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Abstract
Local context capturing has become the core fac-
tor for achieving leading performance in two-view
correspondence learning. Recent advances have
devised various local context extractors whereas
typically adopting explicit neighborhood relation
modeling that is restricted and inflexible. To ad-
dress this issue, we introduce U-Match, an atten-
tional graph neural network that has the flexibility
to enable implicit local context awareness at multi-
ple levels. Specifically, a hierarchy-aware graph
representation (HAGR) module is designed and
fleshed out by local context pooling and unpool-
ing operations. The former encodes local context
by adaptively sampling a set of nodes to form a
coarse-grained graph, while the latter decodes lo-
cal context by recovering the coarsened graph back
to its original size. Moreover, an orthogonal fu-
sion module is proposed for the collaborative use
of HAGR module, which integrates complemen-
tary local and global information into compact fea-
ture representations without redundancy. Exten-
sive experiments on different visual tasks prove
that our method significantly surpasses the state-
of-the-arts. In particular, U-Match attains an AUC
at 5 degree threshold of 60.53% on the challeng-
ing YFCC100M dataset without RANSAC, outper-
forming the strongest prior model by 8.61 absolute
percentage points. Our code is publicly available at
https://github.com/ZizhuoLi/U-Match.

1 Introduction
Identifying reliable correspondences between two-view im-
ages and retrieving the camera motion encoded by the essen-
tial matrix, continues to be an important and general problem
in computer vision, with applications to Simultaneous Local-
ization and Mapping (SLAM) [Ma et al., 2021], Structure-
from-Motion (SfM) [Schonberger and Frahm, 2016], visual
localization [Sattler et al., 2018], image registration and fu-
sion [Tang et al., 2022]. Given a pair of images, the most
standard pipeline to address the correspondence learning task
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follows a three-step strategy, i.e., feature detection, feature
description, and feature matching. Specifically, keypoints are
first detected from each image and then patches centered at
these ones are used to generate corresponding visual descrip-
tors by means of off-the-shelf detector-descriptors [Lowe,
2004; DeTone et al., 2018]. Finally, a Nearest Neighbor (NN)
matcher is typically applied to establish point-to-point corre-
spondences between images. Nevertheless, the generated set
of putative matches is inevitably largely dominated by false
ones (i.e., outliers), as a result of the ambiguity of visual de-
scriptors, especially in the case of extreme situations, includ-
ing poor texture, repetitive elements, viewpoint change, illu-
mination variation, and motion blur. Therefore, many recent
researches have been dedicated to designing accurate and ro-
bust correspondence learning methods, with the purpose of
rejecting spurious matches while maintaining as many true
ones (i.e., inliers) as possible.

As the most prevalent paradigm among hand-engineered
techniques for correspondence learning, RANSAC [Fischler
and Bolles, 1981] and its variants [Raguram et al., 2012;
Barath et al., 2020] seek inliers by finding the largest subset
conforming to a task-specific geometric model such as affine,
homography, or epipolar geometry. However, the theoretical
running time of such methods increases exponentially with
respect to the outlier rate. Thus, another line of research ex-
plores smoothness constraints to handle this drawback [Ma
et al., 2014; Bian et al., 2017; Ma et al., 2019]. Neverthe-
less, these constraints are tough to uphold in the case of large
outlier rates, resulting in dramatically degraded performance.

Due to the astonishing performance achieved by the recent
developments in deep learning, end-to-end trainable Multi-
Layer Perceptrons (MLPs) have been widely applied for two-
view correspondence learning to address the irregular and
unordered characteristics of sparse matches. Motivated by
PointNet [Qi et al., 2017], the pioneering work PointCN [Yi
et al., 2018] adopts a PointNet-like architecture to process
each correspondence individually and predict the inlier likeli-
hood scores of correspondences. Wherein, a non-parametric
operation called Context Normalization is introduced to cap-
ture global context, realized by just simply normalizing the
distribution of the feature maps with their mean and vari-
ance. To mitigating the impact of outliers on Context Nor-
malization, PointACN [Sun et al., 2020] proposes to weigh
the importance of each feature map during the normalization



