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ABSTRACT

We show that the representation cost of fully connected neural networks with ho-
mogeneous nonlinearities - which describes the implicit bias in function space of
networks with L2-regularization or with losses such as the cross-entropy - con-
verges as the depth of the network goes to infinity to a notion of rank over nonlin-
ear functions. We then inquire under which conditions the global minima of the
loss recover the ‘true’ rank of the data: we show that for too large depths the global
minimum will be approximately rank 1 (underestimating the rank); we then argue
that there is a range of depths which grows with the number of datapoints where
the true rank is recovered. Finally, we discuss the effect of the rank of a classifier
on the topology of the resulting class boundaries and show that autoencoders with
optimal nonlinear rank are naturally denoising.

1 INTRODUCTION

There has been a lot of recent interest in the so-called implicit bias of DNNs, which describes what
functions are favored by a network when fitting the training data. Different network architectures
(choice of nonlinearity, depth, width of the network, and more) and training procedures (initializa-
tion, optimization algorithm, loss) can lead to widely different biases.

In contrast to the so-called kernel regime where the implicit bias is described by the Neural Tangent
Kernel (Jacot et al., 2018), there are several active regimes (also called rich or feature-learning
regimes), whose implicit bias often feature a form sparsity that is absent from the kernel regime.
Such active regimes have been observed for example in DNNs with small initialization (Chizat
& Bach, 2018; Rotskoff & Vanden-Eijnden, 2018; Li et al., 2020; Jacot et al., 2022a), with L2-
regularization (Savarese et al., 2019; Ongie et al., 2020; Jacot et al., 2022b) or when trained on
exponentially decaying losses (Gunasekar et al., 2018a;b; Soudry et al., 2018; Du et al., 2018; Ji &
Telgarsky, 2018; Chizat & Bach, 2020; Ji & Telgarsky, 2020). In the latter two cases, the implicit
bias is described by the representation cost:

R(f) = min
W:fW=f

∥W∥2

where f is a function that can be represented by the network and the minimization is over all param-
eters W that result in a network function fW equal to f , the parameters W form a vector and ∥W∥
is the L2-norm.

The representation cost can in some cases be explicitly computed for linear networks. For diagonal
linear networks, the representation cost of a linear function f(x) = wTx equals theLp normR(f) =
L ∥w∥pp of the vector v for p = 2

L (Gunasekar et al., 2018a; Moroshko et al., 2020) where L is
the depth of the network. For fully-connected linear networks, the representation cost of a linear
function f(x) = Ax equals the Lp-Schatten norm (the Lp norm of the singular values) R(f) =
L ∥A∥pp (Dai et al., 2021).

A common thread between these examples is a bias towards some notion of sparsity: sparsity of the
entries of the vector w in diagonal networks and sparsity of the singular values in fully connected
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networks. Furthermore, this bias becomes stronger with depth and in the infinite depth limit L→ ∞
the rescaled representation cost R(f)/L converges to the L0 norm ∥w∥0 (the number of non-zero
entries in w) in the first case and to the rank Rank(A) in the second.

For shallow (L = 2) nonlinear networks with a homogeneous activation, the representation cost
also takes the form of a L1 norm (Bach, 2017; Chizat & Bach, 2020; Ongie et al., 2020), leading to
sparsity in the effective number of neurons in the hidden layer of the network.

However, the representation cost of deeper networks does not resemble any typical norm (Lp or not),
though it still leads to some form of sparsity (Jacot et al., 2022b). Despite the absence of explicit
formula, we will show that the rescaled representation cost R(f)/L converges to some notion of
rank in nonlinear networks as L→ ∞, in analogy to infinite depth linear networks.

CONTRIBUTIONS

We first introduce two notions of rank: the Jacobian rank RankJ(f) = maxx Rank [Jf(x)] and the
Bottleneck rank RankBN (f) which is the smallest integer k such that f can be factorized f = h ◦ g
with inner dimension k. In general, RankJ(f) ≤ RankBN (f), but for functions of the form f =
ψ ◦ A ◦ ϕ (for a linear map A and two bijections ψ and ϕ), we have RankJ(f) = RankBN (f) =
RankA. These two notions of rank satisfy the properties (1) Rankf ∈ Z; (2) Rank(f ◦ g) ≤
min{Rankf,Rankg}; (3) Rank(f + g) ≤ Rankf +Rankg; (4) Rank(x 7→ Ax+ b) = RankA.

