000 TRI-COMPARISON EXPERTISE DECISION FOR DRUG-TARGET INTERACTION MECHANISM PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine-learned interactions between drugs and human protein targets play a crucial role in efficient and accurate drug discovery. However, the drug-target interaction (DTI) mechanism prediction is actually a multi-class classification problem, which follows a long-tailed class distribution. Existing methods simply address whether interactions can occur and rarely consider the long-tailed DTI mechanism classes. In this paper, we introduce TED-DTI, a novel DTI prediction framework incorporating the divide-and-conquer strategy with tri-comparison options. Specifically, to reduce the learning difficulty of tail classes, we propose an expertise-based divide-and-conquer decision approach that combines the results of multiple independent expertise models for sub-tasks decomposed from the original prediction task. In addition, to enhance the discrimination of similar mechanism classes, we devise a tri-comparison learning strategy that defines the sub-task as the classification of triple options, such as expanding the classification task for classes A and B to include an extra "Neither of them" option. Extensive experiments conducted on various DTI mechanism datasets quantitatively demonstrate the proposed method achieves an approximately 13% performance improvement compared with the other state-of-the-art methods. Moreover, out method exhibits an obvious superiority on the tail classes. Further analysis about the evolvability and generalization of the proposed method reveals the significant potential to be deployed in real-world scenes. Our data and code is included in the Supplementary Materials and will be publicly released after the paper acceptance.

029 031 032

033

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

INTRODUCTION 1

034 By identifying and developing new pharmaceutical compounds, drug discovery promises to offer breakthrough treatments, improve patient outcomes, and ultimately save lives. In this process, drug-035 target interactions (DTI) play a critical role, as they provide crucial insights into the mechanisms of action and efficacy of potential drugs, guiding the design and optimization of therapeutic inter-037 ventions (Keiser et al., 2009; Langedijk et al., 2015). Although the existence of interactions can be reliably confirmed through in vitro binding assays (Liu et al., 2015; 2016; Kang et al., 2016; Yang et al., 2017), the identification process of DTI is significantly time- and resource-consuming (Ullrich 040 et al., 2016) due to the vast search space of chemical compounds. This barrier limits the application 041 of DTI to large-scale disease treatment data. One alternative is using in silico approaches such as 042 docking simulations. Docking simulations consider the 3D structure of drug molecules and targets 043 and identify potential binding sites, which can be experimentally verified. However, the simulation 044 process is still time-consuming (Peska et al., 2017), which typically ranges from a few minutes to several hours. Meanwhile, it cannot be applied if the protein's 3D structure is unknown (Jacob & Vert, 2008; Yamanishi et al., 2008). 046

047 In recent years, the rapid advancements in deep learning methods have yielded a significant break-048 through in the computational DTIs, mainly due to the growing availability of extensive biomedical data and domain-specific knowledge. In general, these deep learning-based models (Nath et al., 2018; Lee et al., 2019; Huang et al., 2020a;b; Bai et al., 2023) take the biochemical feature informa-051 tion of drug compounds and target proteins as the input, and output a binary prediction result. These models automatically establish a reasonable and robust mapping relationship between the feature 052 representations and interaction labels, thus enabling large-scale DTI validation within a relatively short time (Gao et al., 2018), thereby accelerating drug discovery processes.

054 Although deep learning is widely recognized as the most promising method for DTI prediction in 055 current research, existing approaches primarily focus on directly predicting the interactions between 056 drug molecules and target proteins, treating it as a simple binary classification problem. In contrast, 057 the prediction of DTI mechanisms involves multiple mechanism types and exhibits a long-tailed 058 class distribution, which arises with the reason that common action types such as inhibitor (Harding et al., 2018) account for the majority of the available data in the clinical scenes, while rarer interactions such as channel blocker (Harding et al., 2018) are represented in fewer pairs. This uneven 060 distribution leads to some mechanism classes being underrepresented in the datasets, making it chal-061 lenging for deep models to learn effectively. These current DTI methods overlook and inadequately 062 address this issue, resulting in limited predictive capability for lesser-represented classes. Further-063 more, existing long-tailed classification methods (Zhang et al., 2023) leverage the class-balanced 064 re-sampling strategies but often fail to effectively discern the classification boundaries among dif-065 ferent mechanism classes as the number of classes increases, thereby limiting their discriminative 066 ability. The decision boundary between any two classes is contaminated with information from other 067 classes, leading to relatively poor overall prediction performance, which undermines the reliability 068 of DTI predictions. Hence, a robust strategy is needed to model multiple clear class boundaries.

069 To address these challenges, this paper proposes a novel tri-comparison expertise decision method for long-tailed DTI mechanism prediction. First, we adopt the divide-and-conquer strategy and 071 decompose the multi-classification task into pairwise easier-to-learn sub-tasks. Each sub-task is 072 handled by a specific expertise model, thus ensuring that head classes do not dominate the resources 073 of tail classes, thereby rendering the long-tailed task fair and relatively simple to solve. Next, we 074 devise a tri-comparison expertise training strategy for these sub-tasks, which introduces a novel class 075 called Neither and thus expand the classification task from class \mathcal{A}/\mathcal{B} to $\mathcal{A}/\mathcal{B}/Neither$, thereby enhancing the credible decision boundary between classes. Meanwhile, this strategy aids in feature 076 learning for class \mathcal{A} and \mathcal{B} by supplementing a large number of samples from class *Neither*. Finally, 077 a class-balanced decision voting module combines the results from all expertise models, yielding an accurate overall prediction. Experiment results on different datasets show that the proposed method 079 achieves superior performance compared to existing approaches, demonstrating its effectiveness and 080 robustness in handling various real-world scenarios. 081

The main contributions of this work include (1) introducing a novel Tri-Comparison Expertise Decision approach, namely *TED-DTI*, for long-tailed DTI mechanism prediction; (2) devising a tricomparison expertise training strategy to enhance the credible decision boundary between classes, along with proposing a class-balanced decision voting module for further expertise combination; (3) conducting extensive experiments to verify the effectiveness and efficiency of TED-DTI, demonstrating its superiority in real-world datasets.

088

2 RELATED WORK

090 091 092

093

094

095

The research aim is to predict long-tailed DTI mechanisms. Hence in this section, we separately elaborate on the related work from DTI prediction and long-tailed classification. Moreover, the classic machine learning strategies, including One-vs-One and One-vs-Rest, are introduced for investigation, although no related work has hitherto been found to apply these strategies to DTI task.

Drug-Target Interaction. The latest advancements in artificial intelligence have motivated re-096 searchers to employ deep learning methodologies for predicting interactions between drugs and targets. DeepPurpose (Huang et al., 2020a) supports rapid prototyping of customized DTI predic-098 tion models with classic encoder-decoder architecture. DeepConv-DTI (Lee et al., 2019) extracts local residue patterns of target protein sequences with a conventional network, similar to the in-100 frastructure of DeepPurpose. MolTrans (Huang et al., 2020b) introduces a knowledge-inspired sub-101 structural pattern mining algorithm for enhanced precision and interpretability in DTI prediction. 102 DrugBAN (Bai et al., 2023) utilizes a bilinear attention mechanism to learn pairwise local interac-103 tions between drugs and targets and adapt to out-of-distribution data. BINDTI (Peng et al., 2024) 104 leverages a bi-directional intention network to effectively integrate drug and protein features. In 105 addition, BioT5+ (Pei et al., 2024) is a cross-modal pre-trained large language model (LLM) with 252M parameters, designed to enhance cross-modal integration in biology by incorporating chemi-106 cal knowledge and natural language associations, making it suitable for DTI tasks. We aim to adopt 107 the divide-and-conquer perspective in DTI mechanism prediction task for practical drug discovery.

108 Long-tailed Classification. Long-tailed class imbalance, which is a common problem in practical 109 visual recognition tasks, often limits the practicality of deep network-based recognition models in 110 real-world applications. As a mainstream paradigm in long-tailed learning to address the problem of 111 easily performing poorly on tail classes, class re-balancing (Zhang et al., 2023) seeks to re-balance 112 the negative influence brought by the class imbalance in training sample numbers. This type of methods has three main sub-categories: re-sampling (Ren et al., 2020) aims to re-balance classes by 113 adjusting the number of samples per class in each sample batch for model training; class-sensitive 114 learning (Cao et al., 2019; Cui et al., 2019; Lin et al., 2017; Tan et al., 2020) seeks to particularly 115 adjust the training loss values for various classes to re-balance the uneven training effects caused by 116 the imbalance issue; logit adjustment (Hong et al., 2021; Li et al., 2022) seeks to resolve the class 117 imbalance by adjusting the prediction logits of a class-biased deep model. 118

Classic Machine Learning Strategy. The 119 classic algorithms related to our work include 120 the One-vs-One (OvO) strategy (Allwein et al., 121 2000; Wu et al., 2003; Galar et al., 2015) and 122 the One-vs-Rest (OvR) strategy (Hong & Cho, 123 2008). OvO strategy is a common and estab-124 lished technique in machine learning to deal 125 with multi-class classification problems. It con-126 sists of dividing the original multi-class prob-127 lem into easier-to-solve binary sub-tasks con-128 sidering each possible pair of classes. Simi-129 larly, the OvR strategy aims to decompose the original problem, but it does so by splitting the 130

Figure 1: Comparison of the OvO model and the proposed Tri-Comparison Expertise strategy.

131 multi-class problem into a binary classification task for each class.

132 However, the OvR strategy exacerbates data imbalance by comparing one class (positive) against 133 all other classes (negative), a challenge that is particularly severe under long-tailed distributions. 134 Moreover, the strict division between positive and negative samples often leads to rigid decision 135 boundaries, resulting in overfitting on head classes and limiting generalization to tail classes. Similarly, while the OvO strategy mitigates data imbalance to some extent by modeling each class pair 136 separately, each classifier is trained only on its corresponding class pair, lacking the ability to handle 137 unrelated samples effectively, making it vulnerable to noise or irrelevant data. Therefore, to address 138 this dilemma, we propose a novel and powerful tri-comparison expertise method to tackle the sub-139 tasks, with the main differences between the two strategies illustrated in Figure 1. The introduction 140 of the class Neither in the proposed Tri-Comparison Expertise strategy achieves clearer decision 141 boundaries than the original OvO model for classification tasks, while also enriching the dataset 142 with additional samples to obtain more robust feature representations for classes A and B. 143

144 145

146

3 PROBLEM FORMULATION

In this paper, the task is to determine which mechanism the drug-target pairs obtained from drug compound set and target protein set interact through. For each pair in the dataset, it is assigned a ground truth label $y \in \{1, 2, ..., N\}$ where N is the number of DTI mechanism classes¹. Due to clinical challenges, DTI mechanism prediction is a highly imbalanced multi-class classification task.