step. However, both of them neglect the underlying local ge-
ometric relations among tentative correspondences and im-
peding the correspondence learning performance. To miti-
gate this downside, a plethora of follow-ups have made no-
table contributions to the design of delicate local geomet-
ric extractors. Particularly, OANet [Zhang et al., 2019] de-
signs a clustering module, which maps correspondences to
a set of clusters in a soft assignment manner, for local con-
text capturing. CLNet [Zhao et al., 2021] stacks multiple
local-to-global consensus learning layers to progressively re-
ject mismatches, where an annular convolutional operation is
introduced to aggregate local features. LMCNet [Liu et al.,
2021] presents coherence residual and local coherence lay-
ers to model motion coherence property for correspondence
learning. MS2DG-Net [Dai et al., 2022] introduces dynamic
sparse semantic graphs to capture local topology among cor-
respondences. While these methods demonstrate attractive
performance in some generic scenarios, most of them typi-
cally extract local context by means of explicit neighborhood
relation modeling (e.g., k-nearest neighbors), which is lim-
ited and inflexible for the correspondence learning task due to
two reasons: 1) putative matches are typically non-uniformly
distributed across the image domain, and 2) the number of
inliers varies with different scenarios, resulting in that locally
consistent geometric cues cannot be fully captured.

In this paper, we propose a simple yet surprisingly effec-
tive Attentional Graph Neural Network dubbed U-Match to
address the above challenges. Specifically, we present local
context pooling (LCPool) and unpooling (LCUnpool) opera-
tions to build a UNet-like multi-level architecture (thereby we
name our method U-Match), i.e., hierarchy-aware graph rep-
resentation (HAGR) module, flexibly encoding and decod-
ing high-level features for implicit local context aggregation.
The LCPool layer adaptively selects several nodes to form a
coarse-grained graph for local context encoding. The LCUn-
pool layer restores the coarse-grained graph into its original
size for local context decoding. Considering that global con-
text is also conducive to correspondence learning and works
collaboratively with local context, we further introduce an or-
thogonal fusion (OF) module to combine complementary lo-
cal and global context, thus generating redundancy-free com-
pact feature representations. Comprehensive experiments on
real-world tasks such as relative pose estimation, homogra-
phy estimation, and visual localization reveal that our method
outperforms long lines of prior work.

To sum up, our main contributions are as follows:
• Instead of explicitly capturing local context as most ex-

isting studies have done, we introduce an HAGR mod-
ule, which has the flexibility to enable implicit local con-
text awareness at multiple levels, thus fully exploring
underlying local geometric cues.

• We propose an OF module to integrate complementary
local and global context without redundancy.

• We design an attentional graph neural network for two-
view correspondence learning, which can remove spuri-
ous matches from candidate ones effectively.

• We achieve state-of-the-art results on relative pose esti-
mation, homography estimation, and visual localization.
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Figure 1: Network architecture of U-Match, which takes the putative
correspondences as input and outputs the inlier probability of each
correspondence.

2 U-Match
We propose a top-performing graph neural network termed
as U-Match for two-view correspondence learning. As il-
lustrated in Fig. 1, our network contains: 1) HAGR module
that enables implicit local context awareness at multiple lev-
els, and 2) OF module that realizes the complementary of lo-
cal and global context without redundancy. In the following
parts, the general formulation of our problem will be intro-
duced first, followed by detailed description of each module.

2.1 Problem Formulation
Give an image pair (I, I′) depicting the same visual con-
tent, the objective of our task is to seek accurate and ge-
ometrically consistent correspondences and utilize them to
recover the relative camera pose accordingly. To this end,
any off-the-shelf detector-descriptors can be first used to de-
tect 2D keypoints and generate their corresponding visual
descriptions, either handcrafted methods (e.g., SIFT [Lowe,
2004]) or learning-based ones (e.g., SuperPoint [DeTone et
al., 2018]). Then, a group of N initial correspondences C
can be generated via an NN matcher:

C = [c1; c2; · · · ; cN ] ∈ RN×4, (1)
where ci = (xi, yi, x

′
i, y
′
i) is a correspondence, (xi, yi) and

(x′i, y
′
i) are coordinates of keypoints in the image pair, both

of which are normalized to [−1, 1] with the camera intrinsics.
Following the de facto standard [Yi et al., 2018; Zhang et

