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Abstract. Bayesian optimisation is a powerful method for optimising
black-box functions, popular in settings where the true function is expen-
sive to evaluate and no gradient information is available. Bayesian opti-
misation can improve responses to many optimisation problems within
climate change for which simulator models are unavailable or expen-
sive to sample from. While there have been several demonstrations of
climate-related applications, there has been no unifying review of appli-
cations and benchmarks. We provide such a review here, to encourage
the use of Bayesian optimisation for important and well-suited appli-
cations. We identify four main application domains: material discovery,
wind farm layout, optimal renewable control and environmental mon-
itoring. For each domain we identify a public benchmark or data set
that is easy to use and evaluate systems against, while being representa-
tive of real-world problems. Due to the lack of a suitable benchmark for
environmental monitoring, we propose LAQN-BO, based on air pollu-
tion data. Our contributions are: a) summarising Bayesian optimisation
applications related to climate change; b) identifying a representative
range of benchmarks, providing example code where necessary; and c)
introducing a new benchmark, LAQN-BO.
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1 Introduction

The use of machine learning (ML) to tackle climate change is gaining traction,
including ML-wide surveys of relevant applications [57,21]. To facilitate tech-
nical innovation and its adoption into practice, it is important to complement
these reviews with concise summaries of problems that specific ML frameworks
are well-matched to, along with example data sets. Here, we provide a summary,
paired with data sets, for Bayesian optimisation. This is important for three rea-
sons: a) it reduces start-up costs and overhead, as the time-consuming task of
identifying suitable data sets does not have to be repeated; b) it helps researchers
focus on problems that are timely and/or important, and have a structure that is
suitable for the framework(s) they are using; and c) it makes it easier to compare
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methods, as numerical results can be compared directly. The benchmarks should
be similar to real-world applications. That will provide more realistic expecta-
tions of performance and show which versions of Bayesian optimisation are most
promising, e.g. in terms of underlying models. It will also identify remaining
challenges, e.g. in terms of generating useful priors from related data.

Bayesian optimisation (BO), is a machine learning surrogate-based approach
to black-box optimisation [29]. It is particularly suited to problems that:
a. Have a complex unknown structure which can only be efficiently modelled

through a surrogate model, e.g. the conductivity of solar panel materials.
b. Are expensive or slow to evaluate, requiring sample efficiency from trying out

fewer bad or uninformative choices, e.g. when synthesising new materials.
c. Require identifying extrema, either for optimisation, e.g. maximising power

generation, or for intervention, e.g. emission monitoring.
Bayesian optimisation consists of fitting a probabilistic surrogate model, typ-

ically a Gaussian process [55], to observed data, and using the surrogate model to
choose what input value to evaluate next. Then the surrogate model is adjusted,
another input value evaluated, and so on. For example, Bayesian optimisation
can be used to find the angle of a solar panel that maximises power output, see
Fig. 1: (1) model the output as a function of angle based on all available data
and/or domain knowledge; (2) select a promising angle to try next, e.g., an angle
that is a good candidate for maximising power output or that is maximally in-
formative about the best angle; and (3) try this angle before updating the model
and returning to Step 1. An additional benefit of Bayesian optimisation is that
it explicitly models its uncertainty, which can be used to determine when to stop
optimising [41], or to trade off exploration and exploitation [18].

(3)
Adjust panel;

measure power

(1)
Fit model to

observed power
outputs

(2)
Select new
panel angle

Fig. 1: Bayesian optimisation to maximise solar panel power generation.

We present a summary of Bayesian optimisation as applied to climate change.
We identify the main application domains, emphasise their climate-related im-
pact, and identify beginner-friendly benchmarks for each. We found a benchmark
to be lacking for environmental monitoring, so provide LAQN-BO, based on air
pollution data [34]. The four use cases are: material discovery — accelerating
the development of e.g. new solar panels; wind farm layouts — choosing where
to place individual turbines; optimal renewable control — choosing operating
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parameters of solar panels or wind turbines; and environmental monitoring —
choosing where to place sensors. In this paper we mainly focus on Bayesian op-
timisation. However, there are other closely related methods such as Bayesian
experimental design [53,68] and we have opted to include some examples of these
methods as well, e.g. [66,36]. [13] is a related survey of Bayesian optimisation
and other surrogate-based optimisation methods. Where [13] takes a higher-level
approach, focusing on methodology, we instead group work by applications in
order to identify data sets and applications for new projects. When selecting
benchmarks, we have emphasised ease of adoption and open access.

