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ABSTRACT

Bilevel Optimization has witnessed notable progress recently with new emerging
efficient algorithms and has been applied to many machine learning tasks such as
data cleaning, few-shot learning, and neural architecture search. However, little
attention has been paid to solving the bilevel problems under distributed setting.
Federated learning (FL) is an emerging paradigm that solves machine learning
tasks over distributed-located data. FL problems are challenging to solve due
to the heterogeneity and communication bottleneck. However, it is unclear how
these challenges will affect the convergence of Bilevel Optimization algorithms.
In this paper, we study Federated Bilevel Optimization problems. Specifically,
we first propose the FedBiO, a deterministic gradient-based algorithm, and we
show that it requires O(ϵ−1.5) number of steps/communication steps to reach an
ϵ-stationary point. Then we propose FedBiOAcc to accelerate FedBiO with the
momentum-based variance-reduction technique under the stochastic scenario. We
show that FedBiOAcc needs O(ϵ−1.5) number of steps and O(ϵ−1) communica-
tion steps, this matches the best known rate for single-level stochastic federated
algorithms. Finally, we validate our proposed algorithms via the important Fair
Federated Learning task. More specifically, we define a bilevel-based group fair FL
objective. Our algorithms show superior performance compared to other baselines
in numerical experiments.

1 INTRODUCTION

Bilevel optimization problems Willoughby (1979); Solodov (2007) involve two levels of problems:
an outer problem and an inner problem. The two problems are entangled: the outer problem is a
function of the minimizer of the inner problem. Recently, great progress has been made to solve this
type of problems, especially, efficient single loop algorithms have been developed based on various
gradient approximation techniques Ji et al. (2020); Huang & Huang (2021). Bilevel optimization
problems also frequently emerge in machine learning tasks, such as hyper-parameter optimization,
meta-learning, neural architecture search etc.. However, most existing Bilevel Optimization work
focuses on the standard non-distributed setting, and how to solve the Bilevel Optimization problems
under distributed settings is underexplored. Federated learning is a recently promising distributed
learning paradigm. In Federated Learning McMahan et al. (2017), a set of clients jointly solve a
machine learning task under the coordination of a central server. To protect user privacy and reduce
communication burden, clients perform multiple steps of local update before communication, but this
slows down the convergence. Various algorithms Wang et al. (2019b); Yu et al. (2019); Haddadpour
& Mahdavi (2019); Karimireddy et al. (2019); Bayoumi et al. (2020); Xing et al. were proposed to
accelerate its training. However, most of these algorithms focus on standard single level optimization
problems. In Xing et al., the author considered one type of bilevel formulation, but their algorithm
needs to communicate the Hessian matrix for every iteration, which is impractical in practice due to
high communication cost. So efficient algorithms designed for Federated Bilevel Optimization are
still missing. In this work, we propose two novel algorithms for Federated Bilevel Optimization and
aim to make one step forward to mitigate this gap.

More specifically, we propose FedBiO and FedBiOAcc. The FedBiO algorithm adapts single
loop bilevel algorithms to the federated setting. More precisely, clients optimize their local bilevel
problems with a single loop algorithm for several steps and then communicate with the server to
average their local states. To further accelerate the FedBiO algorithm, we utilize the momentum-
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based variance reduction technique to control the stochastic noise in the local updates of FedBiO. We
denote this accelerated algorithm as FedBiOAcc. The convergence analysis of the two algorithms
is very challenging and our first main contribution is to provide a rigorous analysis of the two
algorithms. We need to carefully balance two types of errors to show the convergence. The first
type of error is the ’consensus error’: In Federated Learning, clients make updates locally, and
local states drift away from each other. As a result, the gradient directions queried in these states
do not represent the true descent directions. The consensus error also exists in Federated Bilevel
Optimization problems where both inner and outer variables drift. The second type of error is
‘(hyper)-gradient bias’: In bilevel optimization, exact (hyper)-gradient requires solving the inner
problem which is computationally expensive. So a practical compromise is to solve the inner problem
approximately and use a biased (hyper)-gradient in the training. In Federated Bilevel Optimization,
the (hyper)-gradient bias entangles with the consensus error, which makes the analysis even more
difficult. However, by carefully choosing a potential function and exploiting the recursive relations of
the above errors, we successfully show the convergence of our algorithms.

Finally, to illustrate the application of our algorithms, we study the group fairness problem in
federated learning through the lens of Bilevel Optimization. Fairness over sensitive groups is one of
the most important desiderata in the development of machine learning models. However, Federated
Learning by design does not learn group-fair models. Meanwhile, due to the fact that sensitive groups
often spread across different clients and clients are not allowed to share data with each other. Fair
algorithms developed in non-distributed setting can not be applied directly. Recently, several research
works focus on group fairness in Federated Learning: Papadaki et al. (2021) exploited the notion of
minimax fairness to learn group fair models, but requires access of the global statistics of sensitive
groups; Cui et al. (2021) enforced the local group fairness with linear constraints, but a local fair
model may not be global group fair as clients often have heterogeneous distributions. On top of these
limitations, we propose a bilevel formulation to develop group fair models. More precisely, we use a
small set of samples that are balanced group-wise to tune the groups weights; in other words, we find
the optimal group weights such that the learned weighted model can perform well over the validation
set. We solve this problem with our two proposed algorithms and validate them over real-world
datasets. Finally, we highlight the main contributions of our paper as follows:

1. We propose two novel federated bilevel learning algorithms: FedBiO and FedBiOAcc. We
theoretically show the convergence of both algorithms: FedBiO has iteration and com-
munication complexity of O(ϵ−1.5) and FedBiOAcc has iteration complexity of O(ϵ−1.5),
communication complexity of O(ϵ−1) and linear speed up w.r.t the number of clients. In par-
ticular, FedBiOAcc matches the optimal rate of single-level stochastic federated algorithms;

2. We propose a Bilevel Optimization Formulation to improve the group fairness in Federated
Learning. We compare our algorithms with various baselines. Experimental results show
superior performance of our new algorithms.

Notations We use ∇ to denote the full gradient, use ∇x to denote the partial derivative for variable x,
higher order derivatives follow similar rules. || · || represents l2 norm for vectors and spectral norm
for matrices. [K] represents the sequence of integers from 1 to K.

2 RELATED WORKS

Bilevel Optimization Bilevel optimization dates back to at least 1960s when Willoughby (1979)
proposed a regularization method, and then followed by many research works Ferris & Mangasarian
(1991); Solodov (2007); Yamada et al. (2011); Sabach & Shtern (2017), while in machine learning
community, similar ideas in the name of implicit differentiation were also used in Hyper-parameter
Optimization Larsen et al. (1996); Chen & Hagan (1999); Bengio (2000); Do et al. (2007). Early
algorithms for Bilevel Optimization solved the accurate inner problem solution for each outer variable.
Recently, researchers developed algorithms which solve the inner problem with a fixed number of
steps, and use ‘back-propagation through time’ technique to compute the hyper-gradient Domke
(2012); Maclaurin et al. (2015); Franceschi et al. (2017); Pedregosa (2016); Shaban et al. (2018).
Very Recently, it witnessed a surge of interest in using implicit differentiation to derive single loop
algorithms Ghadimi & Wang (2018); Hong et al. (2020); Ji et al. (2020); Ji & Liang (2021); Khanduri
et al. (2021); Chen et al. (2021); Yang et al. (2021); Huang & Huang (2021); Li et al. (2021a).
The bilevel optimization has been widely applied to various machine learning applications, such as
Hyper-parameter optimization Lorraine & Duvenaud (2018); Okuno et al. (2018); Franceschi et al.
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(2018), meta learning Zintgraf et al. (2019); Song et al. (2019); Soh et al. (2020), neural architecture
search Liu et al. (2018); Wong et al. (2018); Xu et al. (2019), adversarial learning Tian et al. (2020);
Yin et al. (2020); Gao et al. (2020), deep reinforcement learning Yang et al. (2018); Tschiatschek
et al. (2019), etc.

Federated Learning Federated learning McMahan et al. (2017) is a promising privacy-preserving
learning paradigm over distributed data. A basic algorithm for FL is the FedAvg McMahan et al.
(2017) algorithm, where clients receive the current model from the server at each synchronization
step and then update the model locally for several steps and finally upload the new model back to the
server. Compared to the traditional data-center distributed learning, Federated Learning poses new
challenges including data heterogeneity, privacy concerns, high communication cost and unfairness.
To deal with these challenges, some variants of FedAvg Karimireddy et al. (2019); Li et al. (2019b);
Sahu et al. (2018); Zhao et al. (2018); Mohri et al. (2019); Li et al. (2021b) are proposed. For example,
Li et al. (2018) added regularization terms over the client objective to reduce the client drift. Hsu
et al. (2019); Karimireddy et al. (2019); Wang et al. (2019a) used variance reduction techniques
to control variates. Fairness in Federated Learning has also drawn more attention recently. Some
researchers Mohri et al. (2019); Deng et al. (2020); Li et al. (2019a; 2021b) focus on making models
exhibit similar performance across different clients. More recently, group fairness is also studied in
federated learning. One possible approach is to learn optimal group weights by formulating it as
a minimax optimization problem Du et al. (2021); Papadaki et al. (2021). Another approach is to
re-weight the sensitive groups based on local or global statistics Abay et al. (2020); Ezzeldin et al.
(2021), this approach often involves the transfer of sensitive information. Then a recent work Cui et al.
(2021) proposes FCFL which improves both client fairness and group fairness with multi-objective
optimization approach. In our work, we formulate the group fairness as a bilevel optimization problem
and solve it as an application of our algorithms.

3 PRELIMINARIES

Bilevel Optimization Bilevel Optimization problems are composed of two levels of entangled
problems as defined in Eq. 1:

min
x⊆Rp

h(x) := f(x, yx) s.t. yx = argmin
y∈Rd

g(x, y), (1)

As shown in Eq. 1, the outer problem (f(x, yx)) depends on the solution of the inner problem (g(x, y).
In machine learning, we usually consider the following stochastic formulation as shown in Eq. 2:

min
x⊆Rp

h(x) := E[f(x, yx;Bf )] s.t. yx = argmin
y∈Rd

E[g(x, y;Bg)], (2)

where both the outer and inner problems are defined as expectations of some random variables Bf

(outer) and Bg (inner). Next, we state some assumptions about the problems Eq. 1 and Eq. 2:
Assumption 1. Function f(x, y) := E[f(x, y;Bf )] is possibly non-convex and g(x, y) :=
E[g(x, y;Bg)] is µ-strongly convex w.r.t y for any given x.
Assumption 2. Function f(x, y) is L-Lipschitz and has B-bounded gradient;
Assumption 3. Function g(x, y) is L-Lipschitz. For higher-order derivatives, we have:

a) ∥∇2
xyg(x, y)∥ ≤ Cg,xy for some constant Cg,xy

b) ∇2
xyg(x, y) and ∇2

y2g(x, y) are Lipschitz continuous with constant Lg,xy and Lg,y2 respec-
tively

Assumption 4. We have unbiased stochastic first order and second order derivative oracle with
bounded variance, e.g. we assume E[∇xf(x, y; ξ)] = ∇xf(x, y) and var(∇xf(x, y; ξ)) ≤ σ2

Remark 1. As stated in Assumption 1, we study the non-convex-strongly-convex bilevel optimization
problems, this special case is widely studied in the bilevel literature Ji & Liang (2021); Ghadimi &
Wang (2018).
Remark 2. Assumptions 2 and 3, we assume the Lipschitz condition also holds for the stochastic
query, i.e. f(x, y;Bf ) and g(x, y;Bg). Furthermore, we require stronger conditions in Assumptions 2
and 3 than single level optimization problems: bounded gradients (for f ) and second order smoothness
(for g). But these conditions are necessary to derive the smoothness of h(x) and some other basic
properties and are widely used in bilevel literature Ghadimi & Wang (2018); Ji et al. (2020).
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Remark 3. A more complete version of Assumption 4 is included in the appendix, where we state all
properties we assume the unbiased and bounded-variance assumption holds.

Next, we define the properties the hyper-gradient ∇h(x), firstly, we denote Φ(x, y) as:

Φ(x, y) =∇xf(x, y)−∇2
xyg(x, y)× [∇2

y2g(x, y)]−1∇yf(x, y), (3)

Then based on Assumption 1, we can derive Φ(x, yx) = ∇h(x) (we omit the proof of this fact;
please refer to related bilevel literature such as Ghadimi & Wang (2018)). Eq. 3 involves Hessian
inverse, we usually evaluate it approximately. An approach of approximation is through the Neumann
series Lorraine et al. (2020). More precisely, suppose we have independent minibatches of samples
Bx = {Bj(j = 1, . . . , Q),Bf ,Bg}, then we estimate Φ(x, y) as:

Φ(x, y;Bx) = ∇xf(x, y;Bf )− η∇xyg(x, y;Bg)

Q−1∑
q=−1

Q∏
j=Q−q

(I − η∇2
y2g(x, y;Bj))∇yf(x, y;Bf )

(4)

We have the following Proposition about the approximation property of Φ(x, y;Bx):

Proposition 1. (Combine Lemma 4 and Lemma 7 in Yang et al. (2021)) Suppose Assumptions 2, 3
and 4 hold and η < 1

L , the hypergradient estimator Φ(x, y;Bx) w.r.t. x based on a minibatch Bx has
bounded variance and bias:

a) E[∥E[Φ(x, y;Bx)]− Φ(x, y)∥2] ≤ G2
1, where G1 = (1− ηµ)Q+1ML/µ

b) E∥Φ(x, y;Bx) − E[Φ(x, y;Bx)]∥2 ≤ G2
2, where G2 = 2M2 + 12M2L2η2(Q + 1)2 +

4M2L2(Q+ 2)(Q+ 1)2η4σ2

Finally, we show some properties of smoothness in Proposition 2. A more formal version of the
proposition can be found in Proposition 6 in the appendix.

Proposition 2. Suppose Assumptions 2 and 3 hold, the following statements hold: For any given
x1, x2 ∈ X , we have ∥yx1

− yx2
∥ ≤ Lh∥x1 − x2∥, ∥∇h(x2) − ∇h(x1)∥ ≤ Lh∥x2 − x1∥,

∥Φ(x1; y1) − Φ(x2; y2)∥2 ≤ L2
h(∥x1 − x2∥2 + ∥y1 − y2∥2), furthermore, we have ∥Φ(x; y) −

∇h(x)∥ ≤ Lh∥yx − y∥.

Federated Learning A general FL problem studies the following problem:

min
x⊂Rp

h(x) :=
1

M

M∑
m=1

Eξ[f
(m)(x; ξ)], (5)

There is one server and M clients. A basic algorithm to solve this problem is FedAvg McMahan et al.
(2017), where clients perform multiple gradient descent steps before communication with the server.

4 FEDERATED BILEVEL OPTIMIZATION

In this section, we discuss Federated Bilevel Optimization problems. Following the standard FL
setting, we assume that there is one server and multiple clients. Specifically, the optimization problem
solved by each client is a Bilevel Optimization Problem. More formally, we consider the following
Federated Bilevel Optimization problem h(x):

min
x⊂Rp

h(x) :=
1

M

M∑
m=1

f (m)(x, y(m)
x ) s.t. y(m)

x = argmin
y∈Rd

g(m)(x, y), (6)

where M is the number of clients and f (m)(x, y) and g(m)(x, y) are the outer and inner problems
of the client m, respectively. h(x) denotes the overall objective. For ease of discussion, we denote
h(m)(x) = f (m)(x, y

(m)
x ), while ∇h(m)(x) denotes the gradient w.r.t x. Note that it is possible that

both f (m)(x, y) ̸= f (k)(x, y) and g(m)(x, y) ̸= g(k)(x, y) for m ̸= k,m, k ∈ [M ]. In other words,
we consider the heterogeneous case.
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Algorithm 1 Federated Bilevel Optimization (FedBiO)
1: Input: Initial states x1 and y1; learning rates {γt, ηt}Tt=1

2: Initialization: Set x(m)
1 = x1 and y

(m)
1 = y1

3: for t = 1 to T do
4: Compute ω(m)

t = ∇yg
(m)(x

(m)
t , y

(m)
t ) and compute ν(m)

t = Φ(m)(x
(m)
t , y

(m)
t ) with Eq. (3);

5: Update y
(m)
t+1 = y

(m)
t − γtω

(m)
t , x̂(m)

t+1 = x
(m)
t − ηtν

(m)
t ;

6: if t+ 1 mod I = 0 then
7: x

(m)
t+1 = x̄t+1 = 1/M

∑M
m=1 x̂

(m)
t+1

8: else
9: x

(m)
t+1 = x̂

(m)
t+1

10: end if
11: end for

Remark 4. It is possible to consider a slightly different formulation where the inner problem is
also distributed across clients; we leave this as a future direction to investigate. Note that bilevel
optimization with multiple lower tasks are considered in Guo et al. (2021), however, they do not solve
the problem under FL constraints and instead focus on sampling effect of lower problems.

