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Abstract

Motor skills, especially fine motor skills like handwriting,
play an essential role in academic pursuits and everyday life.
Traditional methods to teach these skills, although effective,
can be time-consuming and inconsistent. With the rise of ad-
vanced technologies like robotics and artificial intelligence,
there is increasing interest in automating such teaching pro-
cesses. In this study, we examine the potential of a virtual
AI teacher in emulating the techniques of human educa-
tors for motor skill acquisition. We introduce an AI teacher
model that captures the distinct characteristics of human in-
structors. Using a reinforcement learning environment tai-
lored to mimic teacher-learner interactions, we tested our
AI model against four guiding hypotheses, emphasizing im-
proved learner performance, enhanced rate of skill acquisi-
tion, and reduced variability in learning outcomes. Our find-
ings, validated on synthetic learners, revealed significant im-
provements across all tested hypotheses. Notably, our model
showcased robustness across different learners and settings
and demonstrated adaptability to handwriting. This research
underscores the potential of integrating Imitation and Rein-
forcement Learning models with robotics in revolutionizing
the teaching of critical motor skills.

Introduction
Fine motor skills, such as handwriting, are pivotal not only
in the academic journey of an individual but also in daily
life tasks in developing core capabilities such as physical
coordination, rhythm, stamina, and posture (Bonney 1992;
Scordella et al. 2015; Swain 2018). The ability to effectively
teach and improve these skills has long been the domain of
human educators, who rely heavily on personalized feed-
back and repetitive exercises. Traditional teaching methods,
although proven effective, can take a long time and some-
times lack the consistency needed to master a skill (Gul
2014; Irby and Bowen 2004).
In recent years, advancements in robotics and artificial intel-
ligence have spurred interest in automating some teaching
processes, leveraging these technologies and their interplay
with human interactions. Automation, especially through
robots (Belpaeme et al. 2018), offers consistent, repetitive,
high-frequency feedback (Krebs et al. 1998), which might
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be challenging for a human instructor, especially in larger
classroom settings or for the teaching of competencies such
as motor skills that require extensive repetition for mastery.
Our research examines whether a virtual AI teacher can em-
ulate real educators and help learners master motor skills.
We developed an AI teacher trained on a fundamental
follow-the-cursor task, mimicking human teaching. Moti-
vated by the way learners such as kids learn fine motor skills,
we tested our model using RL-based students, on different
motor tasks. We then implemented an environment that cap-
tures the teacher-learner interactions and enables us to test
whether our model improves the performance of learners.
We have established four guiding hypotheses, which we an-
ticipate every virtual teacher to uphold; Firstly, a learner’s
performance improves after each instructional session with
a virtual teacher, in contrast to learners who pursue learning
without assistance. Additionally, over the span of instruc-
tional sessions, learners guided by a virtual instructor consis-
tently outperform those who embark on independent learn-
ing. Third, when learners are paired with a virtual teacher,
they grasp motor skills at an appreciably faster rate. Lastly,
the variability in learner outcomes diminishes when educa-
tion is facilitated by the virtual teacher, and this fluctuation
continues to contract as the learning advances.
We tested and evaluated these hypotheses on synthetic learn-
ers and showed significant results on all four of them. More-
over, our results demonstrate model robustness across differ-
ent learners, among various environment settings, and gen-
eralizability to handwriting as a more concrete motor skill.
We note that in the broader context, AI has been at the fore-
front of integrating technology into education, continually
seeking methods to make learning more effective and per-
sonalized (Woolf 2008; Mukherjee et al. 2013). As a part of
this overarching mission, our research falls under a broader
initiative that aims at leveraging robotics in the realm of ed-
ucation. To address our research question and test the pro-
posed hypotheses, we have embarked on training an Imita-
tion Learning (IL) based motion-control model to function
as a virtual instructor for motor skill acquisition.
To conclude, our main contribution:

• To the best of our knowledge, we are the first to develop an
AI teacher for fine motor learning tasks that captures the
characteristics of real human teachers. Our model can in-
crease the performance of learners, shorten their learning
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time, and lower the overall performance variance.
• We implemented an adaptable environment for training

and assessing a GAIL model to teach a motor skill, and
used it to facilitate the training of a virtual teacher, equip-
ping it with the ability to train on a series of founda-
tional shape-creation skills. Subsequently, the environ-
ment serves as a testbed platform to evaluate the model’s
effectiveness in teaching a motor skill. It employs RL to
simulate a series of teacher-learner interactions.

