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ABSTRACT

Transformers with stacked attention layers have achieved state-of-the-art results
on a wide range of tasks related to discrete sequences. Significant work has been
done to better understand or interpret the capabilities of Transformer, which is
often massively over-parameterized and prone to overfitting. There exist intensive
interactions between Transformer layers, where the information from higher layers
can and do distill the information from lower layers. This motivates us to inject a
cross-layer inductive bias that not only uses higher layers, which are closer to the
training objective, to guide lower ones, but also provides regularization customized
to the stacked structure of Transformer. To this end, we propose Crossformer
that either regularizes the differences between specific states of two adjacent
layers, or directly imposes alternated states sharing between all adjacent layers.
Crossformer with states sharing not only provides the desired cross-layer guidance
and regularization but also reduces the memory requirement. It is simple to convert
a Transformer-based model to a Crossformer-based one. On a variety of neural
machine translation tasks, we show that our method outperforms Transformer
models while being more memory-efficient. We further demonstrate the general
applicability and stability of Crossformer on visual question answering, graph
node classification, and significantly deeper models, showing the great potential of
incorporating our method into various Transformer-related tasks.

1 INTRODUCTION

There has been significant recent interest in Transformer (Vaswani et al., 2017), which has become
the dominant neural network architecture for natural language processing (NLP) and related sequence
modeling tasks. Transformer was born with a stacked structure with multiple layers, each of which
has a trainable multi-head attention that uses a query-key-value decomposition to capture complex
dependencies among sequence tokens, followed by a feed-forward network (FFN) to learn wider
representations. Taking advantages of the attention mechanism (Bahdanau et al., 2014) and stacked
structure, Transformer and related models have achieved great success in a wide variety of research
areas, such as language representations (Devlin et al., 2018; Lan et al., 2019), neural machine
translation (Dehghani et al., 2018; Edunov et al., 2018), computer vision (Dosovitskiy et al., 2020;
Touvron et al., 2021), graph analysis (Veličković et al., 2017; Yun et al., 2019), and multi-modal
learning (Yu et al., 2019; Lee et al., 2020; Cornia et al., 2020).

Significant work has been done to better understand or interpret the capabilities of Transformer layers.
Lu et al. (2019) provide a novel perspective that the Transformer layers can be naturally interpreted
as a numerical ODE solver for a first-order convection diffusion equation in a multi-particle dynamic
system. The work on model probing (Tenney et al., 2019a;b; Liu et al., 2019) shows that syntactic and
semantic features can be represented at different Transformer layers. Tenney et al. (2019a) explicitly
reveal that the Transformer model often revises the ambiguous representations in its lower layers to
produce more definite representations in its higher layers. Liu et al. (2019) further demonstrate that
the best performing layer of Transformer is usually near the middle or top.

A general observation of these studies is that while higher-layer representations in Transformer are
synthesized from lower-layer ones, they are closer and less ambiguous to the training objective
(Tenney et al., 2019a). This view motivates us to consider purposely injecting a cross-layer inductive
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bias into the Transformer structure that explicitly encourages its lower layers to be guided by higher
layers, which may help better expose its lower-layer parameters to the training objective.

Our motivation of injecting a cross-layer guidance also coincides with the call for proper regularization
in Transformer, which, despite its effectiveness, is often massively over-parameterized and hence
prone to overfitting, especially when there are many stacked layers. Conventional regularization
methods, such as applying weight decay on weight matrices (Krogh & Hertz, 1992), data augmentation
on embeddings (Sennrich et al., 2015), and dropout on neurons (Srivastava et al., 2014), are commonly
adopted to alleviate the overfitting issues (Wu et al., 2021). Different from these conventional
regularization methods that are not customized for a stacked structure, injecting a cross-layer inductive
bias could be well suited to regularize the stacked structure of multiple closely-related layers. As a
proof of concept, we have tried injecting a simple cross-layer inductive bias by pulling the key matrix
in multi-head attention towards the query matrix of the layer above under an L1 or L2 regularization,
which allows the higher-layer states to provide a soft-guidance to the lower-layer states. Surprisingly,
on multiple Transformer benchmark tasks, we consistently observe tangible improvements introduced
by this simple cross-layer guidance on multi-head attention.