We then show that in the infinite depth limit L→ ∞ the rescaled representation cost of DNNs with
a general homogeneous nonlinearity is sandwiched between the Jacobian and Bottleneck ranks:

RankJ (f) ≤ lim
L→∞

R(f)

L
≤ RankBN (f) .

Furthermore limL→∞R(f) satisfies properties (2-4) above. We also conjecture that the limiting
representation cost equals its upper bound RankBN (f).

We then study how this bias towards low-rank functions translates to finite but large depths. We first
show that for large depths the rescaled norm of the parameters ∥Ŵ∥2

/L at any global minimum Ŵ
is upper bounded by 1+CN/L for a constant CN which depends on the training points. This implies
that the resulting function has approximately rank 1 w.r.t. the Jacobian and Bottleneck ranks.

This is however problematic if we are trying to fit a ‘true function’ f∗ whose ‘true rank’ k =
RankBNf

∗ is larger than 1. Thankfully we show that if k > 1 the constantCN explodes asN → ∞,
so that the above bound (∥Ŵ∥2

/L ≤ 1+CN/L) is relevant only for very large depths whenN is large.
We show another upper bound ∥Ŵ∥2

/L ≤ k + C/L with a constant C independent of N , suggesting
the existence of a range of intermediate depths where the network recovers the true rank k.

Finally, we discuss how rank recovery affects the topology of decision boundaries in classification
and leads autoencoders to naturally be denoising, which we confirm with numerical experiments.

RELATED WORKS

The implicit bias of deep homogeneous networks has, to our knowledge, been much less studied
than those of either linear networks or shallow nonlinear ones. (Ongie & Willett, 2022) study deep
networks with only one nonlinear layer (all others being linear). Similarly (Le & Jegelka, 2022)
show a low-rank alignment phenomenon in a network whose last layers are linear.

Closer to our setup is the analysis of the representation cost of deep homogeneous networks in
(Jacot et al., 2022b), which gives two reformulations for the optimization in the definition of the
representation cost, with some implications on the sparsity of the representations, though the infinite
depth limit is not studied.

A very similar analysis of the sparsity effect of large depth on the global minima of L2-regularized
networks is given in (Timor et al., 2022), however, they only show how the optimal weight matrices
are almost rank 1 (and only on average), while we show low-rank properties of the learned function,
as well as the existence of a layer with almost rank 1 hidden representations.
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2 PRELIMINARIES

In this section, we define fully-connected DNNs and their representation cost.

FULLY CONNECTED DNNS

In this paper, we study fully connected DNNs with L+1 layers numbered from 0 (input layer) to L
(output layer). Each layer ℓ ∈ {0, . . . , L} has nℓ neurons, with n0 = din the input dimension and
nL = dout the output dimension. The pre-activations α̃ℓ(x) ∈ Rnℓ and activations αℓ(x) ∈ Rnℓ of
the layers of the network are defined inductively as

α0(x) = x

α̃ℓ(x) =Wℓαℓ−1(x) + bℓ

αℓ(x) = σ (α̃ℓ(x)) ,

for the nℓ×nℓ−1 connection weight matrixWℓ, the nℓ bias vector bℓ and the nonlinearity σ : R → R
applied entrywise to the vector α̃ℓ(x). The parameters of the network are the collection of all
connection weights matrices and bias vectors W = (W1, b1, . . . ,WL, bL).

We call the network function fW : Rdin → Rdout the function that maps an input x to the pre-
activations of the last layer α̃L(x).

