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Abstract

Generative Adversarial Networks (GANs) is a powerful family of models that
learn an underlying distribution to generate synthetic data. Many existing studies
of GANs focus on improving the realness of the generated image data for visual
applications, and few of them concern about improving the quality of the gener-
ated data for training other classifiers—a task known as the model compatibility
problem. Literature also show that some GANs often prefer generating ‘easier’
synthetic data that are far from the boundaries of the classifiers, and refrain from
generating near-boundary data, which are known to play an important roles in
training the classifiers. To improve GAN in terms of model compatibility, we
propose Boundary-Calibration GANs (BCGANs), which leverage the boundary
information from a set of pre-trained classifiers using the original data. In particular,
we introduce an auxiliary Boundary-Calibration loss (BC-loss) into the generator
of GAN to match the statistics between the posterior distributions of original data
and generated data with respect to the boundaries of the pre-trained classifiers. The
BC-loss is provably unbiased and can be easily coupled with different GAN vari-
ants to improve their model compatibility. Experimental results demonstrate that
BCGANs not only generate realistic images like original GANs but also achieves
superior model compatibility than the original GANs.

1 Introduction

The success of machine learning relies on not only the advances of different models (e.g. deep
learning) but also data with sufficient quality and quantity. Nowadays, companies spend tremendous
efforts and expense collecting data to build their products. To better solve complicated real-world
problems with public or third-party machine learning experts, many companies now needs release
some data sets for competitions (e.g. Kaggle) or proof-of-concept purposes. However, considering
the costs of collecting data, companies may not be willing to release the dataset if possible. As a
result, a technique which can generate synthetic data with properties similar to the original data is
in demand. To be specific, we are looking for generating a dataset with the property that machine
learning models trained on the generated dataset can exhibit similar performance to ones trained on
the original data. This property is called model compatibility [24] or machine learning efficacy [32].
The organizations can share the generated data with high model compatibility to the public and enjoy
the solution derived from it without leaking the real dataset.
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When it comes to data generation, generative adversarial networks (GANs; 5) is a popular family of
generative algorithms because of its impressive performance on generating realistic images [12]. In
GANs, the generator is trained via minimizing a neural network (discriminator) defined probability
divergence [5, 1, 22]. In addition to image generation, GANs are also widely used in other applications,
such as style transfer [11, 34, 13] and image processing [25, 16, 2], and generating different types
of data, including time series [20, 3], text [33, 26], point clouds [18], voxels [31] and tabular
data [24, 32].

Although GANs are versatile as mentioned above, most of their development focus on the metrics
such as quality and diversity of the data [29, 9, 19]. Generating high model compatibility data
via GANs is still under explored. The pioneering work [32] first shows that data generated from
conditional GANs [21] enjoys better model compatibility than VAEs [14]. It shows a promising
potential of generating tabular data by GANs and has been used in generating privacy-sensitive data
such as clinical data [27] and insurance records [15].

In this work we wonder that whether we can further improve the model compatibility by considering
the boundary between classes, which can be approximated by the models trained on the original data.
For example, Wasserstein GAN (WGAN; 1) performs a mean-matching between the distribution of
real data and generated data. However, only mean-matching is sometimes not enough to learn the
whole distribution especially for those boundary cases. Apparently, if a GAN knows the boundary
between different classes, it may be able to generate instances which are close to the boundary with
correct labels. These boundary points will guide a classifier to learn the correct decision boundary.

In this work, we try to improve GANs with regards to model compatibility in classification problems.
We use a set of pre-trained classifiers to obtain multiple decision boundaries. Then use an auxiliary
loss function called Boundary-Calibration loss (BC-loss) to calibrate the generating distribution
according to the decision boundaries of these pre-trained classifiers. The main contributions of this
work are:

• In Section 2, we propose a way to evaluate model compatibility in classification problems.
We consider a variety of machine learning algorithms and average the performance to obtain
a comprehensive metric.