In machine learning, we consider the stochastic case of Eq. 6 as follows:

min
x⊂Rp

h(x) :=
1

M

M∑
m=1

E[f (m)(x, y(m)
x ;Bf )] s.t. y(m)

x = argmin
y∈Rd

E[g(m)(x, y;Bg)]. (7)

Federated Bilevel Optimization problems are more complicated than single level Federated Learning
problems. In FedAvg, clients perform multiple steps of local gradient descent before communication
with the server. For the deterministic case, Eq. 5, clients evaluate the exact gradient ∇f (m) locally.
However, the local hypergradient ∇h(m)(x) of Eq. 6 has the following form:

∇h(m)(x) =∇xf
(m)(x, yx)−∇2

xyg
(m)(x, yx)[∇2

y2g(m)(x, yx)]
−1∇yf

(m)(x, yx),

where yx is the minimizer of the inner objective as defined in Eq 6. To get yx, we need to solve the
inner problem for each new state of x, this is computationally expensive to evaluate a gradient. So it
is infeasible to evaluate the exact hypergradient for Federated Bilevel Optimization, thus, the FedAvg
algorithm is not suitable for solving Federated Bilevel Optimization problems.

The recent progress in Bilevel Optimization Ji et al. (2020) shows that exact yx is not necessary to
solve the problem, instead, an alternative update of inner variable and outer variable is sufficient.
So, we propose our first algorithm named FedBiO whose procedure is shown in Algorithm 1. In the
algorithm, we start from two random states x(m)

1 and y
(m)
1 . For each local iteration, we update x

(m)
t

and y
(m)
t with a gradient-like step with the gradients defined in line 5 of Algorithm 1. For every I

iterations, we average the x states over clients. Note that we do not average over the y state, as in
Eq. 6, y(m)

x only depends on the state x and g(m)(x, y), the average of outer state x(m) is sufficient.

In Algorithm 1, clients perform alternative updates of inner and outer variables locally and communi-
cate with the server every I iterations. Compared with single level Federated Learning problems, its
convergence analysis is much more challenging. More specifically, suppose we consider the virtual
average state x̄t =

1
M

∑M
m=1 x̂

(m)
t , and measure its convergence with ∥∇h(x̄t)∥2. There are two

sources of errors. The first one is the outer variable consensus error defined as 1
M

∑M
m=1 ∥x̂

(m)
t −x̄t∥2,

and the other one is the inner variable estimation error 1
M

∑M
m=1 ∥y

(m)
t − y

(m)

x
(m)
t

∥2. Note that the

outer variable consensus error is often seen in the analysis in FedAvg-type algorithms, which is
caused by local updates. As for the inner variable estimation error, it measures the imperfection of
inner variable. In FedBiO, these two types of errors are entangled with each other. To see that, for t̄s
which satisfies t̄s + 1 = s× I , we have:

∥y(m)
t̄s

− y
(m)

x
(m)

t̄s

∥2 = ∥y(m)
t̄s

− y
(m)
x̄t̄s

∥2 ≤ 2∥y(m)
t̄s

− y
(m)

x̂
(m)

t̄s

∥2 + 2∥y(m)

x̂
(m)

t̄s

− y
(m)
x̄t̄s

∥2

≤ 2∥y(m)
t̄s

− y
(m)

x̂
(m)

t̄s

∥2 + 2ρ2∥x̂(m)
t̄s

− x̄t̄s∥
2,
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Algorithm 2 Accelerated Federated Bilevel Optimization (FedBiOAcc)
1: Input: constants cω , cν , γ, η, δ, u, σ, initial state (x1, y1);
2: Initialization: Set y(m)

1 = y1, x(m)
1 = x1 for m ∈ [M ]

3: for t = 1 to T do
4: Randomly sample minibatches By and Bx

5: if t = 1 then
6: ω

(m)
t = ∇yg

(m)(x
(m)
t , y

(m)
t ,By), ν̂

(m)
t = Φ(m)(x

(m)
t , y

(m)
t ;Bx)

7: else
8: ω

(m)
t = ∇yg

(m)(x
(m)
t , y

(m)
t ,By) + (1− cωα

2
t−1)(ω

(m)
t−1 −∇yg

(m)(x
(m)
t−1, y

(m)
t−1 ,By))

9: µ
(m)
t−1 = Φ(m)(x

(m)
t−1, y

(m)
t−1 ;Bx), µ

(m)
t = Φ(m)(x

(m)
t , y

(m)
t ;Bx)

10: ν̂
(m)
t = µ

(m)
t + (1− cνα

2
t−1)(ν

(m)
t−1 − µ

(m)
t−1)

11: end if
12: Evaluate αt =

δ
(u+σ2×t)1/3

13: y
(m)
t+1 = y

(m)
t − γαtω

(m)
t , x̂(m)

t+1 = x
(m)
t − ηαtν̂

(m)
t

14: if t+ 1 mod I = 0 then
15: x

(m)
t = x̄t =

1
M

∑M
j=1 x

(j)
t , ν(m)

t = ν̄t =
1
M

∑M
j=1 ν̂

(j)
t , x(m)

t+1 = x̄t+1 = 1
M

∑M
j=1 x̂

(j)
t+1

16: else
17: ν

(m)
t = ν̂

(m)
t , x(m)

t+1 = x̂
(m)
t+1

18: end if
19: end for

The equality is because we average the state x(m) at step t̄s, the first inequality follows the triangle
inequality, and the second inequality follows Proposition 2. The inequality shows that the inner
variable estimation error can be decomposed to two parts: estimation error to y

(m)

x̂
(m)
t

(denoted by local

variable x̂(m)
t ) and ∥y(m)

x̂
(m)

t̄s

− y
(m)
x̄t̄s

∥2 which is related to outer variable consensus error. The first error

can be bounded following the standard argument of the gradient descent step (Line 5 in Algorithm 1),
while for the outer variable consensus error, it relies on accumulated past consensus error, inner
variable estimation error and a term related to the client heterogeneity (please refer to Lemma 3 in
the appendix for detailed expressions). In other words, the imperfect inner variable estimation in
turn increases the consensus error. Although the two types of errors increase the analysis complexity
with entanglement, we could bound them by exploiting their recursive relations. In the convergence
analysis sections, we show that our FedBiO converges with rate O(ϵ−1.5).

Next, we consider the Federated Stochastic Bilevel Optimization as defined in Eq. 7. To control
stochastic noise, we apply the idea of momentum-based variance reduction Cutkosky & Orabona
(2019). The algorithm procedure is summarized in Algorithm 2. The main step of the algorithm is as
follows:

ω
(m)
t = ∇yg

(m)(x
(m)
t , y

(m)
t ,By) + (1− cωα

2
t−1)(ω

(m)
t−1 −∇yg

(m)(x
(m)
t−1, y

(m)
t−1 ,By))

ν̂
(m)
t = Φ(m)(x

(m)
t , y

(m)
t ;Bx) + (1− cνα

2
t−1)(ν

(m)
t−1 − Φ(m)(x

(m)
t−1, y

(m)
t−1 ;Bx)).

where Φ(m) follows the definition in Eq. 4 by replacing f and g with f (m) and g(m), respectively.
If t mod I = 0, we average x

(m)
t , x(m)

t−1 and the momentum state ν̂
(m)
t as in line 17 of Algorithm 2.

The analysis of FedBiOAcc is more complicated than that of FedBiO. There are several types of
errors we need bound to get the convergence: including the entangled inner variable estimation
error and the outer variable consensus error as in FedBiO, but also the biases from the momentum
terms, i.e. the outer momentum bias ∥ν(m)

t −∇h(x
(m)
t )∥2 and the inner momentum bias ∥ω(m)

t −
∇yg

(m)(x
(m)
t , y

(m)
t )∥2. However, we still see the favorable O(ϵ−1.5) convergence rate of FedBiOAcc

by balancing different sources of errors. In fact, for both types of momentum bias, we can derive
similar recursive equations as its non-distributed counterpart Yang et al. (2021) but with additional
terms related to the outer variable consensus error. As for the consensus error, we can bound it by
carefully choosing the related hyper-parameters in Algorithm 2.
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5 CONVERGENCE ANALYSIS

In this section, we provide a formal analysis of the convergence of our two algorithms, i.e. FedBiO
and FedBiOAcc. Before diving into the convergence results, we introduce two additional assumptions:

5.1 ADDITIONAL ASSUMPTIONS

We first state the assumptions needed in our analysis. We assume f (m)(x, y) and g(m)(x, y) for
m ∈ [M ] satisfy Assumption 1,Assumption 2, Assumption 3 and Assumption 4 as Defined in
Section 3. Next, we also need to bound the differences among clients to get convergence results.
More precisely, we assume Assumption 5 holds. Similar assumptions have been used in previous
Federated Learning literature Khanduri et al. (2021); Woodworth (2021).

Assumption 5. For any m, j ∈ [M ] and x, we have:∥∇xf
(m)(x, y) − ∇xf

(j)f(x, y)∥ ≤
ζf , ∥∇yf

(m)(x, y) − ∇yf
(j)f(x, y)∥ ≤ ζf , ∥∇xyg

(m)(x, y) − ∇xyg
(j)(x, y)∥ ≤ ζg,xy,

∥∇y2g(m)(x, y) − ∇y2g(j)(x, y)∥ ≤ ζg,yy, ∥y(m)
x − y

(j)
x ∥ ≤ ζg∗ , where ζf , ζg,xy, ζg,yy, ζg∗ are

constants.

Based on the above assumption, we can bound the overall heterogeneity of the function h(m)(x),
m ∈ [M ], i.e. ∥∇h(m)(x) − ∇h(j)(x)∥ ≤ ζ for some constant ζ. The proof of this result is
summarized in Proposition 7 in the Appendix. Next, in addition to the bounded noise Assumption 4.
We make the following assumption:

Assumption 6. The bias and variance of the stochastic hypergradient are bounded i.e. E[∥µ(m)
t −

E[µ(m)
t ]∥2] ≤ σ2 and E[∥E[µ(m)

t ]− Φ(x
(m)
t , y

(m)
t )∥2] ≤ G2 for m ∈ [M ] and t ∈ [T ], where µ

(m)
t

is the stochastic hyper-gradient denoted in Line 10 of Algorithm 2.

The assumption is reasonable due to Proposition 1, and we can choose σ = G1 and G = G2.

5.2 CONVERGENCE ANALYSIS FOR FEDBIO AND FEDBIOACC

In this subsection, we provide the convergence result for our FedBiO algorithm 1 and the FedBiOAcc
algorithm 2. Firstly, for FedBiO, we have the following Theorem:

Theorem 5.1. Suppose Assumption 1- 3, 5 hold, δ < min

(√
(1−q)(1−q1qI)

2L2
hI
√

q̄1q1qI
, 1
12LhI

, µγ
2 , 1

)
, γ < 1

L

and η = δ
T 1/3 , we have:

1

T

T∑
t=1

∥∇h(x̄t)∥2 ≤ 2(h(x̄t)− h∗)

δT 2/3
+

L2
hBt̄0

(1− q)T
+

2L2
hBt̄0

(1− q)(1− q1qI)T
+

M
′
δ2

T 2/3

where Bt̄0 = 1
M

∑M
m=1 ∥y

(m)
1 − y

(m)

x
(m)
1

∥2, q = (1 − µγ
2 ), q1 = 1 + µγ

4 and q̄1 = 1 + 4
µγ , h∗ the

optimal value, M
′

is some constant.
Remark 5. We omit the exact form of some constants in Theorem 5.1 and the full version can be
found in Theorem 9.1 in the Appendix. As shown by the Theorem, our FedBiO converges with
the O(ϵ−1.5) number of steps (T ). This is worse than the optimal rate O(ϵ−1) for non-distributed
deterministic bilevel optimization. The consensus error is the source of this gap; we have to decrease
the learning rate to bound this consensus error. Meanwhile, the communication complexity is O(ϵ−1).

Next we provide the convergence result for the FedBiOAcc algorithm. To prove the convergence of
FedBiOAcc, we denote the potential function Gt as follows:

Gt = h(x̄t) +
η

160L2
hαt

∥∥∥ν̄t − 1

M

M∑
m=1

∇h(x
(m)
t )

∥∥∥2 + 1

M

M∑
m=1

∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2

+
γ

32µL2αt

M∑
m=1

∥∥∥∥ω(m)
t −∇yg

(m)(x
(m)
t , y

(m)
t )

∥∥∥∥2.
Then we have the following result for FedBiOAcc:
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Table 1: Performance comparison between FedBiO, FedBiOAcc and baselines

Adult

Distribution I.I.D Non-I.I.D
Metrics Test Acc. Train EqOpp. Test EqOpp. Test Acc. Train EqOpp. Test EqOpp.
FedAvg .8239±.0167 .0391± .0061 .0420±.0034 .8283±.0080 .0261±.0022 .0507±.0011
FedReg .8240±.0159 .0361±.0047 .0425±.0029 .8271±.0077 .0244±.0013 .0498±.0010

FedMinMax .8228±.0163 .0220 ±.0057 .0366±.0049 .8272±.0077 .0274±.0029 .0363±.0013
FCFL .8238±.0159 .0356±.0029 .0452±.0012 .8273±.0074 .0249±.0032 .0501±.0014

FedBiO .8228±.0163 .0238±.0058 .0337±.0012 .8331±.0019 .0263±.0010 .0338±.0008
FedBiOAcc .8391±.0163 .0222±.0064 .0335±.0006 .8204±.0013 .0289±.0005 .0356±.0055

Credit

FedAvg .6873±.0314 .0788±.0136 .0599±.0122 .7386±.0011 .0832±.0248 .1354±.0128
FedReg .6870±.0374 .0836±.0015 .0575±.0114 .7303±.0097 .0735±.0216 .1341±.0088

FedMinMax .6759±.0757 .0857±.0042 .0722±.0013 .6966±.0104 .0477±.0155 .1222±.0024
FCFL .6864±.0237 .0727±.0073 .0375±.0028 .7266±.0026 .0777±.0162 .1463±.0014

FedBiO .7015±.0169 .0548±.0072 .0513±.0059 .7339±.0033 .0782±.0116 .1260±.0013
FedBiOAcc .7067±.0121 .0665±.0034 .0501±.0051 .7312±.0023 .0799±.0152 .1021±.0011

Theorem 5.2. Suppose Assumption 1- 4, 5, 6 hold and the hyper-parameter cν , cω, η, γ, δ and u
are chosen according to Theorem 10.1 in the Appendix. and the learning rate αt is chosen as in
Algorithm 2, then we have:

1

T

T∑
t=1

E
[
∥∇h(x̄t)∥2

]
≤ M

′
(
16LhI

T
+

Lh

(MT )2/3

)
where M

′
is some constant up to a logarithmic factor and the expectation is w.r.t. the stochasticity of

the algorithm.
Remark 6. The full version of Theorem 5.2 is shown in Theorem 10.1 in the Appendix. Recall that T
is the total number of running steps, I is the number of local steps before communication, and M is
the number of clients. Suppose we choose I = T 1/3M−2/3, the above bound is O((MT )−2/3), thus
we require O(M−1ϵ−1.5) (up to a logarithm factor) number of running steps to reach an ϵ-stationary
point. Meanwhile, we have a dependence of O(M−1), so we achieve the linear speedup w.r.t the
number of clients. Finally, we also get the number of communication steps, i.e. T/I is O(ϵ−1). In
summary, our FedBiOAcc matches the best known convergence rate for federated stochastic single
level optimization Khanduri et al. (2021).

6 FAIR FEDERATED BILEVEL LEARNING

In this section, we apply FedBiO and FedBiOAcc to solve the Fair Federated Learning tasks. The
code of all experiments is written in Pytorch, and the Federated Learning environment is simulated
via Pytorch.Distributed Package. We use servers with AMD EPYC 7763 64-Core CPU.

6.1 GROUP FAIR FEDERATED LEARNING

In this task, we investigate the group fairness in Federated Learning from the Bilevel Optimization’s
perspective. The basic idea is to exploit a small validation set that are group-balanced to learn a
fair federated model. More specifically, we first assign a weight for each sensitive group and learn
a group-weighted federated model. Then we test the performance of the learned model with our
group-balanced validation set, based on the validation performance, we adjust the group weights.
We repeat this process until we find optimal group weights such that the learned model performs
equally well for all different groups in the validation set. This task can be formulated as a Federated
bilevel problem of the form Eq. 7, an exact formulation of the Fair Federated Bilevel Learning is
included in Section 11 of the appendix. Note our fair federated learning formulation is general and
is compatible with various group fairness metrics such as Equal Opportunity (EqOpp) Hardt et al.
(2016) and Equalized Odds (EqOdds) Hardt et al. (2016). Furthermore, it also does not require access
to the global statistics of the groups, which is difficult to acquire in the Federated Learning setting.

Since the fair federated learning model has a bilevel formulation, we solve it with our FedBiO and
FedBiOAcc algorithms. We compare with the following baselines: FedAvg McMahan et al. (2017),

8
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FedReg, FedMinMax Papadaki et al. (2021) and FCFL Cui et al. (2021). The methods proposed
in (Zhang et al., 2021) are similar to FedMinMax; we do not include it in the results. Furthermore,
since our focus is group fairness, we do not include client fairness (robustness) focused models
such as AFL Mohri et al. (2019) and q-FedAvg Li et al. (2019a). The FedReg baseline is to add
a regularization term over the FedAvg objective, and the regularization term could be any fairness
metrics such as EqOpp. Note that FedReg evaluates the metric only with local statistics.