For the drug compound \mathcal{M} , it is represented by simplified molecular-input line-entry system (SMILES) (Weininger, 1988), which is a 1D sequence describing chemical information of the compound. Due to the lost structural information of 1D sequence, the drug SMILES can also be converted into the corresponding 2D molecular graph. Specifically, a drug molecular graph is defined as $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of atoms and \mathcal{E} is the set of chemical bonds. For the target protein \mathcal{T} , each protein sequence is generally denoted as $\mathcal{T} = \{t_1, t_2, ..., t_o, ..., t_{|\mathcal{T}|}\}$, where each token t_o represents one of the 23 amino acids.

In general, given a drug molecule \mathcal{M} and a protein sequence \mathcal{T} , DTI mechanism prediction aims to learn a model to map the joint feature representation space to multi-class mechanism probability vector $p_{(\mathcal{M},\mathcal{T})} \in \mathbb{R}^N$, where $p_{(\mathcal{M},\mathcal{T})}[n] \in [0,1]$ represents the probability scalar of the n^{th} class.

¹For clarification, important notations in this paper are summarized at Appendix Table 4.

Figure 2: Illustration of the proposed TED-DTI. (a) Pipeline of TED-DTI method. In the training 178 stage, the collected drug and target database are firstly decomposed into different datasets to suit for the corresponding sub-tasks. Then, all the tri-comparison expertise models are trained with the assigned task data and give the prediction results for sub-tasks (A/B/C/E in Step II denote different DTI mechanism classes for simplicity). In the inference stage, all expertise results are combined and thus voted for the original task to determine the probabilities of N mechanisms. (b) A specific example of the expertise model for classifying "Antagonist", "Agonist", or "Neither" of them.

186

176 177

179

181

182

4 PROPOSED MODEL

187 DTI mechanism prediction is a long-tailed multi-class classification problem with similarities among 188 different classes, resulting in fuzzy classification boundaries and difficulty in representation learning 189 of tail classes. In this section, we introduce TED-DTI, a novel tri-comparison expertise decision 190 approach to address the above problems. As shown in Figure 2, TED-DTI is divided into three 191 parts: task decomposition, tri-comparison expertise training and class-balanced decision voting.

192 193

194

4.1 TASK DECOMPOSITION

Following the divide-and-conquer strategy, the original task's N classes are decomposed into pair-195 wise sub-tasks before putting in training, and the corresponding datasets are processed simultane-196 ously. Each sub-task aims for the classification of only two classes, such as class A and B. Ulti-197 mately, we obtain $C_N^2 = \frac{N*(N-1)}{2}$ sub-tasks and their respective datasets. The process details can be found at Appendix A.1. 199

200 201

4.2**TRI-COMPARISON EXPERTISE TRAINING**

202 To alleviate the challenges posed by long-tailed distribution for DTI mechanism prediction, a 203 novel class, denoted as *Neither*, is introduced as the third option for each sub-task, alongside the 204 selected classes A and B. This class contains samples that do not belong to either of the two classes. 205 In the following paper, we will refer to it as \mathcal{N}_{\otimes} for short. 206

Specifically, each expertise model is responsible for performing the simple tri-comparison task of 207 determining whether the interaction sample belongs to class \mathcal{A}, \mathcal{B} or \mathcal{N}_{\otimes} . The expertise model is 208 based on the classic encoder-decoder architecture. As illustrated in Figure 2b, the encoding module 209 comprises two encoders that process the drug SMILES and target protein sequence, respectively. 210 The decoding module takes the combined drug and protein representations from the encoders as 211 input, and thus predicts its label belonging to $\{\mathcal{A}, \mathcal{B}, \mathcal{N}_{\otimes}\}$. 212

Drug encoder. Taken the drug SMILES \mathcal{M} as the input, the string is first converted to the molecular 213 graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$. Atoms in the drug compound are represented as the $f_{\mathcal{M}}$ -dimensional vector 214 $\mathbf{X}_{\mathcal{M}}^{(0)} \in \mathbb{R}^{|\mathcal{V}| \times f_{\mathcal{M}}}$ to describe the chemical properties. Vanilla Graph Conventional Network (GCN) 215 (Kipf & Welling, 2016) is adopted as the backbone autoencoder to extract the representation of the graph \mathcal{G} . The initial atom feature $\mathbf{X}_{\mathcal{M}}^{(0)}$ is updated by aggregating the feature vectors of neighborhood atoms through chemical bonds. The propagation mechanism of each GCN layer works as follows:

$$\mathbf{X}_{\mathcal{M}}^{(l+1)} = \sigma(\mathbf{A}\mathbf{X}_{\mathcal{M}}^{(l)}\mathbf{W}_{\mathcal{M}}^{(l)} + \mathbf{b}_{\mathcal{M}}^{(l)}),$$

(1)

where $\mathbf{X}_{\mathcal{M}}^{(l)}$, $\mathbf{X}_{\mathcal{M}}^{(l+1)}$ are the hidden atom feature vectors of the l^{th} and $(l+1)^{th}$ GCN layer, respectively; $\mathbf{W}_{\mathcal{M}}^{(l)}$, $\mathbf{b}_{\mathcal{M}}^{(l)}$ are the learnable weight matrix and bias vector of the l^{th} GCN layer; **A** represents the adjacency matrix of atoms in the drug graph \mathcal{G} ; $\sigma(\cdot)$ represents nonlinear activation function, specially ReLU.

After the total number $L_{\mathcal{M}}$ of GCN layers, the weighted sum and max pooling method is applied to the output atom representations $\mathbf{X}_{\mathcal{M}}^{(L_{\mathcal{M}})}$. As a result, the $d_{\mathcal{M}}$ -dimensional feature vector $\mathbf{Z}_{\mathcal{M}} \in \mathbb{R}^{d_{\mathcal{M}}}$ of the drug \mathcal{M} is generated for the decoder stage, which is denoted as follows:

$$\mathbf{Z}_{\mathcal{M}} = \text{Pooling}(\mathbf{X}_{\mathcal{M}}^{(L_{\mathcal{M}})}).$$
(2)

Target protein encoder. Taken the one-dimensional protein sequence \mathcal{T} as the input, the sequence string is first converted to an integer vector as the initialized $f_{\mathcal{T}}$ -dimensional embedding $\mathbf{X}_{\mathcal{T}}^{(0)} \in \mathbb{R}^{f_{\mathcal{T}}}$. Then, the 1D CNN model (Kiranyaz et al., 2021) is used to extract the protein representation. The propagation mechanism of each CNN layer works as follows:

$$\mathbf{X}_{\mathcal{T}}^{(l+1)} = \sigma(\text{CNN}(\mathbf{X}_{\mathcal{T}}^{(l)}, d_{in}^{(l)}, d_{out}^{(l)}, k^{(l)})),$$
(3)

where $\mathbf{X}_{\mathcal{T}}^{(l)}$, $\mathbf{X}_{\mathcal{T}}^{(l+1)}$ are the hidden feature vectors of the l^{th} and $(l+1)^{th}$ CNN layer, respectively; $d_{in}^{(l)}$, $d_{out}^{(l)}$, $k^{(l)}$ are the number of channels in the input, number of channels produced by the convolution and the convolving kernel size of the l^{th} CNN layer; $\sigma(\cdot)$ represents nonlinear activation function, specially ReLU.

After the total number $L_{\mathcal{T}}$ of CNN layers, the $d_{\mathcal{T}}$ -dimensional feature vector of target protein $\mathbf{Z}_{\mathcal{T}} \in \mathbb{R}^{d_{\mathcal{T}}}$, which is equal to $\mathbf{X}_{\mathcal{T}}^{(L_{\mathcal{T}})}$, is generated for the decoder stage.

244 **Decoder for DTI prediction.** As the decoder, a total of *L*-layer Multi-Layer Perceptron (MLP) 245 (Murtagh, 1991) network uses the joint representation $\mathbf{Z}^{(0)} \in \mathbb{R}^{d_{\mathcal{M}}+d_{\mathcal{T}}}$ generated by the combina-246 tion of $\mathbf{Z}_{\mathcal{M}}$ and $\mathbf{Z}_{\mathcal{T}}$ to predict the probabilities of the final three classes $p \in \mathbb{R}^3$, which is calculated 247 as follows:

$$\mathbf{Z}^{(l+1)} = \sigma(\mathrm{MLP}(\mathbf{Z}^{(l)}, \mathbf{W}^{(l)}, \mathbf{b}^{(l)})), \hat{p} = \mathrm{Softmax}(\mathbf{Z}^{(L)}),$$
(4)

where $\mathbf{Z}^{(l)}$, $\mathbf{Z}^{(l+1)}$ are the hidden feature vectors of the l^{th} and $(l+1)^{th}$ MLP layer, respectively; $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$ are the learnable weight matrix and bias vector of the l^{th} MLP layer; $\sigma(\cdot)$ represents nonlinear activation function, specially ReLU; Softmax(\cdot) represents nonlinear activation function; \hat{p} represents the probability vector of three prediction classes, i.e. $\mathcal{A}/\mathcal{B}/\mathcal{N}_{\otimes}$.

Training loss. After that, the training loss for each tri-comparison expertise model is calculated as follows: $\mathcal{L} = -\frac{1}{3} \sum_{n=1}^{3} p_n \log(\hat{p}_n)$, where \hat{p}_n, p_n denotes the probability and true label of the n^{th} class, respectively. Note that, the goal of each model is to classify the three classes $\mathcal{A}/\mathcal{B}/\mathcal{N}_{\otimes}$.

258 4.3 CLASS-BALANCED DECISION VOTING

During the inference stage, the triple-option prediction results obtained from all expertise models cannot be simply combined with the voting strategy as introduced in traditional OvO. To this end, we propose a novel class-balanced decision voting strategy to effectively amalgamate the predictions of all these expertise models. Specifically, we obtain $C_N^2 = \frac{N*(N-1)}{2}$ initial prediction results $\mathbf{Q} \in \mathbb{R}^{\frac{N*(N-1)}{2}}$ from the expertise models, which is defined as follows:

257

259

219

225

226

227 228

229 230

231

232

233

234 235

248 249

$$\mathbf{Q} = (q_{12}, q_{13}, \cdots, q_{1N}, q_{23}, \cdots, q_{2N}, \cdots, q_{N-1,N}),$$
(5)

where $q_{i,j} \in \{-1,0,1\}$ represents the prediction result for the sub-task of classifying class *i* and class *j*.