In this paper, we will focus on homogeneous nonlinearities σ, i.e. such that σ(λx) = λσ(x) for any
λ ≥ 0 and x ∈ R, such as the traditional ReLU σ(x) = max{0, x}. In our theoretical analysis we

will assume that the nonlinearity is of the form σa(x) =

{
x if x ≥ 0

ax otherwise
for some α ∈ (−1, 1),

since for a general homogeneous nonlinearity σ (which is not proportional to the identity function,
the constant zero function or the absolute function), there are scalars a ∈ (−1, 1), b ∈ R and
c ∈ {+1,−1} such that σ(x) = cσa(bx); as a result, the global minima and representation cost are
the same up to scaling.
Remark 1. By a simple generalization of the work of (Arora et al., 2018), the set of functions that
can be represented by networks (with any finite widths and depth) with such nonlinearities is the
set of piecewise linear functions with a finite number of linear regions. In contrast, the three types
of homogeneous nonlinearities we rule out (the identity, the constant, or the absolute value) lead
to different sets of functions: the linear functions, the constant functions, or the piecewise linear
functions f such that limt→∞ ∥f(tx)− f(−tx)∥ is finite for all directions x ∈ Rdin (or possibly
a subset of this class of functions). While some of the results of this paper could probably be
generalized to the third case up to a few details, we rule it out for the sake of simplicity.
Remark 2. All of our results will be for sufficiently wide networks, i.e. for all widths n such that
nℓ ≥ n∗ℓ for some minimal widths n∗ℓ . Moreover these results are O(0) in the width, in the sense
that above the threshold n∗ℓ the constants do not depend on the widths nℓ. When there are a finite
number of datapoints N , it was shown by (Jacot et al., 2022b) that a width of N(N + 1) is always
sufficient, that is we can always take n∗ℓ = N(N +1) (though it is observed empirically that a much
smaller width can be sufficient in some cases). When we are trying to fit a piecewise linear function
over the whole input domain Ω, the width required depends on the number of linear regions (He
et al., 2018).

REPRESENTATION COST

The representation cost R(f ; Ω, σ, L) is the squared norm of the optimal weights W which repre-
sents the function f|Ω:

R(f ; Ω, σ, L) = min
W:fW|Ω=f|Ω

∥W∥2

where the minimum is taken over all weights W of a depth L network (with some finite widths n)
such that fW(x) = f(x) for all x ∈ Ω. If no such weights exist, we define R(f ; Ω, σ, L) = ∞.

The representation cost describes the natural bias on the represented function fW induced by adding
L2 regularization on the weights W:

min
W

C(fW) + λ ∥W∥2 = min
f
C(f) + λR(f ; Ω, σ, L)
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for any cost C (defined on functions f : Ω 7→ Rdout ) and where the minimization on the right is
over all functions f that can be represented by a depth L network with nonlinearity σ. Therefore, if
we can give a simple description of the representation cost of a function f , we can better understand
what type of functions f are favored by a DNN with nonlinearity σ and depth L.
Remark 3. Note that the representation cost does not only play a role in the presence of L2-
regularization, it also describes the implicit bias of networks trained on an exponentially decaying
loss, such as the cross-entropy loss, as described in (Soudry et al., 2018; Gunasekar et al., 2018a;
Chizat & Bach, 2020).

3 INFINITELY DEEP NETWORKS

In this section, we first give 4 properties that a notion of rank on piecewise linear functions should
satisfy and introduce two notions of rank that satisfy these properties. We then show that the infinite-
depth limit L→ ∞ of the rescaled representation cost R(f ; Ω, σa, L)/L is sandwiched between the
two notions of rank we introduced, and that this limit satisfies 3 of the 4 properties we introduced.

RANK OF PIECEWISE LINEAR FUNCTIONS

There is no single natural definition of rank for nonlinear functions, but we will provide two of them
in this section and compare them. We focus on notions of rank for piecewise linear functions with
a finite number of linear regions since these are the function that can be represented by DNNs with
homogeneous nonlinearities (this is a Corollary of Theorem 2.1 from (Arora et al., 2018), for more
details, see Appendix E.1). We call such functions finite piecewise linear functions (FPLF).

Let us first state a set of properties that any notion of rank on FPLF should satisfy, inspired by
properties of rank for linear functions:

1. The rank of a function is an integer Rank(f) ∈ N.
2. Rank(f ◦ g) ≤ min{Rankf,Rankg}.
3. Rank(f + g) ≤ Rankf +Rankg.
4. If f is affine (f(x) = Ax+ b) then Rankf = RankA.

Taking g = id or f = id in (2) implies Rank(f) ≤ min{din, dout}. Properties (2) and (4) also
imply that for any bijection ϕ on Rd, Rank(ϕ) = Rank(ϕ−1) = d.