al., 2019], we formulate the two-view correspondence learn-
ing task as an inlier/outlier classification problem and an es-
sential matrix regression problem. An overview of U-Match’s
workflow is illustrated in Fig. 1. Given the initial correspon-
dences C as input, a shared-weight MLP first processes them
to generate C-dimension feature vectors (here we choose
C = 128), which are subsequently fed into six HAGR mod-
ules and two OF modules, respectively. Then, the features
output by the last HAGR module are possessed with an in-
lier predictor (i.e., a shared-weight MLP followed by tanh
and ReLU activation functions), to output the probability set
w = [w1, w2, · · · , wN ]> ∈ RN×1, where wi ∈ [0, 1) indi-
cates the inlier probability of correspondence ci, i.e., wi = 0
represents an outlier. Lastly, the weighted eight-point algo-
rithm [Yi et al., 2018] is leveraged to directly regress the
essential matrix Ê grounded on the probability set w. The
whole procedure described above can be summarized as:

z = fφ(C),

w = σ(z),

Ê = g(w,C),

(2)
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Figure 2: Hierarchy-aware graph representation. (a) Overview of the proposed HAGR module. (b) Workflow of the local context pooling
layer. “P” indicates the projection stage and “S” represents the node sampling stage. (c) Workflow of the local context unpooling layer.

where z denotes the logit values used for classification, fφ(·)
represents our U-Match with parameters φ, σ(·) consists of
tanh and ReLU activation functions, and g(·, ·) denotes the
weighted eight-point algorithm that is more robust to outliers
than the traditional one, as it has taken into account the inlier
confidence of each correspondence, to alleviate the adverse
effect of outliers on the regression process.

Next, we discuss the proposed HAGR and OF modules.

2.2 Hierarchy-aware Graph Representation
Due to the variety of data, explicitly aggregating local context
has a deficiency in modeling underlying complex local con-
text. Therefore, we propose the HAGR module, to achieve
implicit multi-level local context awareness flexibly in an
encoder-decoder manner, as shown in Fig. 2(a). The encoder
is built by stacking several encoding layers (i.e., LCPool lay-
ers), each of which coarsens the graph to encode higher-order
local context, as shown in Fig. 2(b). In the decoder part, we
stack the same number of decoding layers (i.e., LCUnPool
layers), each of which refines the graph into a higher resolu-
tion structure to decode fine-grained local context, as shown
in Fig. 2(c). Additionally, there are skip-connections between
corresponding levels of LCPool and LCUnPool layers, used
to conduct encoder-decoder communication.
Local Context Pooling Layer. Given the node features
F(`) = {f (`)i }Ni=1 ∈ RN×C at level ` input to the LCPool
layer, we coarsen the graph with the desire to preserve nodes
that can characterize the graph best. For this purpose, we in-
troduce a trainable projection vector p(`) ∈ RC to measure
the importance of each node to the graph and a sampling ra-
tio λ(`) ∈ (0, 1] to control the size of the new coarse-grained
graph. Specifically, we first calculate the scalar projection
value of each node onto p(`) and then adaptively sample a
subset of nodes F(`)

S as follows:

y =
F(`) · p(`)

‖p(`)‖2
∈ RN ,

I = top-rank(y, k(`)) ∈ Rk
(`)

,

F
(`)
S = F(`)(I, :) ∈ Rk

(`)×C ,

(3)

where ‖ · ‖ denotes L2-norm, top-rank(y, k(`)) is a function
that returns the indices I of the top-k values in the projection
score set y, and k(`) = round(λ(`)N) indicates the number
of sampled nodes at level `.

After that, these selected nodes F(`)
S retrieves information

from full nodes F(`) to achieve local context encoding:

F̃
(`)
S = P(F

(`)
S ),

ỹ = sigmoid(y(I)),

F̂
(`)
S = F̃

(`)
S � (ỹ1>C),

F(`+1) = Cgg(F̂
(`)
S ,F(`)),

(4)

where P(·) denotes ResNet block [Zhao et al., 2021] used
for pre-processing, ỹ is the gate vector that not only controls
information flow but also makes the projection vector p(`)

trainable by back-propagation, 1C ∈ RC is a vector with
all elements being 1, � represents Hadamard product, and
Cgg(·, ·) denotes the context aggregation layer in light of an
attention mechanism [Vaswani et al., 2017]. Concretely, in
a C-dimension feature space, there are M vectors, i.e., X ∈
RM×C , to be updated, and N vectors, i.e., Y ∈ RN×C , to
be attended to. The attentional aggregation Cgg(·, ·) can be
described as:

∆ = Softmax(QK>)V,

Cgg(X,Y) = X + MLP(X||∆),
(5)

where Q is linear projection of X, K and V are linear pro-
jection of Y. By attentional aggregation, each element in X
can retrieve and aggregate context from elements in Y.