• We open source both the model and the environment to
the community. Both are available on https://github.com/
IBM/SAX/tree/main/Conbots/EAAI24

Through the course of this paper, we explore the methodolo-
gies employed, the challenges encountered, and the results
derived from this innovative approach. We aspire to provide
insights on whether robotics, powered by IL models trained
to mimic human behavior, can truly revolutionize the learn-
ing of specific motor skills such as handwriting, playing mu-
sic, driving, and alike.

Related Work
Developing a virtual agent to teach motor skills is an in-
terdisciplinary topic that resides at the intersection of AI,
human-computer interaction and robotics. Using robots to
teach motor skills very often finds its roots in rehabilita-
tion robotics, especially for patients recovering from events
like strokes (Gupta and O’Malley 2006; Matarić et al. 2007;
Lambercy et al. 2007). More recently, there has been an in-
creasing interest in using robots for general education and
training outside the realm of rehabilitation (Alemi et al.
2015; Chernova and Thomaz 2014; Mubin et al. 2013; Rozo
et al. 2013). However, existing work is limited in the con-
text of data-driven applications, for the automation of teach-
ing of motor skills. The predominant research focus in re-
lated areas, as also presented in (Caramiaux et al. 2020),
has been on enabling models to acquire motor skills them-
selves, or to stimulate ongoing feedback upon learner’s ac-
tions (Bonneton-Botté et al. 2020; Ecalle et al. 2021). How-
ever, none of the previous work is focused on the elicitation
of the teacher’s behavior to be replayed upon teaching these
skills to others.
The scarce set of studies that focus on augmented human-
robot interaction, describe a series of similar experiments.
(Takagi et al. 2018) introduces a reactive robot partner that
interacts with a learner. Together they share movement goals
via the forces they perceive. The coupling dynamics, rep-
resented by the stiffness of the virtual elastic band (hard,
medium, or soft), determine the capacity of communicable
information. This approach is later shown in (Ivanova et al.
2020) as a favorable motion assistance paradigm in track-
ing tasks, when compared to passive trajectory guidance, or
a human partner, and (Ivanova et al. 2022) which also sup-
ports a similar approach.
Our work employs Generative Adversarial Imitation Learn-
ing (GAIL), which has been recently popularized as an ef-
fective method for acquiring motor gestures from expert
demonstration (Ho and Ermon 2016). It leverages the power
of Generative Adversarial Networks (GANs) to train an

agent to imitate an expert behavior on a given task; Using
two neural networks, the training process contains two re-
peated steps: (1) a generator policy generates a trajectory,
attempting to mimic the expert actions, and (2) a discrimina-
tor that attempts to distinguish between the expert trajectory
and the one generated by the agent, encouraging the agent to
improve its imitation skills over time.
To the best of our knowledge, there is little to no work on
developing models for teaching robots how to teach humans
motor skills. Furthermore, none of the previous work has
been focused on leveraging contemporary imitation learn-
ing methods such as GAIL to enable the realization of a
digital apprentice that can facilitate and ultimately automate
the teacher-learner interaction for the acquisition of motor
skills, to the extent that it can be employed to fully replace
the role of a human teacher. Further to this, our work also
adds a second tier of novelty in developing RL-based sim-
ulated student learners to boost the assessment of the effec-
tiveness of the developed teacher model, alleviating the time
consuming and tedious process of empirical assessment.