Note that these properties do not uniquely define a notion of rank. Indeed we will now give two
notions of rank which satisfy these properties but do not always match. However any such notion of
rank must agree on a large family of functions: Property 2 implies that Rank is invariant under pre-
and post-composition with bijections (see Appendix A), which implies that the rank of functions of
the form ψ ◦ f ◦ϕ for an affine function f(x) = Ax+ b and two (piecewise linear) bijections ψ and
ϕ always equals RankA.

The first notion of rank we consider is based on the rank of the Jacobian of the function:
Definition 1. The Jacobian rank of a FPLF f is RankJ(f ; Ω) = maxx RankJf(x), taking the max
over points where x is differentiable.

Note that since the jacobian is constant over the linear regions of the FPLF f , we only need to
take the maximum over every linear region. As observed in (Feng et al., 2022), the Jacobian rank
measures the intrinsic dimension of the output set f(Ω).

The second notion of rank is inspired by the fact that for linear functions f , the rank of f equals the
minimal dimension k such that f can be written as the composition of two linear function f = g ◦ h
with inner dimension k. We define the bottleneck rank as:
Definition 2. The bottleneck rank RankBN (f ; Ω) is the smallest integer k ∈ N such that there is a
factorization as the composition of two FPLFs f|Ω = (g ◦ h)|Ω with inner dimension k.

The following proposition relates these two notions of rank:
Proposition 1. Both RankJ and RankBN satisfy properties 1− 4 above. Furthermore:
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• For any FPLF and any set Ω, RankJ(f ; Ω) ≤ RankBN (f ; Ω).

• There exists a FPLF f : R2 → R2 and a domain Ω such that RankJ(f ; Ω) = 1 and
RankBN (f ; Ω) = 2.

INFINITE-DEPTH REPRESENTATION COST

In the infinite-depth limit, the (rescaled) representation cost of DNNs R∞(f ; Ω, σa) =

limL→∞
R(f ;Ω,σa,L)

L converges to a value ‘sandwiched’ between the above two notions of rank:

Theorem 1. For any bounded domain Ω and any FPLF f

RankJ(f ; Ω) ≤ R∞(f ; Ω, σα) ≤ RankBN (f ; Ω).

Furthermore the limiting representation cost R∞(f ; Ω, σa) satisfies properties 2 to 4.

Proof. The lower bound follows from taking L → ∞ in Proposition 3 (see Section 4). The upper
bound is constructive: a function f = h ◦ g can be represented as a network in three consecutive
parts: a first part (of depth Lg) representing g, a final part (of depth Lh) representing h, and in the
middle L− Lg − Lh identity layers on a k-dimensional space. The contribution to the norm of the
parameters of the middle part is k(L−Lg −Lh) and it dominates as L→ ∞, since the contribution
of the first and final parts are finite.

Note that R∞(f ; Ω, σa) might satisfy property 1 as well, we were simply not able to prove
it. Theorem 1 implies that for functions of the form f = ψ ◦ A ◦ ϕ for bijections ψ and ϕ,
R∞(f ; Ω, σa) = RankJ(f ; Ω) = RankBN (f ; Ω) = RankA.
Remark 4. Motivated by some aspects of the proofs and a general intuition (which is described in
Section 4) we conjecture that R∞(f ; Ω, σa) = RankBN (f ; Ω). This would imply that the limiting
representation cost does not depend on the choice of nonlinearity, as long as it is of the form σa
(which we already proved is the case for functions of the form ψ ◦A ◦ ϕ).

This result suggests that large-depth neural networks are biased towards function which have a low
Jacobian rank and (if our above mentioned conjecture is true) low Bottleneck rank, much like linear
networks are biased towards low-rank linear maps. It also suggests that the rescaled norm of the
parameters ∥W∥2

/L is an approximate upper bound on the Jacobian rank (and if our conjecture is
true on the Bottleneck rank too) of the function fW. In the next section, we partly formalize these
ideas.

4 RANK RECOVERY IN FINITE DEPTH NETWORKS

In this section, we study how the (approximate) rank of minimizer functions fŴ (i.e. functions at a
global minimum Ŵ) for the MSE Lλ(W) = 1

N

∑N
i=1(fW(xi)−yi)2+ λ

L ∥W∥2 with data sampled
from a distribution with support Ω is affected by the depth L. In particular, when the outputs are
generated from a true function f∗ (i.e. yi = f∗(xi)) with k = RankBN (f∗; Ω), we study in which
condition the ‘true rank’ k is recovered.