By performing the procedures described above, the output
F(`+1) have encoded hierarchical local context from F(`).
Notably, for better local context decoding, before feeding
F(`+1) into LCUnPool layers, we conduct an intra-graph
communication at the coarsest level with a context aggrega-
tion layer:

F
′ (L)

= Cgg(F(L),F(L)), (6)

where L is the number of levels and F
′ (L)

denotes the up-
dated feature nodes input to subsequent LCUnPool layers.
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Figure 3: Orthogonal fusion module. (a) Workflow of the orthogo-
nal fusion module. (b) Schema of a feature projected onto the global
feature and the component orthogonal to the global feature.

Local Context Unpooling Layer. After the progressive lo-
cal context encoding with LCPool layers and message ex-
change between coarsest-level node features via the context
aggregation layer, we adopt a straightforward way to imple-
ment the LCUnPool layer at level ` as follows:

F
′ (`−1)

= Cgg(F(`−1),F
′ (`)

), (7)

where F
′ (`)

denotes the decoded node features at the same
level of F(`). As is evident, the favorable and hierarchical
local context encoded in F

′ (`)
is propagated back to all nodes

F(`−1) at level ` − 1, to achieve local context decoding with
compact message passing.

Notably, refer to other learning-based methods [Sun et al.,
2020; Zhao et al., 2021], we insert inlier predictors into each
HAGR module during the training phase but only preserve
the last one at inference.

2.3 Orthogonal Fusion
Given a set of intermediate feature vectors F = {fi}Ni=1
which can be deemed as local features, the global represen-
tation vector fg ∈ RC can be simply generated with global
average pooling, which however is ill-suited for the corre-
spondence learning task, since it treats each correspondence
equally - in other words, it overlooks the negative impact of
considerable outliers included in the tentative set, making the
global representation vector fg not robust. To tackle this is-
sue, we propose to weigh the importance of each correspon-
dence in light of the probability set (t)w output by the t-th
HAGR module, to guide the network to embed more robust
global context. To this end, we extend global average pooling
to a weighted formulation as follows:

fg = G(F ,(t) w) =

N∑
i=1

(t)wi∑N
j=1

(t)wj
fi, (8)

where G(·, ·) is the weighted global average pooling. After
obtaining fg , we feed it into a bottleneck with two MLPs
whose output channels are 32 and 128, respectively, to gen-
erate a global context-enhanced vector fg′ . Then, we calcu-
lates the projection fi,proj of each feature vector fi onto the

global representation fg′ . Mathematically, the projection can
be written as:

fi,proj =
fi · fg′
‖fg′‖2

fg′ . (9)

As demonstrated in Fig. 3(b), the orthogonal component is
the difference between each feature vector fi and its projec-
tion vector fi,proj , therefore, we can obtain the component
orthogonal to fg′ by:

fi,orth = fi − fi,proj . (10)
Afterwards, we append to each fi,orth with fg′ and then the
new vector is fed into an MLP whose output channel is 128.
By doing so, a compact feature vector, where local and global
information is well integrated, is generated. The workflow of
our orthogonal fusion module is presented in Fig. 3(a).

2.4 Loss Formulation
Following previous studies [Yi et al., 2018; Zhang et al.,
2019], the optimization objective of our network is to min-
imize a hybrid loss function as follows:

L =

T∑
t=1

Lcls((t)w,L) + αLreg((t)Ê,E), (11)

where superscript (t) means the t-th HAGR module, and α
balances two loss terms. Lcls(·, ·) denotes a binary cross en-
tropy loss for the classification term:

Lcls(w,L) =
1

N

N∑
i=1

µiB(wi, li), (12)

where N is the number of tentative matches, µi is the per-
label weight to balance positive and negative examples, B
represents the binary cross entropy, w is the reasoned proba-
bility set, and L = {li}Ni=1 denotes weakly supervised labels
which are generated based on the geometric error [Hartley
and Zisserman, 2003] with a threshold of 10−4. Lreg(·, ·) is
the regression loss between the estimated essential matrix Ê
and the ground-truth one E, which is also based on the geo-
metric error:
Lreg(Ê,E)

=

N∑
i=1

(p′>i Êpi)
2

‖Epi‖2[1] + ‖Epi‖2[2] + ‖Ep′i‖2[1] + ‖Ep′i‖2[2]
, (13)

where pi and p′i are two keypoints forming the correspon-
dence ci, and v[i] denotes the i-th element of vector v.