• In Section 4, we propose a loss function called Boundary-Calibration loss (BC-loss) which
helps typical GANs to learn a distribution with better model compatibility. The loss
considers the decision boundaries of pre-trained classifiers and minimizes the maximum
mean discrepancy (MMD; 6) between the original dataset and the generated dataset. In
addition, we show that optimizing the BC-loss would not change the optimal solution of the
original GAN, but it reduces the feasible set to ensure the model compatibility.

• In Section 5, we demonstrate how BC-loss affects the boundary of the generated data with a
two-dimensional toy dataset. We also show that the BC-loss improves model compatibility
of the generated data with different types of classifiers and a variety of datasets. Finally, we
inspect the feature selection results to examine how the interpretation of machine learning
models may be effected.

Last, in Section 3, we discuss some works which are similar to our work and describe how does our
work differ from them.

2 Model compatibility in classification

In this work, we focus on generating data for fully-supervised classification learning. Given a
dataset D = {(xi, yi)}ni=1, where xi ∈ X represents features of an instance, yi = f(xi) ∈ Y
represents the corresponding label of xi according f : X → Y , and (xi, yi) ∼ PD, a learning
algorithm A : (X ,Y)n → H learns a hypothesis h ∈ H to approximate the mapping function,
i.e. A(D) = h ≈ f . Our goal is to obtain a generator G which generates a synthetic dataset
D′ = {(x′j , y′j)}mj=1 such that A(D′) = h′ ≈ h. We call this property model compatibility as
proposed in Park et al. 24.

To measure the model compatibility of a generated dataset quantitatively, we consider the performance
of a classifier trained on the generated dataset comparing to the one trained on the real dataset. We
evaluate the accuracy on a separate test dataset to indicate the performance of a given classifier. In
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addition, we calculate relative accuracy by scaling the test accuracy of the classifier trained on the
generated dataset by the accuracy of the classifier trained on the real dataset. The relative accuracy
allows us to average the results from different machine learning algorithms more fairly. The final
evaluation is :

1

|A|
∑
A∈A

acc(h′, D(t))

acc(h,D(t))
, (1)

where A is a set of learning algorithms , D(t) = {(x(t)i , y
(t)
i )}Ni=1 is the test dataset, and acc(h,D(t))

is the accuracy of hypothesis h on test data D(t). We can determine A as a wide variety of learning
algorithms to make the metric provide a more comprehensive measurement of model compatibility.

3 Related work

Research about generating data for classification can be divided into two categories: formulation
and architecture. For formulation, Conditional GAN (CGAN; 21 ) is an intuitive way to generate
instances with corresponding labels. We can learn the distribution of labels by counting and sample
the instances from CGAN conditionally. Auxiliary Classifier GAN (ACGAN; 23) is considered as a
better way for conditional generation. It uses an auxiliary classifier to provide information about the
boundary between each classes. However, ACGAN has been proved that the objective is biased so it
tends to generate data with lower entropy for the auxiliary classifier [30]. Thus, the lose of instances
near the decision boundary may worsen the model compatibility. In this work, we use CGAN along
with the proposed BC-loss to generate data with model compatibility.

On the other hand, the other line of research focuses on generating data with different network
architecture or data processing procedure. Recent works that also consider model compatibility are
Table GAN [24] and Tabular GAN [32]. Table GAN focuses on the privacy of generated data and
thus their is a trade off between privacy and model compatibility. To achieve privacy preserving, they
do not improve the model compatibility compared to the original GAN. On the other hand, Tabular
GAN puts emphasis on increasing model compatibility of generated data. They propose a framework
with a more complicated data processing procedure and use LSTM to better parameterize the target
distribution. In contrast to these works, our work focus on the formulation of GANs and can be
applied to most variants of GANs, including Table-GAN and Tabular GAN. Moreover, while these
former works only focus on tabular data, our BC-loss is applicable to generate image datasets as well.