The Model
Central to our research is the design and implementation
of an advanced learning model explicitly tailored for motor
skill acquisition. Our approach has three main components,
with each designed to optimize the effectiveness of the sys-
tem. We next outline the core elements of our methodology.
The essence of our model’s learning capabilities is in Im-
itation Learning techniques of real teacher-learner interac-
tions. By leveraging the principles of adversarial networks,
our approach sets one network (the imitator) to endure repli-
cating expert motor-skill demonstrations, while its counter-
part (the discriminator) evaluates the imitated output against
the recorded human expert demonstrations. This iterative
adversarial interplay refines the imitation capabilities over
time, resulting in motor-skill trajectories that closely mir-
ror those demonstrated by human educators. We note that
this GAIL approach sidesteps the task of manually crafting
reward functions. Instead, by harnessing real-world demon-
strations, our model adeptly captures the subtleties and nu-
ances inherent in the behavior of a real teacher.
To ascertain the viability and effectiveness of the AI teacher,
we introduced an RL-based method for emulating real learn-
ers. Given the inherent challenges and impracticality tied to
extensive real-world testing, we engineered virtual learners.
These digital learners, established by reinforcement learn-
ing principles, emulate a diverse array of learner profiles.
Their behaviors and learning trajectories, drawn from a mix
of novice and expert learners, provide a treasure trove of
simulation data. Subjecting these virtual learners to both tra-
ditional and our novel teaching methods afforded us a com-
parative lens, ensuring that our findings are robust.
To do so, we crafted a Learner-Teacher interaction Environ-
ment. Recognizing that the dynamics between a learner and
teacher are multifaceted, our environment was meticulously
designed to simulate the real-world challenges and nuances
of this relationship. This custom-built space allowed for the
execution of motor tasks under varying conditions, mirror-
ing the complexities learners might face in real-world sce-
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narios. At the core of this environment is an interactive feed-
back loop, enabling the virtual teacher and the virtual learn-
ers to perform tasks and receive immediate feedback. This
real-time feedback system, paired with the responsive nature
of the GAIL model, augments the overall learning process,
driving iterative improvement.
Together, these integrated components fashion a model and
environment that seeks to not just emulate but enhance the
traditional teaching paradigm.

Hypotheses
Our main research question stands for whether a virtual
teacher can learn how to mimic a real teacher in helping
learners acquire motor skills. This question has manifested
itself in the following four hypotheses:

H1: The performance of a learner guided by a virtual
teacher is better following each learning session, com-
pared to a learner who is not guided by a virtual teacher.

H2: The overall performance of a learner guided by a virtual
teacher, across a series of learning sessions, is better
than a learner who is not guided by a virtual teacher.

H3: The learner acquires a motor skill significantly faster
when it is guided by a virtual teacher compared to
achieving the same level of competence not being
guided by a virtual teacher.

H4: Performance variance is lower when a learner is guided
by a virtual teacher compared to a learner who is not
guided by a virtual teacher, and further decreases as
learning progresses.

To address our research question and test the hypotheses, we
first recorded a series of “Follow-The-Cursor” (FC) teacher-
learner sessions. Using this data, we applied an imitation-
learning method to develop a GAIL model, designed to act
as a virtual teacher for motor skill acquisition. Subsequently,
we established an RL-based environment to simulate a vir-
tual population of learners. Using this environment, we sys-
tematically compared the performance of learners assisted
by our developed model against those who learned indepen-
dently. This comparison was centered on each of the hy-
potheses listed above.

Experiments and Settings
To drive model development we used data collected in a pre-
vious work (Noccaro et al. 2024) at NEXTLab (Universita’
Campus Bio-medico di Roma). In that study, 20 healthy sub-
jects (aged 22.5 ± 2.6 years) volunteered to participate in
a follow-the-cursor (FC) experiment, after having signed a
written informed consent. The subjects were grouped into
pairs, instructing each to perform a task twice. In the task,
subjects were asked to follow a target cursor that was pre-
sented to them on a screen, controlling their own cursor
by moving mutually coupled robot end-effectors. The target
was to be followed on three coordinates: x, y, ϕ as illustrated
in Figure 1.
The physical connectivity between the two end-effectors
was defined by an elastic force based on their relative posi-
tions and connection stiffness, as described by the equations

Figure 1: Follow-the-cursor experiment

Modality Kx
Λ = Ky

Λ Ky
Υ = Kx

Υ Kϕ
Λ Kϕ

Υ
[N/m] [N/m] [Nm/rad] [Nm/rad]

HH 180 180 9 9
LL 60 60 6 6
LH 60 180 6 9
HL 180 60 9 6

Table 1: Stiffness levels

below. The positions of the learner-teacher pair at any time
are represented by Λt and Υt respectively:

FΛ = KΛ(Υt − Λt) +D · Λt

FΥ = KΥ(Λt −Υt) +D ·Υt

where FΛ and FΥ are the forces on the end-effectors , KΛ

and KΥ are stiffness constants for the end-effectors , Λt and
Υt represent the positions of the two end-effectors or cur-
sors. , and D is a damping constant, applied linearly to the
position.
The force applied on each end-effector is proportional to the
difference in position between the two end-effectors, multi-
plied by the stiffness constant K. This yields a spring-like
behavior, where the force increases as the distance between
the two positions increases, trying to bring them closer.
Damping acts to reduce the velocity of a system, mitigating
the resistance based on the position of the end-effectors. In
the experimental session, stiffness levels were manipulated
at two levels for each subject, high (H) and low (L), where
all four combinations HH, LL, HL, and LH were tested with
linear stiffness (x, y) and rotational stiffness (ϕ) values as
listed in Table 1.
To induce skill differences between partners, one subject’s
target cursor was surrounded by noisy cursors deviating
from the real target using a Gaussian distribution. In the
next session, roles switched. The partner without noise was
deemed the “teacher”, and the one with noise, the “learner”.
Before each of the two experimental sessions, participants
went through familiarization and baseline phases. In the fa-
miliarization phase, subjects undertook six solo tasks; half
had visual noise and half did not, presented in a random
sequence. The baseline phase had 20 solo trials, setting a
performance standard for each participant under the same
visual noise condition they would later encounter in the ex-
perimental phase. In the experimental sessions, there were
80 coupled trials, 20 for each stiffness setting. Every trial
consisted of a 30-second interaction and a 10-second rest.
Data included details of the cursor position, orientation, and
exerted force for both participants, along with stiffness and
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modality of connectivity.
These experimental sessions were recorded and adjusted as a
250 step-long trajectory, to be later fed by the GAIL model
as expert behavior recordings, used during training by the
discriminator.
Given the challenge of modeling 3D actions on a plane, the
recordings captured only the x and y axes data.

Preliminaries
Let us denote the 2D locations of the target, teacher, and
learner with Ψ,Υ,Λ respectively. The location on a specific
axis is denoted by square brackets with the axis specifica-
tion, i.e., Λ[0] marks the location of the learner on the x-axis,
and Λ[1] marks its location on the y-axis.
• □+: (superscript) learner and teacher are connected while

learning. Notation is added to both locations.
• □−: (superscript) learner and teacher are not connected

while learning. Notation is added to both locations.
• at: an action on the board, associated with the movement

of either the teacher or learner, stated in a superscript. This
way, aΛt marks an action of the learner at step t.

Environment Setup
An essential component for training GAIL models is a sim-
ulated environment mirroring the conditions of the environ-
ment in which expert data was originally recorded, as illus-
trated in Figure 1. This imperative arises from the fundamen-
tal underpinning of GAIL, wherein the learner’s capacity to
pursue a predefined target within the simulated environment,
facilitates iterative experimentation and precision refinement
of its actions. Ultimately, this process aims to yield trajecto-
ries that exhibit a high degree of similarity and are nearly
indistinguishable from the expert-generated trajectories, as
discerned by the discriminator. Effectively, we built a virtual
environment as a continuous 60×60 board. The environment
allowed two-dimensional movements of the participants up
to a padding of 3 units around its edges. To recreate similar
tracking settings to the ones shown during the experiment,
for training purposes, the target of the simulated environ-
ment was updated dynamically for each time step, taking
the form of sines functions and with movements adjusted to
be contained within the board borders (exact details can be
found in the appendix).
We define a learning step by a single model update in re-
sponse to a single environment update, which includes both
the target and the teacher/learner agent. An episode is char-
acterized by 250 consecutive target updates.
To replicate the skill level difference between the teacher
and the learner as was also done in the recording sessions,
we obscured the target cursor with dummy targets; while
the teacher has visibility of the true locations, Ψt,Υt,Λt,
the learner sees Ψ̃t,Υt,Λt, where Ψ̃t is an obscured version
of the true target, drawn from one of two distributions: 1)
Normal noise: The noised target was drawn from a normal
distribution Ψ̃t ∼ N (Ψt, σ

2), centered at the true location
of the target. 2) Uniform noise: The corrupted target was
uniformly chosen from the contour of a circle with radius r,
centered at the true location of Ψt.