2.5 Implementation Details
In our implementation, the input to our model is N × 4 pu-
tative correspondences established by an NN matcher with
SIFT detector-descriptors, typically N = 2000, unless oth-
erwise specified. The number of levels is set to L = 4,
i.e., each HRGA module contains three LCPool layers with
the sampling ratios of 0.125, 0.5, 0.5, respectively. We use
4-head attention in the context aggregation layer. We imple-
ment our model with Pytorch and adopt Adam optimizer with
a learning rate of 10−4 and a batch size of 32 in optimization.
Weight α is set to 0 at the start and to 0.5 after first 20k iter-
ations. All experiments are conducted on Ubuntu 18.04 with
GeForce RTX 3090 GPUs.
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Figure 4: Matching results on YFCC100M and SUN3D with SIFT
features. Correspondences are in blue if they are consistent with the
ground-truth epipolar geometry, and in red otherwise. Pose estima-
tion results are shown at the top left corner.

3 Experiments
In the following sessions, we first evaluate U-Match on three
diverse problems which heavily rely on two-view correspon-
dence learning, namely: relative pose estimation, homogra-
phy estimation, and visual localization. Then, a comprehen-
sive analysis is provided for better understanding U-Match.

3.1 Relative Pose Estimation
Relative pose estimation, which refers to accurately estimate
the relative position relationship (i.e., rotation and translation)
between different camera views with identified inliers, plays
a pivotal role in computer vision.
Datasets. As in the previous work [Zhang et al., 2019], we
resort to two popular datasets, YFCC100M [Thomee et al.,
2016] and SUN3D [Xiao et al., 2013], to demonstrate the
correspondence learning ability of our method in outdoor and
indoor scenes, respectively. YFCC100M contains 100 mil-
lion images from Internet, which are split into 72 sequences
according to different tourist spots. We choose 68 sequences
as training and validation data, and the remaining sequences
are used for testing. SUN3D is a large-scale RGB-D video
dataset with relative camera motions retrieved by general-
ized bundle adjustment. It is comprised of 254 indoor im-
age sequences with poor texture, repetitive elements, and self-
occlusions, where 239 sequences are adopted for training and
validation, and the rest sequences are used for testing.
Evaluation Protocols. We report the area under the cumu-
lative error curve (AUC) of the pose error at multiple thresh-
olds (5◦, 10◦, 20◦), where the pose error is the maximum of
the angular error in rotation and translation. Importantly, rel-
ative poses are recovered by estimating essential matrix with
both the weighted eight-point algorithm and RANSAC.
Baselines. We compare U-Match with 1) traditional hand-
crafted approaches, including the NN matcher, USAC [Ragu-
ram et al., 2012], VFC [Ma et al., 2014], LPM [Ma et al.,
2019], and GMS [Bian et al., 2017], 2) learning-based ones,
including PointCN [Yi et al., 2018], OANet [Zhang et al.,
2019], CLNet [Zhao et al., 2021], LMCNet [Liu et al., 2021],
and MS2DG-Net [Dai et al., 2022]. To provide a fair evalu-
ation, all learning-based methods are re-trained in the same
training setting. Considering that SuperGlue [Sarlin et al.,
2020] is the most popular learning-based feature matching

Method YFCC100M (outdoor) (%)

AUC@5◦ AUC@10◦ AUC@20◦

PointCN [Yi et al., 2018] 25.72 37.73 46.23
OANet [Zhang et al., 2019] 39.05 53.69 62.12
CLNet [Zhao et al., 2021] 51.92 63.11 69.85
LMCNet [Liu et al., 2021] 50.30 62.56 69.62
MS2DG-Net [Dai et al., 2022] 48.38 62.45 70.52
U-Match 60.53 71.26 80.37

Table 1: Evaluation on YFCC100M for outdoor pose estimation
with the weighted eight-point algorithm.

Method YFCC100M (outdoor) (%)

AUC@5◦ AUC@10◦ AUC@20◦

NN 9.18 14.64 19.28
USAC [Raguram et al., 2012] 5.67 9.53 13.41
VFC [Ma et al., 2014] 33.70 41.29 46.27
LPM [Ma et al., 2019] 30.78 39.31 44.81
GMS [Bian et al., 2017] 26.30 34.59 40.43

PointCN [Yi et al., 2018] 50.32 59.88 65.83
OANet [Zhang et al., 2019] 52.42 62.79 68.86
CLNet [Zhao et al., 2021] 59.05 69.03 74.97
LMCNet [Liu et al., 2021] 57.57 67.40 73.07
MS2DG-Net [Dai et al., 2022] 58.05 68.34 74.33
U-Match 60.38 70.05 78.86
SuperGlue* [Sarlin et al., 2020] 59.25 77.41 85.70

Table 2: Evaluation on YFCC100M for outdoor pose estimation
with RANSAC. The results of SuperGlue are cited from its supple-
mentary material.

method, we also deliver the results of SIFT+SuperGlue on
YFCC100M with RANSAC.