Next, the final voting vector $\mathbf{Y} \in \mathbb{R}^N$ of N classes is updated with three possible outputs based on the reward-penalty strategy as follows:

270 • if $q_{i,j}$ is 0, which indicates that class i is the output label, the reward β_R is allocated to the 271 voting score of class *i*, denoted as \mathbf{Y}_i ; 272 • if $q_{i,j}$ is 1, which indicates that class j is the output label, the reward β_R is allocated to the 273 voting score of class j, denoted as \mathbf{Y}_{i} ; 274 • if $q_{i,j}$ is -1, which indicates that class \mathcal{N}_{\otimes} is the output label, the penalty score is allocated 275 to both \mathbf{Y}_i and \mathbf{Y}_j . To compute the penalty score, a class-balanced weight vector $\mathbf{H} \in \mathbb{R}^N$ 276 is multiplied with the base penalty score β_P . Specifically, **H** assigns a weight to each class 277 to ensure a fair evaluation of their contributions. The weight for class n, denoted as \mathbf{H}_n , is determined by the formula $\mathbf{H}_n = \frac{\frac{1}{S_n}}{\sum_{k=1}^{N} \frac{1}{S_k}}$, where S_n represents the sample number of 278 279 class n, and N is the total number of classes 281 After iterating through the predictions of all expertise models, the vote scores for all classes are 282 tallied and the class with the highest score is selected as the final prediction \hat{y} . Detailed voting 283 algorithm can be found at Appendix Algorithm 2. 284 285 4.4 INFERENCE PROCESS OF TED-DTI 287 Given the above expertise training and class-balanced decision voting modules, the inference process 288 of TED-DTI is thus illustrated for a clear understanding as follows: 289 Algorithm 1 Example for the inference process of TED-DTI. 290 291 **Input:** Drug \mathcal{M} with its molecular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$; Target protein \mathcal{T} with its sequence 292 $\{t_1, t_2, ..., t_o, ..., t_{|\mathcal{T}|}\}$; The parameter set of all the trained expertise models θ . **Output:** Final prediction DTI mechanism class $\hat{y}_{(\mathcal{M},\mathcal{T})}$. 293 1: Initialize the drug feature $\mathbf{X}_{\mathcal{M}}^{(0)}$ and protein feature $\mathbf{X}_{\mathcal{T}}^{(0)}$ with the corresponding bio-knowledge. 294 295 2: for each sub-task for classifying class pair (i, j) do $\theta_G, \theta_C, \theta_M \leftarrow \boldsymbol{\theta}_{i,j}$ 296 3: $\mathbf{Z}_{\mathcal{M}} \leftarrow \operatorname{GCN}(\mathbf{X}_{\mathcal{M}}^{(0)}, \mathcal{G}, \theta_G); \\ \mathbf{Z}_{\mathcal{T}} \leftarrow \operatorname{CNN}(\mathbf{X}_{\mathcal{T}}^{(0)}, \theta_C); \\ q_{i,j} \leftarrow \operatorname{MLP}(\mathbf{Z}_{\mathcal{M}}, \mathbf{Z}_{\mathcal{T}}, \theta_M). \end{cases}$ 297 4: 298 5: 299 6: 300 7: end for 301 8: Class-balanced decision voting for all expertise results \mathbf{Q} to get the voting results \mathbf{Y} for all N 302 classes. 303 9: return $\hat{y}_{(\mathcal{M},\mathcal{T})} \leftarrow \operatorname{argmax}(\mathbf{Y})$ 304 305 306 4.5 THEORETICAL ANALYSIS 307 308 The tri-comparison strategy provides a comprehensive solution for multi-class classification, particularly in long-tailed tasks like DTI mechanism prediction. By integrating decision boundary theory and error decomposition, it enhances both performance and generalization. 310 311 In traditional binary classification, decision boundaries (e.g., $f_{i,j}(x)$ for classes i and j) often suffer 312

from noise and bias due to overlapping regions from unrelated samples, especially in long-tailed distributions. The tri-comparison strategy addresses this by introducing class \mathcal{N}_{\otimes} , with a new decision boundary $f_{\mathcal{N}_{\otimes}}(x)$, creating three distinct regions: $\mathbb{R}^d = \{x : f_i(x) > f_{\mathcal{N}_{\otimes}}(x)\} \cup \{x : f_j(x) > f_{\mathcal{N}_{\otimes}}(x)\} \cup \{x : f_{\mathcal{N}_{\otimes}}(x) > \max(f_i(x), f_j(x))\}$ This refinement in decision boundaries reduces the noise caused by ambiguous samples, ensuring clearer separation between classes and laying a foundation for improved classification accuracy.

318 Furthermore, in binary classification, the overall error ϵ_{binary} is dominated by the false negative rate **319** of minority classes and the false positive rate of majority classes. By explicitly isolating unrelated **320** samples into class \mathcal{N}_{\otimes} , the classification error is redefined as $\epsilon_{\text{tri}} = \epsilon_{\text{false positive}} + \epsilon_{\text{false negative}} + \epsilon_{\mathcal{N}_{\otimes}}$. **321** This separation reduces the overlap between positive and negative classes, significantly lowering **322** $\epsilon_{\text{false positive}}$ and $\epsilon_{\text{false negative}}$, and consequently decreasing the total error. The tri-comparison strategy **323** thus moves beyond simple noise reduction, actively addressing imbalances in class representation to improve classification reliability.

5 EXPERIMENTS

324

347

348

349

5.1 EXPERIMENTAL SETTINGS

330 331 Datasets. The International Union of Basic 332 and Clinical Pharmacology/British Pharmaco-333 logical Society Guide to PHARMACOLOGY 334 database (GtoPdb) (Harding et al., 2018) is used for the DTI mechanism prediction experi-335 ments. Due to the presence of numerous miss-336 ing essential items in the original dataset, we 337 first preprocess the dataset before putting it into 338 training. After that, we get 13,381 data pairs in 339 the (drug SMILES, target sequence, DTI mech-340 anism class) triplet format, in which the former 341 two are used as the model input and the latter as 342 the ground truth label. Figure 3 shows the eight 343 DTI mechanism classes of GtoPdb dataset and 344 the corresponding sample numbers. The details of data preprocessing are provided at Ap-345 pendix B.1. 346

Moreover, as a large and open-access drug discovery database, ChEMBL (Mendez et al., 2018) contains abundant DTI information from

Figure 3: Detailed information of GtoPdb dataset and its corresponding DTI mechanism classes.

the real-world scenes. However, the samples with complete mechanism label information are lim ited. After screening, 829 data triplets from ChEMBL are obtained as the real-world data for inde pendent and challenging external test and thus preprocessed with the same strategy as GtoPdb.

For further validation of generalizability, the samples related to G-protein coupled receptors (GPCRs) is separately collected from GtoPdb, namely GtoPdb-GPCRs. Essentially, GtoPdb-GPCRs is a subset of GtoPdb. As the primary target receptor of human body (about 50% of drugs currently on the market), GPCRs (Overington et al., 2006) have been studied for the agonistic, antagonistic or inactive mechanisms against different drugs. Ultimately, 5,111 GPCRs triplets are obtained for generalizability validation. Detailed information for dataset details is provided at Appendix B.2.

Metrics. To evaluate the method performance on DTI mechanism prediction, Accuracy and F1 score are employed for model ability to provide a comprehensive assessment for the multi-class classification task, with Accuracy measuring overall correctness and F1 score balancing precision and recall to address potential class imbalances. Furthermore, for few-sample problem, we validate only the classification performance between extreme tail class and all the other classes, thus framing the task as a binary prediction and utilizing AUROC for robust predictions of tail classes.

Implementation Details. To accurately evaluate model performance and prevent overfitting, we use 5-fold cross-validation to train models only used the GtoPdb training set, and we evaluate model performance on both the GtoPdb test set (internal test) and the entire ChEMBL dataset (external test) using the trained models. Adam optimizer is adopted to optimize all parameters of the model with a learning rate of 0.001. The batch size is setting to 32. The Cross Entropy loss function is used to measure model performance in the expertise training stage. Details are provided at Appendix B.4.

Baselines. To verify the effectiveness of TED-DTI, we compare it with the SOTA methods from three perceptives: Drug-Target Interaction. Five current advanced deep learning methods are adopted, including DeepPurpose, DeepConv-DTI, MolTrans, DrugBAN, BINDTI, and a cross-modal LLM BioT5+. Note that we implement the pair combination of 7 drug encoders and 7 target encoders to display the performance of DeepPurpose. Long-tailed Learning. Long-tailed methods are selected base on accessible source codes and no non-trivial modifications. Then, eight methods are empirically evaluated in this paper, including Balanced Softmax, Weighted Softmax, Focal Loss, Equalization loss (ESQL), LADE, Class-balanced loss (CB), GCL, LDAM. Classic Machine

380

381

382

402

403

404 405 406

407

Table 1: Performance comparison on the GtoPdb and ChEBML datasets. "DTI" indicates the drugtarget interaction methods; "LTL" indicates long-tailed learning based methods; "CML" indicates classic machine learning methods (OvO & OvR). All results are presented as "mean±standard deviation" and the best result for each dataset and metric is marked in **bold**. Δ in the last line indicates the performance improvement (in %) of our method compared to the suboptimal method.

