 3072, which is much larger than the output
dimension of all-MiniLM-L6-v2 (384), we increase the training steps of AtlasKV from 3K to 10K to
make sure the training process can well converge. As shown in Table 5, with text-embedding-3-large
as the sentence encoder, AtlasKV can still achieve a higher knowledge grounding accuracy than
KBLaM at most of the cases. It further demonstrates the adaptivities of AtlasKV to various sentence
encoders.

101 Triples 102 Triples 103 Triples 104 Triples
Method Steps ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5

Eval on Enron

KBLaM 1e4 80.0 100.0 31.0 69.0 32.0 56.0 20.7 25.9

AtlasKV (128-64-16) 1e4 100.0 100.0 77.6 89.7 36.2 50.0 19.0 25.9
AtlasKV w/o HiKVP 1e4 100.0 100.0 86.2 96.6 62.1 84.5 36.2 46.6

Eval on ATLAS-Pes2o-QA

KBLaM 1e4 60.0 90.0 20.7 56.9 13.8 34.5 6.9 15.5

AtlasKV (128-64-16) 1e4 100.0 100.0 93.0 98.2 49.1 63.2 28.1 43.9
AtlasKV w/o HiKVP 1e4 100.0 100.0 96.5 100.0 71.9 91.2 36.8 59.6

Eval on ATLAS-CC-QA

KBLaM 1e4 80.0 100.0 43.9 73.7 17.5 35.1 10.5 12.8

AtlasKV (128-64-16) 1e4 100.0 100.0 85.5 96.4 54.5 74.5 52.7 65.5
AtlasKV w/o HiKVP 1e4 100.0 100.0 85.5 98.2 80.0 92.7 65.5 81.8

Table 5: The knowledge grounding accuracy of AtlasKV against KBLaM with text-embedding-3-
large as the sentence encoder across various tuning steps and KG sizes.

B.2 INFLUENCE OF VARIOUS TOP-K IN HIKVP
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Figure 6: The knowledge grounding accuracy of AtlasKV on ATLAS-CC-QKV with different top-k
settings at each layer.

In the default settings of our previous experiments, we set the kR, kI , kL to 128, 64, and 16 respec-
tively. In this section, we conduct experiments to investigate how different top-k settings at each layer
of HiKVP influence the knowledge grounding accuracy. We test that based on our default settings,
and we change one of kR, kI , kL to different values to see the influence of the top-k settings on the
knowledge grounding accuracy of HiKVP. Specifically, we set kR, kI , kL to 128, 64, 32, 16, and 8,
respectively, while keeping the other two layers the same as our default settings. And we set the
candidate triples to 105. As shown in Figure 6, we can see that the knowledge grounding accuracy of
AtlasKV will be significantly improved if we increase kR. And the performance will first improve
and then slightly decrease when we increase kI or kL. This suggests that the accurate retrieval ability
of AtlasKV is stronger than the fuzzy retrieval ability of it. And the reason why too large kI or kL
will hurt the performance might be that the noise candidate keys selected in early attention layers
would influence the retrieval accuracy of the later attention layers.
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C DERIVATION OF THE ATTENTION MECHANISM IN ATLASKV

Here we give the details of how the attention mechanism in AtlasKV is derived from the standard
rectangular attention in KBLaM.

Proof. First, the rectangular attention at the l-th attention layer and n-th token in KBLaM can be
simply rewritten as:

ỹ(l)
n =

∑M
i=1 exp(⟨q̃(l)

n , k̃(l)i⟩/
√
D)ṽ(l)i∑M

i=1 exp(⟨q̃(l)
n , k̃(l)i⟩/

√
D) +

∑n
i=1 exp(⟨q(l)

n ,k(l)i⟩/
√
D)

+ (11)

∑n
i=1 exp(⟨q(l)

n ,k(l)i⟩/
√
D)v(l)i∑M

i=1 exp(⟨q̃(l)
n , k̃(l)i⟩/

√
D) +

∑n
i=1 exp(⟨q(l)

n ,k(l)i⟩/
√
D)

. (12)

Then we replace the original formulation with the terms logitskb and logitsseq as follows:

ỹ(l)
n =

∑M
i=1 exp(logitsikb)ṽ

(l)i∑M
i=1 exp(logitsikb) +

∑n
i=1 exp(logitsiseq)

+ (13)∑n
i=1 exp(logitsiseq)v

(l)i∑M
i=1 exp(logitsikb) +

∑n
i=1 exp(logitsiseq)