We tested on real-world benchmark datasets: Credit Asuncion & Newman (2007) and Adult Kohavi
et al. (1996). We pre-process the datasets with code provided by (Diana et al., 2021). For each dataset,
we first split it into train and test splits with ratio 7:3, and we keep the group distribution the same for
the train and test splits. Then for the train set, we consider both I.I.D and Non-I.I.D cases. For the
I.I.D case, we uniformly randomly split the train-set into three subsets and distribute each subset to a
client. For the Non-I.I.D case, we split the train-set by sensitive attributes and for each attribute, we
split its data into three shares with ratio 2 : 2 : 6 and then randomly distribute each share to one client.
Finally, for our FedBiO and FedBiOAcc, we select a small subset of the local train set to create the
group-fair validation set. We fit a logistic regression model over the benchmark datasets. For our
methods, we perform a two-stage training procedure: we first estimate optimal group weights with
the bilevel formulation, then we use the learned weight to fit a weighted logistic regression model
with FedAvg. For FedReg and FCFL, we choose its regularization term as the EqOpp metric. The
definition of EqOpp metric is included in the Appendix 11. Finally, we perform grid search for the
hyper-parameters of all methods and hyper-parameter choices are introduced in the Appendix 11.

Figure 1: Outer objective Loss w.r.t Number of
Communication Rounds for comparison between
FedBiO and FedBiOAcc for I.I.D and Non-I.I.D
cases. The results are for the Adult dataset.

We summarize the results in Table 1, where we
use Test accuracy and EqOpp as metrics, we run
10 runs for each case and report the mean and
standard deviation in the table. The best result
for each metric is highlighted. As shown in the
table, either FedBiO or FedBiOAcc gets the best
result for most cases. FedReg/FCFL are based
on local group statistics to achieve fairness, and
tend to perform worse in the Non-I.I.D case, e.g.
for the Adult dataset, FCFL gets a much lower
Train EqOpp in the Non-I.I.D case compared to
the I.I.D one, but its Test EqOpp is worse. Fed-
MinMax is a strong baseline and can get good
performance in both settings. However, our al-
gorithms have two advantages compared to Fed-
MinMax. Firstly, we do not query global statis-
tics; furthermore, our algorithms communicate
every I iterations, while FedMinMax collects
the model states from clients at every iteration.
Finally, we compare the convergence rate of the FedBiO and FedBiOAcc algorithms. The results for
the Adult dataset are shown in Figure 1 (The results for Credit dataset is deferred to Appendix 11).
As shown by the plots, FedBiOAcc converges much faster than FedBiO for both I.I.D and Non-I.I.D
cases; furthermore, we observe that data heterogeneity slows down the convergence.

7 CONCLUSION

In this paper, we studied a class of novel Federated Bilevel Optimization problems and proposed two
efficient algorithms, i.e., FedBiO and FedBiOAcc, to solve these problems. In addition, we provided a
rigorous convergence analysis framework for our proposed methods. Specifically, we proved that our
FedBiO has iteration/communication complexity O(ϵ−1.5) and FedBiOAcc has iteration complexity
O(ϵ−1.5) and communication complexity O(ϵ−1), meanwhile FedBiOAcc achieves linear speedup
w.r.t the number of clients. Finally, we apply our new algorithms to solve the important Fair Federated
Learning problem with using a new bilevel optimization formulation. The experimental results
validate the efficacy of our algorithms.
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NOTATIONS AND ASSUMPTIONS

Before we start the proof, we first define some notations. We define t̄s := sI + 1 with s ∈ [S]. Note
at t̄s iteration, we have x

(m)
t = x̄t for m ∈ [M ].

Next, we restate more detailed assumptions needed in our proof:

Assumption 0.1. Function f(x, y) := E[f(x, y;Bf )] is possibly non-convex and g(x, y) :=
E[g(x, y;Bg)] is µ-strongly convex w.r.t y for any given x, i.e. for any y1, y2 ∈ Rd, we have:

g(x, y1) ≥ g(x, y2) + ⟨∇gy(x, y2), y2 − y1⟩+
µ

2
||y2 − y1||2.

Assumption 0.2. Function f(x, y) is L-Lipschitz, i.e. for for any x1, x2 ∈ X and for any y1,
y2 ∈ Rd, and we denote z1 = (x1, y1), z2 = (x2, y2), then we have:

f(z1) ≤ f(z2) + ⟨∇f(z2), z1 − z2⟩+
L

2
||z1 − z2||2.

or equivalently: ||∇f(z1)−∇f(z2)|| ≤ L||z1 − z2||. We also assume and f(x, y) has B-bounded
gradient, i.e. for for any x ∈ X and any y ∈ Rd, and we denote z = (x, y), then we have
||∇f(z)|| ≤ M .

13



Under review as a conference paper at ICLR 2023

Assumption 0.3. Function g(x, y) is L-Lipschitz. i.e. for for any x1, x2 ∈ X and for any y1,
y2 ∈ Rd, and we denote z1 = (x1, y1), z2 = (x2, y2), then we have:

g(z1) ≤ g(z2) + ⟨∇g(z2), z1 − z2⟩+
L

2
||z1 − z2||2.

equivalently: ||∇g(z1)−∇g(z2)|| ≤ L||z1 − z2||. For higher-order derivatives, we have:

a) ∥∇2
xyg(x, y)∥ ≤ Cg,xy for some constant Cg,xy;

b) ∇2
xyg(x, y) and ∇2

y2g(x, y) are Lipschitz continuous with constant Lg,xy and Lg,y2 re-
spectively, i.e. for for any x1, x2 ∈ X and for any y1, y2 ∈ Rd, and we denote
z1 = (x1, y1), z2 = (x2, y2), then we have: ||∇2

xyg(z1) −∇2
xyg(z2)|| ≤ Lg,xy||z1 − z2||

and ||∇2
y2g(z1)−∇2

y2g(z2)|| ≤ Lg,y2 ||z1 − z2||.

Assumption 0.4. We have unbiased stochastic first order and second order derivative oracle with
bounded variance, more specifically, we have:

a) we have ∇xf(x, y; ξ), such that: E[∇xf(x, y; ξ)] = ∇xf(x, y) and var(∇xf(x, y; ξ)) ≤
σ2.

a) we have ∇yf(x, y; ξ), such that: E[∇yf(x, y; ξ)] = ∇yf(x, y) and var(∇yf(x, y; ξ)) ≤
σ2.

c) we have ∇2
y2g(x, y, ξ), such that: E[∇2

y2g(x, y; ξ)] = ∇2
y2g(x, y), E[∇2

y2g(x, y; ξ)v] =

∇2
y2g(x, y)v and var(∇2

y2g(x, y; ξ)) ≤ σ2 and var(∇2
y2g(x, y; ξ)v) ≤ σ2 for any vector

v.

d) we have ∇2
xyg(x, y; ξ), such that: E[∇2

xyg(x, y; ξ)] = ∇2
xyg(x, y), E[∇2

xyg(x, y; ξ)v] =

∇2
xyg(x, y)v and var(∇2

xyg(x, y; ξ)) ≤ σ2 and var(∇2
xyg(x, y; ξ)v) ≤ σ2 for any vector

v.

Assumption 0.5. For any m, j ∈ [M ] and x, we have:∥∇xf
(m)(x, y) − ∇xf

(j)f(x, y)∥ ≤
ζf , ∥∇yf

(m)(x, y) − ∇yf
(j)f(x, y)∥ ≤ ζf , ∥∇xyg

(m)(x, y) − ∇xyg
(j)(x, y)∥ ≤ ζg,xy,

∥∇y2g(m)(x, y) − ∇y2g(j)(x, y)∥ ≤ ζg,yy, ∥y(m)
x − y

(j)
x ∥ ≤ ζg∗ , where ζf , ζg,xy, ζg,yy, ζg∗ are

constants.

Assumption 0.6. The bias and variance of the stochastic hyper-gradient is bounded, i.e. E[∥µ(m)
t −

E[µ(m)
t ]∥2] ≤ σ2 and E[∥E[µ(m)

t ]− Φ(x
(m)
t , y

(m)
t )∥2] ≤ G2 for m ∈ [M ] and t ∈ [T ], where µ

(m)
t

is the stochastic hyper-gradient denoted in Line 10 of Algorithm 2.

8 PRELIMINARIES

In this section, we state some propositions useful in the proof:

Proposition 3 (Lemma 3 of Karimireddy et al. (2020)). (generalized triangle inequality) Let
{xk}, k ∈ K be K vectors. Then the following are true:

1. ||xi + xj ||2 ≤ (1 + a)||xi||2 + (1 + 1
a )||xj ||2 for any a > 0, and

2. ||
∑K

k=1 xk||2 ≤ K
∑K

k=1 ||xk||2

Proposition 4 (Lemma C.1 of Khanduri et al. (2021)). For a finite sequence x(k) ∈ Rd for k ∈ [K]

define x̄ := 1
K

∑K
k=1 x

(k), we then have
∑K

k=1 ∥x(k) − x̄∥2 ≤
∑K

k=1 ∥x(k)∥2.
Proposition 5 (Lemma C.2 of Khanduri et al. (2021)). Let a0 > 0 and a1, a2, . . . , aT ≥ 0. We have

T∑
t=1

at

a0 +
∑t

i=t ai
≤ ln

(
1 +

∑t
i=1 ai
a0

)
.

Proposition 6. (Proposition 2) Suppose Assumptions 2 and 3 hold, the following statements hold:

14
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a) ∥Φ(x; y) − ∇h(x)∥ ≤ C∥yx − y∥, where C = L + LCg,xy/µ + B(Lg,xy/µ +
Lg,y2Cg,xy/µ

2).

b) yx is Lipschitz continuous in x with constant ρ = Cg,xy/µ.

c) h(x) is Lipschitz continuous in x with constant L̄ i.e., for any given x1, x2 ∈ X , we have
∥∇h(x2)−∇h(x1)∥ ≤ L̄∥x2 − x1∥ where L̄ = (L+ C)Cg,xy/µ+ L+B(Lg,xyB/µ+
Lg,y2Cg,xy/µ

2).

d) ∥Φ(x1; y1)− Φ(x2; y2)∥2 ≤ Γ2(∥x1 − x2∥2 + ∥y1 − y2∥2), where Γ = L+BLg,xy/µ+
Cg,xy(L/µ+BLg,yy/µ

2).

We denote Lh = max(L̄,Γ, C, ρ, 1) for convenience.

Next if Case d) holds, it is straightforward to also get the stochastic version, i.e. ∥Φ(x1; y1;B) −
Φ(x2; y2,B)∥2 ≤ Γ2(∥x1 − x2∥2 + ∥y1 − y2∥2).

Proof. We only prove the Case d) here. Proof of other cases can be found in Lemma 2.2 of (Ghadimi
& Wang, 2018).

∥Φ(x1; y1)− Φ(x2; y2)∥

=

∥∥∥∥∇xf(x1, y1)−∇xyg(x1, y1)
(
∇yyg(x1, y1)

)−1

∇yf(x1, y1)

−∇xf(x2, y2)−∇xyg(x2, y2)
(
∇yyg(x2, y2)

)−1

∇yf(x2, y2)

∥∥∥∥
≤

∥∥∥∥∇xf(x1, y1)−∇xf(x2, y2)

∥∥∥∥+

∥∥∥∥∇xyg(x1, y1)

−∇xyg(x2, y2)

∥∥∥∥∥∥∥∥(∇yyg(x2, y2)
)−1

∇yf(x1, y1)

∥∥∥∥
+

∥∥∥∥∇xyg(x2, y2)

∥∥∥∥∥∥∥∥(∇yyg(x1, y1)
)−1

∇yf(x1, y1)−
(
∇yyg(x2, y2)

)−1

∇yf(x2, y2)

∥∥∥∥
≤

(
L+

BLg,xy

µ
+ Cg.xy

(
L

µ
+

BLg,yy

µ2

))(∥∥∥∥x1 − x2

∥∥∥∥2 + ∥∥∥∥y1 − y2

∥∥∥∥2)1/2

which finishes the proof.

Proposition 7. With Assumption 1, 2, 3 and Assumption 5 hold, we have:

∥∇h(m)(x)−∇h(j)(x)∥ ≤
(
1 +

Cg,xy

µ

)
ζf,x +

B

µ
ζg,xy +

BCg,xy

µ2
ζg,yy

+

(
L+

BLg,xy

µ
+

Cg,xyL

µ
+

BCg,xyLg,y2

µ2

)
ζg∗

Proof. Follow the formulation shown in Eq. 3 (Φ(x, yx)), we have:

∥∇h(m)(x)−∇h(j)(x)∥ = ∥∇xf
(m)(x, y(m)

x )−∇2
xyg

(m)(x, y(m)
x )[∇2

y2g(m)(x, y(m)
x )]−1∇yf

(m)(x, y(m)
x )

−
(
∇xf

(j)(x, y(j)x )−∇2
xyg

(j)(x, y(j)x )[∇2
y2g(j)(x, y(j)x )]−1∇yf

(j)(x, y(j)x )
)
∥

≤
∥∥∥∥∇xf

(m)(x, y(m)
x )−∇xf

(j)(x, y(j)x )

∥∥∥∥+

∥∥∥∥∇xyg
(m)(x, y(m)

x )

−∇xyg
(j)(x, y(j)x )

∥∥∥∥∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∇yf
(m)(x, y(m)

x )

∥∥∥∥
+

∥∥∥∥∇xyg
(j)(x, y(j)x )

∥∥∥∥∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∇yf
(m)(x, y(m)

x )

−
(
∇yyg

(j)(x, y(j)x )
)−1

∇yf
(j)(x, y(j)x )

∥∥∥∥
15



Under review as a conference paper at ICLR 2023

where the inequality is due to the triangle inequality. Next we bound the three terms separately. For
the first term:∥∥∥∥∇xf

(m)(x, y(m)
x )−∇xf

(j)(x, y(j)x )

∥∥∥∥ ≤
∥∥∥∥∇xf

(m)(x, y(m)
x )−∇xf

(j)(x, y(m)
x )

∥∥∥∥
+

∥∥∥∥∇xf
(j)(x, y(m)

x )−∇xf
(j)(x, y(j)x )

∥∥∥∥
≤ ζf + L

∥∥∥∥y(m)
x − y(j)x

∥∥∥∥ ≤ ζf + Lζg∗ (8)

where the second inequality is due to the Assumption 5 and smoothness assumption the Assumption 2.
The last inequality also follows the Assumption 5. Next, for the second term, we have:∥∥∥∥∇xyg

(m)(x, y(m)
x )−∇xyg

(j)(x, y(j)x )

∥∥∥∥∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∇yf
(m)(x, y(m)

x )

∥∥∥∥
≤ B

µ

∥∥∥∥∇xyg
(m)(x, y(m)

x )−∇xyg
(j)(x, y(j)x )

∥∥∥∥
≤ B

µ

∥∥∥∥∇xyg
(m)(x, y(m)

x )−∇xyg
(j)(x, y(m)

x )

∥∥∥∥+
B

µ

∥∥∥∥∇xyg
(j)(x, y(m)

x )−∇xyg
(j)(x, y(j)x )

∥∥∥∥
≤ Bζg,xy

µ
+

BLg,xy

µ

∥∥∥∥y(m)
x − y(j)x )

∥∥∥∥ ≤ Bζg,xy
µ

+
BLg,xyζg∗

µ

where the first inequality follows from the Assumption 1, 2; the second inequality follows from
triangle inequality; the third inequality follows from Assumption 5, 3, the last inequality follows
from Assumption 5. Next, for the third term, we have:∥∥∥∥∇xyg

(j)(x, y(j)x )

∥∥∥∥∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∇yf
(m)(x, y(m)

x )−
(
∇yyg

(j)(x, y(j)x )
)−1

∇yf
(j)(x, y(j)x )

∥∥∥∥
≤ Cg,xy

∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∇yf
(m)(x, y(m)

x )−
(
∇yyg

(j)(x, y(j)x )
)−1

∇yf
(j)(x, y(j)x )

∥∥∥∥
≤ Cg,xy

∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∥∥∥∥∥∥∥∥∇yf
(m)(x, y(m)

x )−∇yf
(j)(x, y(j)x )

∥∥∥∥
+ Cg,xy

∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

−
(
∇yyg

(j)(x, y(j)x )
)−1

∥∥∥∥∥∥∥∥∇yf
(j)(x, y(j)x )

∥∥∥∥
≤ Cg,xy

µ

∥∥∥∥∇yf
(m)(x, y(m)

x )−∇yf
(j)(x, y(j)x )

∥∥∥∥
+MCg,xy

∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

−
(
∇yyg

(j)(x, y(j)x )
)−1

∥∥∥∥
≤ Cg,xy(ζf + Lζg∗)

µ
+BCg,xy

∥∥∥∥(∇yyg
(m)(x, y(m)

x )
)−1

∥∥∥∥×∥∥∥∥∇yyg
(m)(x, y(m)

x )−∇yyg
(j)(x, y(j)x )

∥∥∥∥∥∥∥∥(∇yyg
(j)(x, y(j)x )

)−1
∥∥∥∥

≤ Cg,xy(ζf + Lζg∗)

µ
+

BCg,xy(ζg,yy + Lg,y2ζg∗)

µ2

where the first inequality is by Assumption 3; the second inequality is by triangle inequality; the third
inequality is by Assumption 3, 2; the fourth inequality is by Cauchy Schwartz inequality; the last
inequality is by Assumption 1, 3 and the result in Eq. 8. Combine everything together, we have:∥∥∥∥∇xf

(m)(x, y(m)
x )−∇xf

(j)(x, y(j)x )

∥∥∥∥ ≤ ζf,x + Lζg∗ +
Bζg,xy

µ
+

BLg,xyζg∗

µ
+

Cg,xy(ζf,x + Lζg∗)

µ

+
BCg,xy(ζg,yy + Lg,y2ζg∗)

µ2

which completes the proof.
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9 PROOF FOR THE FEDBIO ALGORITHM

In this section, we present the proofs for the FedBiO algorithm, we will focus on the deterministic
case.