Motivated by this observation, we put forward two specific implementations of Crossformer built on
top of existing Transformer. The first one, Crossformer-SG (soft-guide), introduces cross-layer regu-
larization as an inductive bias to softly guide the lower-layer states using the high-layer information.
Using multi-head attention as an example, Crossformer-SG introduces a regularizer to minimize the
discrepancy between the key matrix in each layer and the query matrix one layer above. For FFN,
Crossformer-SG alternatively regularizes each of the two bottleneck matrices in adjacent layers. We
continue to propose our second implementation, Crossformer-HG (hard-guide), by unifying the two
alignment state matrices in the regularizer into one single shared matrix. This not only drives the
regularizer to zero, providing a straightforward way of imposing cross-layer structural regularization,
but also reduces the parameter number in the model. Figure 1 provides a clear illustration of the
Crossformer blocks.

Crossformer-HG modifies multi-head attention by sharing the query of the current layer as the key of
the lower layer, and modifies FFN by utilizing the weight from the current layer as the weight in the
lower layer within the FFN. The learned information from higher layers can and do distill that from
lower layers. With a generic architecture, Crossformer can convert any existing Transformer models
while maintaining the inherent advantages of conventional Transformer, such as efficiency and being
simple to optimize. One great advantage of this type of regularization is that it is free of additional
resource requirements and extra model designs. Through cross-layer state sharing, this structure can
not only achieve stronger performance but also occupy less computational memory.

Our method of introducing cross-layer guidance, which requires only a few modifications to Trans-
former, is simple to implement, stable to train, and maintains good scalability, thereby making it
attractive for large-scale deep learning applications. We evaluate the proposed method on a broad
range of tasks, including various neural machine translations tasks with very deep models, visual
question answering, and graph attention networks. We show that the proposed Crossformer, de-
spite taking less computational memory, consistently outperforms the baseline models. We further
demonstrate the stability and generalizability of the proposed method in very deep models.

Our main contributions are summarized as follows:

• Present the first study of cross-layer regularization in Transformers via guiding lower layers
with higher layer information.

• Propose a method which requires only a few modifications to standard Transformer model,
is stable to train, and maintains good scalability with less computational memory.

• Achieve consistent gains on various neural machine translations tasks and demonstrate the
general applicability in visual question answering, graph node classification, and very deep
Crossformer models.

2 CROSSFORMER: TRANSFORMER WITH CROSS-LAYER GUIDANCE

In this section, we first inject a cross-layer inductive bias into Transformer by first introducing a
soft cross-layer guidance to regularize the differences between specific states of adjacent layers, and
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Figure 1: (a) is the standard Transformer block at t-th layer. (b) is the proposed T layers Crossformer’s
self-attention (left) block and feed-forward block (right).

then introducing an utmost case of guidance by directly imposing cross-layer state sharing in both
the multi-head attention and FFN blocks. With cross-layer guidance and regularization, we adapt
existing Transformer models to build deep Crossformer models.

As shown in Figure 1(a), a vanilla Transformer (Vaswani et al., 2017) incorporates a multi-head
attention block, a fusion layer, and an FFN block, in which the multi-head attention block uses a
query-key-value decomposition to model the relationships between sequence tokens, the fusion layer
combines the output of multiple heads, and the FFN block is applied to learn wider representations.
Specifically, multi-head attention obtains queryQ, keyK, and value V by applying to the input three
different projections, each of which consists of h linear layers (or heads) that map the dm-dimensional
input to a dh-dimensional space, where dh = dm/h is the head dimension. The fusion layer uses
a linear layer to project the output of multiple heads to a latent feature. The FFN consists of two
linear layers, where the first expands the dimension from dm to df while the second reduces it from
df to dm. In general, Transformer-based models sequentially stack Transformer blocks to increase
the network depth and hence capacity. Note that the number of parameters quickly increases as the
model gets deeper. As shown in Figure 1, each block contains 12d2m parameters, in which multi-head
attention contains 3d2m parameters, fusion layer d2m, and FFN 8d2m.