APPROXIMATE RANK 1 REGIME

One can build a function with BN-rank 1 that fits any training data (for example by first projecting
the input to a line with no overlap and then mapping the points from the line to the outputs with a
piecewise linear function). This implies the following bound:

Proposition 2. There is a constant CN (which depends on the training data only) such that for any
large enough L, at any global minimum Ŵ of the loss Lλ the represented function fŴ satisfies

1

L
R(fŴ;σa,Ω, L) ≤ 1 +

CN

L
.

Proof. We use the same construction as in the proof of Theorem 1 for any fitting rank 1 function.
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This bound implies that the function fŴ represented by the network at a global minimum is approx-
imately rank 1 both w.r.t. to the Jacobian and Bottleneck ranks, showing the bias towards low-rank
functions even for finite (but possibly very large) depths.

Jacobian Rank: For any function f , the rescaled norm representation cost 1
LR(f ; Ω, σa, L) bounds

the Lp-Schatten norm of the Jacobian (with p = 2
L ) at any point:

Proposition 3. Let f be a FPLF, then at any differentiable point x, we have

∥Jf(x)∥2/L
2/L :=

RankJfW(x)∑
k=1

sk (Jf(x))
2
L ≤ 1

L
R(f ; Ω, σa, L),

where sk (JfW(x)) is the k-th singular value of the Jacobian JfW(x).

Together with Proposition 2, this implies that the second singular value of the Jacobian of any

minimizer function must be exponentially small s2
(
JfŴ(x)

)
≤

(
1+

CN
L

2

)L
2

in L.

Bottleneck Rank: We can further prove the existence of a bottleneck in the network in any mini-
mizer network, i.e. a layer ℓ whose hidden representation is approximately rank 1:

Proposition 4. For any global minimum Ŵ of the L2-regularized loss Lλ with λ > 0 and any
set of Ñ datapoints X̃ ∈ Rdin×Ñ (which do not have to be the training set X) with non-constant
outputs, there is a layer ℓ0 such that the first two singular values s1, s2 of the hidden representation
Zℓ0 ∈ Rnℓ×N (whose columns are the activations αℓ0(xi) for all the inputs xi in X̃) satisfies
s2
s1

= O(L− 1
4 ).

The fact that the global minima of the loss are approximately rank 1 not only in the Jacobian but
also in the Bottleneck sense further supports our conjecture that the limiting representation cost
equals the Bottleneck rank R∞ = RankBN . Furthermore, it shows that the global minimum of
the L2-regularized is biased towards low-rank functions for large depths, since it fits the data with
(approximately) the smallest possible rank.

RANK RECOVERY FOR INTERMEDIATE DEPTHS

However, learning rank 1 functions is not always a good thing. Assume that we are trying to fit a
‘true function’ f∗ : Ω → Rdout with a certain rank k = RankBN (f∗; Ω). If k > 1 the global
minima of a large depth network will end up underestimating the true rank k.

In contrast, in the linear setting underestimating the true rank is almost never a problem: for example
in matrix completion one always wants to find a minimal rank solution (Candès & Recht, 2009;
Arora et al., 2019). The difference is due to the fact that rank 1 nonlinear functions can fit any finite
training set, which is not the case in the linear case.

Thankfully, for large datasets it becomes more and more difficult to underestimate the rank, since
for large N fitting the data with a rank 1 function requires large derivatives, which in turn implies a
large parameter norm:
Theorem 2. Given a Jacobian-rank k true function f∗ : Ω → Rdout on a bounded domain Ω,
then for all ϵ there is a constant cϵ such that for any BN-rank 1 function f̂ : Ω → Rdout that fits
f̂(xi) = f∗(xi) a dataset x1, . . . , xN sampled i.i.d. from a distribution p with support Ω, we have
1
LR(f̂ ; Ω, σa, L) > cϵN

2
L (1−

1
k ) with prob. at least 1− ϵ.