9.1 HYPER-GRADIENT BIAS

Lemma 1. For all t ∈ [t̄s−1, t̄s − 1], the iterates generated satisfy:

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2 ≤ L2
h

M

M∑
m=1

((
1 + 2L2

h

)∥∥∥∥x(m)
t − x̄t

∥∥∥∥2 + ∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2)

where ν̄t =
1
M

∑M
m=1 Φ

(m)(x
(m)
t , y

(m)
t ), and ∇h(x̄t) =

1
M

∑M
m=1 Φ

(m)(x̄t, y
(m)
x̄t

).

Proof. By definition of ν̄t and ∇h(x̄t), we have:

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2 =

∥∥∥∥ 1

M

M∑
m=1

(
ν
(m)
t −∇h(m)(x̄t)

)∥∥∥∥2 (a)

≤ 1

M

M∑
m=1

∥∥∥∥ν(m)
t −∇h(m)(x̄t)

∥∥∥∥2
(b)

≤ L2
h

M

M∑
m=1

(∥∥∥∥x(m)
t − x̄t

∥∥∥∥2 + ∥∥∥∥y(m)
t − y

(m)
x̄t

∥∥∥∥2)

≤ L2
h

M

M∑
m=1

(∥∥∥∥x(m)
t − x̄t

∥∥∥∥2 + ∥∥∥∥y(m)
t − y

(m)

x
(m)
t

+ y
(m)

x
(m)
t

− y
(m)
x̄t

∥∥∥∥2)

≤ L2
h

M

M∑
m=1

((
1 + 2L2

h

)∥∥∥∥x(m)
t − x̄t

∥∥∥∥2 + ∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2)

where inequality (a) follows the generalized triangle inequality; inequality (b) follows the Proposi-
tion 2.

9.2 INNER VARIABLE DRIFT LEMMA

Lemma 2. When γ < 1
L , we have:

T∑
t=1

1

M

M∑
m=1

∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2 ≤ Bt̄0

1− q
+

Bt̄0

(1− q)(1− q1qI)
+

L2
hM

2
hq1q̄(S − 1)

(1− q)2(1− q1qI)
η2

+
q̄1q1q

IL2
h

(1− q)(1− q1qI)

S−1∑
j=1

Ât̄j +
L2
hM

2
h q̄T

1− q
η2

where Bt =
1
M

∑M
m=1

∥∥∥∥y(m)
t −y

(m)

x
(m)
t

∥∥∥∥2, Ât =
1
M

∑M
m=1

∥∥∥∥x̂(m)
t −x̄t

∥∥∥∥2, q = (1− µγ
2 ), q̄ = (1+ 2

µγ ),

q1 = 1 + µγ
4 and q̄1 = 1 + 4

µγ , Mh =
B(µ+Cg,xy)

µ .
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Proof. Note from Algorithm and the definition of t̄s that at t = t̄s−1 with s ∈ [S], x(m)
t = x̄t, for all

k. For t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S], we have:∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2 ≤ (1 +
µγ

2
)

∥∥∥∥y(m)
t − y

(m)

x
(m)
t−1

∥∥∥∥2 + (1 +
2

µγ
)

∥∥∥∥y(m)

x
(m)
t

− y
(m)

x
(m)
t−1

∥∥∥∥2
≤ (1 +

µγ

2
)(1− µγ)

∥∥∥∥y(m)
t−1 − y

(m)

x
(m)
t−1

∥∥∥∥2 + (1 +
2

µγ
)

∥∥∥∥y(m)

x
(m)
t

− y
(m)

x
(m)
t−1

∥∥∥∥2
≤ (1− µγ

2
)

∥∥∥∥y(m)
t−1 − y

(m)

x
(m)
t−1

∥∥∥∥2 + L2
h(1 +

2

µγ
)

∥∥∥∥x(m)
t − x

(m)
t−1

∥∥∥∥2
≤ (1− µγ

2
)

∥∥∥∥y(m)
t−1 − y

(m)

x
(m)
t−1

∥∥∥∥2 + L2
hη

2(1 +
2

µγ
)

∥∥∥∥ν(m)
t−1

∥∥∥∥2
≤ (1− µγ

2
)

∥∥∥∥y(m)
t−1 − y

(m)

x
(m)
t−1

∥∥∥∥2 + L2
hM

2
hη

2(1 +
2

µγ
)

where the second inequality is due to the property of gradient descent for strongly convex function
when γ < 1/L. For the last inequality, we use the fact that: ∥ν(m)

t−1∥ = ∥Φ(m)(x
(m)
t , y

(m)
t )∥ ≤

B+BCg,xy/µ and we denote Mh = B+BCg,xy/µ. We also denote q = (1− µγ
2 ) and q̄ = (1+ 2

µγ )

for ease of notation. By telescoping two sides, we have:∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2 ≤ qt−t̄s−1

∥∥∥∥y(m)
t̄s−1

− y
(m)

x
(m)

t̄s−1

∥∥∥∥2 + L2
hM

2
hη

2q̄

t−1∑
l=t̄s−1

qt−l−1

(b)

≤ qt−t̄s−1

∥∥∥∥y(m)
t̄s−1

− y
(m)

x
(m)

t̄s−1

∥∥∥∥2 + L2
hM

2
h q̄

1− q
η2

where in inequality (b), we use the fact qt−t̄s−1 < 1 for any t. Then we average over all M clients
and have:

1

M

M∑
j=1

∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2 ≤ 1

M

M∑
m=1

qt−t̄s−1

∥∥∥∥y(m)
t̄s−1

− y
(m)

x
(m)

t̄s−1

∥∥∥∥2 + L2
hM

2
h q̄

1− q
η2 (9)

As for t = t̄s, we average variable x over the m clients and x
(m)
t̄s

= x̄t̄s , while the inner variable

error is related to the x variable before averaging, i.e. x̂(m)
t̄s

. By the generalized triangle inequality,
we have: ∥∥∥∥y(m)

t̄s
− y

(m)
x̄t̄s

∥∥∥∥2 ≤ (1 +
µγ

4
)

∥∥∥∥y(m)
t̄s

− y
(m)

x̂
(m)

t̄s

∥∥∥∥2 + (1 +
4

µγ
)

∥∥∥∥y(m)

x̂
(m)

t̄s

− y
(m)
x̄t̄s

∥∥∥∥2
≤ (1 +

µγ

4
)

∥∥∥∥y(m)
t̄s

− y
(m)

x̂
(m)

t̄s

∥∥∥∥2 + L2
h(1 +

4

µγ
)

∥∥∥∥x̂(m)
t̄s

− x̄t̄s

∥∥∥∥2
We denote q1 = 1 + µγ

4 and q̄1 = 1 + 4
µγ . By averaging over M clients, we have:

1

M

M∑
m=1

∥∥∥∥y(m)
t̄s

− y
(m)

x
(m)

t̄s

∥∥∥∥2 ≤ q1
M

M∑
m=1

∥∥∥∥y(m)
t̄s

− y
(m)

x̂
(m)

t̄s

∥∥∥∥2 + L2
hq̄1
M

M∑
m=1

∥∥∥∥x̂(m)
t̄s

− x̄t̄s

∥∥∥∥2
We can bound the first term with Eq. (9) by setting t = t̄s, and we have:

1

M

M∑
m=1

∥∥∥∥y(m)
t̄s

− y
(m)

x
(m)

t̄s

∥∥∥∥2 ≤ q1q
I

M

M∑
m=1

∥∥∥∥y(m)
t̄s−1

− y
(m)

x
(m)

t̄s−1

∥∥∥∥2 + L2
hq̄1
M

M∑
m=1

∥∥∥∥x̂(m)
t̄s

− x̄t̄s

∥∥∥∥2 + L2
hM

2
hq1q̄

1− q
η2

For ease of notation, we denote Bt =
1
M

∑M
m=1 ∥y

(m)
t −y

(m)

x
(m)
t

∥2 and Ât =
1
M

∑M
m=1 ∥x̂

(m)
t − x̄t∥2.

Then the above equations can be written as:

Bt ≤ qt−t̄s−1Bt̄s−1
+

L2
hM

2
h q̄

1− q
η2, t ∈ [t̄s−1 + 1, t̄s − 1] (10)
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and:

Bt̄s ≤ q1q
IBt̄s−1

+ q̄1L
2
hÂt̄s +

L2
hM

2
hq1q̄

1− q
η2, t = t̄s

By telescoping, for s ≥ 1 we have:

Bt̄s ≤ qs1q
sIBt̄0 +

L2
hM

2
hq1q̄

1− q
η2

s−1∑
j=0

qj1q
jI + q̄1L

2
h

s∑
j=1

qs−j
1 q(s−j)IÂt̄j

≤ qs1q
sIBt̄0 +

L2
hM

2
hq1q̄

(1− q)(1− q1qI)
η2 + q̄1L

2
h

s∑
j=1

q
(s−j)
1 q(s−j)IÂt̄j (11)

Then by summing Eq. (10) from t̄s−1 to t, we have:
t∑

l=t̄s−1

Bl ≤
t∑

l=t̄s−1

ql−t̄s−1Bt̄s−1
+

L2
hM

2
h q̄(t− t̄s−1 − 1)

1− q
η2 ≤

Bt̄s−1

1− q
+

L2
hM

2
h q̄(t− t̄s−1 − 1)

1− q
η2

Combine the above inequality with Eq. (11) and for S ≥ 2, we have:
t∑

t′=t̄s−1

Bt′ ≤
qs−1
1 q(s−1)IBt̄0

1− q
+

L2
hM

2
hq1q̄

(1− q)2(1− q1qI)
η2

+
q̄1L

2
h

1− q

s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j +

L2
hM

2
h q̄(t− t̄s−1 − 1)

1− q
η2. (12)

and for s = 1, we have:
t̄1−1∑
t′=t̄0

Bt′ ≤
Bt̄0

1− q
+

L2
hM

2
h q̄(t− t̄s−1 − 1)

1− q
η2 (13)

Finally, we sum t from 1 → T and have:
T∑

t=1

Bt ≤
Bt̄0

1− q
+

S∑
s=2

qs−1
1 q(s−1)IBt̄0

1− q
+

L2
hM

2
hq1q̄(S − 1)

(1− q)2(1− q1qI)
η2

+
q̄1L

2
h

1− q

S∑
s=2

s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j +

L2
hM

2
h q̄S(I − 1)

1− q
η2

(a)

≤ Bt̄0

1− q
+

S∑
s=2

qs−1
1 q(s−1)IBt̄0

1− q
+

L2
hM

2
hq1q̄(S − 1)

(1− q)2(1− q1qI)
η2

+
q̄1L

2
h

1− q

S−1∑
j=1

S−j∑
s=1

qs1q
sIÂt̄j +

L2
hM

2
h q̄S(I − 1)

1− q
η2

≤ Bt̄0

1− q
+

Bt̄0

(1− q)(1− q1qI)
+

L2
hM

2
hq1q̄(S − 1)

(1− q)2(1− q1qI)
η2

+
q̄1q1q

IL2
h

(1− q)(1− q1qI)

S−1∑
j=1

Ât̄j +
L2
hM

2
h q̄T

1− q
η2.

where inequality (a) rearranges the terms in the fourth sum term. This completes the proof.

9.3 BOUND FOR CLIENT DRIFT

Lemma 3. For η < min

(√
(1−q)(1−q1qI)

2L2
hI
√

q̄1q1qI
, 1
12LhI

, µγ
2 , 1

)
and γ < 1

L , then we have:

T∑
t=1

Ât ≤
6SL2

hI
2Bt̄0

1− q
η2 +

18(S − 1)L4
hM

2
hI

2

(1− q)2(1− q1qI)
η2 +

12L4
hM

2
hTI(I − 1)

1− q
η2 + 18TI2ζ2η2

where Ât, q, q1, q̄1, Mh are defined as in Lemma 2.
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Proof. Note from Algorithm and the definition of t̄s that at t = t̄s−1 with s ∈ [S], x(m)
t = x̄t,

for all k. For t ∈ [t̄s−1 + 1, t̄s], with s ∈ [S], we have: x̂(m)
t = x̂

(m)
t−1 − ην

(m)
t−1 , this implies that:

x̂
(m)
t = x

(m)
t̄s−1

−
∑t−1

ℓ=t̄s−1
ην

(m)
ℓ and x̄t = x̄t̄s−1

−
∑t−1

ℓ=t̄s−1
ην̄ℓ. So for t ∈ [t̄s−1 + 1, t̄s − 1],

with s ∈ [S] we have:

1

M

M∑
m=1

∥x̂(m)
t − x̄t∥2 =

1

M

M∑
m=1

∥∥∥x(m)
t̄s−1

− x̄t̄s−1
−

( t−1∑
ℓ=t̄s−1

ην
(m)
ℓ −

t−1∑
ℓ=t̄s−1

ην̄ℓ

)∥∥∥2
(a)
=

1

M

M∑
m=1

∥∥∥ t−1∑
ℓ=t̄s−1

η
(
ν
(m)
ℓ − ν̄ℓ

)∥∥∥2
(b)

≤ 2

M

M∑
m=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

η

(
ν
(m)
ℓ −∇h(m)(x

(m)
ℓ )

)
− 1

M

M∑
j=1

(
ν
(j)
ℓ −∇h(j)(x

(j)
ℓ )

)∥∥∥∥2

+
2

M

M∑
m=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

η

(
∇h(m)(x

(m)
ℓ )− 1

M

M∑
j=1

∇h(j)(x
(j)
ℓ )

)∥∥∥∥2
(c)

≤ 2

M

M∑
m=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

η

(
ν
(m)
ℓ −∇h(m)(x

(m)
ℓ )

)∥∥∥∥2

+
2

M

M∑
m=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

η

(
∇h(m)(x

(m)
ℓ )− 1

M

M∑
j=1

∇h(j)(x
(j)
ℓ )

)∥∥∥∥2.
(14)

where the equality (a) follows from the fact that x(m)
t̄s−1

= x̄t̄s−1
for t = t̄s−1; (b) uses triangle

inequality and (c) follows from the application of Proposition 4. Then for the first term of 14, we
have: ∥∥∥∥ t−1∑

ℓ=t̄s−1

η

(
ν
(m)
ℓ −∇h(m)(x

(m)
ℓ )

)∥∥∥∥2 ≤ Iη2
t−1∑

ℓ=t̄s−1

∥∥∥∥(ν(m)
ℓ −∇h(m)(x

(m)
ℓ )

)∥∥∥∥2
(a)

≤ L2
hIη

2
t−1∑

ℓ=t̄s−1

∥∥∥∥y(m)
ℓ − y

(m)

x
(m)
ℓ

∥∥∥∥2. (15)

where (a) Follows Proposition 2. Next, for the second term of 14 we have:
M∑

m=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

η

(
∇h(m)(x

(m)
ℓ )− 1

M

M∑
j=1

∇h(j)(x
(j)
ℓ )

)∥∥∥∥2
(a)

≤ I

t−1∑
ℓ=t̄s−1

M∑
m=1

∥∥∥∥η(∇h(m)(x
(m)
ℓ )− 1

M

M∑
j=1

∇h(j)(x
(j)
ℓ )

)∥∥∥∥2
(b)

≤ I

t−1∑
ℓ=t̄s−1

η2
[
3

M∑
m=1

∥∥∇h(m)(x
(m)
ℓ )−∇h(m)(x̄ℓ)

∥∥2 + 3M

∥∥∥∥∇h(x̄ℓ)−
1

M

M∑
j=1

∇h(j)(x
(j)
ℓ )

∥∥∥∥2

+ 3

M∑
m=1

∥∥∇h(m)(x̄ℓ)−∇h(x̄ℓ)
∥∥2]

(c)

≤ I

t−1∑
ℓ=t̄s−1

η2
[
6L2

h

M∑
m=1

∥∥x(m)
ℓ − x̄ℓ

∥∥2 + 3

M∑
m=1

∥∥∥∥∇h(m)(x̄ℓ)−
1

M

M∑
j=1

∇h(j)(x̄ℓ)

∥∥∥∥2]
(d)

≤ 6L2
hIη

2
t−1∑

ℓ=t̄s−1

M∑
m=1

∥∥x(m)
ℓ − x̄ℓ

∥∥2 + 3MI2η2ζ2. (16)
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where (a) utilizes the fact that t − t̄s−1 ≤ I for t ∈ [t̄s−1 + 1, t̄s] and the generalized triangle
inequality; (b) follows the generalized triangle inequality; (c) follows from the Lh lipschitzness
of h; and (d) utilizes the heterogeneity Assumption 5 and also the fact that t − t̄s−1 ≤ I for
t ∈ [t̄s−1 + 1, t̄s].