2.1 CROSSFORMER-SG: A CROSS-LAYER SOFT GUIDANCE BASED REGULARIZATION

Since deep neural networks are prone to over-fitting, regularization methods are usually adopted
during training to reduce the generalization error of the model (Wu et al., 2021). Different from
conventional regularization methods that are often imposed on the parameters or hidden units within
each layer, the proposed inductive bias of guiding lower layers with higher layers can be considered
as a particular type of cross-layer structural regularization, which, according to the best of our
knowledge, has not been well investigated. Specifically, rethinking the Transformer structure from
this structural regularization point of view, we propose a cross-layer soft guidance not only between
the keys of the multi-head attention block in the current layer and the queries of the layer above, but
also between the weight matrices of the FNN blocks of two adjacent layers.

Given training data D = {(xn, yn)}Nn=1, where xn and yn denote the input sequence and output,
respectively, the basic learning objective is to minimize the negative log-likelihood Lnll. For a
T -layer Transformer, we match the cross-layer components by minimizing the regularization loss as

Lreg =
∑T−1

t=1
Ln-norm

(
A(t), sg(B(t+1))

)
, (1)

whereA(t) andB(t+1) represents the states of layers t and t+1, respectively, and sg represents stop
gradient that expresses the inductive bias of guiding lower layers with higher layers. Empirically,
we denote theA andB as key (K) and query (Q), respectively, in self attention. Denoting α as the
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weight for cross-layer guidance, the training objective of Crossformer-SG can be expressed as

L = Lnll + α ·Lreg. (2)

2.2 CROSSFORMER-HG: A CROSS-LAYER HARD GUIDANCE BASED REGULARIZATION

Instead of imposing a soft guidance via the use of Equation 1, we further consider a type of hard
guidance that directly letsA(t) = B(t+1), which can be considered as an utmost way of injecting a
cross-layer induction bias that also helps reduce the number of parameters. Below we show how to
specifically adapt the operation of cross-layer hard guidance to three common blocks of Transformer.

Self-attention block. Assume there is an input sequence with l tokens, each of which has a feature
of dimension dm. For the t-th layer, the input can be defined as H(t) ∈ Rl×dm , which is first
projected by three separate linear layers to produce dm-dimensional queries (Q(t)), keys (K(t)),
and values (V (t)). As shown in Figure 1(b), to realize a hard guidance in the self-attention block,
the queries in each layer are alternatively converted to the keys of the layer below. The contextual
relationships between these n tokens using the scaled dot-product attention can be defined as:

K(t) =

{
H(t)W

(t)
K , t = T

Q(t+1), Otherwise
, Q(t) =H(t)W

(t)
Q , V (t) =H(t)W

(t)
V , (3)

Att
(
K(t),Q(t),V (t)

)
= softmax

(
Q(t)K(t)T

√
dm

)
V (t), (4)

where W (t)
Q , W (t)

K , W (t)
V ∈ Rdm×dm are learnable parameters and the softmax operation is per-

formed row wise. Repeating this process, the cross-layer coupling of the keys and queries can be
realized across all adjacent layers. This guided state sharing in the self-attention blocks can not only
achieve cross-layer structural regularization, but also improve memory efficiency.

FFN block. To increase the expressiveness and capacity of Transformers, the output feature from the
fusion layer in the Transformer block is delivered to the FFN block for learning wider representations.
An FFN block consists of two linear layers, in which the first layer W (t)

1 ∈ Rdm×df expands the
dimension of the input from dm to df , while the second layerW (t)

2 ∈ Rdf×dm reduces the dimension
from df to dm. Specifically, for the t-th Transformer layer, the hard-guided FFN can be defined as

FFN(H(t)) = φ
(
H(t)W

(t)
1

)
W

(t)
2 ,

{
W

(t)
1 =W

(t+1)
1 t = 2, 4, ..., T − 2

W
(t)
2 =W

(t+1)
2 t = 1, 3, ..., T − 1

, (5)

where W (t)
1 ∈ Rdm×df , W (t)

2 ∈ Rdf×dm are learnable weights. Note that this FFN block with
cross-layer hard guidance can effectively reduce the number of parameters from 8d2m to 4d2m.