Proof. We show that there is a point x ∈ Ω with large derivative ∥Jf(x)∥op ≥ TSP(y1,...,yN )
diam(x1,...,xN ) for the

Traveling Salesman Problem TSP(y1, . . . , yN ), i.e. the length of the shortest path passing through
every point y1, . . . , ym, and the diameter diam(x1, . . . , xN ) of the points x1, . . . , xN . This follows
from the fact that the image of f̂ is a line going through all yis, and if i and j are the first and last
points visited, the image of segment [xi, xj ] is a line from yi to yj passing through all yks. The
diameter is bounded by diamΩ while the TSP scales as N1− 1

k (Beardwood et al., 1959) since the
yis are sampled from a k-dimensional distribution. The bound on the parameter norm then follows
from Proposition 3.
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Figure 1: DNN (depth L = 11 and width nℓ = 300) trained on a MSE task with rank 5 true function
f∗ : R50 → R50, with N = 300 and λ = 0.05/L. At the end of training, we obtain ∥W∥2

/L ≈ 8.
(left) First 10 singular values of the matrix of activations Zℓ for all ℓ. The representations are appr.
rank 5 in the middle layers. (middle) The impact of the nonlinearity at each layer ℓ, measured by the
ratio ∥Z̃ℓ−Zℓ∥

F/∥Z̃ℓ∥
F

where Z̃ℓ is the matrix of preactivations with entries α̃(ℓ)
k (xi). This impact

vanishes in the middle layers, supporting our intuition that the middle layers represent approximate
identities. (right) First 10 singular values of the Jacobian JfW(x) at 10 random points.

This implies that the constantCN in Proposition 2 explodes as the number of datapointsN increases,
i.e. as N increases, larger and larger depths are required for the bound in Proposition 2 to be
meaningful. In that case, a better upper bound on the norm of the parameters can be obtained, which
implies that the functions fŴ at global minima are approximately rank k or less (at least in the
Jacobian sense, according to Proposition 3):
Proposition 5. Let the ‘true function’ f∗ : Ω → Rdout be piecewise linear with RankBN (f∗) = k,
then there is a constant C which depends on f∗ only such that any minimizer function fŴ satisfies

1

L
R(fŴ;σa,Ω, L) ≤

1

L
R(f∗;σa,Ω, L) ≤ k +

C

L
.

Theorem 2 and Proposition 5 imply that if the number of datapoints N is sufficiently large (N >(
k+C

L

c

) kL
2k−2

), there are parameters W∗ that fit the true function f∗ with a smaller parameter norm
than any choice of parameters W that fit the data with a rank 1 function. In that case, the global
minima will not be rank 1 and might instead recover the true rank k.

Another interpretation is that since the constant C does not depend on the number of training points
N (in contrast to CN ), there is a range of depths (which grows as N → ∞) where the upper bound
of Proposition 5 is below that of Proposition 2. We expect rank recovery to happen roughly in this
range of depths: too small depths can lead to an overestimation of the rank1, while too large depths
can lead to an underestimation.
Remark 5. Note that in our experiments, we were not able to observe gradient descent converging
to a solution that underestimates the true rank, even for very deep networks. This is probably due
to gradient descent converging to one of the many local minima in the loss surface of very deep
L2-regularized DNNs. Some recent theoretical results offer a possible explanation for why gradi-
ent descent naturally avoids rank 1 solutions: the proof of Proposition 2 shows that rank 1 fitting
functions have exploding gradient as N → ∞, and such high gradient functions are known (at the
moment only for shallow networks with 1D inputs) to correspond to narrow minima (Mulayoff et al.,
2021).

Some of our results can be applied to local minima Ŵwith a small norm: Proposition 3 implies that
the Jacobian rank of fŴ is approximately bounded by ∥Ŵ∥2

/L. Proposition 4 also applies to local
minima, but only if ∥Ŵ∥2

/L ≤ 1 + C/L for some constant C, though it could be generalized.

DISCUSSION

We now propose a tentative explanation for the phenomenon observed in this section. In contrast to
the rest of the paper, this discussion is informal.