Substituting 15 and 16 in 14 we get:

1

M

M∑
m=1

∥x̂(m)
t − x̄t∥2 ≤ 2L2

hIη
2

M

M∑
m=1

t−1∑
ℓ=t̄s−1

∥∥∥∥y(m)
ℓ − y

(m)

x
(m)
ℓ

∥∥∥∥2

+ 12L2
hIη

2
t−1∑

ℓ=t̄s−1

1

M

M∑
m=1

∥x(m)
ℓ − x̄ℓ∥2 + 6I2ζ2η2.

Next we use Ât =
1
M

∑M
m=1 ∥x̂

(m)
t − x̄t∥2 and Bt =

1
M

∑M
m=1

∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2 as in Lemma 2,

then the above inequality can be simplified to:

Ât ≤ 2L2
hIη

2
t−1∑

ℓ=t̄s−1

Bl + 12L2
hIη

2
t−1∑

ℓ=t̄s−1

Âl + 6I2ζ2η2.

For s ≥ 2, we substitute Eq. (12) to get:

Ât ≤ 2L2
hIη

2
t−1∑

l=t̄s−1

Bl + 12L2Iη2
t−1∑

ℓ=t̄s−1

Âl + 6I2ζ2η2

≤ 2L2
hIq

s−1
1 q(s−1)IBt̄0

1− q
η2 +

2L4
hM

2
hIq1q̄

(1− q)2(1− q1qI)
η4 + 2L4

hIq̄1η
2
s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j

1− q

+
2L4

hM
2
hI(I − 1)q̄

1− q
η4 + 6I2ζ2η2 + 12L2

hIη
2

t−1∑
ℓ=t̄s−1

Âl

Summing both sides from t = t̄s−1 + 1 to t̄s, we get:
t̄s∑

t=t̄s−1+1

Ât ≤
2L2

hI
2qs−1

1 q(s−1)IBt̄0η
2

1− q
+

2L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

2L4
hM

2
hI

2q̄(I − 1)

1− q
η4 + 6I3ζ2η2

+ 2L4
hI

2q̄1η
2
s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j

1− q
+ 12L2

hIη
2

t̄s∑
t=t̄s−1+1

t−1∑
ℓ=t̄s−1

Âl

≤ 2L2
hI

2qs−1
1 q(s−1)IBt̄0η

2

1− q
+

2L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

2L4
hM

2
hI

2q̄(I − 1)

1− q
η4 + 6I3ζ2η2

+ 2L4
hI

2q̄1η
2
s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j

1− q
+ 12L2

hI
2η2

t̄s∑
ℓ=t̄s−1

Âl

For ease of notation, we denote Cs =
∑t̄s

t=t̄s−1+1 Ât, then we have:

Cs ≤
2L2

hI
2qs−1

1 q(s−1)IBt̄0η
2

1− q
+

2L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

2L4
hM

2
hI

2q̄(I − 1)

1− q
η4 + 6I3ζ2η2

+ 2L4
hI

2q̄1η
2
s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j

1− q
+ 12L2

hI
2η2Cs

≤ 2L2
hI

2Bt̄0η
2

1− q
+

2L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

2L4
hM

2
hI

2q̄(I − 1)

1− q
η4 + 6I3ζ2η2

+ 2L4
hI

2q̄1η
2
s−1∑
j=1

qs−1−j
1 q(s−1−j)IÂt̄j

1− q
+ 12L2

hI
2η2Cs. (17)
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The second inequality follows that q1qI = (1 + µγ/4)(1 − µγ/2)I ≤ (1 + µγ/4)(1 − µγ/2) ≤
1− µγ/4 < 1.

Next for s = 1, substitute Eq. 13, we have:

Ât ≤ 2L2
hIη

2
t−1∑
ℓ=t̄0

Bl + 12L2
hIη

2
t−1∑
ℓ=t̄0

Âl + 6I2ζ2η2

≤ 2L2
hIBt̄0

1− q
η2 +

2L4
hM

2
hI(I − 1)q̄

1− q
η4 + 12L2

hIη
2

t−1∑
ℓ=t̄0

Âl + 6I2ζ2η2.

Summing both sides from t = t̄0 + 1 to t̄s, we get:

C1 =

t̄s∑
t=t̄0+1

Ât ≤
2L2

hI
2Bt̄0

1− q
η2 +

2L4
hM

2
hI

2(I − 1)q̄

1− q
η4 + 6I3ζ2η2 + 12L2

hI
2η2C1 (18)

Then we combine 17 and 18 to have:
S∑

s=1

Cs ≤
2SL2

hI
2Bt̄0

1− q
η2 +

2(S − 1)L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

2SL4
hM

2
hI

2(I − 1)q̄

1− q
η4 + 6SI3ζ2η2

+ 2L4
hI

2q̄1η
2

S∑
s=2

s−1∑
j=1

(q1q
I)s−1−jCj

1− q
+ 12L2

hI
2η2

S∑
s=1

Cs

≤ 2SL2
hI

2Bt̄0

1− q
η2 +

2(S − 1)L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

2SL4
hM

2
hI

2(I − 1)q̄

1− q
η4 + 6SI3ζ2η2

+
2L4

hI
2q̄1q1q

I

(1− q)(1− q1qI)
η2

S∑
s=1

Cs + 12L2
hI

2η2
S∑

s=1

Cs.

where in the first inequality, we use the fact that Ât̄j ≤ Cj , then by rearranging the terms, we have:(
1− 2L4

hI
2q̄1q1q

I

(1− q)(1− q1qI)
η2 − 12L2

hI
2η2

) T∑
t=1

Ât ≤
2SL2

hI
2Bt̄0

1− q
η2 +

2(S − 1)L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4

+
2SL4

hM
2
hI

2(I − 1)q̄

1− q
η4 + 6SI3ζ2η2

Suppose η < min

(√
(1−q)(1−q1qI)

2L2
hI
√

q̄1q1qI
, 1
12LhI

)
, then we have

1− 2q̄1L
2
hI

2η2ρ2q1q
I

(1− q)(1− q1qI)
− 12L2

hI
2η2 ≥ 1− 1

2
− 1

12
>

1

3

So we have:
T∑

t=1

Ât ≤
6SL2

hI
2Bt̄0

1− q
η2 +

6(S − 1)L4
hM

2
hI

2q1q̄

(1− q)2(1− q1qI)
η4 +

6SL4
hM

2
hI

2(I − 1)q̄

1− q
η4 + 18SI3ζ2η2

Note that we have

q1q̄ = (1 +
µγ

4
)(1 +

2

µγ
) =

3

2
+

µγ

4
+

2

µγ
< 2 +

2

µγ

and by the assumption that η < min(1, µγ
2 ), we simplify the above inequality as:

T∑
t=1

Ât ≤
6SL2

hI
2Bt̄0

1− q
η2 +

18(S − 1)L4
hM

2
hI

2

(1− q)2(1− q1qI)
η2 +

12L4
hM

2
hTI(I − 1)

1− q
η2 + 18TI2ζ2η2

Therefore, the lemma is proved.
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9.4 DESCENT LEMMA

Lemma 4. For all t ∈ [t̄s−1, t̄s − 1] and s ∈ [S], the iterates generated satisfy:

h(x̄t+1) ≤ h(x̄t)−
η

2
∥∇h(x̄t)∥2 +

L2
h(1 + 2L2

h)η

2M

M∑
m=1

∥x(m)
t − x̄t∥2 +

L2
hη

2M

M∑
m=1

∥y(m)
t − y

(m)

x
(m)
t

∥2

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Using the smoothness of f we have:

h(x̄t+1) ≤ h(x̄t) + ⟨∇h(x̄t), x̄t+1 − x̄t⟩+
Lh

2
∥x̄t+1 − x̄t∥2

(a)
= h(x̄t)− η⟨∇h(x̄t), ν̄t⟩+

η2Lh

2
∥ν̄t∥2

(b)
= h(x̄t)−

η

2

∥∥∥ν̄t∥∥∥2 − η

2
∥∇h(x̄t)∥2 +

η

2

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2 + η2tLh

2

∥∥∥ν̄t∥∥∥2
= h(x̄t)−

(
η

2
− η2Lh

2

)∥∥∥ν̄t∥∥∥2 − η

2
∥∇h(x̄t)∥2 +

η

2

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2
(c)

≤ h(x̄t)−
η

2
∥∇h(x̄t)∥2 +

η

2

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2
(d)

≤ h(x̄t)−
η

2
∥∇h(x̄t)∥2 +

L2
hη

2M

M∑
m=1

((
1 + 2L2

h

)∥∥∥∥x(m)
t − x̄t

∥∥∥∥2 + ∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2)

where equality (a) follows from the iterate update given in Step 6 of Algorithm 1; (b) uses ⟨a, b⟩ =
1
2 [∥a∥

2 + ∥b∥2 − ∥a− b∥2]; (c) follows the assumption that η < 1/Lh; (d) follows lemma 1. Hence,
the lemma is proved.

9.5 PROOF OF CONVERGENCE THEOREM

Theorem 9.1. For δ < min

(√
(1−q)(1−q1qI)

2L2
hI
√

q̄1q1qI
, 1
12LhI

, µγ
2 , 1

)
, γ < 1

L and η = δ
T 1/3 , we have:

1

T

T∑
t=1

∥∇h(x̄t)∥2 ≤ 2(h(x̄1)− h∗)

δT 2/3
+

L2
hBt̄0

(1− q)T
+

2L2
hBt̄0

(1− q)(1− q1qI)T

+
δ2L4

hM
2
hq1q̄

(1− q)2(1− qI)IT 2/3
+

δ2L4
hq̄M

2
h

(1− q)T 2/3
+

(
q̄1L

4
hq1q

I

(1− q)(1− q1qI)
+ L2

h(1 + 2L2
h)

)
×
(
6L2

hIBt̄0

1− q
+

18L4
hM

2
hI

(1− q)2(1− q1qI)
+

12L4
hM

2
hI(I − 1)

1− q
+ 18I2ζ2

)
δ2

T 2/3

where Bt̄0 = 1
M

∑M
m=1 ∥y

(m)
1 −y

(m)

x
(m)
1

∥2, q = (1− µγ
2 ), q̄ = (1+ 2

µγ ), q1 = 1+ µγ
4 and q̄1 = 1+ 4

µγ
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Proof. From the result of Lemma 4, summarize for t = [T ] and multiply both sides by 2/ηT we get

1

T

T∑
t=1

∥∇h(x̄t)∥2 ≤
T∑

t=1

2(h(x̄t)− h(x̄t+1))

ηT
+

L2
h(1 + 2L2

h)

MT

T∑
t=1

M∑
m=1

∥x(m)
t − x̄t∥2

+
L2
h

MT

T∑
t=1

M∑
m=1

∥y(m)
t − y

(m)

x
(m)
t

∥2

≤ 2(h(x̄1)− h∗)

ηT
+

L2
h(1 + 2L2

h)

MT

T∑
t=1

M∑
m=1

∥x̂(m)
t − x̄t∥2

+
L2
h

MT

T∑
t=1

M∑
m=1

∥y(m)
t − y

(m)

x
(m)
t

∥2

≤ 2(h(x̄1)− h∗)

ηT
+

L2
hBt̄0

(1− q)T
+

L2
hBt̄0

(1− q)(1− q1qI)T
+

L4
hM

2
h(S − 1)q1q̄

(1− q)2(1− q1qI)T
η2

+
L4
hq̄1q1q

I

MT (1− q)(1− q1qI)

T∑
t=1

M∑
m=1

∥x̂(m)
t − x̄t∥2 +

L4
hM

2
h q̄

1− q
η2

+
L2
h(1 + 2L2

h)

MT

T∑
t=1

M∑
m=1

∥x̂(m)
t − x̄t∥2

≤ 2(h(x̄1)− h∗)

ηT
+

L2
hBt̄0

(1− q)T
+

L2
hBt̄0

(1− q)(1− q1qI)T
+

L4
hM

2
h(S − 1)q1q̄

(1− q)2(1− q1qI)T
η2

+
L4
hM

2
h q̄

1− q
η2 +

(
L4
hq̄1q1q

I

(1− q)(1− q1qI)
+ L2

h(1 + 2L2
h)

)
×(

6L2
hIBt̄0

1− q
+

18L4
hM

2
hI

(1− q)2(1− q1qI)
+

12L4
hM

2
hI(I − 1)

1− q
+ 18I2ζ2

)
η2.

where the second inequality uses f(x̄t) ≥ f∗ and the fact
∑M

m=1 ∥x
(m)
t − x̄t∥2 ≤

∑M
m=1 ∥x̂

(m)
t −

x̄t∥2 for all t. The third inequality uses Lemma 2 and the fourth inequality uses 3. Finally, choice of

η = δ
T 1/3 , δ is a constant such that δ < min

(√
(1−q)(1−q1qI)

2L2
hI
√

q̄1q1qI
, 1
12LhI

, µγ
2 , 1

)
we get

1

T

T∑
t=1

∥∇h(x̄t)∥2

≤ 2(h(x̄1)− h∗)

δT 2/3
+

L2
hBt̄0

(1− q)T
+

2L2
hBt̄0

(1− q)(1− q1qI)T
+

δ2L4
hM

2
hq1q̄

(1− q)2(1− qI)IT 2/3
+

δ2L4
hM

2
h q̄

(1− q)T 2/3

+

(
q̄1L

2
hρ

2q1q
I

(1− q)(1− q1qI)
+ L2

h(1 + 2ρ2)

)(
6L2

hIBt̄0

1− q
+

18L4
hM

2
hI

(1− q)2(1− q1qI)

+
12L4

hM
2
hI(I − 1)

1− q
+ 18I2ζ2

)
δ2

T 2/3

Therefore, we have the theorem.
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10 PROOF FOR THE FEDBIOACC ALGORITHM

In this section, we prove the convergence of the FedBiOAcc Algorithm.

10.1 BOUND FOR HYPER-GRADIENT BIAS

Lemma 5. With all assumptions hold and cνα
2
t < 1, then for all t ∈ [t̄s−1, t̄s − 1], we have:

E
[∥∥∥ν̄t − 1

M

M∑
m=1

∇h(x
(m)
t )

∥∥∥2] ≤ (1− cνα
2
t−1)

2E
[∥∥∥∥ν̄t−1 −

1

M

M∑
m=1

∇h(m)(x̄t−1)

∥∥∥∥2]

+
4(cνα

2
t−1)

2σ2

M
+ 8(cνα

2
t−1)

2G2 +
8L2

h(cνα
2
t−1)

2

M

M∑
m=1

E
[∥∥∥∥y(m)

t−1 − y
(m)

x
(m)
t−1

∥∥∥∥2]

+
40L2

hη
2α2

t−1

M

M∑
m=1

E
[∥∥∥∥ν(m)

t−1 − ν̄t−1

∥∥∥∥2]+
40L2

hη
2α2

t−1

M

M∑
m=1

E
[∥∥∥∥ν̄t−1

∥∥∥∥2]

+
12L2

hγ
2α2

t−1

M

M∑
m=1

E
[∥∥∥∥ω(m)

t−1

∥∥∥∥2]

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. We have:

E
[∥∥∥ν̄t − 1

M

M∑
m=1

∇h(x
(m)
t )

∥∥∥2]

= E
[∥∥∥∥ 1

M

M∑
m=1

(
ν̂
(m)
t −∇h(m)(x

(m)
t )

)∥∥∥∥2]

≤ E
[∥∥∥∥ 1

M

M∑
m=1

(
µ
(m)
t + (1− cνα

2
t−1)(ν

(m)
t−1 − µ

(m)
t−1)−∇h(m)(x

(m)
t )

)∥∥∥∥2]

= E
[∥∥∥∥(1− cνα

2
t−1)

(
ν̄t−1 −

1

M

M∑
m=1

∇h(m)(x
(m)
t−1)

)

+
1

M

M∑
m=1

(
µ
(m)
t −∇h(m)(x

(m)
t ) + (1− cνα

2
t−1)(∇h(m)(x

(m)
t−1)− µ

(m)
t−1)

)∥∥∥∥2]
(a)

≤ (1− cνα
2
t−1)

2E
[∥∥∥∥ν̄t−1 −

1

M

M∑
m=1

∇h(m)(x̄t−1)

∥∥∥∥2]

+ E
[∥∥∥∥ 1

M

M∑
m=1

(
µ
(m)
t −∇h(m)(x

(m)
t ) + (1− cνα

2
t−1)(∇h(m)(x

(m)
t−1)− µ

(m)
t−1)

)∥∥∥∥2]
(19)

where inequality (a) uses the fact that the cross product is zero in expectation; Next for the second
term of the above equation. Now suppose we denote µ̃(m)

t = E[µ(m)
t ], then by the triangle inequality,
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we have:

E
[∥∥∥∥ 1

M

M∑
m=1

(
µ
(m)
t −∇h(m)(x

(m)
t ) + (1− cνα

2
t−1)(∇h(m)(x

(m)
t−1)− µ

(m)
t−1)

)∥∥∥∥2]

≤ 2E
[∥∥∥∥ 1

M

M∑
m=1

(
µ
(m)
t − µ̃

(m)
t + (1− cνα

2
t−1)(µ̃

(m)
t−1 − µ

(m)
t−1)

)∥∥∥∥2]

+ 2E
[∥∥∥∥ 1

M

M∑
m=1

(
µ̃
(m)
t −∇h(m)(x

(m)
t ) + (1− cνα

2
t−1)(∇h(m)(x

(m)
t−1)− µ̃

(m)
t−1)

)∥∥∥∥2]

≤ 2

M2

M∑
m=1

E
[∥∥∥∥(µ(m)

t − µ̃
(m)
t + (1− cνα

2
t−1)(µ̃

(m)
t−1 − µ

(m)
t−1)

)∥∥∥∥2]

+
2

M

M∑
m=1

E
[∥∥∥∥(µ̃(m)

t −∇h(m)(x
(m)
t ) + (1− cνα

2
t−1)(∇h(m)(x

(m)
t−1)− µ̃

(m)
t−1)

)∥∥∥∥2]
(20)

The last inequality is by the generalized triangle inequality for the second term, the first term uses the
fact that the cross product is zero in expectation. We bound the two terms in the above inequality
separately. For the first term, we have:

2E
[∥∥∥∥µ(m)

t − µ̃
(m)
t + (1− cνα

2
t−1)(µ̃

(m)
t−1 − µ

(m)
t−1)

∥∥∥∥2]
(a)

≤ 4(cνα
2
t−1)

2E
[∥∥∥∥µ(m)

t − µ̃
(m)
t

∥∥∥∥2]+ 4(1− cνα
2
t−1)

2E
[∥∥∥∥µ(m)

t − µ
(m)
t−1 − µ̃

(m)
t + µ̃

(m)
t−1)

∥∥∥∥2]
(b)

≤ 4(cνα
2
t−1)

2E
[∥∥∥∥µ(m)

t − µ̃
(m)
t

∥∥∥∥2]+ 4(1− cνα
2
t−1)

2E
[∥∥∥∥µ(m)

t − µ
(m)
t−1

∥∥∥∥2]
(c)

≤ 4(cνα
2
t−1)

2σ2 + 4L2
h(1− cνα

2
t−1)

2E
[∥∥∥∥x(m)

t − x
(m)
t−1

∥∥∥∥2 + ∥∥∥∥y(m)
t − y

(m)
t−1

∥∥∥∥2]
≤ 4(cνα

2
t−1)

2σ2 + 4L2
h(1− cνα

2
t−1)

2E
[∥∥∥∥ηαt−1ν

(m)
t−1

∥∥∥∥2 + ∥∥∥∥γαt−1ω
(m)
t−1

∥∥∥∥2]
(d)

≤ 4(cνα
2
t−1)

2σ2 + 4L2
hE

[∥∥∥∥ηαt−1ν
(m)
t−1

∥∥∥∥2 + ∥∥∥∥γαt−1ω
(m)
t−1

∥∥∥∥2]

where inequality (a) follows the triangle inequality Proposition 3; (b) follows Propostion 4 due to the
definition of µ̃(m)

t ; (c) follows the smoothness property of Lh and the bounded variance assumption 6;
(d) follows the fact that cνα2

t < 1. Next for the second term, we have:

2E
[∥∥∥∥µ̃(m)

t −∇h(m)(x
(m)
t ) + (1− cνα

2
t−1)(∇h(m)(x

(m)
t−1)− µ̃

(m)
t−1)

∥∥∥∥2]
(a)

≤ 4(cνα
2
t−1)

2E
[∥∥∥∥µ̃(m)

t−1 −∇h(m)(x
(m)
t−1)

∥∥∥∥]+ 8E
[∥∥∥∥µ̃(m)

t − µ̃
(m)
t−1

∥∥∥∥2]+ 8E
[∥∥∥∥∇h(m)(x

(m)
t )−∇h(m)(x

(m)
t−1)

∥∥∥∥2]
(b)

≤ 8(cνα
2
t−1)

2E
[∥∥∥∥µ̃(m)

t−1 − Φ(m)(x
(m)
t−1, y

(m)
t−1)

∥∥∥∥]+ 8(cνα
2
t−1)

2E
[∥∥∥∥Φ(m)(x

(m)
t−1, y

(m)
t−1)−∇h(m)(x
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t−1)

∥∥∥∥]
+ 8E

[∥∥∥∥µ̃(m)
t − µ̃

(m)
t−1

∥∥∥∥2]+ 8E
[∥∥∥∥∇h(m)(x

(m)
t )−∇h(m)(x

(m)
t−1)

∥∥∥∥2]
(c)

≤ 8(cνα
2
t−1)

2G2 + 8L2
h(cνα

2
t−1)

2E
[(∥∥∥∥y(m)

t−1 − y
(m)

x
(m)
t−1

∥∥∥∥2)]
+ 8L2

hE
[∥∥∥∥ηαt−1ν

(m)
t−1
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(m)
t−1

∥∥∥∥2]+ 8L2
hE

[∥∥∥∥ηαt−1ν
(m)
t−1

∥∥∥∥2]
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where inequality (a) and (b) follows the generalized triangle inequality; (c) follows the smoothness of
h(x) and the bounded bias assumption 6. Combine everything together, we have:

E
[∥∥∥ν̄t − 1

M

M∑
m=1

∇h(x
(m)
t )

∥∥∥2]

≤ (1− cνα
2
t−1)

2E
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1

M
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∇h(m)(x̄t−1)

∥∥∥∥2]+
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2
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2σ2

M
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2
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M
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+
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M
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E
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(a)
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1
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2

M
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x
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+
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hη
2α2

t−1

M

M∑
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E
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∥∥∥∥2]+
40L2
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M
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+
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M
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∥∥∥∥2]

In inequality (a) we use the generalized triangle inequality 3. This completes the proof.

10.2 BOUND FOR INNER VARIABLE DRIFT

Lemma 6. Suppose cωα
2
t−1 < 1, then for t ∈ [t̄s−1 + 1, t̄s], with s ∈ [S], we have:

1

M

M∑
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E
[∥∥∥∥ω(m)

t −∇yg
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where the expectation is w.r.t the stochasticity of the algorithm.
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Proof. For t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S], we follow similar derivation as in Eq. (19) and get:
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t −∇yg
(m)(x

(m)
t , y

(m)
t )

∥∥∥∥2]
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∥∥∥∥2] (21)

where inequality (a) uses the fact that the cross product term is zero in expectation; inequality (b) uses
the generalized triangle inequality; inequality (c) follows the bounded variance assumption 4 and
Proposition 4; inequality (d) uses the smoothness assumption 3; inequality (e) uses the generalized
triangle inequality and the fact (1− cωα

2
t−1)

2 < 1.
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When t = t̄s, the only difference is that we use x̄t̄s−1 in Line 8 of the algorithm 2 to evaluate ω
(m)
t̄s

instead of x(m)
t̄s−1 when t < t̄s. We follow similar derivation as in Eq 21 and get:
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1

M
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The second inequality follows the fact that x(m)
t̄s

= x̄t̄s ; the last inequality follows the generalized
triangle inequality and the fact (1 − cωα

2
t̄s−1)

2 < 1. Finally, combine Eq. 21 and 22 and average
over all M clients finish the proof.

Lemma 7. For γ ≤ 1
6Lh

and 0 < αt ≤ 1
16LhI

, we have for t ∈ [t̄s−1 + 1, t̄s − 1]:

E
[∥∥∥∥y(m)

t − y
(m)

x
(m)
t

∥∥∥∥2] ≤ (1− µγαt−1

8
)E
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x
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∥∥∥∥2]− 3γ2αt−1

4
E
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∥∥∥∥2]
+
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µ
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(m)
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∥∥∥∥2]
+

5L2
hη
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µγ
E
[∥∥∥∥ν(m)

t−1

∥∥∥∥2].
and when t = t̄s, we have:

E
[∥∥∥∥y(m)
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− y

(m)
x̄t̄s

∥∥∥∥2] ≤ (1− µγαt̄s−1

8
)E
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x
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4
E
[∥∥∥∥ω(m)
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+
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µ
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(m)(x
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+
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E
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∥∥∥∥2]+ (1 +
8
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)L2

hE
[∥∥∥∥x̂(m)
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− x̄t̄s

∥∥∥∥2].
Proof. Suppose we denote ỹ

(m)
t+1 = y

(m)
t − γω

(m)
t , then we have y

(m)
t+1 = y

(m)
t + α(ỹ

(m)
t+1 − y

(m)
t ).

We start the proof, firstly, by the strong convexity of of function g(m)(x, y), we have:

g(m)(x
(m)
t , y)) ≥ g(x

(m)
t , y

(m)
t ) + ⟨∇yg(x

(m)
t , y

(m)
t ), y − y

(m)
t ⟩+ µ

2
∥y − y
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= g(x
(m)
t , y

(m)
t ) + ⟨w(m)
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(m)
t+1⟩+ ⟨∇yg(x

(m)
t , y

(m)
t )− w

(m)
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⟨∇yg(x
(m)
t , y

(m)
t ), ỹ

(m)
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(m)
t ⟩+ µ

2
∥y − y

(m)
t ∥2. (23)
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According to the smoothness assumption of g(m)(x, y), i.e., the function g(m)(x, y) is L-smooth, we
have

L

2
∥ỹ(m)

t+1 − y
(m)
t ∥2 ≥ g(x

(m)
t , ỹ

(m)
t+1)− g(x

(m)
t , y

(m)
t )− ⟨∇yg(x
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t ), ỹ

(m)
t+1 − y
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t ⟩. (24)

Combining the inequalities 23 with 24, we have

g(m)(x
(m)
t , y)) ≥ g(x
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t , y − ỹ
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+
µ

2
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2
∥ỹ(m)
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(m)
t ∥2. (25)

Then for second term of the above inequality, we have:

⟨w(m)
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t , y − y
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Combining the inequalities 25 with 26, we have

g(m)(x
(m)
t , y)) ≥ g(m)(x
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Let y = y
(m)

x
(m)
t

and we obtain
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By definition of y(m)
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, we have g(m)(x
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t+1). Thus, we obtain

0 ≥ ⟨w(m)
t , y

(m)

x
(m)
t

− y
(m)
t ⟩+ ⟨∇yg(x

(m)
t , y

(m)
t )− w

(m)
t , y

(m)

x
(m)
t

− y
(m)
t+1⟩

+
(
γ − Lγ2

2

)
∥w(m)

t ∥2 + µ

2
∥y(m)

x
(m)
t

− y
(m)
t ∥2. (29)

By y
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t , we have
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By rearranging terms, we have:
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Considering the upper bound of the term ⟨∇yg(x
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So we have:
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Next, combining the inequalities 29, 31 with 32, we have
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where the first inequality is due to 0 < αt ≤ 1
16LhI

< 1, the second inequality holds by L ≥ µ, and
the last inequality is due to and γ ≤ 1

6Lh
≤ 1

6L . It implies that
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Next, we decompose the term ∥y(m)
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∥2 as follows:
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where the first inequality holds by the Cauchy-Schwartz inequality and Young’s inequality, and the
second inequality is due to case b) of Proposition 3.9, and the last equality holds by Line 13 of
Algorithm 2 and the definition that ρ ≤ Lh. Combining the above inequalities 34 and 35, we have
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Since 0 < αt ≤ 1
16LhI

≤ 1
16µI , 0 < γ ≤ 1

6Lh
≤ 1 and Lh ≥ L ≥ µ, and I ≥ 1 we have:
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Thus, we have
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For t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S], we have:
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It is straightforward to verify the claim in the Lemma as we have 65/16 < 5.

When t = t̄s, we average variable x over the m clients, i.e. x(m)
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= x̄t̄s . For
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can get similar recursive relation as:

E
[∥∥∥∥y(m)

t̄s
− y

(m)

x̂
(m)

t̄s

∥∥∥∥2] ≤ (1− µγαt̄s−1

4
)E

[∥∥∥∥y(m)
t̄s−1 − y

(m)

x
(m)

t̄s−1

∥∥∥∥2]− 3γ2αt−1

4
E
[∥∥∥∥ω(m)

t̄s−1

∥∥∥∥2]
+

65γαt̄s−1

16µ
E
[∥∥∥∥ω(m)

t̄s−1 −∇yg
(m)(x

(m)
t̄s−1, y

(m)
t̄s−1)

∥∥∥∥2]
+

65Lhη
2αt̄s−1

16µγ
E
[∥∥∥∥ν(m)

t̄s−1

∥∥∥∥2]. (37)

while for
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− y
(m)
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∥∥∥∥2]
≤ (1 +

µγαt̄s−1

8
)E

[∥∥∥∥y(m)
t̄s

− y
(m)

x̂
(m)
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∥∥∥∥2]+ (1 +
8

µγαt̄s−1
)L2

hE
[∥∥∥∥x̂(m)

t̄s
− x̄t̄s

∥∥∥∥2]
(38)
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Combine Eq. 37 and Eq. 38 together, we have:

E
[∥∥∥∥y(m)

t̄s
− y

(m)
x̄t̄s

∥∥∥∥2] ≤ (1 +
µγαt̄s−1

8
)(1− µγαt̄s−1

4
)E

[∥∥∥∥y(m)
t̄s−1 − y

(m)

x
(m)

t̄s−1

∥∥∥∥2]
− (1 +

µγαt̄s−1

8
)
3γ2αt̄s−1

4
E
[∥∥∥∥ω(m)

t̄s−1

∥∥∥∥2]
+ (1 +

µγαt̄s−1

8
)
65γαt̄s−1

16µ
E
[∥∥∥∥ω(m)

t̄s−1 −∇yg
(m)(x

(m)
t̄s−1, y

(m)
t̄s−1)

∥∥∥∥2]
+ (1 +

µγαt̄s−1

8
)
65L2

hη
2αt̄s−1

16µγ
E
[∥∥∥∥ν(m)

t̄s−1

∥∥∥∥2]
+ (1 +

8

µγαt̄s−1
)L2

hE
[∥∥∥∥x̂(m)

t̄s
− x̄t̄s

∥∥∥∥2]
For the coefficients, since we set γ ≤ 1

6Lh
< 1 and 0 < αt <

1
16LhI

< 1
16µI , it is straightforward to

verify the following inequalities hold:

(1 +
µγαt̄s−1

8
)(1− µγαt̄s−1

4
) = 1− µγαt̄s−1

8
−

µ2γ2α2
t̄s−1

32
≤ 1− µγαt̄s−1

8

−(1 +
µγαt̄s−1

8
)
3γ2αt̄s−1

4
≤ −3γ2αt̄s−1

4

(1 +
µγαt̄s−1

8
)
65γαt̄s−1

16µ
≤ 33γαt̄s−1

8µ
≤ 5γαt̄s−1

µ

(1 +
µγαt̄s−1

8
)
65L2

hη
2αt̄s−1

16µγ
≤ 33L2

hη
2αt̄s−1

8µγ
≤ 5L2

hη
2αt̄s−1

µγ

So we have for t = t̄s:

E
[∥∥∥∥y(m)

t̄s
− y

(m)
x̄t̄s

∥∥∥∥2] ≤ (1− µγαt̄s−1

8
)E

[∥∥∥∥y(m)
t̄s−1 − y

(m)

x
(m)

t̄s−1

∥∥∥∥2]− 3γ2αt̄s−1

4
E
[∥∥∥∥ω(m)

t̄s−1

∥∥∥∥2]
+

5γαt̄s−1

µ
E
[∥∥∥∥ω(m)

t̄s−1 −∇yg
(m)(x

(m)
t̄s−1, y

(m)
t̄s−1)

∥∥∥∥2]
+

5L2
hη

2αt̄s−1

µγ
E
[∥∥∥∥ν(m)

t̄s−1

∥∥∥∥2]+ (1 +
8

µγαt̄s−1
)L2

hE
[∥∥∥∥x̂(m)

t̄s
− x̄t̄s

∥∥∥∥2]
Combine with cases when t ∈ [t̄s−1 + 1, t̄s − 1] in Eq. 36 completes the proof.

10.3 BOUND FOR OUTER VARIABLE DRIFT

Lemma 8. For α < 1
16ILh

and 0 < η < 1, we have for t ∈ [t̄s−1 + 1, t̄s − 1]:

M∑
m=1

E∥ν(m)
t − ν̄t∥2 ≤

(
1 +

33

32I

) M∑
m=1

E∥ν(m)
t−1 − ν̄t−1∥2 + 4IL2

hα
2
t−1

M∑
m=1

E
[
2∥ην̄t−1∥2 + ∥γω(m)

t−1∥2
]

+
IM(cνα

2
t−1)

2σ2

Lh
+

8IM(cνα
2
t−1)

2G2

2Lh
+

Mc2να
3
t−1ζ

2

Lh

+
η2c2να

2
t−1(1 + ρ2)

2

t−1∑
ℓ=t̄s−1

α2
l

M∑
m=1

∥∥∥(ν(m)
ℓ − ν̄ℓ

)∥∥∥2
where the expectation is w.r.t the stochasticity of the algorithm.