Value and fusion layer block. As shown in Figure 1, the output feature of the self-attention block
is fed into a fusion layer, which projects the output of multi-head attention as a latent feature. Thus
the output of the self-attention and fusion layer blocks can be defined as:

A(t) = softmax

(
Q(t)K(t)T

√
dm

)
,

{
W

(t)
V =W

(t+1)
V t = 2, 4, ..., T − 2

W
(t)
F =W

(t+1)
F t = 1, 3, ..., T − 1

,

Fus(H(t)) = A(t)V (t)W
(t)
F = A(t)

(
H(t)W

(t)
V

)
W

(t)
F ,

(6)

where W (t)
V , W (t)

F ∈ Rdm×dm are learnable weights and A(t) is the attention weight. Repeating
this, the weights in hierarchical value and fusion layers can be alternatively shared across all layers.

Putting it all together. Given the input tokens (x1, ..., xn), Crossformer first maps the input token
to n hidden features H by embedding method. Specifically, assuming that the encoder consists of T
layers, each of which comprises three sub-components: a hard-guided self-attention block, a hard-
guided value and fusion layer block, and a hard-guided feed-forward block. Pre-layer normalization
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Figure 2: Comparison of different cross-layer guidance schemes. Crossformer combines (c) and (d) but
decomposes parameters in each layer into private and public parts so only the latter are shared across Crossformer.

is firstly applied to the input of each subcomponent, and then a residual skip connection (He et al.,
2016) is added to its output. Formally,

H
(t)
e = FFN

(
LN
(
O

(t)
e

)
;θ

(t)
e

)
+O

(t)
e , O

(t)
e = Att

(
Q

(t)
e ,K

(t)
e ,V

(t)
e ;θ

(t)
e

)
+H

(t−1)
e , (7)

where LN (·), Att (·), FFN (·), and θ(t)e are layer normalization, attention mechanism, feed-forward
networks with ReLU activation, and model parameter at the t-th encoder layer, respectively. The
decoder takes a similar structure as the encoder except that it includes a cross attention mechanism
after each self-attention network as

O
(t)
d = Att

(
Q

(t)
d ,K

(t)
d ,V

(t)
d ;θ

(t)
d

)
+H

(t−1)
d ,

S
(t)
d = Att

(
LN
(
O

(t)
d

)
,K

(T )
e ,V

(T )
e ;θ

(t)
d

)
+O

(t)
d ,

H
(t)
d = FFN

(
LN
(
S

(t)
d

)
;θ

(t)
d

)
+ S

(t)
d ,

(8)

whereQ(t)
d ,K

(t)
d ,V

(t)
d are transformed from the normalized (t− 1)-th decoder layer, andK(T )

e and
V

(T )
e are the output of the encoder. The last layer of the decoder is used to generate the final output

sequence. Note that apart from the hard-guided structure between query and key in the self-attention
block and the weight matrix in the feed-forward block, we also share the weight matrix within the
value and fusion layers. Thus, the Crossformer stacks 2T layers, each of which mainly comprises
three sub-components: (1) three branches of queries, keys, and values, (2) value and fusion layers,
and (3) FFN. All these layers are stacked on top of each other to build a deep neural network (see
Figure 2). Note that the Crossformer can be easily adapted to not only the encoder-decoder design
but also any structure including the self-attention, feed forward, or value and fusion layers.

Model proprieties. With a novel and effective cross-layer parameter sharing structure, Crossformer
exhibits two attractive properties. (1) Parameter efficient. An effective way to enhance the repre-
sentation is by increasing the number of layers (He et al., 2016). Wang et al. (2019) have studied
the depth of Transformer-based networks with the number of Transformer blocks. However, the
number of parameters will increase linearly as the model gets deeper. For example, the network
parameters for one transformer block is 12d2m. After replacing with hard-guided self-attention block,
feed-forward block, and value and fusion block, it will save 1d2m, 4d2m, and 1d2m, respectively. By
using all three hard-guided blocks together, as shown in Figure 1, Crossformer will save 6d2m in total
for one Crossformer block. Overall, we present a different perspective to learn deeper models by
cross-layers blocks. The proposed model is friendly to the deep model which reduces the number
of network parameters. (2) Generability and scalability. The proposed hard-guided blocks have
generic architectures so that any existing attention models and multi-layer perception (MLP) models
can be converted to Crossformer structure while maintaining the inherent advantages of conventional
attention and MLP, such as efficiency and being simple to optimize. We further demonstrate the
stability of Crossformer on some very deep models, validating the cross-layer hard guidance as a
complementary structure to many deep and large Transformer model designs.