Some GAN variants are named similarly to our work but they pay attention to different problems.
For example, the boundary described in boundary-seeking GAN [10] means the decision boundary
of the discriminator rather than the decision boundary for the supervised labels. To the best of our
knowledge, we are the first work trying to improve model compatibility by modifying the formulation
of GANs.

4 Boundary-Calibration GAN

To achieve better model compatibility of GAN, we propose an auxiliary GAN loss which we call
boundary-calibration loss (or BC-loss). We assume that we have a set of pre-trained classifiers which
are well-trained on the original dataset. The BC-loss helps GANs to calibrate the distribution with
respect to the distribution of decision values predicted by pre-trained classifiers. The calibration leads
to more accurate data generation near the decision boundary and thus enabling a machine learning
algorithm to learn a similar hypothesis to one that learns from the original dataset. To ease the
complexity of learning to generate (x, y) jointly, we infer P (y) by counting the proportion of each
class in the original dataset and train a conditional generator G such that G(z, y) ∼ PX|y, where
PX|y is the conditional data distribution and z ∼ PZ is the initial randomness such as Gaussian
distribution. Therefore we can generate (x, y) by sampling y ∼ P (y) and G(z, y).

4.1 Boundary Calibration

Given a pre-trained classifier C, we hope the generated dataset will adopt the same statistics as the
original dataset while considering the decision boundary of C. To include the information about the
boundary, we calculate posterior PC(y | xi) from the decision values predicted by the classifier. In
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practice, we can apply a softmax function to the outputs of a classifier to obtain the posterior. The
posterior provides information of an instance from the classifier’s aspect. Therefore, given the real
dataset X = {x1,x2, ...,xn}, we can obtain a set of posterior vector C(X) = (PC(y | x1), PC(y |
x2), ..., PC(y | xn)). To generate data X ′ with the same distribution of posteriors to the boundary,
we match the statistics of C(X) and C(X ′) by optimizing a distance M :

LBC(X,X
′, C) =M(C(X), C(X ′)) (2)

Here M can be any distance metric which measures the distance between two sets of samples. In
statistics, distinguishing whether two sets of samples are from the same distribution is called Two-
Sample Test. A classical solution to two-sample test is kernel maximum mean discrepancy (MMD; 6).
The idea is to compare the statistics between the two sets of samples. If the statistics are similar then
these two sets might be sampled from the same distribution. Given two sets of samples X = {xi}ni=1
and Y = {yj}nj=1, an unbiased estimator of MMD with kernel k is defined as:

M̂k(X,Y ) =
1(
n
2

) ∑
i 6=i′

k(xi,xi′)−
2(
n
2

) ∑
i 6=j

k(xi,yj) +
1(
n
2

) ∑
j 6=j′

k(yj ,yj′) (3)

In practice, we use Gaussian kernel k(x,x′) = exp(‖x− x′‖2) in MMD since Gaussian kernel is a
characteristic kernel which ensures that the distance is zero if and only if the two distributions are the
same [6].

The BC-loss can be applied in generator of any GAN variants to improve the model compatibility.
In addition, to better fit the real unknown boundary, we can use multiple classifiers to calibrate the
distributions from different aspects. As a result, for a loss function of generator LG, we can modify
the loss to be:

L̂G = LG +
λ

|C|
∑
C∈C

M̂k(C(X), C(G(Z,Y))) (4)

where Z is a set of noises, C is a set of pre-trained classifiers and λ is a hyper-parameter to control
the weight of BC-loss.

4.2 Analysis of optimal solution

Next we prove that adding our proposed BC-loss would not change the optimal solution of the original
objective. Here we assume the loss of the generator LG achieves its optimal value in the its GAN
objectives LG if and only if the distribution of G(z, y) recovers PX|y for all y ∈ Y , which holds for
the vanilla GAN [5] and most of other GAN variants.