Proof. For t ∈ [t̄s−1 + 1, t̄s], with s ∈ [S], we have: x̂(m)
t = x̂

(m)
t−1 − ηαt−1ν

(m)
t−1 , this implies that:

x̂
(m)
t = x

(m)
t̄s−1

−
t−1∑

ℓ=t̄s−1

ην
(m)
ℓ and x̄t = x̄t̄s−1

−
t−1∑

ℓ=t̄s−1

ην̄ℓ.
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So for t ∈ [t̄s−1 + 1, t̄s], with s ∈ [S] we have:

1

M

M∑
m=1

∥x̂(m)
t − x̄t∥2 =

1

M

M∑
m=1

∥∥∥x(m)
t̄s−1

− x̄t̄s−1
−

( t−1∑
ℓ=t̄s−1

ηαℓν
(m)
ℓ −

t−1∑
ℓ=t̄s−1

ηαℓν̄ℓ

)∥∥∥2
(a)
=

1

M

M∑
m=1

∥∥∥ t−1∑
ℓ=t̄s−1

ηαℓ

(
ν
(m)
ℓ − ν̄ℓ

)∥∥∥2 (b)

≤
t−1∑

ℓ=t̄s−1

Iη2α2
l

M

M∑
m=1

∥∥∥(ν(m)
ℓ − ν̄ℓ

)∥∥∥2.
(39)

where the equality (a) follows from the fact that x(m)
t̄s−1

= x̄t̄s−1
for t = t̄s−1; inequality (b) is due to

t− t̄s−1 ≤ I and the generalized triangle inequality.

Next, we bound the term ∥ν(m)
t − ν̄t∥2, for t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S]:

M∑
m=1

E∥ν(m)
t − ν̄t∥2 =

M∑
m=1

E
∥∥∥∥µ(m)

t + (1− cνα
2
t−1)

(
ν
(m)
t−1 − µ

(m)
t−1

)
−
(

1

M

M∑
j=1

µ
(j)
t + (1− cνα

2
t−1)

(
ν̄t−1 −

1

M

M∑
j=1

µ
(j)
t−1

))∥∥∥∥2

=

M∑
m=1

E
∥∥∥∥(1− cνα

2
t−1)

(
ν
(m)
t−1 − ν̄t−1

)
+ µ

(m)
t

− 1

M
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µ
(j)
t − (1− cνα

2
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(
µ
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1

M

M∑
j=1

µ
(j)
t−1

)∥∥∥∥2
(a)

≤ (1 + β)(1− cνα
2
t−1)

2
M∑
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E∥ν(m)
t−1 − ν̄t−1∥2

+
(
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1

β

) M∑
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E
∥∥∥∥µ(m)

t − 1

M
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j=1

µ
(j)
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2
t−1)

(
µ
(m)
t−1 −

1

M

M∑
j=1

µ
(j)
t−1

)∥∥∥∥2.
where (a) follows from the the generalized triangle inequality for some β > 0. Next we bound the
second term:
M∑

m=1

E
∥∥∥∥µ(m)

t − 1

M
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j=1

µ
(j)
t − (1− cνα

2
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(
µ
(m)
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1

M

M∑
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µ
(j)
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=
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m=1

E
∥∥∥∥µ(m)

t − 1

M
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µ
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1

M
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µ
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2
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µ
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1

M
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j=1

µ
(j)
t−1

)∥∥∥∥2
(a)

≤ 2

M∑
m=1

E
∥∥∥∥µ(m)

t − 1

M

M∑
j=1

µ
(j)
t −

(
µ
(m)
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1

M

M∑
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µ
(j)
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2
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2
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m=1

E
∥∥∥∥µ(m)

t−1 −
1

M
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µ
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∥∥∥∥2
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≤ 2
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E
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t − µ
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2
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+ 2(cνα

2
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2
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E
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∥∥∥∥2
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E
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2
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2
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E
∥∥∥∥µ(m)

t−1 −
1

M
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j=1

µ
(j)
t−1

∥∥∥∥2.
34



Under review as a conference paper at ICLR 2023

where inequality (a) is from the triangle inequality, (b) follows Proposition 4; (c) follows from the
Lipschitz-smoothness of the h. Next for the second term of the above equation:

M∑
m=1

E
∥∥∥∥µ(m)

t−1 −
1

M

M∑
j=1

µ
(j)
t−1

∥∥∥∥2

=
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E
∥∥∥∥µ(m)
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1
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∥∥∥∥2
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E
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≤ 2Mσ2 + 4

M∑
m=1

E
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E
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E
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1

M

M∑
j=1

µ̃
(j)
t−1

∥∥∥∥2
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E
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E
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∥∥2
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E
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+ 32
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E
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E
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1
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[
∥x(m)

t−1 − x̄t−1∥2
]

inequality (a) uses triangle inequality; inequality (b) follows Proposition 4; inequality (c) follow
Assumption 6 and generalized triangle inequality; inequality (d) and (e) follows the generalized
inequality; inequality (f) follows the Assumption 6; inequality (g) utilizes intra-node heterogeneity
assumption and Proposition 1.
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Finally, combine everything together, we have:
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where inequality (a) follows Eq. 39; in inequality (b), we set β = 1/I and use I ≥ 1; Inequality (c)
uses the generalized triangle inequality. The inequality (d) uses αt <

1
16LhI

and η < 1 Therefore,
the lemma is proved.

Lemma 9. For αt <
1

16LhI
, we have:

(
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where the terms Dt, Et and Ft are denoted below.
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∥∥∥∥2]. Then we rewrite

Lemma 8 with our new notation as follows:
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2Et−1 + 4IL2
hα

2
t−1γ

2Ft−1

+
c2να

3
t−1σ

2

2Lh
+

8c2να
3
t−1G

2

Lh
+

c2να
3
t−1ζ

2

Lh
+

η2c2να
2
t−1(1 + ρ2)

2

t−1∑
ℓ=t̄s−1

α2
lDl

Next apply the above equation recursively from t̄s−1 + 1 to t. Note that Dt̄s−1
=

1/M
∑M

m=1 E∥ν
(m)
t̄s−1

− ν̄t̄s−1
∥2 = 0, so we have:

Dt ≤ 8IL2
hη

2
t−1∑

ℓ=t̄s−1

(
1 +

33

32I

)t−ℓ

α2
ℓEℓ + 4IL2

hγ
2

t−1∑
ℓ=t̄s−1

(
1 +

33

32I

)t−ℓ

α2
ℓFℓ

+

(
c2νσ

2

2Lh
+

8c2νG
2

Lh
+

c2νζ
2

Lh

) t−1∑
ℓ=t̄s−1

(
1 +

33

32I

)t−ℓ

α3
ℓ

+
η2c2ν(1 + ρ2)

2

t−1∑
ℓ=t̄s−1

(
1 +

33

32I

)t−ℓ

α2
ℓ

ℓ∑
ℓ̄=t̄s−1

α2
ℓ̄Dℓ̄

≤ 24IL2
hη

2
t−1∑

ℓ=t̄s−1

α2
ℓEℓ + 12IL2

hγ
2

t−1∑
ℓ=t̄s−1

α2
ℓFℓ +

(
3c2νσ

2

2Lh
+

24c2νG
2

Lh
+

3c2νζ
2

Lh

) t−1∑
ℓ=t̄s−1

α3
ℓ

+
3η2c2ν(1 + ρ2)

2

t−1∑
ℓ=t̄s−1

α2
ℓ

ℓ∑
ℓ̄=t̄s−1

α2
ℓ̄Dℓ̄

The second inequality uses the fact that t− l ≤ I and the inequality log(1+a/x) ≤ a/x for x > −a,
so we have (1 + a/x)x ≤ ea/x, Then we choose a = 33/32 and x = I . Finally, we use the fact that
e33/(32I) ≤ e33/32 ≤ 3.
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Next we multiply αt over both sides and take sum from t̄s−1 + 1 to t̄s, we have:

t̄s∑
t=t̄s−1+1

αtDt ≤ 24IL2
hη

2
t̄s−1∑

t=t̄s−1

αt

t−1∑
ℓ=t̄s−1

α2
ℓEℓ + 12IL2

hγ
2

t̄s−1∑
t=t̄s−1

αt

t−1∑
ℓ=t̄s−1

α2
ℓFℓ

+

(
3c2νσ

2

2Lh
+

24c2νG
2

Lh
+

3c2νζ
2

Lh

) t̄s−1∑
t=t̄s−1

αt

t−1∑
ℓ=t̄s−1

α3
ℓ

+
3η2c2ν(1 + ρ2)

2

t̄s−1∑
t=t̄s−1

αt

t−1∑
ℓ=t̄s−1

α2
ℓ

ℓ∑
ℓ̄=t̄s−1

α2
ℓ̄Dℓ̄

≤ 24IL2
hη

2

( t̄s−1∑
t=t̄s−1

αt

) t̄s−1∑
t=t̄s−1

α2
tEt + 12IL2

hγ
2

( t̄s−1∑
t=t̄s−1

αt

) t̄s−1∑
t=t̄s−1

α2
tFt

+

(
3c2νσ

2

2Lh
+

24c2νG
2

Lh
+

3c2νζ
2

Lh

)( t̄s−1∑
t=t̄s−1

αt

) t̄s−1∑
t=t̄s−1

α3
t

+
3η2c2ν(1 + ρ2)

2

( t̄s−1∑
t=t̄s−1

αt

) t̄s−1∑
t=t̄s−1

α2
t

t∑
ℓ̄=t̄s−1

α2
ℓ̄Dℓ̄

(a)

≤ 3ILhη
2

2

t̄s−1∑
t=t̄s−1

α2
tEt +

3ILhγ
2

4

t̄s−1∑
t=t̄s−1

α2
tFt

+

(
3c2νσ

2

32Lh
+

3c2νG
2

2Lh
+

3c2νζ
2

16Lh

) t̄s−1∑
t=t̄s−1

α3
t

+
3η2c2ν(1 + ρ2)

32Lh

t̄s−1∑
t=t̄s−1

α2
t

t∑
ℓ̄=t̄s−1

α2
ℓ̄Dℓ̄

(b)

≤ 3η2

32

t̄s−1∑
t=t̄s−1

αtEt +
3γ2

64

t̄s−1∑
t=t̄s−1

αtFt +

(
3c2νσ

2

32Lh
+

3c2νG
2

2Lh
+

3c2νζ
2

16Lh

) t̄s−1∑
t=t̄s−1

α3
t

+
3η2c2ν(1 + ρ2)

163 ∗ 32I2L4
h

t̄s−1∑
ℓ̄=t̄s−1

αℓ̄Dℓ̄

In inequalities (a) and (b), we use αt <
1

16LhI
multiple times. next notice that

∑t̄s
t=t̄s−1+1 αtDt =∑t̄s−1

t=t̄s−1
αtDt as Dt̄s = Dt̄s−1

= 0, so we have:

(
1− 3η2c2ν(1 + ρ2)

163 ∗ 32I2L4
h

) t̄s−1∑
t=t̄s−1

αtDt ≤
3η2

32

t̄s−1∑
t=t̄s−1

αtEt +
3γ2

64

t̄s−1∑
t=t̄s−1

αtFt

+

(
3c2νσ

2

32Lh
+

3c2νG
2

2Lh
+

3c2νζ
2

16Lh

) t̄s−1∑
t=t̄s−1

α3
t

This completes the proof.
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10.4 DESCENT LEMMA

Lemma 10 (Descent Lemma). For all t ∈ [t̄s−1, t̄s − 1] and s ∈ [S], the iterates generated satisfy:

E
[
h(x̄t+1)

]
≤ E

[
h(x̄t)

]
−
(
ηαt

2
− η2α2

tL

2

)
E
[∥∥∥ν̄t∥∥∥2]− ηαt

2
E
[
∥∇h(x̄t)∥2

]
+

L2
hIη

3αt

M

t−1∑
ℓ=t̄s−1

α2
l

M∑
m=1

∥∥∥(ν(m)
ℓ − ν̄ℓ

)∥∥∥2 + ηαtE
[∥∥∥ 1

M

M∑
m=1

∇h(x
(m)
t )− ν̄t

∥∥∥2]
where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Using the smoothness of h(x) we have:

E[h(x̄t+1)] ≤ E
[
h(x̄t) + ⟨∇h(x̄t), x̄t+1 − x̄t⟩+

Lh

2
∥x̄t+1 − x̄t∥2

]
(a)
= E

[
h(x̄t)− ηαt⟨∇h(x̄t), ν̄t⟩+

η2α2
tLh

2
∥ν̄t∥2

]
(b)
= E

[
h(x̄t)−

ηαt

2

∥∥∥ν̄t∥∥∥2 − ηαt

2
∥∇h(x̄t)∥2 +

ηαt

2

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2 + ηα2
tLh

2

∥∥∥ν̄t∥∥∥2]
= E

[
h(x̄t)−

(
ηαt

2
− η2α2

tLh

2

)∥∥∥ν̄t∥∥∥2 − ηαt

2
∥∇h(x̄t)∥2 +

ηαt

2

∥∥∥∇h(x̄t)− ν̄t

∥∥∥2]
where equality (a) follows from the iterate update given in Line 15 of Algorithm 2; (b) uses
⟨a, b⟩ = 1

2 [∥a∥
2 + ∥b∥2 − ∥a− b∥2]; For the last term, we have:

E
[∥∥∥∇h(x̄t)− ν̄t

∥∥∥2] (a)

≤ 2E
[∥∥∥∇h(x̄t)−

1

M

M∑
m=1

∇h(x
(m)
t )

∥∥∥2]+ 2E
[∥∥∥ 1

M

M∑
m=1

∇h(x
(m)
t )− ν̄t

∥∥∥2]
(b)

≤ 2

M

M∑
m=1

E
[∥∥∥∇h(x̄t)−∇h(x

(m)
t )

∥∥∥2]+ 2E
[∥∥∥ 1

M

M∑
m=1

∇h(x
(m)
t )− ν̄t

∥∥∥2]
(c)

≤ 2L2
h

M

M∑
m=1

E
[∥∥∥x̄t − x

(m)
t

∥∥∥2]+ 2E
[∥∥∥ 1

M

M∑
m=1

∇h(x
(m)
t )− ν̄t

∥∥∥2]
(d)

≤ 2L2
hIη

2

M

t−1∑
ℓ=t̄s−1

α2
l

M∑
m=1

∥∥∥(ν(m)
ℓ − ν̄ℓ

)∥∥∥2 + 2E
[∥∥∥ 1

M

M∑
m=1

∇h(x
(m)
t )− ν̄t

∥∥∥2]
where inequality (a) uses triangle inequality, (b) uses the generalized triangle inequality, (c) uses the
smoothness of h(x), (d) uses Eq. 39. Combine the above two equations together, we get:

E
[
h(x̄t+1)

]
≤ E

[
h(x̄t)

]
−
(
ηαt

2
− η2α2

tLh

2

)
E
[∥∥∥ν̄t∥∥∥2]− ηαt

2
E
[
∥∇h(x̄t)∥2

]
+

L2
hIη

3αt

M

t−1∑
ℓ=t̄s−1

α2
l

M∑
m=1

∥∥∥(ν(m)
ℓ − ν̄ℓ

)∥∥∥2 + ηαtE
[∥∥∥ 1

M

M∑
m=1

∇h(x
(m)
t )− ν̄t

∥∥∥2]
Hence, the lemma is proved.

10.5 DESCENT IN POTENTIAL FUNCTION

We first denote the following potential function G(t):

Gt = h(x̄t) +
η

160L2
hαt

∥∥∥ν̄t − 1

M

M∑
m=1

∇h(x
(m)
t )

∥∥∥2 + 1

M

M∑
m=1

∥∥∥∥y(m)
t − y

(m)

x
(m)
t

∥∥∥∥2

+
γ

32L2µαt
× 1

M

M∑
m=1

∥∥∥∥ω(m)
t −∇yg

(m)(x
(m)
t , y

(m)
t )

∥∥∥∥2
In the above definition, we correct the coefficients of the second and fourth term of potential function
defined in Section 5.2. in the original main-text.

39



Under review as a conference paper at ICLR 2023

Lemma 11. Suppose 1
γ > max( 1µ , 6Lh), 1

η > max( 4γµ + 1
4I ,

12(1+ρ2)
I2 + 97

256 +

γ2

2µ2 + (1 + 16
µγ )I,

240L2
h

µγ , µ
γ ), cν = 160L2

h + σ2

24δ3LhI
, cω = 160L2 + σ2

24δ3LhI
, u =

max(2σ2, δ3, c
3/2
ν δ3, c

3/2
ω δ3, 163I3M2σ2), δ = M2/3σ2/3

Lh
then we have:

E[Gt̄s ]− E[Gt̄s−1
] ≤ −

t̄s−1∑
t=t̄s−1

ηαt

2
E
[
∥∇h(x̄t)∥2

]
+

(
c2ωσ

2

16µL2
+

c2νσ
2

5L2
h

+
2c2νG

2

L2
h

+
3c2νζ

2

16L2
h

) t̄s−1∑
t=t̄s−1

α3
t

where the expectation is w.r.t the stochasticity of the algorithm.