3 EXPERIMENTS

Our method can be directly deployed wherever the Transformer is utilized. To test its effectiveness
and general applicability, we apply our method to a diverse set of tasks, including neural machine
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translation, visual question answering, and graph node classification. For neural machine translation,
we further study the model’s generability and stability with very deep models. In the following, we
present the main experimental settings and results, with more details provided in Appendix A.

3.1 NEURAL MACHINE TRANSLATION

The attention-based Transformer models have become the de-facto standards for neural machine
translation tasks. To show the effectiveness and general applicability of the proposed methods, we
evaluate the proposed approach on two language pairs—En-Fr and En-De—with two corpora of
varying sizes, which are IWSLT (De-En) and WMT (En-De, En-Fr), while using state-of-the-art
translation systems based on Transformer (Vaswani et al., 2017).

Datasets and evaluation. We benchmark the proposed models on three datasets, including (1)
IWSLT’14 German-English (IWSLT De-En), (2) WMT’14 English-German (WMT’14 En-De), and
(3) WMT’14 English-French (WMT’14 En-Fr). The dataset for IWSLT’14 De-En is the same as
in Ranzato et al. (2015), with 160K sentence pairs for training, 7K sentence pairs for validation,
and 7K sentence pairs for testing. For the WMT’14 En-De dataset, we follow the training corpus of
Vaswani et al. (2017), which consists of about 4.5 million sentence pairs. For the WMT’14 En-Fr
dataset, we replicate the setup of Gehring et al. (2017), which uses 36M , 27K, and 3K sentence
pairs for training, validation, and testing respectively.

Experimental settings. We follow the encoder-decoder architecture of the Transformer-Base model
(Vaswani et al., 2017) and adopt its hyper-parameters. We implement our models using Fairseq (Ott
et al., 2019) and use their provided scripts for data pre-processing, training, and evaluation. For
IWSLT’14 De-En, we follow the setup of Wu et al. (2019) and train all our models for 50K iterations
with a batch size of 4K tokens. For WMT’14 En-De and WMT’14 En-Fr, we follow the training
set-up of Wu et al. (2019) and train the model for 100K and 60K iterations, respectively. We use
Adam (Kingma & Ba, 2014) to minimize the cross-entropy loss with a label smoothing value of 0.1
during training. For a fair comparison, we train baseline Transformer models using the same training
set-up. The full details are deferred to Appendix A.

Variants of Crossformer. In order to verify the performance of each block and proposed model,
we implement our model with different variants. Note that all the variants have the same model
structure and training setting. The variants include (1) Soft guidance via regularization, regularizing
the key-query in self-attention block, weight matrix in FFN block by L2 norm; (2) Crossformer -
single hard-guided block, replacing the self-attention block, value-fusion block, FFN block with
hard-guided structure, and named as Crossformer Key-Query, Crossformer Value, Crossformer FFN;
(3) Crossformer - All hard-guided blocks, using the all three hard-guided blocks to replace the
corresponding components in Transformer.

3.1.1 RESULTS

Results on IWSLT. On the left side of Table 1, we present the results of Crossformer-SG, which
introduces soft guidance on FFN, Value, or Key-Query. BLEU scores are computed with sacrebleu
which allows for a safer token-agnostic evaluation (Post, 2018). Crossformer-SG outperforms
the base models in all settings, supporting our motivation of cross-layer regularization. Then on
the right side of Table 1 we present the results of Crossformer-HG (hard-guide), referred to as
Crossformer henceforth for brevity. While using fewer parameters, Crossformer consistently shows
better performance than its Transformer counterpart. Comparing Crossformer with soft guidance
with hard guidance, we find that Crossformer-SG generally delivers slightly better performance,
supporting the use of hard guidance in practice given its non-trivial reduction in the number of model
parameters. Overall, the results verify the merits of adding cross-layer guidance into Transformer.

Results on WMT. Experiments are conducted on standard WMT’14 English-German (DE) and
English-French (FR) benchmarks. We first evaluate the 6 layers settings. As shown in Table 2,
Crossformer achieves stronger performance in the translation quality under all settings. We further
present deeper Crossformer-All, which includes hard-guided self attention, FFN, and value-fusion
blocks. With a slightly smaller number of parameters as the 6-layer Transformer-Base model,
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Table 1: BLEU scores of IWSLT translation tasks. On the left, a demonstration of the soft guidance via the
regularization. On the right, we present the results of Crossformer-Hard Guidance as an utmost regularization
cross-layers.