Theorem 1 (Gretton et al. 6). Given a kernel k, if k is a characteristic kernel, then Mk(P,Q) =
0 ⇐⇒ P = Q.

Theorem 2 (Equivalence of optimal solution). G is an optimal solution of LG ⇐⇒ G is an optimal
solution of L̂G

Proof. (⇒) According to the assumption, G is an optimal solution of LG implies G(Z, y) recovers
PX|y for all y ∈ Y . Therefore, PC(X) = PC(G(Z,Y)) andMk(PC(X), PC(G(Z,Y))) = 0 by Theorem 1.
Now L̂G = LG + 0 = LG and G is an optimal solution of LG, so G is also an optimal solution of
L̂G.

(⇐) Since LBC ≥ 0, we have L̂G = LG + LBC ≥ LG. From above, we know L̂G(G) = 0

if G = PX . Thus, for an optimal solution G∗, 0 ≥ L̂G(G
∗) ≥ LG(G

∗) ≥ 0, which implies
L̂G(G

∗) = LG(G
∗) = 0. Therefore, G∗ is also an optimal solution of LG.

The proof shows that the proposed BC-loss does not change the optimal solution of the original
optimization problem. However, we can consider BC-loss as a Lagrangian constraint which restricts
the solution to a subspace where the generator owns higher model compatibility .
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(a) Real
accuracy = 0.995

(b) ACGAN
accuracy = 0.932

(c) WGAN
accuracy = 0.979

(d) BWGAN (proposed)
accuracy = 0.984

Figure 1: A toy dataset generated by different GAN methods. Figure (a) is the original training
data and the others are data generated by ACGAN, WGAN and our BWGAN respectively. The
background color indicates the decision boundary of a random forest trained on corresponding data.
The captions show the test accuracy of the random forest.

4.3 Comparison to MMD GAN

MMD GAN [17] is a variant of GAN where the generator tries to minimize the MMD between
generated data and original data and the discriminator learns a kernel which maximizes the MMD.
Though the formulation of MMD GAN and BC-loss are similar, they still do not conflict because
MMD GAN do not known the information about the classifier and the objective of MMD GAN
would not lead the discriminator to a classifier. Therefore, BC-loss may still improve MMD GAN by
guiding the generator to not generate points across the boundary. To understand the improvement in
MMD GAN from BC-loss, we use MMD GAN as one of the baselines in our experiments.

5 Experiments

In this section, we use a toy dataset to illustrate how the proposed method improves the model
compatibility. To be more realistic, we provide more comprehensive results for four different real-
world dataset from UCI dataset repository [4]: Adult, Connect-4, Covertype and Sensorless. We then
show our method is also applicable in image dataset: MNIST and Cifar10 without losing the image
quality. In addition, we investigate the results of feature selections on the generated dataset to see
whether the generated data can preserve the interpretation of machine learning models.

5.1 Experimental settings

Evaluation

In this work, we focus on model compatibility of generated datasets. We use a wide variety of
machine learning algorithms including linear SVM, decision tree (DT), random forest (RF), and
multi-layer perception (MLP) to evaluate the model compatibility. As described in Section 2, we
evaluate the relative accuracy for each type of machine learning model, where the relative accuracy is
calculated by dividing the accuracy of classifier trained on generated data to the accuracy of classifier
trained on original data.

Compared methods

We take Wasserstein GAN (WGAN) and MMD GAN as our baselines to evaluate the effectiveness
of the proposed boundary-calibration technique. We denotes their counterparts with BC-loss as
BWGAN and BMMDGAN respectively. All of the methods use gradient penalty to enforce the
Lipschitz constraint on the discriminator [7, 17]. To achieve conditional data generation as described
in Section 4, we add an embedding layer to learn the embedding vector for each class. The embedding
vector is concatenated as additional input features for both generators and discriminators on UCI
datasets. For image datasets, the embedding vectors are used as described in [21].