Location Updates: The locations of the teacher and learner
agents were updated at each time step according to their re-
spective model predictions, and the counter-applied forces in
case they are connected. The teacher according to the devel-
oped model and the learner according to the reinforcement
learning policy. Forces:

FΛ = KΛ · (Υt − Λt)

FΥ = KΥ · (Λ+
t −Υ+

t )

Finally, location update at time t + 1 takes one of the two
forms -
• Teacher and Learner are connected:

Λ+
t+1 = Λ+

t+1 + (FΛ + aΛt ) · c (1)

Υ+
t+1 = Υ+

t + FΥ + aΥt (2)

• Teacher and learner are not connected:

Λ−
t+1 = Λ−

t+1 + aΛt · c (3)

Υ−
t+1 = Υ−

t + aΥt (4)

Where c is a mitigation factor, accounting for the differences
in writing speeds between the teacher and learner.

Agent Models
The Teacher Model requires two types of data for training;
Experiment recorded data, containing the recorded teacher-
learner sessions described above, and episodes to train on,
which were generated according to the target location up-
dates for the FC task.
To simulate an optimal environment for the GAIL model to
learn a teacher model, one has to recreate similar settings
to the real experiment, from which the experiment data was
recorded. Therefore, to account for the teacher-learner con-
figuration of the environment, we used a learner heuristic,
present in the environment during the teacher model train-
ing.
The learner strategy was straightforward and computed for
each time step, t, as the following: aΛt = Ψ̃t−Λt

∥Ψ̃t−Λt∥
2

·f where

the direction of movement is the unit vector of the distance
between the noisy target and learner, and the force of action
f , is chosen randomly and equals 1 or 2. Final locations were
updated at the same manner as equations (1) and (3), with
respect to the desired connectivity setup.
Ten versions of the model were created for each virtual
teacher, capturing snapshots of the teacher at various stages
of the training process.
Simulating a Learner Agent: To test our teacher, we need
to evaluate it using learners. To sidestep the complexities
and costs associated with human student experiments, which
are unscalable, we opted to test against RL-based learners.
We simulated learning sessions of the teacher model with a
virtual learner, employing a Synchronous Advantage Actor-
Critic (A2C) agent (Mnih et al. 2016). We note that the A2C
learner is considered proficient; thus, enhancing it suggests
that the teacher is genuinely effective.
The learner’s training sessions were conducted in an en-
vironment similar to the one aforementioned. The reward
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Figure 2: Learner learning curves on FC task, when training with (green) or without (pink) an attached teacher, across four
connectivity modalities; From left to right: low-high, high-low, high-high, low-low. The X-axis represents the learning iteration
(game unit).

was formulated by minimizing the learner’s distance to the
noised target and the magnitude of force counter applied by
the teacher: dt =

∥∥∥Ψ̃t − Λ
∥∥∥
2
+ δ · ∥FΛ∥2, where δ = 50 is

a scaling constant added for even weighting of the two ob-
jectives. A booster, g = 15 was added to the reward when
the learner was close enough to the noised target. Hence, the
reward rt =

1
dt

+ g was returned at each time step.

Evaluation Test Design
To quantitatively assess the model’s teaching abilities and to
capture the learning curve of a learner, both with and with-
out a teacher, model training and evaluation were alternated,
repeating the following steps:
1. Train the learner A2C model with/without an attached

teacher, for 1500 learning steps, on the FC task.
2. Evaluate the model performance on one of two motor

tasks: FC and handwriting.
The evaluation results from a single iteration of the first step
will subsequently be referred to as a ”game unit”.
Considering the FC task as a fundamental motor activity that
reflects general motor ability across various specific tasks,
such as handwriting, playing music, drawing, etc., we intro-
duced a second task to demonstrate the model’s capacity to
generalize. Concretely, we employed two test sets: (1) a set
of arbitrarily generated FC trajectories, and (2) English let-
ters trajectories.
To assess the model’s ability to generalize its applica-
tion to other, more specific motor skills, we applied the
above-designed experiment to a handwriting task, using data
created in-house. The task was defined as writing letter-
long episodes and was titled Write English Script Letters
(WESL). Each such letter episode was created as a list of
discrete locations on a grid with the environment size, or-
dered as a step-by-step instruction of how it should be writ-
ten. A total of 26 such episodes were created, containing
one episode per script letter. Those had an average length of
71.96 data points in comparison to the 250 long episodes for
the FC task.
The environment was adjusted accordingly when the model
was evaluated on the WESL task. Specifically, the target lo-
cation was selected from the generated letters data, respec-
tive to the current letter episode and time step, t.