Take expectation for both sides of the potential function and we use the notation used in Lemma 9,
the potential function has the following form:

E[Gt] = E[h(x̄t)] +
ηAt

ĉναt
+Bt +

γCt

ĉωαt

We first bound the term At/αt−1 − At−1/αt−2. For t ∈ [t̄s−1 + 1, t̄s]. By the condition that
u ≥ c

3/2
ν δ3, it is straightforward to verify that cνα2 < 1. Then we rewrite Lemma 5 as follows using

our new notation:

At ≤ (1− cνα
2
t−1)

2At−1 + 4(cνα
2
t−1)

2σ2/M + 8(cνα
2
t−1)

2G2 + 8L2
h(cνα

2
t−1)

2Bt−1

+ 40L2
hη

2α2
t−1Dt−1 + 40L2

hη
2α2

t−1Et−1 + 12L2
hγ

2α2
t−1Ft−1

Naturally, we get:

At

αt−1
− At−1

αt−2
≤

(
(1− cνα

2
t−1)

2

αt−1
− 1

αt−2

)
At−1 + 4c2να

3
t−1σ

2/M + 8c2να
3
t−1G

2 + 8L2
hc

2
να

3
t−1Bt−1

+ 40L2
hη

2αt−1Dt−1 + 40L2
hαt−1Et−1 + 12L2

hγ
2αt−1Ft−1

≤
(
α−1
t−1 − α−1

t−2 − cναt−1

)
At−1 + 4c2να

3
t−1σ

2/M + 8c2να
3
t−1G

2 + 8L2
hc

2
να

3
t−1Bt−1

+ 40L2
hη

2αt−1Dt−1 + 40L2
hη

2αt−1Et−1 + 12L2
h(1− cνα

2
t−1)

2γ2αt−1Ft−1

where the inequality is due to the fact that (1− cνa
2
t−1)

2 ≤ 1− cνa
2
t−1 ≤ 1 for all t ∈ [T ]. Next for

the term α−1
t−1 − α−1

t−2 we have:

α−1
t − α−1

t−1 =
(u+ σ2t)1/3

δ
− (u+ σ2(t− 1))1/3

δ

(a)

≤ σ2

3δ(u+ σ2(t− 1))2/3

(b)

≤ 22/3σ2δ2

3δ3(u+ σ2t)2/3
(c)
=

22/3σ2

3δ3
α2
t

(d)

≤ σ2

24δ3LI
αt

where inequality (a) results from the concavity of x1/3 as: (x+y)1/3−x1/3 ≤ y/3x2/3, inequality (b)
used the fact that ut ≥ 2σ2, inequality (c) uses the definition of αt, inequality (d) uses u ≥ 163I3M2,
so that αt ≤ 1

16LhI
for all t ∈ [T ]. Since we have cν = ĉν + σ2

24δ3LhI
, where ĉν = 160L2

h is some

constant. It is straightforward to verify that if we set δ = M2/3σ2/3

Lh
, we have cν ≤ 2ĉν . Next, we

have:

At

αt−1
− At−1

αt−2
≤ −ĉναt−1At−1 + 4c2να

3
t−1σ

2/M + 8c2να
3
t−1G

2 + 8L2
hc

2
να

3
t−1Bt−1 + 40L2

hη
2αt−1Dt−1

+ 40L2
hη

2αt−1Et−1 + 12L2
hγ

2αt−1Ft−1

Then We multiply η/ĉν on both sides and have:

η

ĉν

(
At

αt−1
− At−1

αt−2

)
≤ −ηαt−1At−1 + 4c2να

3
t−1σ

2/(ĉνM) + 8c2νηα
3
t−1G

2/ĉν + 8L2
hc

2
νηα

3
t−1Bt−1/ĉν

+ 40L2
hη

3αt−1Dt−1/ĉν + 40L2
hη

3αt−1Et−1/ĉν + 12L2
hγ

2ηαt−1Ft−1/ĉν
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By telescoping from t̄s−1 + 1 to t̄s, we have:

η

ĉν

(
At̄s

αt̄s−1
−

At̄s−1

αt̄s−1−1

)
≤ −

t̄s−1∑
t=t̄s−1

ηαtAt + 4ηc2νσ
2/(ĉνM)

t̄s−1∑
t=t̄s−1

α3
t

+ 8ηc2νG
2/ĉν

t̄s−1∑
t=t̄s−1

α3
t + 8L2

hηc
2
ν/ĉν

t̄s−1∑
t=t̄s−1

α3
tBt

+ 40L2
hη

3/ĉν

t̄s−1∑
t=t̄s−1

αtDt + 40L2
hη

3/ĉν

t̄s−1∑
t=t̄s−1

αtEt

+ 12L2
hηγ

2/ĉν

t̄s−1∑
t=t̄s−1

αtFt. (40)

Similarly, by the condition u ≥ c
3/2
ω δ3, the condition of Lemma 6 satisfies. For t ∈ [t̄s−1 + 1, t̄s],

we have:
Ct ≤ (1− cωα

2
t−1)

2Ct−1 + 2(cωα
2
t−1)

2σ2 + 4L2η2α2
t−1(Dt−1 + Et−1) + 2L2γ2α2

t−1Ft−1

We bound the term Ct/αt−1 − Ct−1/αt−2 and follow similar derivation as At/αt−1 −At−1/αt−2

and since we have cω = 5ĉω + σ2

24δ3LhI
, where ĉω = 32L2 is some constant. we get:

Ct

αt−1
− Ct−1

αt−2
≤ −5ĉωαt−1Ct−1 + 2c2ωα

3
t−1σ

2 + 4L2η2αt−1(Dt−1 + Et−1) + 2L2γ2αt−1Ft−1

Divide γ/ĉω for both sides and then telescope from t̄s−1 + 1 to t̄s, we have:

γ

µĉω

(
Ct̄s

αt̄s−1
−

Ct̄s−1

αt̄s−1−1

)
≤ −

t̄s−1∑
t=t̄s−1

5γ

µ
αtCt +

2γc2ωσ
2

µĉω

t̄s−1∑
t=t̄s−1

α3
t

+
4L2γη2

µĉω

t̄s−1∑
t=t̄s−1

αt(Dt + Et) +
2L2γ3

µĉω

t̄s−1∑
t=t̄s−1

αtFt. (41)

Next from Lemma 7, we write it as follows, first for t ∈ [t̄s−1 + 1, t̄s − 1], we have:

Bt ≤
(
1− µγαt−1

8

)
Bt−1 −

3γ2αt−1Ft−1

4
+

5γαt−1Ct−1

µ
+

10L2
hη

2αt−1Dt−1

µγ
+

10L2
hη

2αt−1Et−1

µγ

and when t = t̄s, we have:

Bt ≤
(
1− µγαt−1

8

)
Bt−1 −

3γ2αt−1Ft−1

4
+

5γαt−1Ct−1

µ
+

10L2
hη

2αt−1Dt−1

µγ

+
10L2

hη
2αt−1Et−1

µγ
+ (1 +

8

µγαt−1
)IL2

hη
2

t−1∑
ℓ=t̄s−1

α2
lDl

We telescope from t̄s−1 + 1 to t̄s and have:

Bt̄s −Bt̄s−1
≤ −µγ

8

t̄s−1∑
t=t̄s−1

αtBt −
3γ2

4

t̄s−1∑
t=t̄2s−1

αtFt +
5γ

µ

t̄s−1∑
t=t̄s−1

αtCt +
10L2

hη
2

µγ

t̄s−1∑
t=t̄s−1

αtDt

+
10L2

hη
2

µγ

t̄s−1∑
t=t̄s−1

αtEt + (1 +
8

µγαt̄s−1
)IL2

hη
2

t̄s−1∑
t=t̄s−1

α2
tDt

Next for αt/αt̄s−1, we have:

αt

αt̄s−1
=

(ut̄s−1 + σ2(t̄s − 1))1/3

(ut + σ2t)1/3
=

(
1 +

ut̄s−1 − ut + σ2(t̄s − 1− t)

ut + σ2t

)1/3

≤
(
1 +

(I − 1)σ2

ut + σ2t

)1/3

≤ 1 +
(I − 1)

3(t+ I + 1)
≤ 2
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where we use the condition ut ≥ (I + 1)σ2. Then for the coefficient of the last term in the above
inequality, we have (1+ 8

µγαt̄s−1
)α2

t = α2
t +

8α2
t

µγαt̄s−1
< αt +

16αt

µγ = (1+ 16
µγ )αt. Finally, we have:

Bt̄s −Bt̄s−1
≤ −µγ

8

t̄s−1∑
t=t̄s−1

αtBt −
3γ2

4

t̄s−1∑
t=t̄s−1

αtFt +
5γ

µ

t̄s−1∑
t=t̄s−1

αtCt +
10L2

hη
2

µγ

t̄s−1∑
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Next we rewrite Lemma 10 as follows:

E
[
h(x̄t+1)

]
≤ E

[
h(x̄t)

]
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(
ηαt

2
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tLh

2

)
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2
E
[
∥∇h(x̄t)∥2

]
+ L2

hIη
3αt

t−1∑
ℓ=t̄s−1

α2
lDl + ηαtAt

We telescope from t̄s−1 to t̄s − 1 to have:

E
[
h(x̄t̄s)− h(x̄t̄s−1

)

]
≤ −
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(
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2
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2
E
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hIη

3
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2
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2
E
[
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+
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t̄s−1∑
t=t̄s−1
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t̄s−1∑
t=t̄s−1

ηαtAt. (43)

In the last inequality, we use the fact that t̄s − t̄s−1 ≤ I and αt <
1

16LhI
.

Recall that Potential function is defined as:

E[Gt] = E[h(x̄t)] +
ηAt

ĉναt
+Bt +

γCt

µĉωαt
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Combine Eq. (40),Eq. (41), Eq. (42) and Eq. (43) and we have:

E[Gt̄s ]− E[Gt̄−1s] ≤ −
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ηαt

2
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h
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+
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+

4L2γ

µĉω
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Since we take ĉω = 32L2, ĉν = 160L2
h, αt < 1

16LhI
, 1

γ = max( 1µ , 6Lh), 1
η > max( 4γµ +

1
4I ,

12(1+ρ2)
I2 + 97

256 + γ2

2µ2 + (1 + 16
µγ )I,

240L2
h

µγ , µ
γ ), then we have:

E[Gt̄s ]− E[Gt̄s−1
] ≤ −
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2
E
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I2
η2
) t̄s−1∑

t=t̄s−1

αtDt (44)

For the term related to Ft, we have:

3

4
− 2L2γ

µĉω
− 12ηL2

h

ĉν
=

3

4
− γ

16µ
− 3η

40
≥ 3

4
− γ

4µ
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2

where we use η ≤ γ/µ and γ < µ; Next for the term related to Et, we have:

η

2
− η2αtLh

2
− 10L2

hη
2

µγ
− 4L2γη2

µĉω
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ĉν
≥ η

2
− η2

32I
− η

4
− γη2

2µ
≥ η

4
− η2

8

(
1
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8

where the first inequality is because ĉω = 32L2, ĉν = 160L2
h, αt < 1

16LhI
, η < µγ

40L2
h

, the last

inequality is due to 1
η ≥ 4γ

µ + 1
4I . Next for the term related to Bt, we have:
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=
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The first inequality is by cν ≤ 2ĉν , ĉν = 160L2
h and αt < 1

16LhI
; the third last inequality is by

η < µγ
240L2

h
. Lastly, for the term related to Dt, we have:(
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The first inequality is by ĉω = 32L2, ĉν = 160L2
h and η < µγ

40L2
h

; the second inequality is by η < 1

and η < γ
µ ; The last inequality is by 1

η ≥ 12(1+ρ2)
I2 + 97

256 + γ2

2µ2 + (1 + 16
µγ )I . Next, by Lemma 9,

we have:(
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since we have:

c2ν
163 ∗ 32L4
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The first inequality is by cν ≤ 2ĉν . So we have:
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Combine Eq. (44) and Eq. (45) and use γ < 1 and η < 1, we have:
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which completes the proof.

Theorem 10.1. Suppose 1
γ > max( 1µ , 6Lh), 1

η > max( 4γµ + 1
4I ,
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, then we have:
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where the expectation is w.r.t the stochasticity of the algorithm.

First, based on Lemma 11, we have:
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Next we sum for all s ∈ [S] and assume T = SI + 1, we have:
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So we have:
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where we use GT ≥ h∗ and h∗ denotes the optimal value of h. Then for the last term:
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where the first inequality follows ut ≥ (I + 1)σ2 > σ2, the last inequality follows Proposition 5.
Next use the fact that αt is non-increasing, we have:
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ĉωα1

+

(
c2ωσ

2

16µL2
+

c2νσ
2

5L2
h

+
2c2νG

2

L2
h

+
3c2νζ

2

16L2
h

)
δ3

σ2
ln(T )

Divide both sides by 2T/ηαT , we have:
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Next we have
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Note that we have:
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where the inequality uses the fact that (x+ y)1/3 ≤ x1/3 + y1/3. Consider t = 1 and t = T and we
have:
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ηĉωδ
+

2γσ8/3

ηĉωδ
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Finally, we have cν = 160L2
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which completes the proof.

11 MORE EXPERIMENTAL DETAILS

In this task, we investigate the group fairness in Federated Learning from the Bilevel Optimization’s
perspective.

We first introduce some notations for ease of discussion. We denote a sample as (o,s,a), where o ∈ Rd,
s ∈ [I], a ∈ [K] are input attributes, predictive attributes (we use classification as a demonstration)
and sensitive attributes, respectively. Furthermore, we denote D

(m)
t = {o(m,t)

i , s
(m,t)
i , a

(m,t)
i } and

D
(m)
v = {o(m,v)

i , s
(m,v)
i , a

(m,v)
i } as training and the validation set at the mth client, respectively.

Furthermore, we denote n
(m,v)
s,a as the number of samples which has label s and sensitive attribute

label a over the validation set of the mth client, and we denote n(m,v)
s,∗ as the number of samples with

label s over the validation set of the mth client and n
(m,v)
∗,a as the number of samples with sensitive

attributes a over the validation set of the mth client. Similarly, we define n
(m,t)
s,a , n(m,t)

s,∗ and n
(m,t)
∗,a

for the training set over the mth client.

In our task, we assume the validation set of each client is group-balanced, i.e. we assume the
validation sets have the follow properties: n(m,v)

∗,a1 = n
(m,v)
∗,a2 , for a1, a2 ∈ [K]. Then we optimize the

following objective to learn a group fair model:

min
ω∈Ω

1

M

M∑
m=1

1

n(m,v)

n(m,v)∑
i=1

f(θ(m)
ω ; o

(m,v)
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(m,v)
i )

s.t. θ(m)
ω = argmin

θ∈Rd

1

n(m,t)

n(m,t)∑
i=1

ω
a
(m,t)
i

f(θ; o
(m,t)
i , s

(m,t)
i ) (48)
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Figure 2: Outer objective Loss w.r.t Number of Communication Rounds for comparison between
FedBiO and FedBiOAcc for I.I.D and Non-I.I.D cases. Results are for the Credit dataset.

where f denotes the model to fit, we use a two-layer fully connected neural network with L2 regular-
ization in the experiments. ω = {ωa}, a ∈ [K] are weights for sensitive groups, which correspond
to the outer variable x for the problem 6 and θ denotes the model parameter and corresponds to the
inner variable of the problem 6.

Intuitively, the objective Eq. 48 achieves fairness through tuning the group weights such that the
learned model θ(m)

ω performs well over the validation set D(m)
t . Since D

(m)
t has balanced samples

from all sensitive groups, the model θ(m)
ω has to perform equally well for all different groups to get

small loss over the validation set.

In Table 1, we use the well known Equal Opportunity as our main fairness metrics. More precisely, it
is defined as the maxz1,z2∈[K]∥P(ŝ = 1|s = 1, a = z1) − P(ŝ = 1|s = 1, a = z2)∥, where ŝ is is
predication made by the model, P is the probability notation.

For the hyper-parameters, we use I = 5 for FedAvg, FedReg and our algorithms, and I = 1 for
FedMinMax and FCFL. For learning rates, we search over the range of {0.001, 0.01, 0.1, 1}, most
algorithms get best performance at 0.1 or 1. Then for special hyper-parameters of each algorithms:
For FedReg the regularization coefficient is set as 0.1; For FedMinMax, the stepsize for the group
weights are 0.1; For FCFL, we use hyper-parameters provided from the original paper Cui et al.
(2021). For our FedBiO, we set the outer learning rate η as 0.1; For our FedBiOAcc, we set δ as
0.1, u as 1 and cν as 1, cω as 1. The results reported in Table 1 are run for 2000 steps with batchsize
128 for the Adult Dataset and 32 for the Credit Dataset. The two datasets we used in experiments
are widely used benchmarks for fair machine learning. More specifically, the Adult dataset aims to
predict income level based on around 200 features, and the race/gender are sensitive groups. We
use the race as the sensitive attribute in experiments, which include 5 different racial groups. Next
the (German) Credit dataset aims to predict good and bad credit risks. the gender and marital status
are sensitive attributes. Lastly, we show the convergence results of FedBiO and FedBiOAcc for the
Credit dataset in Figure 2.
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