, (14)

where logitsikb = ⟨q̃(l)
n , k̃(l)i⟩/

√
D and logitsiseq = ⟨q(l)

n ,k(l)i⟩/
√
D. Then we can calculate the

softmax of the KB and sequence parts separately as follows:

ỹ(l)
n =

∑M
i=1 exp(logitsikb)∑M

i=1 exp(logitsikb) +
∑n

i=1 exp(logitsiseq)︸ ︷︷ ︸
λkb

·
∑M

i=1 exp(logitsikb)ṽ
(l)i∑M

i=1 exp(logitsikb)︸ ︷︷ ︸
Softmax(logitsikb)ṽ

(l)i

+ (15)

∑n
i=1 exp(logitsiseq)∑M

i=1 exp(logitsikb) +
∑n

i=1 exp(logitsiseq)︸ ︷︷ ︸
λseq

·
∑n

i=1 exp(logitsiseq)v
(l)i∑n

i=1 exp(logitsiseq)︸ ︷︷ ︸
Softmax(logitsiseq)v(l)i

, (16)

where λkb and λseq are the weights of the two parts. And in this way, the attention computation of the
KB and sequence parts can be separated so that we can improve the scalability as well as efficiency
of the KB part individually in a more intuitive way.

In our implementation, we replace the attention of the KB part with the KG part and replace λkb with
λkg in a more scalable way as we described.

D DERIVATION OF THE TIME AND MEMORY COMPLEXITY OF HIKVP

Here we proof the time and memory complexity of HiKVP are O
(
(Ct

3
√
M +N) ·N ·D

)
and

O
(
(Cm

3
√
M +N) · (N +D)

)
, where Ct = 1 + kR + kI and Cm = max (1 + kR + kI) are

constants that are much smaller than M .

Proof. First, we analyze the time and memory complexity of HiKVP step by step. For the process
of calculating the softmax of attention scores with the root-layer keys at each step and selecet top-kR
relevant root-layer keys with a heap of size kR to fetch the connected inter-layer keys we need in the
next step, the time complexity is:

O
(

3
√
MD +

3
√
M log(kR)

)
. (17)

The memory complexity to store and calculate the attention scores of the root-layer keys of this
process is (before offloading the root-layer keys to the CPU memory):

O
(

3
√
M(N +D)

)
. (18)
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Then we repeat that process with the selected inter-layer keys that are connected to the pruned
root-layer keys and fetch the top-kI relevant inter-layer keys with a heap of size kI to obtain the
connected leaf-layer keys we need in the next step, which has a time complexity of:

O
(
kR

3
√
MD + kR

3
√
M log(kI)

)
. (19)

The memory complexity to store and calculate the attention scores of the selected inter-layer keys of
this process is (after offloading the root-layer keys to the CPU memory and before offloading the
selected inter-layer keys to the CPU memory):

O
(
kR

3
√
M(N +D)

)
. (20)

Finally, we compute the softmax of the attention scores of the selected leaf-layer keys that are
connected to the pruned inter-layer keys. Similarly, we also need to fetch the top-kL relevant
leaf-layer keys with a heap of size kL, which has a time complexity of:

O
(
kI

3
√
MD + kI

3
√
M log(kL)

)
. (21)

The memory complexity to store the selected leaf-layer keys and pruned KG values, and to calculate
their attention scores is (after offloading the selected inter-layer keys to CPU memory and before
offloading the selected leaf-layer keys to GPU memory):

O
(
kI

3
√
M(N +D)

)
. (22)

Note that ¯logitskg can be obtained by simplying selecting from ¯logitskgL with the top-kL softmax
scores indices. So this process would not take any additional time or memory complexity.

Then we can synthesize the time and memory complexity of HiKVP at each step. HiKVP has a
total time complexity of:

O
(
(1 + kR + kI)D

3
√
M +

(
3
√
M log(kR) + kR

3
√
M log(kI) + kI

3
√
M log(kL)

))
, (23)

which can be simplified to:

O
(
(1 + kR + kI)D

3
√
M + (log(kR) + kR log(kI) + kI log(kL))

3
√
M

)
. (24)

And because usually D ≫ (log(kR) + kR log(kI) + kI log(kL)), we can further simplify it to:

O
(
CtD

3
√
M

)
, (25)

where Ct = 1 + kR + kI is a constant. Then the total time complexity of both HiKVP part and the
sequence part at all steps can be represented as:

O
(
(Ct

3
√
M +N)ND

)
, (26)

Then for the total memory complexity of the both HiKVP and the sequence part at all steps, we have:

O
((

max(1 + kR + kI)
3
√
M +N

)
(N +D)

)
, (27)

which can be simplified to:
O
(
(Cm

3
√
M +N)(N +D)

)
, (28)

where Cm = max (1 + kR + kI) is a constant.