5.2 2D Toy Dataset

We use a 2D toy dataset with two classes to illustrate the results generated by different GAN methods
in Figure 1. Figure 1a shows the distribution of the original training data. We use these generated
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Table 1: Summary result of model compatibility evaluate on UCI datasets. The numbers are relative
accuracy.

adult connect4 covertype sensorless average

ACGAN 97.78 83.71 51.98 77.47 77.74
WGAN 96.60 87.59 79.56 84.63 87.10
BWGAN 98.79 88.95 83.16 93.34 91.06

MMDGAN 95.67 86.29 77.14 86.28 86.35
BMMDGAN 97.23 87.38 79.82 88.14 88.14

data to train a random forest and depict the decision boundary by different background color. From
Figure 1b, we can see that although ACGAN can make use of the auxiliary classifier during training,
it learns a biased distribution that push the generated data away from the boundary. The large margin
between the two clusters brings more uncertainty to the decision boundary and thus leads to worse
test accuracy. In Figure 1c, WGAN approximates the original distribution well in the center part of
the two cluster, but do not get a clear boundary between the two classes. It generates some ambiguous
points near the boundary that would confuse the classifier. Finally, our BWGAN generates points
near the boundary more precisely, as shown in Figure 1c.

5.3 UCI dataset

We evaluate our proposed BC-GAN on four datasets from UCI repository. The attributes of the
datasets can be found in Appendix A. Discrete features are processed to one-hot encoding and
continuous features are scaled to [0, 1]. For each dataset, we train six multi-layer perceptrons with a
random split of half of training data as pre-trained classifiers. In these experiments, generators and
discriminators are consist of 3 fully-connected hidden layer with 128 units. A logistic function is
applied to the output layer of generators to generate features within 0 and 1. The weight of BC-loss is
set to be λ = 100 for all datasets.

Table 1 summarize the comparison between different methods. We calculate the relative accuracy
of different machine learning models mentioned in Section 5.1 and average the relative accuracy
to indicate the model compatibility of generated data for each dataset. The table shows that the
proposed BC-loss improves the accuracy of classifiers generally compared to original WGAN and
MMD GAN. Moreover, ACGAN performs worst on three out of four datasets and exhibit a significant
deficiency though it is proved to have the state-of-the-art generation quality. This again prove that the
biased objective of ACGAN worsen the model compatibility seriously.The breakdown results and
real accuracy are provided in Appendix B.

To further investigate the advantage of boundary-calibration, we visualize the generated results of
Sensorless in Figure 2. We train a fully-connected neural network with a 2-units hidden layer before
the output layer to project the generated samples to a 2-dimensional embedding space. The projection
classifier is well-trained and achieves over 99% testing accuracy so we can use it to determine
whether a sample is generated with incorrect label. The figure shows that there are less mislabeled
data generated by BWGAN, especially at the center and the bottom-left region. The fact indicates
that boundary-calibration helps GANs generate labeled data more accurately, which may lead to the
improvement of classification accuracy.

5.4 Interpretability

In addition to accuracy, it is also important that the model trained on generated data should give us
the same interpretation of a model trained on the original data. We investigate the interpretability by
two common feature selection techniques. First, we train two random forests on the generated and
original dataset respectively. Each random forest can provide the importances of the features. We
evaluate the consistency of interpretation by calculating precision at Kth, which means how many
features ranked top-k in random forest trained on original data are in the top-k importance feature of
the random forest trained on generated data. The results are shown in Table 2. We provide the results
of training a classifier on the same original data with a different random seed as REAL for comparison.
The effect of BC-loss is not significant in this aspect. However, the scores of ACGAN drop seriously,
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(a) Real
mislabeled = 0.8%

(b) ACGAN
mislabeled = 12.57%

(c) WGAN
mislabeled = 9.35%

(d) BWGAN (proposed)
mislabeled=7.39%

Figure 2: 2D visualization of real and generated Sensorless dataset. The mislabeled points are
emphasized with border lines. The background color indicates the spaces of each class according to
the projection classifier.