Results of Outdoor Pose Estimation. As presented in the
first two rows of Fig. 4, several visualization results of out-
door scenes reveal that the proposed U-Match is capable of
rejecting spurious correspondences while preserving correct
ones effectively. The quantitative results with the weighted
eight-point algorithm and RANSAC are reported in Tables 1
and 2, respectively. Clearly, U-Match outperforms other
baselines at all error thresholds by a significant margin in
both evaluation modes, even surpassing SuperGlue, which re-
quires extra visual descriptors as input, in terms of AUC@5◦.
Surprisingly, U-Match is the first model to pass the 60%
AUC@5◦ bar, which without RANSAC even excels all prior
models with RANSAC at each threshold. We attribute the top
performance to implicit multi-level local context captured in
an encoder-decoder manner with the HAGR module. More-
over, the OF module also contributes to the estimation accu-
racy by integrating complementary local and global context
without redundancy.

Results of Indoor Pose Estimation. Compared to out-
door scenes, texture-less scenes of indoor environments are
more challenging to relative pose estimation. Even so, vi-
sualization shown in the last two rows of Fig. 4 qualita-
tively demonstrates that U-Match can achieve impressive
performance. Further looking at Tables 3 and 4, as with
YFCC100M, U-Match consistently achieves the best accu-
racy at all AUC thresholds, irrespective of using the weighted
eight-point algorithm or RANSAC. Intriguingly, U-Match



Method SUN3D (indoor) (%)

AUC@5◦ AUC@10◦ AUC@20◦

PointCN 8.81 16.88 24.19
OANet 15.60 25.83 40.07
CLNet 9.58 17.98 25.42
LMCNet 18.95 30.33 38.94
MS2DG-Net 16.10 27.01 35.57
U-Match 21.46 32.68 47.13

Table 3: Evaluation on SUN3D for indoor pose estimation with the
weighted eight-point algorithm.

Method SUN3D (indoor) (%)

AUC@5◦ AUC@10◦ AUC@20◦

NN 3.07 5.81 8.57
USAC [Raguram et al., 2012] 3.30 5.99 8.73
VFC [Ma et al., 2014] 13.39 20.42 25.96
LPM [Ma et al., 2019] 12.51 19.35 24.79
GMS [Bian et al., 2017] 10.58 16.63 21.59

PointCN [Yi et al., 2018] 15.50 24.12 31.01
OANet [Zhang et al., 2019] 16.76 26.07 38.40
CLNet [Zhao et al., 2021] 16.30 25.89 33.15
LMCNet [Liu et al., 2021] 17.83 27.61 35.06
MS2DG-Net [Dai et al., 2022] 18.18 27.85 35.21
U-Match 18.34 28.07 41.22

Table 4: Evaluation on SUN3D for indoor pose estimation with
RANSAC.

without RANSAC is still more powerful than other baselines
with RANSAC according to all metrics.

3.2 Homography Estimation
Homography estimation aims to find a linear image-to-image
mapping in the homogeneous space, acting as a crucial pre-
requisite for a board range of downstream applications. In
the following, we evaluate the performance of U-Match with
both robust (RANSAC) and non-robust Direct Linear Trans-
form (DLT) estimators on this task.
Dataset. We resort to the HPatches dataset [Balntas et al.,
2017] for evaluation, which contains 52 sequences changing
largely in viewpoint and 56 sequences varying significantly in
illumination conditions. Each consists of one reference image
and five query ones, with ground-truth homographies. Impor-
tantly, we extract up to 4000 keypoints with SIFT followed by
an NN matcher to establish tentative matches.
Evaluation Protocols. Following the corner correctness
metric used in [DeTone et al., 2018], we report the percent-
age of correctly estimated homographies whose average error
is below 3/5/10 pixels.
Results. Table 5 presents the all-sided quantitative evalua-
tion on HPatches. Clearly, U-Match achieves best results at
all thresholds, no matter with DLT or RANSAC estimators,
proving that our method is well-suited for this task.