<u>.</u> Tumo	Mathada	Deference	Gto	GtoPdb		ChEBML	
Type	Methods Reference		Accuracy↑	F1 score↑	Accuracy↑	F1 score↑	
	DeepConv-DTI	(Lee et al., 2019)	$0.898_{\pm 0.022}$	$0.791_{\pm 0.032}$	$0.922_{\pm 0.028}$	$0.634_{\pm 0.098}$	
	DeepPurpose	(Huang et al., 2020a)	$0.907_{\pm 0.008}$	$0.804_{\pm 0.031}$	$0.939_{\pm 0.006}$	$0.559_{\pm 0.041}$	
DTI	MolTrans	(Huang et al., 2020b)	$0.901_{\pm 0.004}$	$0.792_{\pm 0.018}$	$0.873_{\pm 0.011}$	$0.577_{\pm 0.048}$	
	DrugBAN	(Bai et al., 2023)	$0.908_{\pm 0.004}$	$0.803 _{\pm 0.016}$	$0.959_{\pm 0.005}$	$0.691 _{\pm 0.076}$	
	BINDTI	(Peng et al., 2024)	$0.908_{\pm 0.002}$	$0.806_{\pm 0.028}$	$0.934_{\pm 0.006}$	$0.676_{\pm 0.029}$	
	Weighted Softmax	-	$0.911_{\pm 0.003}$	$0.813_{\pm 0.014}$	$0.947_{\pm 0.003}$	$0.591_{\pm 0.070}$	
	Focal Loss	(Lin et al., 2017)	$0.914_{\pm 0.003}$	$0.808_{\pm 0.023}$	$0.944_{\pm 0.008}$	$0.610_{\pm 0.076}$	
	CB	(Cui et al., 2019)	$0.913_{\pm 0.004}$	$0.809_{\pm 0.011}$	$0.946_{\pm 0.006}$	$0.651_{\pm 0.058}$	
ITI	LDAM	(Cao et al., 2019)	$0.910_{\pm 0.005}$	$0.813_{\pm 0.018}$	$0.945_{\pm 0.005}$	$0.618_{\pm 0.057}$	
	ESQL	(Tan et al., 2020)	$0.911_{\pm 0.004}$	$0.808_{\pm 0.021}$	$0.947_{\pm 0.005}$	$0.563_{\pm 0.083}$	
	Balanced Softmax	(Ren et al., 2020)	$0.906_{\pm 0.007}$	$0.794_{\pm 0.022}$	$0.935_{\pm 0.014}$	$0.535_{\pm 0.045}$	
	LADE	(Hong et al., 2021)	$0.915_{\pm 0.004}$	$0.804_{\pm 0.021}$	$0.952_{\pm 0.005}$	$0.699_{\pm 0.097}$	
	GCL	(Li et al., 2022)	$0.913_{\pm 0.004}$	$0.816_{\pm 0.016}$	$0.945_{\pm 0.010}$	$0.605_{\pm 0.044}$	
	SVM-based OvO	(Cortes & Vapnik, 1995)	$0.831_{\pm 0.036}$	$0.682_{\pm 0.039}$	$0.856_{\pm 0.038}$	$0.507_{\pm 0.049}$	
CML	GCN-based OvO	(Kipf & Welling, 2016)	$0.916_{\pm 0.004}$	$0.812_{\pm 0.030}$	$0.955_{\pm 0.007}$	$0.648_{\pm 0.129}$	
	GCN-based OvR	(Kipf & Welling, 2016)	$0.887_{\pm 0.010}$	$0.732_{\pm 0.049}$	$0.910_{\pm 0.015}$	$0.566_{\pm 0.051}$	
Ours	TED-DTI	-	$0.924_{\pm 0.004}$	$0.834_{\pm 0.012}$	$0.961_{\pm 0.003}$	$0.789_{\pm 0.040}$	
Juis	Δ	-	+0.87%	+2.21%	+0.21%	+12.88%	

Learning strategy. The OvO methods are implemented using different backbone models, including Support Vector Machine (SVM) and GCN². Similarly, the OvR method is implemented with GCN.

5.2 QUANTITATIVE ANALYSIS

Performance Comparison with SOTAs. As illustrated in Table 1, the performance results for DTI 408 mechanism prediction on the GtoPdb dataset indicate that TED-DTI outperforms all comparative 409 methods across DTI, LTL, and OvO perspectives in terms of Accuracy and F1 score, demonstrating 410 its effectiveness in DTI mechanism prediction. Furthermore, to demonstrate the robustness of the 411 TED-DTI method on real-world and out-of-domain data, 829 data triplets from the ChEMBL dataset 412 are used as an independent test set to evaluate the model trained on the GtoPdb dataset. The results, 413 as shown in Table 1, indicate that TED-DTI still outperforms other comparative methods, thus con-414 firming that the proposed method is highly generalizable in real scenarios. Remarkably, TED-DTI 415 achieves a notably high F1 score on the ChEMBL dataset, with a substantial improvement of approximately 13% (from 0.699 to 0.789) compared to other methods, indicating that other models 416 struggle with the out-of-domain data from the ChEMBL dataset. In contrast, TED-DTI employs 417 a tri-comparison expertise strategy that effectively mitigates the impact of cross-domain data on 418 model generalization, leading to a considerable performance improvement on the ChEMBL dataset. 419 Notably, Table 2 shows that TED-DTI, with only 1/25 of the parameters, still outperforms BioT5+. 420 This demonstrates that even with a significantly smaller model size, our approach achieves superior 421 performance, highlighting its balance between parameter efficiency and task accuracy. 422

Improvements on Few-sample Class. Further, we focus on the few-sample problem in DTI mecha-423 nism prediction. Specifically, the data of certain DTI mechanism (such as Gating Inhibitor) is highly 424 scarce, which hinders the application of deep learning methods in real scenes. In the validation ex-425 periment of few-sample class, the test data of the "Gating Inhibitor" class (only 0.3% of the whole 426 dataset) is used as the extreme tail class for the binary classification task with all other classes. Fig-427 ure 4a shows the performance of TED-DTI and other baseline methods. TED-DTI surpasses other 428 baselines by achieving the highest average AUROC score of 0.914. We also have the following ob-429 servations: (1) Compared with DTI methods which only consider whether the interaction will occur,

²This implementation shares the same network architecture as our method, except that the output of each sub-model does not include class \mathcal{N}_{\otimes} .

433

456

457

458

459 460 461

Table 2: Performance and parameter comparison with cross-modal LLM BioT5+. Note that the number of trained parameters for TED-DTI is presented as the total sum of all 28 sub-task models.

-	Methods	Reference	#Parameters	GtoPdb		ChEBML	
	Wiethous			Accuracy	F1 score	Accuracy	F1 score
_	BioT5+	(Pei et al., 2024)	252M	$0.920_{\pm 0.003}$	$0.829_{\pm 0.022}$	$0.954_{\pm 0.002}$	$0.767_{\pm 0.018}$
_	TED-DTI	-	10M	$0.924_{\pm 0.004}$	$0.834_{\pm 0.012}$	$0.961_{\pm 0.003}$	$0.789_{\pm 0.040}$

Figure 4: Illustration of the ability to address tail class, evolvability, and generalization of TED-DTI. (a) Performance comparison of few-sample class "Gating inhibitor" (account for 0.3%) on the test set of GtoPdb dataset. (b) Performance trends of expertise models and the overall prediction. (c) Generalization validity of TED-DTI for GPCRs DTI task on the GtoPdb-GPCRs dataset.

TED-DTI achieves better performances than all these baselines, which indicates that the discrimi-462 nation of head classes and tail classes needs to be considered and treating each class equally can not 463 extract adequate information from known classes; (2) Compared with LTL methods which focus on 464 balancing all classes uniformly, TED-DTI has a varying degree of improvement than all these meth-465 ods, which demonstrates that the complexity of the task can be reduced through task decomposition 466 and thus there is a significant enhancement on the feature learning of the tail class; (3) Compared 467 with OvO methods which also adopt the divide-and-conquer strategy, TED-DTI significantly ex-468 ceeds all the OvO baselines, which implies that the devise of class \mathcal{N}_{\otimes} can effectively determine the 469 decision boundaries of mechanism classes and thus improve the prediction performance.

470 Continuous Evolvability Analysis. To validate that TED-DTI method has the capacity for continu-471 ous evolution, we present the test performance of each expertise model during the initial 100 epochs, 472 along with the overall prediction performance achieved through decision voting on the test set. As 473 shown in Figure 4b, the changing trend of the overall prediction performance varies with the train-474 ing epoch of the single expertise model. As the number of training epochs increases, the expertise 475 models gradually converge, resulting in consistent improvement in overall prediction performance. 476 On the other hand, when the performance of the expertise models reaches a bottleneck, the growth 477 in overall prediction performance also slows down, indicating that this overall performance is constrained by the predictive capabilities of the expertise models. 478

Generalization on Similar Tasks. To validate the generalization capabilities of TED-DTI on other
class-imbalanced DTI tasks, we apply this strategy to the GPCRs DTI (Overington et al., 2006) problem. This task, while similar, deals with a different scale and investigates agonistic, antagonistic,
or inactive mechanisms in response to various drugs. Figure 4c shows the performance comparison of TED-DTI method and GPCR ML (Oh et al., 2022) on the GtoPdb-GPCRs dataset. Notably,
TED-DTI demonstrates substantial improvements in multi-classification metrics, with accuracy rising from 0.820 to 0.889 and the F1 score increasing from 0.748 to 0.877, thereby emphasizing the
remarkable potential for application across various tasks and domains in the real-world scenes.

486 5.3 ABLATION STUDY 487

To investigate the necessity of each component in TED-DTI, we conduct several comparisons between TED-DTI and its variants on the test set: **TED-DTI without class** \mathcal{N}_{\otimes} (w/o \mathcal{N}_{\otimes}) excludes class *Neither*, and directly adopts the classification of class \mathcal{A} and class \mathcal{B} as the training objective of expertise model. **TED-DTI without class-balanced penalty** (w/o CP) eliminates the classbalanced penalty step applied to the voting results, and thus resets to the vanilla vote mechanism.

As illustrated in Table 3,
when these basic components of TED-DTI have
been removed, the performances of the corresponding variants on the
test dataset exhibit a sig-

Table 3: Ablation results on t	he crucial components of TED-DTI.
CtaDJh	CLEDMI

Methods	Gto	Pdb	ChE	BML
Wiethous	Accuracy	F1 score	Accuracy	F1 score
w/o \mathcal{N}_{\otimes}	$0.916_{\pm 0.004}$	$0.812_{\pm 0.030}$	$0.955_{\pm 0.007}$	$0.648_{\pm 0.129}$
w/o CP	$0.920_{\pm 0.005}$	$0.829_{\pm 0.013}$	$0.957_{\pm 0.006}$	$0.768_{\pm 0.117}$
TED-DTI	$0.924_{\pm 0.004}$	$0.834_{\pm 0.012}$	$0.961_{\pm 0.003}$	$0.789_{\pm 0.040}$
-				

nificant drop, indicating that these components all contribute to the performance.