E TRAINING DYNAMICS IN ATLASKV

We also observed dynamics in the training processes of AtlasKV, which can suggest the model
regularly start learning to retrieve relevant knowledge from the external KG triples, instead of
brute force over-fitting, from a specific training step. As shown in Figure 7, we trained AtlasKV
on both correct and randomly paired KGKVs (denoted as “+ RandomKV”) of ATLAS-Wiki-QKV
dataset across three different sentence encoders, including all-MiniLM-L6-v2, text-embedding-ada-
002, and text-embedding-3-large, respectively. We can find that before a specific training step, the
training loss on these two variants of the dataset are almost the same. However, after that, the training
loss on the correct variant of the dataset drops significantly while the training loss on the random
variant of the dataset continues to decrease slowly. This suggests that AtlasKV starts to generalize
by retrieving relevant knowledge from the external KG triples, instead of brute force over-fitting
through neural parameters, from a specific training step. And this phenomenon can also support the
experimental results that AtlasKV can achieve strong generalization abilities in OOD scenarios.
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Figure 7: The training loss curves of AtlasKV with correct and random paired key-value embeddings
(KGKVs) across three different sentence encoders.

F WHERE IS THE TRADE-OFF?

The trade-off of AtlasKV is essentially between the performance and scalability. As expressed by
Equation 26 and Equation 28, we can select different kR, kI according to the specific needs to trade
off the performance and scalability. For example, if we want to achieve higher performance, we
can set a larger kR, kI . However, if we need higher scalability, we can set a smaller kR, kI like our
default settings in our previous experiments. Note that our experiments have suggested that AtlasKV
can still achieve superior performance even with small kR, kI while maintaining a good scalability.
And if we do not prune any key at each layer, the scalability of AtlasKV will degenerate to that of the
standard rectangular attention in KBLaM.

G CASE STUDY

G.1 DIFFERENCES BETWEEN SYNTHETIC KB AND KGKVS

In this section, we give some samples of the Q-K-V training data constructed by synthetic and
KG2KV methods, respectively, to further demonstrate the differences between them. As shown
in Table 6, we demonstrate the Q-K-V strings constructed by synthetic method and there are very
limited and fixed enquiry attributes. However, as shown in Table 7, the Q-K-V strings constructed by
KG2KV method have much more varied and flexible enquiry attributes, which are much more near to
the real-world scenarios.

Q K V

What is the description of
Elara Moonshadow?

the description
of Elara

Moonshadow

The description of Elara Moonshadow is a skilled
botanist with a passion for rare plants.

Describe the description of
Thorne Blackwood?

the description
of Thorne

Blackwood

The description of Thorne Blackwood is a renowned
chef known for his innovative culinary techniques.

Provide details on the
objectives of Zara

Nightingale?

the objectives of
Zara

Nightingale

The objectives of Zara Nightingale is to perform in
prestigious concert halls worldwide.

Can you let me know the
purpose of Lyra Starfire?

the purpose of
Lyra Starfire

The purpose of Lyra Starfire is to preserve marine
biodiversity.

Can you explain the
description of Jaxon

Wildheart?

the description
of Jaxon

Wildheart

The description of Jaxon Wildheart is a tech
entrepreneur with a knack for innovative solutions.

What insights can you
provide about the objectives

of Kaelith Silverwind?

the objectives of
Kaelith

Silverwind

The objectives of Kaelith Silverwind is to document
endangered animals.

Table 6: Samples from Synthetic dataset. The enquiry attributes have been marked in italics.
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Q K V

What is the explanation of
Postsocialist scholars?

the explanation
of Postsocialist

scholars

The explanation of Postsocialist scholars is the
developments as a backlash against the ’feminizing’

nature of the socialist state.

Can you explain the cause
of World records?

the cause of
World records

The cause of World records is World records in
Paralympic powerlifting are ratified by the International

Paralympic Committee.
Can you elaborate on the

rank of Ramble On?
the rank of
Ramble On

The rank of Ramble On is number 5 on the list of the 40
greatest Led Zeppelin songs.