Given two trajectories, one containing the desired shape or
letter trajectory, and another containing the model predic-
tions, either made by the teacher or by the learner, we eval-
uated the performance using two stages, (1) Trajectory cal-
ibration - employed to neutralize aspects such as the shape
overall scale and inclination of writing, in the case of WESL
task, and (2) Similarity measurement - applied to the cali-
brated trajectories.
The trajectory alignment was performed using Procrustes
Analysis (Gower 1975). This method finds the optimal trans-
formations to match the shape and orientation of two curves
by using standardization, scaling, and rotation techniques.
As a similarity measurement, we employed Frèchet distance
(Fréchet 1957) on the aligned trajectories. This distance
measurement offers a robust way to quantify the similarity
between two curves, considering their spatial arrangement
and shape characteristics. Frèchet distance yields a value be-
tween 0 and 1 where 1 marks a perfect match.

Results
For the FC skill assessment, evaluation was carried out with
the aforementioned setup and was independently repeated
10 times to demonstrate variability among learners’ abili-
ties. Figure 2 shows the results for two settings, (1) when a
learner is connected to a teacher, (2) when the learner is not
guided by a virtual teacher. Those were performed for each
connectivity modality separately. While there is a notice-
able difference in performance between learners with and
without connectivity in each modality, our subsequent tests
specifically focus on the LH modality, due to previous stud-
ies, such as (Takagi et al. 2018), suggesting it is a favorable
modality for learning with the teacher’s guidance.
Results from the evaluation with the WESL task, with low-
high modality, demonstrate a difference in similarity in favor
of the connected settings, and overall a smaller variance in
performance across all game units, as may be seen in Fig-
ure 3.A. To get a sense of how learner agents perform at
the end of the entire training session, we randomly picked
two learners and depicted their handwriting trajectories for
four letters from the WESL task. The upper row in Fig-
ure 3.B shows the results for a learner who was trained in
a connected mode, and the lower row shows the letters cre-
ated by a learner who was self-trained. While the connected
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Figure 3: Learner performance on WESL task. (A) learning curve on WESL task, when training with (green) or without (pink)
an attached teacher, trained with low-high connectivity modality. (B) Contour of selected letters, drawn by a randomly chosen
learner when trained with (upper row figures) and without (lower row figures) a virtual teacher. Frèchet distance computed
between the target and the learner prediction is marked at the upper right of each figure. Legends for both are on the right.

learner produced silhouettes closely resembling the target
letters, the unconnected learner’s performance was notably
poorer, resulting in curves that lacked both range and pre-
cision. These contours, exemplify the difference in capabil-
ity between the two learning paradigms and stress the ben-
efits of acquiring a motor skill with the aid of a teacher. It
is also apparent that with the aid of the virtual teacher, the
time needed to acquire a satisfactory level of competence
is shorter. We establish the statistical significance of these
results with respect to the hypotheses in the next section.

Significance Tests Each of the hypotheses presented de-
manded corresponding data preprocessing. Subsequently, a
t-test was conducted on the Frechet distance values of the
learner when connected to a virtual teacher, with low-high
modality, versus the ones in the non-connected settings. The
preprocessing and results for the two tasks are reported for
each hypothesis as follows.

H1: For each game unit, a series of t-tests were conducted
between the connected values versus the not-connected val-
ues after the completion of each game unit. Results for the
FC task showed that the performance of a learner guided
by a virtual teacher was significantly higher than the perfor-
mance values of the non-guided learner, consistent across all
game units (i.e., all p-values<0.05). Results for the WESL
task showed similar significant differences for the second
game unit onwards (i.e., all p-values<0.05). Tables with full
results for both tasks can be found in our git repository.
H2: For each repetition (a.k.a learner version), the area un-
der the curve (AUC) of the Frechet distances across all game
units was computed. The result for the FC task showed that
the overall performance of the guided learner as reflected
by the corresponding AUC value was significantly higher
than the performance of the non-guided learner (t = 6.58,
µ+
AUC = 4.971,µ−

AUC = 2.975,p < 0.5 · 10−5). The result
was also consistent for the WESL task (t = 7.31,µ+

AUC =

3.550,µ−
AUC = 2.544,p < 0.5 · 10−5).