When the classification for class \mathcal{N}_{\otimes} has been removed from the sub-task, the performance of the 501 corresponding variant significantly declines. Especially, the observation that the F1 score declines 502 from 0.789 to 0.648 on the ChEBML dataset indicates the prediction performance is boosted mostly 503 by the class \mathcal{N}_{\otimes} and thus the design of class \mathcal{N}_{\otimes} brings the improvement of the discrimination 504 between mechanism classes and more expressive representations. Moreover, after the removal of the 505 class-balanced penalty from the voting module, these performance metrics exhibit varying degrees of 506 decline, particularly with a noticeable decrease in F1 score on the ChEBML dataset, which indicates 507 that: (1) the design of the class-balanced penalty makes the overall voting stage more favorable for 508 tail classes; (2) despite removing the penalty but retaining the class \mathcal{N}_{\otimes} , there is no substantial 509 performance drop. This indicates that the class balance penalty weight is not essential to address the 510 long-tail problem, but indeed helps to balance the importance of different classes and thus brings 511 improvements. Furthermore, TED-DTI w/o CP (i.e., with class weights all set to 1) still outperforms the other baselines, reinforcing that class \mathcal{N}_{\otimes} is the core component of the proposed method. 512

513 514

515

6 LIMITATION AND FUTURE WORK

The divide-and-conquer strategy requires decomposing the original task into sub-tasks. As the number of classes N increases, the number of expertise models that need to be trained grows exponentially, potentially leading to a critical resource overload. Furthermore, even though complex tasks are broken down into relatively simpler sub-tasks, issues such as class imbalance during the training process of the expertise models can still arise. These challenges may create performance bottlenecks, ultimately hindering further optimization of overall performance.

Future work will optimize TED-DTI with efficient learning algorithms to reduce resource use and
 enable dynamic selection of expertise models in constrained environments. We will investigate
 data augmentation techniques to address data imbalance and ensure balanced performance across
 classes. Finally, we will explore applications in other domains to better serve real-world scenarios,
 demonstrating the broader impact and versatility of our approach.

527 528

529

7 CONCLUSION

530 In this paper, we present TED-DTI, a tri-comparison expertise decision method designed specifi-531 cally for long-tailed DTI mechanism prediction. TED-DTI employs a divide-and-conquer strategy, 532 utilizing outputs of various independent expertise models to tackle sub-tasks decomposed from the 533 original long-tailed problem. Moreover, we introduce a novel class, denoted as Neither, specifically 534 designed to facilitate the tri-comparison sub-task. Additionally, a class-balanced decision module is designed to seamlessly integrate the results from all expertise models. Extensive experimental results reveal that TED-DTI outperforms other baseline methods, demonstrating that the incorpo-536 ration of the class Neither significantly enhances the discrimination among similar mechanism 537 classes and yields more effective and robust feature representations for tail classes. Furthermore, a 538 thorough exploration of the evolvability and generalization capabilities of TED-DTI underscores its practical utility and effectiveness for deployment in real-world scenarios.

540	References
541	

555

566

567

568 569

571

572

586

542	Erin L Allwein, Robert E Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
543	approach for margin classifiers. <i>Journal of machine learning research</i> , 1(Dec):113–141, 2000.

- 544 Peizhen Bai, Filip Miljković, Bino John, and Haiping Lu. Interpretable bilinear attention network with domain adaptation improves drug-target prediction. Nature Machine Intelligence, 5, 02 2023. 546
- 547 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced 548 datasets with label-distribution-aware margin loss. Advances in neural information processing systems, 32, 2019. 549
- The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids 551 Research, 51(D1):D523–D531, 11 2022. ISSN 0305-1048. 552
- 553 Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine learning*, 20(3):273–297, 554 1995.
- Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based 556 on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9268-9277, 2019. 558
- 559 Mikel Galar, Alberto Fernández, Edurne Barrenechea, and Francisco Herrera. Drcw-ovo: distance-560 based relative competence weighting combination for one-vs-one strategy in multi-class prob-561 lems. Pattern recognition, 48(1):28-42, 2015. 562
- Kyle Yingkai Gao, Achille Fokoue, Heng Luo, Arun Iyengar, Sanjoy Dey, and Ping Zhang. Inter-563 pretable drug target prediction using deep neural representation. IJCAI'18, pp. 3371–3377. AAAI Press, 2018. ISBN 9780999241127. 565
 - Thierry Hanser. Federated learning for molecular discovery. Current Opinion in Structural Biology, 79:102545, 2023. ISSN 0959-440X.
- Simon D Harding, Joanna L Sharman, Elena Faccenda, Chris Southan, Adam J Pawson, Sam Ireland, Alasdair JG Gray, Liam Bruce, Stephen PH Alexander, Stephen Anderton, et al. The 570 iuphar/bps guide to pharmacology in 2018: updates and expansion to encompass the new guide to immunopharmacology. Nucleic acids research, 46(D1):D1091–D1106, 2018.
- 573 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-574 nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 575 770-778, 2016. 576
- Jin-Hyuk Hong and Sung-Bae Cho. A probabilistic multi-class strategy of one-vs.-rest support 577 vector machines for cancer classification. *Neurocomputing*, 71(16-18):3275–3281, 2008. 578
- 579 Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-580 entangling label distribution for long-tailed visual recognition. In Proceedings of the IEEE/CVF 581 conference on computer vision and pattern recognition, pp. 6626–6636, 2021. 582
- 583 Kexin Huang, Tianfan Fu, Lucas M Glass, Marinka Zitnik, Cao Xiao, and Jimeng Sun. DeepPur-584 pose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36(22-23): 5545–5547, 12 2020a. ISSN 1367-4803. 585
- Kexin Huang, Cao Xiao, Lucas M Glass, and Jimeng Sun. MolTrans: Molecular Interaction Trans-587 former for drug-target interaction prediction. Bioinformatics, 37(6):830-836, 10 2020b. ISSN 588 1367-4803. 589
- Laurent Jacob and Jean-Philippe Vert. Protein-ligand interaction prediction: an improved chemoge-591 nomics approach. Bioinformatics, 24(19):2149-2156, 08 2008. ISSN 1367-4803.
- Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for representation learning. In International Conference on Learning Representations, 2020.

- Tian-Shu Kang, Zhifeng Mao, Chan-Tat Ng, Modi Wang, Wanhe Wang, Chunming Wang, Simon Ming-Yuen Lee, Yitao Wang, Chung-Hang Leung, and Dik-Lung Ma. Identification of an iridium(iii)-based inhibitor of tumor necrosis factor-α. *Journal of Medicinal Chemistry*, 59(8): 4026–4031, 2016.
- Michael J Keiser, Vincent Setola, John J Irwin, Christian Laggner, Atheir I Abbas, Sandra J Hufeisen, Niels H Jensen, Michael B Kuijer, Roberto C Matos, Thuy B Tran, et al. Predicting new molecular targets for known drugs. *Nature*, 462(7270):175–181, 2009.
- Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net works. *arXiv preprint arXiv:1609.02907*, 2016.
- Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J. Inman. 1d convolutional neural networks and applications: A survey. *Mechanical Systems and Signal Processing*, 151:107398, 2021. ISSN 0888-3270.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- Greg Landrum. Rdkit: Open-source cheminformatics software. 2016. URL https://www.rdkit.org.
- Joris Langedijk, Aukje K Mantel-Teeuwisse, Diederick S Slijkerman, and Marie-Hélène DB Schut jens. Drug repositioning and repurposing: terminology and definitions in literature. *Drug discov- ery today*, 20(8):1027–1034, 2015.
- Steven M LaValle, Michael S Branicky, and Stephen R Lindemann. On the relationship between classical grid search and probabilistic roadmaps. *The International Journal of Robotics Research*, 23(7-8):673–692, 2004.
- Ingoo Lee, Jongsoo Keum, and Hojung Nam. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. *PLOS Computational Biology*, 15(6): 1–21, June 2019.
- Mengke Li, Yiu-ming Cheung, and Yang Lu. Long-tailed visual recognition via gaussian clouded
 logit adjustment. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6929–6938, 2022.
- Mufei Li, Jinjing Zhou, Jiajing Hu, Wenxuan Fan, Yangkang Zhang, Yaxin Gu, and George Karypis.
 Dgl-lifesci: An open-source toolkit for deep learning on graphs in life science. ACS Omega, 6: 27233–27238, 2021.
- Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision*, pp. 2980–2988, 2017.
- Li-Juan Liu, Lihua Lu, Hai-Jing Zhong, Bingyong He, Daniel W. J. Kwong, Dik-Lung Ma, and
 Chung-Hang Leung. An iridium(iii) complex inhibits jmjd2 activities and acts as a potential
 epigenetic modulator. *Journal of Medicinal Chemistry*, 58(16):6697–6703, 2015.
- Li-Juan Liu, Bingyong He, Jennifer A Miles, Wanhe Wang, Zhifeng Mao, Weng Ian Che, Jin-Jian Lu, Xiu-Ping Chen, Andrew J Wilson, Dik-Lung Ma, and Chung-Hang Leung. Inhibition of the p53/hdm2 protein-protein interaction by cyclometallated iridium(iii) compounds. *Oncotarget*, 7 (12):13965–13975, 2016. ISSN 1949-2553.
- Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. A survey
 of deep neural network architectures and their applications. *Neurocomputing*, 234:11–26, 2017.
- Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3431–3440, 2015.
- 647 Bettina Malnic, Junzo Hirono, Takaaki Sato, and Linda B Buck. Combinatorial receptor codes for odors. *Cell*, 96(5):713–723, 1999.

666

672

- David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy Félix, María Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, María Gordillo-Marañón, Fiona Hunter, Laura Junco, Grace Mugumbate, Milagros Rodriguez-Lopez, Francis Atkinson, Nicolas Bosc, Chris J Radoux, Aldo Segura-Cabrera, Anne Hersey, and Andrew R Leach. ChEMBL: towards direct deposition of bioassay data. *Nucleic Acids Research*, 47(D1): D930–D940, 11 2018. ISSN 0305-1048.
- Harry L Morgan. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. *Journal of chemical documentation*, 5(2):107–113, 1965.
- Fionn Murtagh. Multilayer perceptrons for classification and regression. *Neurocomputing*, 2(5):
 183–197, 1991. ISSN 0925-2312.
- Abhigyan Nath, Priyanka Kumari, and Radha Chaube. Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives. *Computational Drug Discovery and Design*, pp. 21–30, 2018.
- Yoshihito Niimura and Masatoshi Nei. Evolution of olfactory receptor genes in the human genome.
 Proceedings of the National Academy of Sciences, 100(21):12235–12240, 2003.
- Jooseong Oh, Hyithaek Chong, Dokyun Na, and Chungoo Park. A machine learning model for
 classifying g-protein-coupled receptors as agonists or antagonists. *BMC Bioinformatics*, 23, 08
 2022.
- John P Overington, Bissan Al-Lazikani, and Andrew L Hopkins. How many drug targets are there?
 Nature reviews Drug discovery, 5(12):993–996, 2006.
- Qizhi Pei, Lijun Wu, Kaiyuan Gao, Xiaozhuan Liang, Yin Fang, Jinhua Zhu, Shufang Xie, Tao Qin, and Rui Yan. BioT5+: Towards generalized biological understanding with IUPAC integration and multi-task tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 1216–1240, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
- Balazs Pejo, Mina Remeli, Adam Arany, Mathieu Galtier, and Gergely Acs. Collaborative drug discovery: Inference-level data protection perspective. *arXiv preprint arXiv:2205.06506*, 2022.
- Lihong Peng, Xin Liu, Long Yang, Longlong Liu, Zongzheng Bai, Min Chen, Xu Lu, and Libo
 Nie. Bindti: a bi-directional intention network for drug-target interaction identification based on attention mechanisms. *IEEE Journal of Biomedical and Health Informatics*, 2024.
- Ladislav Peska, Krisztian Buza, and Júlia Koller. Drug-target interaction prediction: A bayesian ranking approach. *Computer Methods and Programs in Biomedicine*, 152:15–21, 2017. ISSN 0169-2607.
- Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-tailed visual recognition. Advances in neural information processing systems, 33:4175–4186, 2020.
- Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classifica tion tasks. *Information processing & management*, 45(4):427–437, 2009.
- 693
 694 Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for object detec 695 tion. Advances in neural information processing systems, 26, 2013.
- Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie Yan.
 Equalization loss for long-tailed object recognition. In *Proceedings of the IEEE/CVF conference* on computer vision and pattern recognition, pp. 11662–11671, 2020.
- Katrin Ullrich, Jennifer Mack, and Pascal Welke. Ligand affinity prediction with multi-pattern kernels. In Toon Calders, Michelangelo Ceci, and Donato Malerba (eds.), *Discovery Science*, pp. 474–489, Cham, 2016. Springer International Publishing.