Bayesian optimisation is not a complete solution, but an important tool when
combined with domain knowledge, and can help improve responses to climate
change. Currently, Bayesian optimisation is often evaluated on synthetic func-
tions or hyperparameter optimisation (HPO) benchmarks. But performance in
real applications is the ultimate test of any ML method, including Bayesian op-
timisation. HPO is just one kind of problem and synthetic problems often fail
to anticipate crucial challenges, e.g. in terms of finding suitable inductive biases
[33]. To increase the impact of BO, and its prevalence, we should adopt a broader
set of benchmarks. That would not only demonstrate which methods work well
in practice, but open up new research problems to solve. Using benchmarks re-
lated to climate change and sustainability has the advantage of doing so in an
innovative field, increasing the chance of adoption, and with real impact.

2 Material discovery

Material discovery means finding materials with superior combinations of prop-
erties [26], e.g. more efficient solar cells. Bayesian optimisation and related meth-
ods have been suggested for optimising a wide range of materials, from concrete
[60,5] and direct air capture of CO2 [49] to solar panel glass [31], electrifying
transport and chemical industries [7], and for electrocatalysts for CO2 reduction
and H2 production [66,74,27]. The benefits are in reducing greenhouse gas emis-
sions or increasing their capture; making renewable energy generation or storage
more efficient; or running more sectors off renewable energy. If evaluating the
material requires synthesising it, there are huge potential gains in time and cost
by only doing so on the most promising candidates.

[38] provide three material discovery data sets [63,11,43] related to solar
panels, with 3–5 features and 94–178 unique evaluated data points. Using Fig. 1
to illustrate the Bayesian optimisation process, the steps become: (1) model the
material performance as a function of ingredient proportions used; (2) select a
new combination of ingredient proportions to try; and (3) produce and evaluate
the material. We replace (3) with looking up the value in the benchmark.

– Benchmark: https://github.com/PV-Lab/Benchmarking [38]
– Features: Material properties: 3–5 dimensions
– Data type: CSV files
– Sampling: Manufacture material. In benchmark replaced by table look-up

https://github.com/PV-Lab/Benchmarking
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– Objective: Material performance: conductivity, absorbance or stability
– Impact: Better solar panels; more renewables and less climate gases

3 Wind farm layout

Wind turbines are typically grouped together in wind farms, with several tur-
bines in relatively close proximity, to reduce installation costs and environmental
impacts. Before construction, the locations of individual wind turbines must be
planned. Wind turbines work by extracting kinetic energy from the air, so the
wind is weaker and more turbulent after flowing past a turbine. This leads to less
power generation [50] and greater dynamic loads and fatigue on the downwind
turbines [20]. This is illustrated in Fig. 2, where the two turbines need to be
placed within the green area and the wind is shown by arrows. Determining the
optimal wind turbine layout is a difficult but important optimisation problem,
since more renewable electricity can be generated without requiring more tur-
bines to be installed. The efficiency of Bayesian optimisation is important for
this problem, since the type of simulations used can take 15 seconds to run on
one CPU even for five wind turbines [14], and the simulations must be run many
times to compare layouts. Bayesian optimisation can be applied to the problem
by replacing the steps in Fig. 1 with (1) modelling the collective power output
as a function of the wind turbine placements; (2) selecting a new combination
of locations to evaluate; and (3) running the power output simulation.

Fig. 2: Placement of wind turbines within limits shown in green. The wind is
shown by the blue arrows: wider arrows indicate stronger wind and more undu-
lating arrows indicate more turbulence. In the layout on the left one turbine is
directly downwind of the other, resulting in weaker and more turbulent wind.
To the right, both turbines get unhindered wind. In the benchmark five turbines
are placed simultaneously, here we illustrate the problem with two turbines.
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[14]’s set of benchmarking problems and baselines include a wind farm layout
problem, windwake, based on FLORIS [48] simulations. The benchmark assumes
a fixed number of wind turbines; this is relaxed in [17], where the two objectives
of cost and power generation are jointly optimised, using simulations based on
[51]. In related pieces of work, [44] build wind maps for later layout planning,
and [65] plan the layout of bifacial solar panel arrays. We use the benchmark in
[14] as it has been been prepared for further use.

– Benchmark: https://github.com/AlgTUDelft/ExpensiveOptimBenchmark
– Features: Spatial locations: 10 dimensions. 2 for each of 5 turbines [14]
– Data type: Simulation
– Sampling: Simulate layout
– Objective: Energy production
– Impact: More renewable generation, which reduces climate gas emissions

4 Optimal renewable control

Having planned the layout for a renewable power farm, the next question is
how best to operate it [20]. For wind turbines the blade angles [19,50,71], and
induction factor [50] need to be set, and for airborne systems the altitude [54].
For solar panels the voltage level applied [1,40] and the angle of the panel [3]
can be adjusted. By adjusting these to maximise energy generation, we min-
imise emissions for a given electricity demand. For wind farms, the optimisation
should occur jointly, as the available wind energy for a downstream turbine is
impacted by the operating settings of the upstream turbine [50]. With Bayesian
optimisation the response of the non-linear problem can be learnt through data
collection. Extensive work on wind turbine control has been done using Bayesian
Ascent, a version of BO which limits changes in inputs between iterations, see
e.g. [50]. Relatedly, [46] tune the parameters of traditional control methods, and
[47] reduce blade fatigue. [6] use a related method for wind turbine control.