Table 2: Precision at K of feature importance ranking compared to the feature importance ranking
obtained from the original dataset

REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN
dataset metric

adult P@10 0.80 0.40 0.80 0.80 0.80 0.70
P@20 0.95 0.45 0.75 0.80 0.85 0.75
P@30 1.00 0.63 0.90 0.90 0.87 0.87

connect4 P@10 0.90 0.30 1.00 1.00 0.90 0.80
P@20 0.90 0.35 0.90 0.85 0.95 0.85
P@30 0.93 0.33 0.83 0.90 0.77 0.83

covertype P@10 0.80 0.30 0.60 0.80 0.30 0.60
P@20 1.00 0.50 0.75 0.85 0.90 0.85
P@30 1.00 0.70 0.93 0.87 0.87 0.87

sensorless P@10 0.80 0.60 0.80 0.90 0.70 0.70
P@20 0.95 0.50 0.75 0.85 0.80 0.85
P@30 1.00 0.80 0.90 0.90 0.87 0.83

which means training a classifier on data generated by ACGAN is somehow dangerous because the
meaning of model may be totally different.

Another way to select feature is training a linear model with `1 regularization. In Table 3 we use
linear SVM with `1 regularization to select features. Then we calculate the F1 score of features
selected by classifiers trained on generated data to known how similar between the two sets of features
selected by classifiers trained on original and generated dataset. The results again shows that using
boundary-calibration does not has significant effect to feature selection and ACGAN is not proper to
generated data for training.

5.5 Image dataset

We further use MNIST and CIFAR-10 dataset to investigate the effectiveness of boundary-calibration
on image datasets. For MNIST, we train six 4-layer convolution neural networks (CNN) with random
sampling half of training data as pre-trained classifiers, and use the same classifier set in Section 5.1
to evaluate model compatibility. For CIFAR-10, we use ResNet56v2 [8] to obtain three pre-trained
classifier and evaluate on CNN and ResNet56v2. In both task, we use DCGAN [28] as network
structure in all GANs. The weight of BC-loss is set to be λ = 1 for these two datasets.

Table 4 and Table 5 show the relative accuracy of classifiers trained on generated data. The proposed
BWGAN still outperforms WGAN with better accuracy in general. The results generated by WGAN
and BWGAN are pictured in Figure 3. The Inception score and Frechet Inception Distance (FID) for
CIFAR-10 are also provided in the caption of Figure 3. Though the difference of quality between the
images generated from WGAN and BWGAN is not significant in visual, the quantitative scores for
quality of generated samples of CIFAR-10 are slightly improved. The results indicate that even though
our method seems not improve the image quality, it is still able to improve the model compatibility
without losing image quality.
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Table 3: F1 score of feature selection by `1-regularized linear SVM
REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN

dataset metric

adult f1 (C=0.01) 0.975 0.571 0.697 0.787 0.795 0.725
f1 (C=0.001) 0.968 0.500 0.737 0.789 0.700 0.789

connect4 f1 (C=0.01) 0.905 0.860 0.889 0.866 0.874 0.831
f1 (C=0.001) 0.933 0.718 0.796 0.739 0.750 0.752

covertype f1 (C=0.01) 0.989 0.923 0.911 0.935 0.730 0.773
f1 (C=0.001) 1.000 0.825 0.912 0.825 0.800 0.815

sensorless f1 (C=0.01) 0.982 0.848 0.900 0.918 0.813 0.844
f1 (C=0.001) 0.815 0.778 0.769 0.733 0.812 0.710

(a) WGAN MNIST (b) BWGAN MNIST

(c) WGAN CIFAR-10 (Inception: 6.00, FID: 49.47) (d) BWGAN CIFAR-10 (Inception: 6.12, FID: 44.93)

Figure 3: Gnerated samples from WGAN and our BWGAN. The images in the same column are in
the same category.