H3: Let us mark θFC = 0.9 as a threshold for high Frechet
distance value for the FC task, θWESL = 0.75 as a thresh-
old for the WESL task. For each experiment repetition, let
us mark the first game unit where the distance was higher

than θ as the population values. Respective to the θ value,
the result for the FC task showed that the motor skill was
acquired significantly faster by the guided learner compared
to the number of game units the motor skill was acquired
by the non-guided learner (t = 6.20,µ+

θ = 4.307,µ−
θ =

9.692,p < 0.5 · 10−5). The same result was also consistent
for the WESL task (t = 15.84,µ+

θ = 3.3,µ−
θ = 10.0,p <

0.5 · 10−10).
H4: We mark learning convergence at game unit 4 for the
FC task and at game unit 3 for the WESL task. For each
of the remaining game units, we computed the standard de-
viation as a population value. Respectively, the result for
the FC task showed a lower average in the standard de-
viation for the guided learner compared to the non-guided
learner (t = 7.38,µ+

SD = 0.07,µ−
SD = 0.27,p < 0.001).

The result was also consistent here for the WESL task (t =
3.35,µ+

SD = 0.036,µ−
SD = 0.086,p < 0.05).

Model Robustness
In our pursuit of a well-rounded and effective virtual teacher,
understanding the model’s robustness under varying condi-
tions is paramount. The value of a truly robust model is its
ability to adapt, perform, and maintain efficacy under a vari-
ety of circumstances. To examine our virtual teacher robust-
ness, we conducted extensive robustness tests, under diverse
settings, to emulate different real-world scenarios. We in-
troduced learners with different initial skills, learning rates,
and attention (noise) levels, and tested each virtual teacher
on them across the two tasks.
Settings: Tasks: FC and handwriting. Noise Values: Gaus-
sian and random. We injected the noise into the learners’
actions to emulate occasional errors or lack of focus. Mul-
tiple noise variance values were tested, simulating every-
thing from a near-perfect learner to one with significant chal-
lenges. Iterations (game unit): All 7 game units were tested.
The learner sessions ranged from short to prolonged, reflect-
ing differences in stamina and training duration.
Overall we tested 64 different settings and performed 32
comparisons. Each such comparison consisted of 10 distinct
learners with the same settings.
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Results: The average improvement (i.e., the difference be-
tween the Frechet distance) between connected and not-
connected learners across all settings are 25.8% and 15.3%
for the FC task and the WESL task respectively, where the
standard deviations are 0.05 and 0.025. The maximal dif-
ference between every two comparisons is 39% (FC) and
20.1% (WESL), and the minimal improvement is 17% and
11% respectively. The complete robustness results of all set-
tings for both tasks can be found in our git repository.
The results consistently demonstrated that learners con-
nected to our AI teacher showed better performance and
faster skill acquisition, irrespective of their starting condi-
tions. While learners with higher noise values and shorter
sessions generally took longer, the assistance of the virtual
teacher consistently outperformed the autonomous learning
approach in the two motor learning tasks.

Applications in Education
Our model was trained on a fairly simple, yet fundamental,
task of following a cursor across a board. It demonstrated
versatile teaching abilities in acquiring motor skills, allow-
ing us to firmly believe the virtual model can be adapted to
teach other motor skills, particularly those involving gen-
tle motion and precision, such as writing of numbers, or
geometric shapes. Another useful application lies in the
Art domain. That is, motor tasks also encompass drawing,
painting, and design. Beginners in art or design courses of-
ten grapple with basic techniques like creating consistent
line weights, mastering brush strokes, or executing precise
cuts in craft work. An AI teacher model can break down
these techniques into manageable tasks, offering learners
real-time feedback as they practice. This immediate feed-
back loop can accelerate skill acquisition, boost confidence,
and allow art educators to focus on teaching creativity and
higher-order thinking rather than basic mechanics.
The idea can also be adapted, in the music domain. Learn-
ing to play a musical instrument requires mastering intri-
cate motor skills, e.g. finger placement on a violin, breath
control for a trumpet or hand coordination on drums. An
AI teacher model can boost the learning process providing
learners with feedback on their technique. For beginners, the
teacher could guide finger placements or bowing techniques.
For advanced learners, it might offer feedback on the nu-
ances of their technique. This application can democratize
access to quality music instruction, especially when human
instructors might be scarce or expensive.
In addition, we argue that an AI teacher model can also be
used in Virtual Reality (VR) training. As these technologies
gain traction in educational settings, there’s a growing need
for users to interact with virtual objects using hand gestures,
controllers, or styluses. An AI teacher model can be embed-
ded into these virtual environments to teach users the most
effective ways to perform motor tasks. For instance, in a VR-
based art class, the AI can instruct on sculpting techniques
or in an AR-based assembly training, guide on proper hand
movements for efficient assembly. This melding of VR/AR
with AI-based motor task training can make virtual learning
environments more intuitive, immersive, and effective.