1Note that traditional regression models, such as Kernel Ridge Regression (KRR) typically overestimate the
true rank, as described in Appendix D.1.
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Ideally, we want to learn functions f which can be factorized as a composition h ◦ g so that not only
the inner dimension is small but the two functions g, h are not ‘too complex’. These two objectives
are often contradictory and one needs to find a trade-off between the two. Instead of optimizing the
bottleneck rank, one might want to optimize with a regularization term of the form

min
f=h◦g

k + γ (C(g) + C(h)) , (1)

optimizing over all possible factorization f = h ◦ g of f with inner dimension k, where C(g) and
C(h) are measures of the complexity of g and h resp. The parameter γ ≥ 0 allows us to tune the
balance between the minimization of the inner dimension and the complexity of g and h, recovering
the Bottleneck rank when γ = 0. For small γ the minimizer is always rank 1 (since it is always
possible to fit a finite dataset with a rank 1 function in the absence of restriction on the complexity
on g and h), but with the right choice of γ one can recover the true rank.

Some aspects of the proofs techniques we used in this paper suggest that large-depth DNNs are
optimizing such a cost (or an approximation thereof). Consider a deep network that fits with minimal
parameter norm a function f ; if we add more layers to the network it is natural to assume that the new
optimal representation of f will be almost the same as that of the shallower network with some added
(approximate) identity layers. The interesting question is where are those identity layers added? The
cost of adding an identity layer at a layer ℓ equals the dimension dℓ of the hidden representation of
the inputs at ℓ. It is therefore optimal to add identity layers where the hidden representations have
minimal dimension.

This suggests that for large depths the optimal representation of a function f approximately takes the
form of Lg layers representing g, then L−Lg−Lh identity layers, and finally Lh layers representing
h, for some factorization f = h◦g with inner dimension k. We observe in Figure 1 such a three-part
representation structure in an MSE task with a low-rank true function. The rescaled parameter norm
would then take the form

1

L
∥W∥2 =

L− Lg − Lh

L
k +

1

L

(
∥Wg∥2 + ∥Wh∥2

)
,

where Wg and Wh are the parameters of the first and last part of the network. For large depths,
we can make the approximation L−Lg−Lh

L ≈ 1 to recover the same structure as Equation 1, with
γ = 1/L, C(g) = ∥W∥2g and C(h) = ∥Wh∥2. This intuition offers a possible explanation for rank
recovery in DNNs, though we are not yet able to prove it rigorously.

5 PRACTICAL IMPLICATIONS

In this section, we describe the impact of rank minimization on two practical tasks: multiclass
classification and autoencoders.

MULTICLASS CLASSIFICATION

Consider a function fW∗ : Rdin → Rm which solves a classification task with m classes, i.e. for all
training points xi with class yi ∈ {1, . . . ,m} the yi-th entry of the vector fW∗ is strictly larger than
all other entries. The Bottleneck rank k = RankBN (fW∗) of fW∗ has an impact on the topology
of the resulting partition of the input space Ω into classes, leading to topological properties typical
of a partition on a k-dimensional space rather than those of a partition on a din-dimensional space.

When k = 1, the partition will be topologically equivalent to a classification on a line, which implies
the absence of tripoints, i.e. points at the boundary of 3 (or more) classes. Indeed any boundary
point x ∈ Ω will be mapped to a boundary point z = g(x) by the first function g : Ω → R in the
factorization of fW∗ ; since z has at most two neighboring classes, then so does x.

This property is illustrated in Figure 2: for a classification task on four classes on the plane, we
observe that the partitions obtained by shallow networks (L = 2) leads to tripoints which are absent
in deeper networks (L = 9). Notice also that the presence or absence of L2-regularization has little
effect on the final shape, which is in line with the observation that the cross-entropy loss leads to
an implicit L2-regularization (Soudry et al., 2018; Gunasekar et al., 2018a; Chizat & Bach, 2020),
reducing the necessity of an explicit L2-regularization.
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(d) L = 9, λ = 10−3

Figure 2: Classification on 4 classes (whose sampling distribution are 4 identical inverted ‘S’ shapes
translated along the x-axis) for two depths and with or without L2-regularization. The class bound-
aries in shallow networks (A,B) feature tripoints, which are not observed in deeper networks (C,D).