Fig. 3: Adjusting solar panels to optimise power generation as the sun moves
across the sky. At a simple level, the problem of adjusting angles can be un-
derstood as maximising the amount of sunlight hitting the panels, which means
the optimal angle varies throughout the day. The benchmark takes the challenge
a step further by not only optimising the amount of direct sunlight, but also
diffusive and reflected sunlight.

https://github.com/AlgTUDelft/ExpensiveOptimBenchmark
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[3] provide a benchmark for solar panel optimisation. The goal is to maximise
energy yield by adjusting solar panel angles, see Fig. 3. They evaluate contextual
bandits and reinforcement learning methods, but the problem is also suitable
for BO: we provide a basic example3 at https://github.com/sighellan/solar_
panels_rl.Fig. 1 shows how BO is applied to the problem. We model power
output as a function of panel angles; decide on a new angle to try; and run the
simulation to evaluate the new angle. The challenge is not tracking the sun; its
location is predictable and given as an input. Instead, the idea is to adapt to other
changes such as cloud cover. However, the angle of many solar panels cannot be
adjusted. Wind turbines have more control settings, interact in less predictable
ways, and have seen more applications of BO. We chose the benchmark in [3]
because it is well-documented and publicly available, but real-world benefits are
more likely to come from applications to wind turbines.

– Benchmark: https://github.com/david-abel/solar_panels_rl [3]
– Features: Panel direction: 2 dimensions
– Data type: Simulation
– Sampling: Simulate collected sunlight
– Objective: Collected energy
– Impact: More renewable generation, which reduces climate gas emissions

5 Environmental monitoring

An important problem within environmental monitoring is that of choosing
where to place sensors. This is difficult since the planning must be done without
knowing the usefulness of each site, which depends on future data. BO and re-
lated methods are useful tools in this setting, as they build probabilistic models
of the environmental characteristic of interest, e.g. air pollution, which they use
to make efficient choices. If we are mainly interested in the worst-hit locations,
e.g. for targeting interventions or evaluating legal compliance, BO lets us do
that efficiently. To build accurate environmental maps for an entire area we can
instead use Bayesian experimental design, e.g. if we want to know the water
quality throughout a lake. Monitoring is important for tracking the impacts of
climate change, including on oceans [59], for locating gas leakages [8,28,36], and
the related task of air pollution monitoring [4,45,42,61,32,33,37]. [58] provide a
benchmark for path-planning based on water quality monitoring, also used by
[25], but the benchmark uses synthetic data.

The LAQN-BO benchmark: We present a new climate change related
benchmark, using air pollution data from the London Air Quality Network
(LAQN) [34], see examples in Fig. 4.. Air pollution is related to climate change
in that the sources and hence required interventions are often interlinked, e.g.
3 The benchmark relies on the simple_rl Python package [2]; we used version 0.784.

For our example Bayesian optimisation implementation we additionally relied on
BoTorch [10]. The implementation is not meant to be competitive with the existing
methods for the benchmark, but rather to demonstrate how BO can be applied.

https://github.com/sighellan/solar_panels_rl
https://github.com/sighellan/solar_panels_rl
https://github.com/david-abel/solar_panels_rl
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car exhaust. Also, environmental changes are often sped up by climate change,
making their monitoring more important. The optimisation problems in the
LAQN-BO benchmark are similar to those in [33]. But while that focuses on
methodology, we here focus on the problems themselves. We provide simple
scripts and step-by-step instructions for generating the problems and put them
in the context of other climate-related BO problems and benchmarks.

The optimisation objective is the NO2 concentration, i.e. to find the location
of maximum pollution from the set of available locations. This is useful as higher
pollution concentrations have greater impacts on human health. Using Fig. 1 as
a basis, the steps become: (1) model the NO2 concentration as a function of
spatial location; (2) determine a new location to evaluate; and (3) measure the
pollution in the new location. We use LAQN-BO to replace (3) with a historical
measurement. We construct training and test sets from the 2015 and 2016 data,
respectively. Each problem corresponds to a single day, so multiple days give
multiple problems. As in [33], we filter out days when fewer than 40 stations
collected measurements, and only use the ‘Roadside’ sensors, resulting in 214
training problems and 365 test problems. We log-transformed the data, and
standardised using the mean and standard deviation from the training set.