6 Discussion

We introduce an auxiliary loss in GANs which improves the model compatibility of generated
dataset. We prove the new loss is unbiased and is applicable to all variants of GAN to improve
model compatibility. We further demonstrate that our method has clear advantages with a variety of
machine learning models trained on generated dataset. In addition, we investigate the results of feature
selection and found that the BC-loss doesn’t effect the interpretation of machine learning models.
While this work only focus on classification problem, generating data for regression problem is also
worth studying. We hope our work will open the path for GANs with better model compatibility so
that synthetic data can be more useful in practice.

Table 4: Breakdown results on MNIST dataset.
REAL WGAN BWGAN

DT (d=10) 86.6 54.5 (63.0) 48.3 (55.8))
DT (d=20) 88.0 34.5 (39.2) 48.2 (54.8)
Linear SVM 88.0 34.5 (39.2) 48.2 (54.8)
MLP (100) 97.6 96.2 (98.5) 96.8 (99.2)
MLP (200x2) 97.9 96.7 (98.8) 96.1 (98.2)
RF (n=10, d=10) 92.5 75.5 (81.7) 83.7 (90.6)
RF (n=10, d=20) 94.7 67.5 (71.3) 71.5 (75.4)

Avg. 100.0 70.2 75.5

Table 5: Breakdown results on CIFAR-10
dataset.

REAL WGAN BWGAN

CNN 70.8 63.5 (89.8) 63.0 (89.1)
Resnet56v2 77.5 48.8 (62.9) 51.3 (66.2)

Avg. 100.0 76.4 77.6
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A Dataset Information

Table 6: Attributes of UCI datasets
Dataset # of train # of test # of discrete feature # of continuous feature # of class

Adult 32561 16281 123 0 2
Connect-4 54046 13511 126 0 3
Covertype 116203 116202 44 10 7
Sensorless 46807 11702 0 48 11

B Detail Result

B.1 Adult

REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN

DT (d=10) 83.6 (100.0) 80.8 (96.6) 80.3 (96.0) 81.9 (97.9) 79.7 (95.3) 81.2 (97.1)
DT (d=20) 81.2 (100.0) 80.9 (99.6) 75.9 (93.5) 79.9 (98.4) 73.8 (91.0) 75.9 (93.5)
Linear SVM 81.2 (100.0) 80.9 (99.6) 75.9 (93.5) 79.9 (98.4) 73.8 (91.0) 75.9 (93.5)
MLP (100) 84.4 (100.0) 81.8 (96.9) 83.1 (98.5) 83.6 (99.1) 82.9 (98.2) 84.1 (99.7)
MLP (200x2) 84.4 (100.0) 82.0 (97.2) 83.1 (98.5) 83.8 (99.3) 82.6 (97.9) 84.2 (99.8)
RF (n=10, d=10) 83.9 (100.0) 82.6 (98.4) 83.4 (99.4) 83.6 (99.6) 83.5 (99.5) 83.3 (99.3)
RF (n=10, d=20) 84.1 (100.0) 80.7 (96.0) 81.5 (96.9) 83.2 (99.0) 81.5 (96.9) 82.3 (97.8)