(a) L = 5
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(b) L = 6
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Figure 3: Autoencoders trained on MNIST (A) and a 1D dataset on the plane (B, C) with a ridge
λ = 10−4. Plot (A) shows noisy inputs in the first line with corresponding outputs below. In plots
(B) and (C) the blue dots are the training data, and the green dots are random inputs that are mapped
to the orange dots pointed by the arrows. We see that for large depths (A, B) the learned autoencoder
is naturally denoising, projecting points to the data distribution, which is not the case for shallow
networks (C).

AUTOENCODERS

Consider learning an autoender on data of the form x = g(z) where z is sampled (with full dimen-
sional support) in a latent space Rk and g : Rk → Rd is an injective FPLF. In this setting, the true
rank is the intrinsic dimension k of the data, since the minimal rank function that equals the identity
on the data distribution has rank k.

Assume that the learned autoencoder f̂ : Rk → Rk fits the data f(x) = x for all x = g(z) and
recovers the rank RankBN f̂ = k. At any datapoint x0 = g(z0) such that g is differentiale at z0, the
data support g(Rk) is locally a k-dimensional affine subspace T = x0 + ImJg(z0). In the linear
region of f̂ that contains x0, f̂ is an affine projection to T since it equals the identity when restricted
to T and its Jacobian is rank k. This proves that rank recovering autoencoders are naturally (locally)
denoising.

6 CONCLUSION

We have shown that in infinitely deep networks, L2-regularization leads to a bias towards low-rank
functions, for some notion of rank on FPLFs. We have then shown a set of results that suggest
that this low-rank bias extends to large but finite depths. With the right depths, this leads to ‘rank
recovery’, where the learned function has approximately the same rank as the ‘true function’. We
proposed a tentative explanation for this rank recovery: for finite but large widths, the network is
biased towards function f which can be factorized f = h ◦ g with both a small inner dimension k
and small complexity of g and h. Finally, we have shown how rank recovery affects the topology of
the class boundaries in a classification task and leads to natural denoising abilities in autoencoders.

9



REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=B1J_rgWRW.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019. ISSN 1049-5258.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Jillian Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many points.
Mathematical Proceedings of the Cambridge Philosophical Society, 55(4):299–327, 1959. doi:
10.1017\/S0305004100034095.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational mathematics, 9(6):717–772, 2009.

Lénaïc Chizat and Francis Bach. On the Global Convergence of Gradient Descent for
Over-parameterized Models using Optimal Transport. In Advances in Neural Infor-
mation Processing Systems 31, pp. 3040–3050. Curran Associates, Inc., 2018. URL
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-
gradient-descent-for-over-parameterized-models-using-optimal-
transport.pdf.

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural net-
works trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings
of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learn-
ing Research, pp. 1305–1338. PMLR, 09–12 Jul 2020. URL http://proceedings.mlr.
press/v125/chizat20a.html.

Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: Anal-
ysis and design. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=3oQyjABdbC8.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in Neural Information Processing Systems,
31, 2018.

Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha. Rank
diminishing in deep neural networks. arXiv preprint arXiv:2206.06072, 2022.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1832–1841. PMLR, 10–15 Jul 2018a. URL http://proceedings.
mlr.press/v80/gunasekar18a.html.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient de-
scent on linear convolutional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018b. URL https://proceedings.neurips.cc/
paper/2018/file/0e98aeeb54acf612b9eb4e48a269814c-Paper.pdf.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite
elements. arXiv preprint arXiv:1807.03973, 2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Conver-
gence and Generalization in Neural Networks. In Advances in Neural Information
Processing Systems 31, pp. 8580–8589. Curran Associates, Inc., 2018. URL http:
//papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-
and-generalization-in-neural-networks.pdf.

10

https://openreview.net/forum?id=B1J_rgWRW
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.pdf
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.pdf
http://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport.pdf
http://proceedings.mlr.press/v125/chizat20a.html
http://proceedings.mlr.press/v125/chizat20a.html
https://openreview.net/forum?id=3oQyjABdbC8
https://openreview.net/forum?id=3oQyjABdbC8
http://proceedings.mlr.press/v80/gunasekar18a.html
http://proceedings.mlr.press/v80/gunasekar18a.html
https://proceedings.neurips.cc/paper/2018/file/0e98aeeb54acf612b9eb4e48a269814c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0e98aeeb54acf612b9eb4e48a269814c-Paper.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
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