702 703 704 705	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. <i>Advances in neural information processing systems</i> , 30, 2017.
706 707 708	David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol- ogy and encoding rules. <i>Journal of Chemical Information and Computer Sciences</i> , 28(1):31–36, 1988.
709 710	Ting-Fan Wu, Chih-Jen Lin, and Ruby Weng. Probability estimates for multi-class classification by pairwise coupling. <i>Advances in Neural Information Processing Systems</i> , 16, 2003.
711 712 713 714	Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive survey on graph neural networks. <i>IEEE transactions on neural networks and learning systems</i> , 32(1):4–24, 2020.
715 716 717	Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda, and Minoru Kanehisa. Pre- diction of drug–target interaction networks from the integration of chemical and genomic spaces. <i>Bioinformatics</i> , 24(13):i232–i240, 07 2008. ISSN 1367-4803.
718 719 720 721	Chao Yang, Wanhe Wang, Guo-Dong Li, Hai-Jing Zhong, Zhen-Zhen Dong, Chun-Yuen Wong, Daniel WJ Kwong, Dik-Lung Ma, and Chung-Hang Leung. Anticancer osmium complex inhibitors of the hif- 1α and p300 protein-protein interaction. <i>Scientific reports</i> , 7(1):42860, 2017.
722 723	Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning: A survey. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2023.
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
747	
748	
749	
750	
751	
752	
753	
754	
755	

DETAIL OF TED-DTI METHOD А

756

758

761

762

Detailed information about the proposed TED-DTI method is provided as follows. First, as shown in 759 Table 4, the key notations and the corresponding definitions are summarized for clarification. Then, 760 the first step of TED-DTI about task decomposition is elaborated. Finally, the algorithm of classbalanced decision voting module is provided for supplement the introduction of the main paper.

Notation	Definition
N	The number of DTI mechanism classes.
\mathcal{A}, \mathcal{B}	The abbreviation for the simplification of the mechanism class pair for the sub-
\mathcal{N}_{\otimes}	The introduced third option for each sub-task, alongside the two selected classe
${\cal G}$	$\mathcal{G} = (\mathcal{V}, \mathcal{E})$ indicates a molecular graph, and \mathcal{V}, \mathcal{E} indicate the set of atoms an set of chemical bonds, respectively.
\mathcal{V}	The set of atoms of \mathcal{G} .
${\mathcal E}$	The set of chemical bonds of \mathcal{G} .
$f_{\mathcal{M}}$	The input feature dimensional of atoms in the drug \mathcal{M} .
$f_{\mathcal{T}}$	The input feature dimensional of the protein \mathcal{T} .
$d_{\mathcal{M}}$	The output feature dimensional of the molecular graph \mathcal{G} of drug \mathcal{M} .
$d_{\mathcal{T}}$	The output feature dimensional of the protein \mathcal{T} .
$\mathbf{X}_{\mathcal{M}}^{(0)}$	The initial atom feature for molecule \mathcal{M} . $\mathbf{X}_{\mathcal{M}}^{(0)} \in \mathbb{R}^{ \mathcal{V} \times f_{\mathcal{M}}}$.
$\mathbf{X}^{(l)}$	The input atom feature for molecule \mathcal{M} of GCN layer <i>l</i> .
$\mathbf{Z}_{\mathcal{M}}^{\mathcal{M}}$	The output graph feature for molecule \mathcal{M} . $\mathbf{Z}_{\mathcal{M}} \in \mathbb{R}^{d_{\mathcal{M}}}$.
$\mathbf{X}_{ au}^{(0)}$	The initial feature for target protein \mathcal{T} , $\mathbf{X}_{\tau}^{(0)} \in \mathbb{R}^{f_{\tau}}$.
$\mathbf{x}_{-}^{(l)}$	The input feature for target protein \mathcal{T} of 1D CNN layer l
$\mathbf{Z}_{\mathcal{T}}$	The output feature for target protein \mathcal{T} . $\mathbf{Z}_{\mathcal{T}} \in \mathbb{R}^{d_{\mathcal{T}}}$.
$\mathbf{Z}^{(0)}$	The joint representation generated by the combination of $\mathbf{Z}_{\mathcal{M}}$ and $\mathbf{Z}_{\mathcal{T}}$ and n
$\mathbf{r}^{(l)}$	while the input feature of the predictor module. $\mathbf{Z}^{(0)} \in \mathbb{R}^{a_{\mathcal{M}}+a_{\mathcal{T}}}$.
$\mathbf{Z}^{(\iota)}$	The input feature of MLP layer <i>l</i> .
\mathbf{Q}	The initial prediction results obtained from the expertise models. $\mathbf{C}_{N*(N-1)}$
	$\{-1,0,1\}^{\frac{1}{2}}$.
$q_{i,j}$	The prediction result for the sub-task of classifying class i and class j . q_i
	$\{-1, 0, 1\}.$
Y	The final voting results of N classes. $\mathbf{Y} \in \mathbb{R}^{N}$.
H	The class-balanced weight vector for penalty score of different classes. $\mathbf{H} \in \mathbb{R}$
β_R	The base reward score for expertise predictions.
β_P	The base penalty score for expertise predictions.

A.1 TASK DECOMPOSITION

797

798

The original DTI mechanism prediction task is denoted as a multi-classification task with N classes. 799 Each sub-task aims for the classification of only two classes, resulting in a total of $C_N^2 = \frac{N*(N-1)}{2}$ 800 sub-tasks. Each sub-task is trained by a dedicated expertise model to extract knowledge related to 801 the corresponding two classes. To effectively determine the classification boundaries of mechanism 802 classes, we introduce an additional class \mathcal{N}_{\otimes} for samples that do not belong to the selected two 803 classes. 804

Taking the classification of the two interaction mechanisms \mathcal{A} and \mathcal{B} as an example, we first extract 805 the class-related samples from the original dataset \mathcal{D} , and denote them as $\mathcal{D}_{\mathcal{A}}, \mathcal{D}_{\mathcal{B}}$. Meanwhile, the 806 samples $\mathcal{D}_{\mathcal{N}_{\otimes}}$ belonging to class \mathcal{N}_{\otimes} are randomly sampled from the dataset excluding class \mathcal{A} and 807 \mathcal{B} , with the total number of samples equal to the mean number of samples in class \mathcal{A} and \mathcal{B} , i.e., 808 $\frac{|\mathcal{D}_{\mathcal{A}}|+|\mathcal{D}_{\mathcal{B}}|}{2}$. This sampling strategy is adopted to achieve a balanced three-class prediction task and 809 mitigate the severe long-tail problem that may exist in the original dataset. Ultimately, the training 810 dataset for this task $\mathcal{D}_{A/B}$ is the combination of three datasets $\mathcal{D}_A, \mathcal{D}_B, \mathcal{D}_{N_{\infty}}$. The relationship of 811 the three datasets and the ground truth label $y_{A/B}$ are represented as follows: 812

$$\mathcal{D}_{\mathcal{N}_{\otimes}} \subseteq \mathcal{D} - (\mathcal{D}_{\mathcal{A}} \cup \mathcal{D}_{\mathcal{B}}), \mathcal{D}_{\mathcal{A}/\mathcal{B}} = \{\mathcal{D}_{\mathcal{A}}, \mathcal{D}_{\mathcal{B}}, \mathcal{D}_{\mathcal{N}_{\otimes}}\}, y_{\mathcal{A}/\mathcal{B}} \in \{\mathcal{A}, \mathcal{B}, \mathcal{N}_{\otimes}\}.$$
(6)

A.2 ALGORITHM OF CLASS-BALANCED DECISION VOTING

817 Here, the detailed algorithm of the class-balanced decision voting module is shown as follows: 818

Algorithm 2 Class-balanced decision voting process for the final prediction.

Input: The initial prediction results of all the expertise models **Q**; N is the number of the DTI mechanism classes; β_R is the base reward score; β_P is the base penalty score; **H** is the balanced penalty weight vector. **Output:** Final prediction label \hat{y} . 1: $\mathbf{Y} \leftarrow (0, ..., 0)_N$; //Initialized vote results 2: for $q_{i,j}$ in **Q** do

3: if $q_{i,j}$ is 0 then

 $\tilde{\mathbf{Y}}_i \leftarrow \mathbf{Y}_i + \beta_R;$ 4: 5:

else if $q_{i,j}$ is 1 then $\mathbf{Y}_j \leftarrow \mathbf{Y}_j + \beta_R;$ 6:

7: else if $q_{i,j}$ is -1 then

end if

8: 9:

833 10:

11: end for 834 12: return $\hat{y} \leftarrow \operatorname{argmax}(\mathbf{Y})$

835 836

813 814 815

816

819 820

821

822

823

824

825

826

827

828

829

830

831

832

В DETAIL OF EXPERIMENT

 $\mathbf{Y}_i \leftarrow \mathbf{Y}_i - \beta_P \cdot \mathbf{H}_i;$

 $\mathbf{Y}_j \leftarrow \mathbf{Y}_j - \beta_P \cdot \mathbf{H}_j;$

839 840 841

842

843

844

845 846

848

837 838

> For further analysis, the details about datasets, implementations, and experimental results are provided. First, the dataset preprocessing steps and thus the statistical details of the preprocessed three datasets are outlined. Then, comprehensive performance comparisons of the DeepPurpose baseline method are presented. Finally, the implementation details of the proposed method and the compute resources of all the experiments are elaborated.