Conclusions
The proposed algorithm explored in this paper acts as a ro-
bust multi-purpose teacher for learning motor tasks, without
any parameter adaptation to account for task variation, or
the need for extension of the primitive motor gestures. By
leveraging its ability to analyze and generate precise pat-
terns of movement, the model can provide real-time feed-
back, corrective suggestions, and step-by-step guidance to
learners engaged in perfecting a motor skill, and accelerate
their learning process.
Limitations: Synthetic Learners: Our validation was pri-
marily based on synthetic learners, which might not entirely
emulate the intricacies and unpredictabilities of real human
learners. Future studies with human participants are needed
to enrich our understanding and provide a more comprehen-
sive picture of the AI teacher’s capabilities.
Model Specificity: The AI teacher was specifically trained
on the FC task. While it showed adaptability to other motor
skills, it might not encompass the vast spectrum of motor
skills that exist. More complex or nuanced skills may require
specialized training or additional model adjustments.
Environment Design: Our reinforcement learning environ-
ment, while comprehensive, might not capture all the nu-
ances of real-world teaching scenarios. Real-world environ-
ments can introduce variables and challenges that were not
considered in our controlled setting.
Comparative Analysis: While our AI teacher demonstrated
significant potential compared to autonomous learning, we
did not compare its effectiveness against seasoned human
educators in a side-by-side manner. The AI’s performance
might differ when juxtaposed directly with such instructors.
Implementation Constraints: The translation of our virtual
AI teacher model to physical robots, might introduce hard-
ware challenges, and implementation constraints that were
not addressed in this study.
Future Work: This paper presents promising results when
tested in a simulated environment with learner agents. The
main contribution reported here provides the software appa-
ratus, which is complemented by the effort to develop the
physical instrumentation in the context of the Conbots.EU
project that oversees this entire effort. A design of a real-life
application of the model, with real-life learners dressed with
an exoskeleton, is the next step for assessing the models’
practical effectiveness in enhancing fine motor skill acqui-
sition and will provide valuable insights for further refine-
ment and application. Recent advances with generative AI,
have opened new opportunities for movement data gener-
ation techniques. Generating such data and training an en-
hanced teacher model could expand its teaching range with-
out needing real-life data and its associated complexity.
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Matarić, M. J.; Eriksson, J.; Feil-Seifer, D. J.; and Winstein,
C. J. 2007. Socially assistive robotics for post-stroke reha-
bilitation. Journal of NeuroEngineering and Rehabilitation.
Mnih, V.; et al. 2016. Asynchronous methods for deep rein-
forcement learning. In International conference on machine
learning. PMLR.

Mubin, O.; et al. 2013. A review of the applicability of
robots in education. Technology for Education and Learn-
ing.
Mukherjee, S.; et al. 2013. Learner centered design ap-
proach for E-learning using 3D virtual tutors. In Presentado
en Proceedings-2013 IEEE 5th International Conference on
Technology for Education, T4E.
Noccaro, A.; Buscaglione, S.; Eden, J.; Cheng, X.; Di
Stefano, N.; Di Pino, G.; Burdet, E.; and Formica, D.
2024. Robot-mediated asymmetric connection between hu-
mans can improve performance without increasing effort.
TechRxiv.
Rozo, L.; et al. 2013. Learning Collaborative Impedance-
Based Robot Behaviors. Proceedings of the AAAI Confer-
ence on Artificial Intelligence.
Scordella, A.; et al. 2015. The role of general dynamic co-
ordination in the handwriting skills of children. Frontiers in
psychology.
Swain, H. 2018. Does writing by hand still matter in the
digital age? The Gruardian.
Takagi, A.; et al. 2018. Haptic communication between hu-
mans is tuned by the hard or soft mechanics of interaction.
PLoS computational biology.
Woolf, B. P. 2008. Building Intelligent Interactive Tutors:
Student-Centered Strategies for Revolutionizing e-Learning.
Morgan Kaufmann Publishers Inc.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23231