How would you describe
the favorite of Dick the

Mockingbird?

the favorite of
Dick the

Mockingbird

The favorite of Dick the Mockingbird is among at least
four mockingbirds the president had while in office.

Can you inform me about
the publication of Hensley?

the publication
of Hensley

The publication of Hensley is Fifty Miles from
Tomorrow , a memoir of Alaska and the real people.

Tell me about the threat of
African coral reefs?

the threat of
African coral

reefs

The threat of African coral reefs is industrial run-offs
and pollutants, untreated sewage and the increasing

sediment flows in rivers.

Table 7: Samples from ATLAS-Wiki-QKV dataset. The enquiry attributes have been marked in
italics.

Sample Outputs.

Relevant Triple: (MOROCCO; consider; synthetic biology should be considered as a new
and emerging issue)
Q: Can you elaborate on the opinion of MOROCCO?
K: the opinion of MOROCCO
V: The opinion of MOROCCO is synthetic biology should be considered as a new and
emerging issue.

AtlasKV Output:
The opinion of MOROCCO is issue of synthetic biology should be considered as a new
frontier.

KBLaM Output:
I’m not sure what you mean. Can you provide more context?

ICL Output:
The opinion of MOROCCO is synthetic biology should be considered as a new and emerging
issue.

Figure 8: A sample Q&A of AtlasKV, KBLaM, and ICL.

G.2 SAMPLE Q&A

As shown in Figure 8, we provide Q&A samples of AtlasKV, KBLaM and ICL with 100 triples in
the ATLAS-CC-QKV dataset as candidates. We can tell that AtlasKV can generate a very relevant
answer, which is almost close to the ICL’s answer. However, KBLaM can not generate a relevant
answer and even cannot provide any usefull information. This is mainly because KBLaM is limited by
the fully synthetic training data and cannot be generalized to this unseen enquiry attribute. AtlasKV
can achieve a higher relevant answer because of a higher diversity of the training data constructed by
our KG2KV method.
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Prompt Template for KG2KV.

System Message:

**Task:** Convert relation phrase to natural noun based on missing entity position.
**Rules:**
- **Missing head**: Passive relations → agent nouns ("govern" → "governor", "is
participated by" → "participation")
- **Missing tail**: Active relations → object nouns ("produces" → "product", "achieves" →
"achievement")

**Output:** Natural noun only.

**Examples:**
- ("is participated by", "head") → "participation"
- ("is participated by", "tail") → "participant"
- ("produces", "head") → "producer"
- ("produces", "tail") → "product"

User Message:

relation: {relation}, missing: {missing}

Figure 9: The prompt template to rewrite the relation phrase to natural noun based on missing entity
position in KG2KV process.

H PROMPT TEMPLATE

In this section, we give the prompt template we use to conduct the evaluations and KG2KV process.
As shown in Figure 9, we use LLMs to generate the KGKVs from the text. And in this prompt
template, we only need to provide the relation phrase and the missing entity position to generate the
natural noun, which is token efficient. And this process usually do not need very powerful LLMs,
which are cheaper. As shown in Figure 10, we use LLMs to score the relevance between the generated
text and the ground truth answer. This process usually need powerful LLMs like GPT-4o, because it
needs to evaluate the results with high quality.

I THE USAGE OF LLMS

In this work, we use the LLM Claude-4-sonnet to polish statements and to check grammars in our
paper. We also use that to help with our software developing, such as finding some issues in the codes
and giving some advice to make the code structure better.
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Prompt Template for Relevance Scoring.

System Message:
You are an AI system that evaluates the quality of generated text. You will be given a text and
a ground truth answer, your goals is to return a score between 0 and 1.

User Message:
Given a text and a ground truth answer, evaluate the quality of the text. Return a score of 1
if the text is exactly the same as the ground truth answer. Return a score of 0 if the text is
completely wrong. Return a score between 0 and 1 if the text is partially correct. A more
correct text should have a higher score. Do NOT generate anything else.
Example:
Model output: "The sky is blue."
True answer: "The sky is blue."
Score: 1.0

Example 2:
Model output: "The color of Alexandria is blue."
True answer: "The color of Alexandria is green."
Score: 0.0

Example 3:
Model output: "The purpose of Alexandria is to extract knowledge."
True answer: "The color of Alexandria is to discover and organize knowledge into a
structured form."
Score: 0.9

**Important**: Only generate a number.

Figure 10: The prompt template for the GPT-4o to score the relevance between the generated text and
the ground truth answer.
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