847 **B**.1 DATASET PREPROCESSING

849 For experiments of DTI mechanism prediction, the following steps are applied to the two datasets 850 GtoPdb and ChEBML before put into training or test:

851 **Domain Filtering.** only retain drug-target pairs that are relevant to humans and have complete field 852 information, that is, drug SMILES and target protein identifier SwissProt; 853

854 Validity Check. use RDKit package (Landrum, 2016) to determine whether the drug SMILES is illegal; 855

856 Data Match. match the corresponding protein sequence in the UniProt database (Consortium, 2022) according to the SwissProt identifier; 858

Statistical Analysis. analyze the DTI mechanism classes field (prediction label) of the currently 859 screened dataset, including agonist and inhibitor, and divide into the head and tail classes. 860

After the preprocessing, we obtain the specific dataset for long-tailed DTI mechanism prediction. 861 13,389 and 829 triplets, of which triplet format is (drug SMILES, target sequence, DTI mechanism 862 class), are obtained for the processed GtoPdb and ChEBML. The former two are used as the model 863 input and the latter as the ground truth label.

 Table 5: Detailed information of three datasets of drug-target interaction mechanism prediction.

		<u> </u>		1
Dataset	Reference	#Class	#Samples	#Total Number
		Inhibitor	5,672	
		Agonist	3,234	
		Antagonist	2,829	
CtoDdb	(Harding at al 2018)	Allosteric modulator	581	12 201
Glorub	(Halding et al., 2018)	Channel blocker	499	15,501
		Activator	358	
		None	165	
		Gating inhibitor	43	
		Inhibitor	421	
		Antagonist	213	
ChEBML	(Mendez et al., 2018)	Agonist	181	829
		Channel blocker	12	
		Allosteric modulator	2	
		Agonist	2606	
GtoPdb-GPCRs	(Harding et al., 2018)	Antagonist	onist 2399 5,319	
		Non-target	314	

B.2 DATASET DETAILS

In this paper, three DTI mechanism datasets are used to evaluate the efficacy of the proposed method.
Appendix Table 5 provides a detailed presentation of each dataset, including the types of DTI mechanisms, the sample number with different mechanisms, and the total number of the whole dataset.
All these datasets exhibit the long-tailed distribution. All DTI mechanism samples are structured into triplet scheme (drug SMILES, target sequence, DTI mechanism class).

Furthermore, the relationships among the three datasets are clarified as follows: (1) GtoPdb serves
as the training set for 5-fold cross-validation and internal testing. (2) ChEMBL acts as an entirely
independent external test set, evaluated using the models trained on GtoPdb, ensuring no overlap
with GtoPdb and thus guaranteeing fairness in testing. (3) GtoPdb-GPCRs, a subset of GtoPdb
related to the GPCRs target family, is used to validate the generalization ability of the proposed
method.

B.3 PERFORMANCE COMPARISON OF DEEPPURPOSE

DeepPurpose (Huang et al., 2020a) supports training of customized DTI prediction models by implementing different compound and protein encoders and over 50 neural architectures. Here we adopt the pair combination of 7 drug encoders and 7 target encoders to display the performance.

Appendix Table 6 presents the prediction performance of all the 49 combinations on the GtoPdb dataset, which is an extension of Table 1. All the results are presented as "mean \pm standard deviation" and the best one shown in Table 1 is the combination of "Daylight + AAC" architecture.

B.4 IMPLEMENTATION DETAILS

To accurately evaluate model performance and prevent overfitting, we use 5-fold cross-validation to evaluate the prediction performance. The Cross Entropy loss function is used to measure model performance in the expertise training stage. Adam optimizer is adopted to optimize all of the param-eters in the model with a learning rate of 0.001. The batch size is setting to 32. The training epoch for each expertise model is 1500 at most. The drug and protein embedding size $d_{\mathcal{M}}, d_{\mathcal{T}}$ is fixed to 128. The initialized atom feature vectors are described with DGL-LifeSci (Li et al., 2021) package with the embedding size $f_{\mathcal{M}} = 74$. The embedding size $f_{\mathcal{T}}$ of the initialized protein feature vectors is setting to 1200. The number of GCN, CNN, MLP layers L_M, L_T, L are all fixed to 3. The reward and penalty score β_R , β_P are both setting to 1.

919	Table 6: Prediction p	erformance of Dee	pPurpose on t	he GtoPdb dat
920	Me	thods	Me	trics
921	Drug Encoder	Target Encoder	Accuracv↑	F1 score↑
922			0.001	0.775
923		Conjoint triad	0.901 ± 0.005 0.898 + 0.001	0.773 ± 0.021 0.787 ± 0.021
924			0.898 ± 0.001	0.787 ± 0.026
925	Morgan	Quasi-seq	0.819 ± 0.005	0.632 ± 0.041
926	Worgan	CNN	0.882 ± 0.004	0.032 ± 0.024 0.738 + 0.041
927		CNN RNN	0.881 ± 0.003	$0.735_{\pm 0.041}$
28		Transformer	$0.869_{\pm 0.006}$	$0.721_{\pm 0.012}$
29			0.901	0.785
)30		Conjoint triad	0.904 ± 0.003	0.785 ± 0.019 0.790 + 0.020
31		PseudoAAC	0.900 ± 0.007 0.837 ± 0.007	0.790 ± 0.029 0.707 ± 0.020
32	Pubchem	Quasi-seq	0.097 ± 0.007	0.643 ± 0.029
33	i doonom	CNN	0.898 ± 0.003	0.764 ± 0.028
34		CNN RNN	0.895 ± 0.004	0.770 ± 0.022
35		Transformer	$0.880_{\pm 0.005}$	$0.746_{\pm 0.022}$
36		1 A C	0.007	0.804
37		Conjoint triad	0.907 ± 0.008 0.903 + 0.008	0.004 ± 0.031
38		Pseudo A AC	0.903 ± 0.009 0.827 + 0.009	0.700 ± 0.031
39	Davlight	Ouasi-sea	0.827 ± 0.009 0.801 + 0.002	0.702 ± 0.032 0.659 + 0.035
40	Daynght	CNN	0.801 ± 0.003	0.039 ± 0.023 0.776 + 0.023
41		CNN RNN	0.899 ± 0.003	0.778 ± 0.023
42		Transformer	$0.879_{\pm 0.004}$	$0.757_{\pm 0.021}$
43			0.000	0.700
44		AAC	$0.902_{\pm 0.006}$	$0.789_{\pm 0.029}$
45			0.904 ± 0.007	$0.796_{\pm 0.021}$
46	rdlat	Oussi sea	0.831 ± 0.006 0.707	0.090 ± 0.015
47	Idkit	CNN	0.797 ± 0.010	0.034 ± 0.041 0.762
10		CNN RNN	0.890 ± 0.010 0.898 + 0.002	0.762 ± 0.048 0.789 + 0.021
40		Transformer	0.890 ± 0.003	0.759 ± 0.021
49			0.000 1±0.006	0.737±0.012
50		AAC	$0.893_{\pm 0.010}$	$0.748_{\pm 0.035}$
51			$0.895_{\pm 0.006}$	$0.770_{\pm 0.024}$
52	CNN	PseudoAAC	0.820 ± 0.006	0.041 ± 0.016
53	CININ	Quasi-seq	0.789 ± 0.010	0.384 ± 0.019
54		CININ CNINI DNINI	0.899 ± 0.003	0.708 ± 0.037
55		Transformer	0.809 ± 0.015 0.884 + 0.004	0.719 ± 0.030 0.751 + 0.000
56		Industormer	0.004±0.004	0.751 ± 0.009
57		AAC	$0.893_{\pm 0.008}$	$0.762_{\pm 0.029}$
58		Conjoint_triad	$0.890_{\pm 0.011}$	$0.768_{\pm 0.045}$
59		PseudoAAC	$0.813_{\pm 0.010}$	$0.668_{\pm 0.042}$
60	CNN_KNN	Quasi-seq	$0.795_{\pm 0.006}$	$0.62/\pm0.030$
61		CNN DNN	0.880 ± 0.006	0.771 ± 0.015
62		CININ_KININ Tronsformer	$0.874_{\pm 0.003}$	0.749 ± 0.015
63		Transformer	$0.8/4 \pm 0.002$	0.743 ± 0.012
64		AAC	$0.901_{\pm 0.008}$	$0.789_{\pm 0.013}$
65		Conjoint_triad	$0.901_{\pm 0.013}$	$0.795_{\pm 0.029}$
66		PseudoAAC	$0.817_{\pm 0.004}$	$0.681_{\pm 0.028}$
67	Transformer	Quasi-seq	$0.818_{\pm 0.010}$	$0.668_{\pm 0.047}$
68		CNN	$0.891_{\pm 0.002}$	$0.759_{\pm 0.026}$
60		CNN_RNN	$0.907_{\pm 0.005}$	$0.792_{\pm 0.011}$
70		Transformer	$0.884_{\pm 0.007}$	$0.751_{\pm 0.032}$
71				
// 1				

et.

All experiments are conducted by PyTorch on a single NVIDIA A6000 Tensor Core GPU (48GB)
and Intel(R) Xeon CPU with 24 cores and 500G memory. The whole training time for all 28 subtasks of GtoPdb dataset is about 8 hours, and the inference time for test set is about 2 minutes.

976 B.5 METRIC DETAILS

977

986 987

978This task involves a long-tailed multi-classification problem, where the ratio between the most fre-
quent (head) class and the least frequent (tail) class is 132:1 (Figure 3). In such highly imbalanced
scenarios, it is crucial to use evaluation metrics that provide a holistic view of model performance
rather than favoring dominant classes. Given the total number of classes N, the accuracy and F1
score are explained in detail, highlighting why the F1 score is more appropriate for long-tailed clas-
sification tasks.

Accuracy. Accuracy is one of the most common metrics for classification problems and is defined
 as the ratio of correctly classified instances to the total number of instances.

$$Accuracy = \frac{\sum_{n=1}^{N} (TP_n + TN_n)}{\sum_{n=1}^{N} (TP_n + TN_n + FP_n + FN_n)}$$

Here, TP (True Positives) and TN (True Negatives) are the correctly classified positive and negative samples for class n, respectively, while FP (False Positives) and FN (False Negatives) are the misclassified instances for class n. Although accuracy is straightforward, it suffers in imbalanced datasets. In long-tailed distributions, accuracy is dominated by the head classes because the model tends to classify most instances as the majority class, thus overestimating performance while ignoring the minority classes.