The LAQN-BO benchmark has several advantages. Firstly, it uses real data.
Secondly, we present a set of related problems, so that methods can be trained
on the training set, and evaluated on the test set. Finally, the provided scripts
can be easily adapted to generate new problems using other pollutants or years
of the extensive LAQN data. None of the other benchmarks combine all of these
advantages. A disadvantage is that data are not available everywhere, only at
locations with existing sensors, limiting the available search space. This corre-
sponds to having to choose from a sparse set of locations. For instance, if we are
mounting sensors to lampposts, we can only choose between existing lampposts.

– Benchmark: https://github.com/sighellan/LAQN-BO
– Features: Spatial coordinates: 2 dimensions
– Data type: Python class
– Sampling: Place pollution sensor. In benchmark replaced by table look-up
– Objective: NO2 concentration
– Impact: Better monitoring of air pollution, enabling targeted interventions

6 Benchmark comparison

The four benchmarks identified in our survey have different characteristics, as
is summarised in Table 1. They represent different key challenges for Bayesian
optimisation deployments, and provide breadth for evaluating different types of
Bayesian optimisation methods. The key challenge of the materials benchmark
is its small size, meaning there is little opportunity to fine-tune the methods. For
LAQN-BO it is that of learning from the training data, as the problems have
as little as 40 evaluations each, requiring very sample-efficient learning. The
wind farm layout benchmark also requires efficient use of data. But in contrast

https://github.com/sighellan/LAQN-BO
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Fig. 4: Example LAQN-BO problems from the training set (2015, top) and test
set (2016, bottom). Not all sensors are available on every day. The overall pollu-
tion level varies, compare the top left and right plots. The locations of maxima
also vary, compare the right top and bottom plots. Most of the sensors are clus-
tered together in central London.

to LAQN-BO, it does not provide training data for transfer learning. The key
challenge for the renewable control benchmark is dealing with large numbers
of samples, as the panel direction is optimised regularly over many days. It is
therefore a good candidate for testing Bayesian optimisation built on scalable
Gaussian processes [39]. It also requires keeping track of context, e.g. time, as
the sun moves across the sky. An additional contrast to the other benchmarks is
that the performance throughout the optimisation matters, as it directly impacts
the amount of electricity generated.

Table 1: Comparison of benchmarks.
Benchmark Type Key challenge Dimensionality # problems

Materials [38] Observations Small size 3/5 3
Wind farm layout [14] Simulation Sample efficiency 10 1
Renewable control [3] Simulation Scaling, context 2 10
Environmental monitoring Observations Transfer learning 2 214+365

The materials benchmark is the easiest to start using, as the data are pro-
vided in CSV files, followed by that for environmental monitoring, LAQN-BO,
which provides a simple Python interface to the data. The benchmarks for wind
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farm layout and renewable control require more setup, as methods need to be
interfaced with the simulators. Their advantage is that they are easier to extend,
and can be evaluated for more input values. LAQN-BO can be easily extended to
more problems using the LAQN data [34], but extensions to other base data sets
would require more work. The materials benchmark is the hardest to extend, as
it relies on results from synthesising and evaluating materials.

7 Conclusion and other applications

There are many more climate-related applications: learning energy consumptions
of household appliances [35]; optimising charging protocols for electric vehicles
[9]; scheduling smart appliances to smooth out demand curves [64]; improving
simulations [56] and experiments [30] for nuclear fusion; reducing vibrations for
floating wind turbines [73]; reducing the impact of livestock diseases made more
prevalent by global warming [62]; and tuning parameters for heating and cool-
ing system and building models to reduce energy demands [72,15,23]. Bayesian
optimisation also has applications in improving climate models, by targeting in-
formative training data [69], and in polar climate science [12]. And it has been
used for parameter tuning of a global land surface model [22], a landslide model
[52] and forecasting models for electricity generation and demand [67].

To encourage more Bayesian optimisation practitioners to work on climate
change applications, it is important to establish more benchmarks, standard
data sets or simulators, as we do here with the LAQN-BO benchmark. More
challenging benchmarks should also be established, e.g. for constrained or multi-
objective optimisation, to encompass more fully the complexity of real problems.
For example: some of the area might be unsuitable for building wind turbines;
and when building generators there are multiple competing objectives [70,24].
Additionally, there are constraints for controlling the generators, due to increased
energy costs and fatigue when changing settings. The energy cost of changing
angles is included in the renewable control benchmark [3], so Bayesian Ascent
[50] should be tested, as it limits the difference between iterations. As a further
extension, the layout and control of wind farms can be optimised jointly [16].

In the future, all these benchmarks should be brought together and their in-
terfaces aligned, to create a standardised, climate-themed benchmark suite. By
identifying four benchmarks representing the main application domains, intro-
ducing a new benchmark, and highlighting the potential for Bayesian optimisa-
tion, we take an important step in facilitating future research.
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