3.3 Visual Localization
Given a query image, visual localization aims to estimate its
6-DOF camera pose with respect to the corresponding 3D

Method HPathces (%)

ACC.@3px ACC.@5px ACC.@10px

PointCN [Yi et al., 2018] 38.97/67.93 51.55/82.59 65.34/92.76
OANet [Zhang et al., 2019] 39.83/69.66 52.76/82.93 62.93/91.90
CLNet [Zhao et al., 2021] 43.10/57.07 55.69/73.45 68.10/86.90
LMCNet [Liu et al., 2021] 47.76/72.93 58.79/83.62 70.00/92.76
MS2DG-Net [Dai et al., 2022] 41.21/72.07 50.17/83.28 62.59/92.62
U-Match 48.90/72.93 59.41/84.48 70.83/92.90

Table 5: Evaluation on HPatches for homography estimation.
The percentage of correctly estimated homographies, i.e., accuracy
(ACC.), at different error thresholds (without/with RANSAC post-
processing) is reported.

scene model. In the following, we integrate U-Match into
the official HLoc [Sarlin et al., 2019] pipeline to investigate
how our model directly benefits the visual localization task.

Dataset. We adopt Aachen Day-Night benchmark [Sattler
et al., 2018] which contains 4328 reference images from
a European old town and 922 (824 daytime, 98 nighttime)
query images taken by mobile phone cameras, to validate the
effectiveness of our network on visual localization.

Evaluation Protocols. Consistent with the official bench-
mark, we report the percentage of correctly localized queries
at specific distance and orientation thresholds. Importantly,
we extract up to 4096 keypoints per image with SIFT, es-
tablish putative correspondences with an NN matcher, tri-
angulate an SfM model from day-time images with known
poses, and register night-time query images with 2D-2D
matches provided by correspondence learning methods and
COLMAP [Schonberger and Frahm, 2016].

Results. As summarized in Table 7, the results show that
our approach notably performs on par with or better than its
competitors in both day and night scenes at all error thresh-
olds, demonstrating its superiority on this task.

3.4 Understanding U-Match
Impact of Graph Representation Levels. Intuitively, the
HAGR module with larger levels enables more complex local
context awareness. To investigate the impact of graph repre-
sentation levels, we further train our U-Match on YFCC100M
with 2, 3, 5 levels, respectively. As rows 4-7 shown in Table 8,
the models with 2 or 3 levels lead to substantially worse re-
sults, since underlying hierarchical local context cannot be
fully explored with fewer levels. Also, the 5-level model per-
forms on par with the default model (i.e., 4 levels), indicating
that too many layers are unnecessary since the unearthed lo-
cal context might be redundant.

Efficiency. For an HAGR module, let k(1), k(2), and k(3)
denote the number of sampled nodes at three levels, respec-
tively, the theoretical complexity of the pooling and unpool-
ing operations at three levels and the context aggregation
layer at the bottom is O(Nk(1)), O(k(1)k(2)), O(k(2)k(3)),
and O(k(3)

2
), respectively. Since k(1), k(2), k(3) � N , the

complexity of an HAGR module can be approximately writ-
ten as O(N). Table 6 summarizes the average runtime of
all learning-based methods for correspondence learning on
YFCC100M using a single GeForce RTX 3090 GPU with



Method PointCN [Yi et al., 2018] OANet [Zhang et al., 2019] CLNet [Zhao et al., 2021] LMCNet [Liu et al., 2021] MS2DG-Net [Dai et al., 2022] U-Match
ART 19.85/124.07 35.25/170.79 39.55/63.72 247.53/385.15 37.75/167.60 55.50/152.00

Table 6: Efficiency evaluation. Average runtime (ART, unit: ms) on YFCC100M (without/with RANSAC post-processing) is reported.

Method Day Night

(0.25m, 2°) / (0.5m, 5°) / (1.0m, 10°)

PointCN [Yi et al., 2018] 81.3/91.4/95.9 68.4/78.6/87.8
OANet [Zhang et al., 2019] 82.3/91.9/96.5 71.4/79.6/90.8
CLNet [Zhao et al., 2021] 83.3/92.4/97.0 71.4/80.6/93.9
MS2DG-Net [Dai et al., 2022] 82.8/92.1/96.8 70.4/82.7/93.9
U-Match 85.3/92.6/96.8 72.4/82.7/90.8

Table 7: Evaluation on Aachen Day-Night for visual localization.
The percentage of correctly localized queries at different thresholds
is reported.