F1 score. The F1 score (Sokolova & Lapalme, 2009) is the harmonic mean of precision and recall, effectively balancing these two metrics. In multi-class settings, precision and recall are calculated for each class, and the corresponding F1 score is then obtained. Finally, the F1 scores for all classes are averaged, which can be formulated as:

$$\begin{aligned} & \operatorname{Precision}_n = \frac{TP_n}{TP_n + FP_n}, \quad \operatorname{Recall}_n = \frac{TP_n}{TP_n + FN_n}, \\ & \operatorname{F1 \ score}_n = 2 \times \frac{\operatorname{Precision}_n \times \operatorname{Recall}_n}{\operatorname{Precision}_n + \operatorname{Recall}_n}, \quad \operatorname{F1 \ score} = \frac{1}{N} \sum_{n=1}^N \operatorname{F1 \ score}_n \end{aligned}$$

The F1 score ranges from 0 to 1, where a higher value indicates a better balance between precision and recall. Unlike accuracy, the F1 score is less sensitive to class imbalance, making it particularly suitable for long-tailed tasks, as it ensures both head and tail classes contribute to the final evaluation.

Importance of F1 score in Long-Tailed Tasks. In long-tailed distributions, head classes often dominate accuracy due to their large sample size. However, for real-world problems like DTI mechanism prediction, correct predictions for tail classes are often more valuable. The F1 score provides a more nuanced view by equally weighing the importance of each class through the balance of precision and recall. This makes the F1 score the most critical metric in evaluating model performance under imbalanced conditions.

1012 1013

1014 C DETAIL OF DISCUSSION

1015

Detailed discussion about the proposed method is provided as follows. First, an additional discussion on specific experimental results is presented, focusing on the method's superiority and applicability. Then, the motivation behind TED-DTI is introduced from a life sciences perspective, which arises from the synergistic relationship between the advancements in neuroscience and artificial intelligence. Next, the advantage of promoting collaborative drug discovery is discussed in detail. Finally, the common solution for precious DTI methods are presented as the supplement of main paper.

1021

1022 C.1 Additional Experimental Discussion

Why TED-DTI excellent? In general, TED-DTI addresses the challenges of long-tailed DTI mechanism prediction from three perspectives: (1) The divide-and-conquer strategy is adopted to decompose the original task into sub-tasks, ensuring that head classes do not dominate the resources of tail

1026 classes and reducing the difficulty of the original task; (2) The introduce of class \mathcal{N}_{\otimes} determines 1027 the decision boundaries of the sub-task for class \mathcal{A} and \mathcal{B} , and generate more robust representation 1028 for tail classes by supplementing new samples from class \mathcal{N}_{\otimes} ; (3) Experimental results in Table 1, 1029 Figure 4a and Figure 4b demonstrate not only the best performance but also enormous optimization 1030 potential. Additionally, Figure 4c exhibits the capability of TED-DTI to generalize to other tasks of 1031 different scales or domains.

1032 **Solution for performance bottleneck.** Figure 4b shows the performance relationship between 1033 each expertise model and overall prediction, demonstrating that the prediction performance of the 1034 overall multi-classification task depends on how well each expertise model handles its assigned 1035 task. In other words, the performance of TED-DTI is limited to the expertise models. Therefore, the 1036 leading solution for the performance bottleneck is to optimize the expertise models. Optimizing the 1037 performance of machine learning tasks can start with model architecture, hyper-parameter tuning, pretraining parameter initiation, and other settings. For the graph domain, the model selection set 1038 is GNN architecture and its variants (Wu et al., 2020). In the future, the model architecture more 1039 suitable for the task can be completed automatically through strategies such as grid search (LaValle 1040 et al., 2004) in machine learning. Similarly, the hyper-parameter of models can also be fine-tuned 1041 with the same strategy. 1042

1043 **Potential application to other domains.** Figure 4c shows the generalization of TED-DTI on a similar long-tailed DTI task, demonstrating that applying the proposed strategy to multi-classification 1044 or multi-label problems of other domains (Krizhevsky et al., 2012; Long et al., 2015; Szegedy et al., 1045 2013) is a potential and general solution to alleviate the existing long-tailed problems (Kang et al., 1046 2020). Specifically, each expertise model only needs to select two classes or labels and identify their 1047 similarities and differences. Then the prediction results of all expertise models are summarized to 1048 output the final prediction result. In the design process of the expertise models, no matter which 1049 field the input data comes from (audio, image, text, molecule SMILES, or others), it can be solved 1050 by using a simple backbone of the specific field. For example, ResNet architecture (He et al., 2016) 1051 can be considered as the expertise model to solve the classification sub-task between the cat and 1052 dog in the image field. Similarly, we can use Transformer architecture (Vaswani et al., 2017) as 1053 the encoder in the text field. Undoubtedly, more complex encoder architectures can also be used, 1054 depending on the user. Therefore, the proposed strategy can be easily applied to similar problems in different fields. 1055

Computation Complexity. The time complexity of our method is approximately $\mathcal{O}(N^2)$, where N represents the number of classes. Consequently, the computational complexity scales quadratically with the number of mechanism classes, posing potential scalability challenges. To address this issue, we present a detailed analysis of the computational complexity, categorized into two cases based on the number of DTI mechanisms:

1061 1062

1063

1064

1067

1068

1069

1070

1071

• For tasks with a limited number of classes (e.g., less than 20): In practical scenarios like computational biology (e.g., DTI mechanism prediction), the number of classes is inherently limited, as they represent real biological relationships.For empirical justification, in the GtoPdb dataset with 8 classes, the training time for sub-tasks is approximately 8 hours, and the inference time for the test set is about 2 minutes (lines 808-809). Each sub-task model requires only 2GB of GPU memory and can be trained in parallel. This training cost is acceptable comparable to the resource usage of multi-class baseline models. Furthermore, in comparison to the increasing computational demands of LLMs, our approach is lightweight and highly scalable. Therefore, our method is well-suited to most real-world tasks with limited class numbers.

For tasks with a large number of classes: In cases where the number of classes exceeds practical thresholds, we propose two strategies to control computational complexity: (a) Using the method as an auxiliary to multi-class classification models: Instead of solving all sub-tasks, our approach can serve as an auxiliary component to refine predictions on ambiguous or long-tailed classes. This significantly reduces the number of required sub-task models while maintaining performance. (b) Constructing models only for "neighboring" classes: By leveraging class correlations, we can limit sub-task construction to semantically or structurally related classes, reducing both memory and time requirements.

1080 C.2 NEUROSCIENCE-INSPIRED MOTIVATION

1082 The idea of tri-comparison expertise decision strategy origins from the evolution of human olfac-1083 tory system. Over millions of years, the human olfactory system has gradually evolved to have the ability to perceive and distinguish various smells. Specifically, each olfactory receptor in the ol-1084 factory epithelium can recognize specific chemical structural features in odor molecules, that is, an odor molecule is decomposed into different chemical structural features and binds to specific recep-1086 tors respectively, and then multiple electrical signals produced by the olfactory sensory neurons are 1087 transmitted to the high-level cognitive area for centralized decision-making and finally produce a 1088 judgment on the smell (Malnic et al., 1999). As the number and diversity of olfactory receptor genes 1089 gradually increase during the evolution of human body (Niimura & Nei, 2003), the cognition of 1090 chemical structural characteristics of odor molecules is more accurate, and ultimately a more com-1091 plex olfactory experience is formed. Therefore, the key to the essential function and evolvability of 1092 the olfactory system lies in the "function divide-central decision" olfactory receptor codes for odors.

1093 Motivated by the perception process of human olfactory system, we try to mimic the "function 1094 divide-central decision" olfactory receptor codes for odors. Specifically, we disassemble the original 1095 complex multi-classification task into simple sub-tasks and assign the tasks to different expertise 1096 models, and then the class knowledge obtained by each model are ensembled together to make a comprehensive prediction for the original task. In order to comprehensively guide the own sub-task, the discrimination between the assigned task and all other tasks need to be determined, ensuring that 1099 the specific expertise can effectively achieve the assigned objective. This "function divide-central decision" mechanism not only achieves knowledge integration for multiple classes but also reduces 1100 the complexity of model learning and mitigates the effect caused by few samples. 1101

1102

1103 C.3 PROMOTION FOR COLLABORATIVE DRUG DISCOVERY

The available volume of training data in drug discovery mainly determines the quality of intelligent models (Pejo et al., 2022). Consequently, the industry is making the first steps towards federated machine learning approaches that leverage more data than a single partner (e.g., a pharmaceutical company) (Hanser, 2023).

The proposed tri-comparison expertise decision strategy can apply the mode of federated learning, 1109 which can effectively protect the security of data and models. On the one hand, each expertise model 1110 is only stored in the local terminal of each partner. The central processor only collects the prediction 1111 results of the expertise models for sub-tasks, and there is no exchange of specific information such as 1112 model parameters and gradients in this process; on the other hand, each expertise model only needs a 1113 moderate amount of labeled data from two different classes or labels during training, and there is no 1114 need for interaction of training data between expertise models. Even if the attackers get access to the 1115 interface of the central processor, they cannot obtain any specific information about data and models. 1116 Consequently, the strategy can effectively enhance the security of the DTI application systems and 1117 protect sensitive information.

1118

1119 C.4 COMMON SOLUTION FOR PREVIOUS DTI METHODS 1120

In general, the common solution of previous DTI methods to address the DTI prediction problem is to adopt two encoders to translate the chemical information of drugs and proteins into feature representation and then output the interaction type with a decoder network after processing the combined feature.

1125 In this process, the main difference is the encoder architecture for processing drug and target infor-1126 mation. The biochemical structure of drugs can be represented by 1D SMILES (Weininger, 1988) and 2D molecule graphs. Therefore, various 1D fingerprint generators and 2D encoder architectures 1127 are used to extract the feature information of drugs, such as Morgan fingerprint (Morgan, 1965), 1128 Deep Neural Network (Liu et al., 2017), Graph Neural Network (Wu et al., 2020) or Transformer 1129 (Vaswani et al., 2017). Meanwhile, since targets are usually represented by 1D protein sequences 1130 (too few data with 3D structures), it is generally encoded by architectures such as 1D Conventional 1131 Neural Network (Kiranyaz et al., 2021) or Transformer. 1132