Avg. 100.0 97.8 96.6 98.8 95.7 97.2

B.2 Connect4

REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN

DT (d=10) 74.7 (100.0) 64.1 (85.8) 67.7 (90.7) 69.5 (93.1) 66.7 (89.3) 68.5 (91.7)
DT (d=20) 76.3 (100.0) 64.1 (83.9) 60.9 (79.8) 64.9 (85.1) 61.4 (80.4) 64.1 (84.0)
Linear SVM 76.3 (100.0) 64.1 (83.9) 60.9 (79.8) 64.9 (85.1) 61.4 (80.4) 64.1 (84.0)
MLP (100) 84.2 (100.0) 66.0 (78.4) 74.7 (88.7) 73.7 (87.6) 72.2 (85.8) 72.8 (86.5)
MLP (200x2) 85.7 (100.0) 66.6 (77.7) 74.5 (86.9) 73.7 (86.0) 71.9 (83.8) 72.9 (85.0)
RF (n=10, d=10) 73.0 (100.0) 66.8 (91.6) 71.4 (97.8) 70.4 (96.4) 70.1 (96.0) 68.3 (93.6)
RF (n=10, d=20) 79.2 (100.0) 67.0 (84.6) 70.7 (89.3) 70.8 (89.4) 69.8 (88.1) 68.9 (87.0)

Avg. 100.0 83.7 87.6 88.9 86.3 87.4

B.3 Covertype

REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN

DT (d=10) 77.1 (100.0) 37.8 (49.1) 65.6 (85.1) 68.9 (89.4) 65.5 (84.9) 66.7 (86.5)
DT (d=20) 86.9 (100.0) 39.4 (45.3) 62.9 (72.3) 67.2 (77.3) 62.2 (71.6) 63.4 (73.0)
Linear SVM 86.9 (100.0) 39.4 (45.3) 62.9 (72.3) 67.2 (77.3) 62.2 (71.6) 63.4 (73.0)
MLP (100) 80.6 (100.0) 54.0 (67.0) 67.5 (83.8) 69.9 (86.7) 62.5 (77.5) 66.2 (82.2)
MLP (200x2) 89.2 (100.0) 53.6 (60.1) 66.5 (74.5) 68.3 (76.5) 58.8 (65.9) 65.1 (73.0)
RF (n=10, d=10) 73.8 (100.0) 38.6 (52.2) 67.2 (91.0) 69.5 (94.1) 68.0 (92.1) 67.8 (91.8)
RF (n=10, d=20) 86.2 (100.0) 38.6 (44.8) 67.2 (77.9) 69.7 (80.8) 65.9 (76.4) 68.3 (79.2)

Avg. 100.0 52.0 79.6 83.2 77.1 79.8

B.4 Sensorless
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REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN

DT (d=10) 96.3 (100.0) 75.8 (78.7) 77.9 (80.8) 87.2 (90.5) 82.3 (85.5) 82.6 (85.8)
DT (d=20) 98.4 (100.0) 75.4 (76.7) 68.3 (69.5) 89.6 (91.1) 81.3 (82.6) 83.8 (85.2)
Linear SVM 98.4 (100.0) 75.4 (76.7) 68.3 (69.5) 89.6 (91.1) 81.3 (82.6) 83.8 (85.2)
MLP (100) 93.6 (100.0) 72.8 (77.8) 87.8 (93.8) 89.8 (96.0) 82.4 (88.0) 84.9 (90.6)
MLP (200x2) 98.7 (100.0) 76.8 (77.8) 90.5 (91.7) 93.7 (94.9) 85.4 (86.5) 87.7 (88.8)
RF (n=10, d=10) 98.4 (100.0) 76.2 (77.5) 92.1 (93.6) 92.5 (94.1) 87.9 (89.4) 88.7 (90.2)
RF (n=10, d=20) 99.8 (100.0) 77.1 (77.3) 93.3 (93.6) 95.6 (95.8) 89.2 (89.4) 90.8 (91.0)

Avg. 100.0 77.5 84.6 93.3 86.3 88.1

13


	Introduction
	Model compatibility in classification
	Related work
	Boundary-Calibration GAN
	Boundary Calibration
	Analysis of optimal solution
	Comparison to MMD GAN

	Experiments
	Experimental settings
	2D Toy Dataset
	UCI dataset
	Interpretability
	Image dataset

	Discussion
	Dataset Information
	Detail Result
	Adult
	Connect4
	Covertype
	Sensorless