Method YFCC100M (outdoor) (%)

AUC@5◦ AUC@10◦ AUC@20◦

(1) U-Match w. Concatenation 58.33 69.33 78.77
(2) U-Match w. Hadamard 59.60 70.18 79.47
(3) U-Match w/o. OF 57.53 68.34 77.75

(4) U-Match w. 2 levels 54.95 66.63 77.19
(5) U-Match w. 3 levels 56.93 68.18 78.28
(6) U-Match w. 5 levels 60.70 70.94 80.23

(7) U-Match full 60.53 71.26 80.37

Table 8: Ablation study of U-Match. w. Concatenation and w.
Hadamard stand for replacing the orthogonal decomposition step
with concatenation and Hadamard product, respectively. w/o. OF
stands for removing the orthogonal fusion module from U-Match.
AUC@5◦ (%) with the weighted eight-point algorithm is reported.

24GB memory. Clearly, U-Match achieves comparable effi-
ciency regardless of using the weighted eight-point algorithm
or RANSAC. In contrast, LMCNet is time-consuming, whose
average runtime without RANSAC is an order of magnitude
larger than others due to the calculation of smooth motions
via the coherence residual layer. CLNet with RANSAC runs
the fastest since it just employs identified inliers from the
pruned candidates to estimate the essential matrix.

Generalization Ability. To investigate the generalization
ability of U-Match to different combinations of datasets and
detector-descriptors, we test all learning-based counterparts
on YFCC100M with RootSIFT or SuperPoint, as well as
SUN3D with SIFT, RootSIFT or SuperPoint, adopting the
models only trained on YFCC100M with SIFT. Notably,
we extract up to 2000 and 1000 keypoints per image with
RootSIFT and SuperPoint, respectively, followed by an NN
matcher to generate putative matches. As reported in Table 9,
U-Match substantially outperforms prior state-of-the-arts in
all cases, directly reflecting its superior generalization ability.

Ablation Study. In the OF module, we propose to decom-
pose a local feature into two parts, namely fi,proj and fi,orth,
where the former is parallel to the global feature fg′ and the
latter is orthogonal to fg′ . To demonstrate that such operation
is a better choice, we replace the orthogonal decomposition
step with concatenation and Hadamard product, respectively,

Method YFCC100M (outdoor) (%) SUN3D (indoor) (%)

RootSIFT SuperPoint SIFT RootSIFT SuperPoint

PointCN 25.60/50.98 14.70/41.10 1.14/14.94 1.26/15.26 3.15/14.05
OANet 40.25/55.75 20.95/43.38 2.80/14.03 2.92/14.58 2.87/13.84
CLNet 51.35/60.77 24.68/42.70 2.28/15.49 2.43/16.24 2.86/9.61
LMCNet 50.48/58.58 24.88/42.83 4.79/14.97 5.04/15.38 3.22/14.23
MS2DG-Net 50.05/59.62 25.75/44.60 4.72/15.64 5.07/15.86 3.40/14.64
U-Match 61.32/60.88 28.38/45.12 6.66/15.93 6.59/16.26 3.87/14.84

Table 9: Generalization ability test. AUC@5◦ (%) (without/with
RANSAC post-processing) is reported.

1st Sampling 2nd Sampling 3rd Sampling 

Figure 5: Visualization of sampled nodes by three LCPool layers.

which are commonly used to fuse two feature vectors. As
rows 1, 2 and 7 reported in Table 8, the proposed orthogo-
nal fusion achieves the best performance among three fusion
strategies, since by doing so, there is no information redun-
dancy in the output local feature fi,orth. In addition, row 3
verifies the effectiveness of the propose OF module to com-
bine complementary local and global context.

Visualization of Sampled Nodes. We visualize the sam-
pled correspondences at three levels, as shown in Fig. 5.
U-Match is capable of progressively discovering reliable
matches as message bottlenecks, to achieve accurate and ro-
bust local context encoding, as evidenced by the gradually
increasing inlier ratio of sampled nodes.

4 Conclusion
This paper introduces U-Match for two-view correspondence
learning. The main improvement is from two sides: 1) We
propose an efficient network structure in an encoder-decoder
manner, implicitly capturing the local context from different
levels and can be trained integrally. 2) We design an orthog-
onal fusion module that combines complementary local and
global context without redundancy. Experiments on differ-
ent tasks and datasets show that U-Match brings significant
improvement over the state-of-the-art methods.
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