IWSLT’14 De-En Soft Guidance IWSLT’14 De-En Hard Guidance

Model #Params BLEU #Params BLEU
Transformer 52M 33.64 52M 33.64
Crossformer-FFN 52M 34.27 39M 34.13
Crossformer-Value 52M 34.18 48M 33.94
Crossformer-Key-Query 52M 34.51 48M 34.30

Crossformer-All improves the performance by a clear margin. These results verify our conjecture
that the Crossformer not only is parameter efficient but also improves the performance.

Table 2: Test results on WMT’14 benchmarks, in terms of BLEU. We further show the comparison of
Crossformer All where Crossformer incorporates all three hard-guided blocks and increases the number of layers
to have the same number of parameter as the Transformer.

WMT’14 En-De WMT’14 En-Fr

Model Layer #Params BLEU #Params BLEU
Transformer 6 61M 27.30 89M 38.90

Crossformer-FFN 6 47M 27.44 75M 39.37
Crossformer-Value 6 57M 27.43 85M 39.29
Crossformer-Key-Query 6 57M 27.60 85M 39.55
Crossformer-All 16 60M 27.90 88M 39.63

Table 3: The result of Crossformer and Transformer with 36 encoder layers and 6 decoder layers on WMT’14.
WMT’14 En-De WMT’14 En-Fr

Model Layer #Params BLEU #Params BLEU
Transformer 36 155M 28.32 183M 41.79

Crossformer-FFN 36 111M 28.47 139M 42.16
Crossformer-Value 36 142M 28.45 171M 42.15
Crossformer-Key-Query 36 142M 28.65 171M 42.20

Scaling up Crossformer. It is known that Transformer models often suffer from stability issues
when the number of stacked layers grows up to a very large number (Liu et al., 2020). To verify the
stability and generability of Crossformer, we conduct experiments on very deep models on both the
WMT’14 En-De and En-Fr datasets (Bapna et al., 2018; Wang et al., 2019). We compare Crossformer
to a Transformer-Base with a 36-layer encoder and a 6-layer decoder. The results in terms of BLEU
are reported in Table 3. We observe that with fewer parameters, the 36L-6L Crossformer-Key-Query
successfully trains, clearly improving the BLEU scores of the baseline on WMT’14 En-De and
En-Fr by 0.33 and 0.41, respectively. The improvements are consistent with all other Crossformer
settings. The relevantly large gains on the scaling up settings indicate that Crossformer has a better
generalization ability in learning deeper representations.

Results on very deep models. We further train a very deep Crossformer with 84 encoder layers
and 6 decoder layers on WMT’14 En-De. Figure 3 shows the performance of a Crossformer model,
which improves with the increase of the network depth and the increase of the number of parameters,
consistently outperform its Transformer counterpart. This shows that Crossformer is stable to train
and provides attractive complementary structure to Transformer. We hypothesize that Crossformer
enables better gradient propagation cross layers to improve the performance of a deep model. We
leave the rigorous validation of this hypothesis as an exciting avenue for future work.

3.2 VISUAL QUESTION ANSWERING

We consider a multi-modal learning task, visual question answering (VQA) (Goyal et al., 2017),
where the model requires to have a fine-grained and simultaneous understanding of both the visual
content of images and textual content of questions. Modular Co-Attention Network (MCAN) (Yu
et al., 2019) has been proposed to learn the image-question relationship to correctly answer questions.
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Figure 3: Scaling up Crossformer. The performance of Crossformer improves with an increase in (1) the
number of encoder layers and (2) the number of parameters on the WMT’14 En-De corpus. The Crossformer
consistently outperform the Transformer indicating the generability and scalibility of Crossformer and the
complementary of Crossformer to different model designs.

Table 4: Accuracies and PAvPUs of different attentions on both the original VQA-v2 dataset and the noise ones.

ACCURACY ↑ PAVPU ↑

ORIGINAL NOISY ORIGINAL NOISY

BASE 66.74 63.58 71.96 68.29
Crossformer-FFN 66.89 ±0.01 64.16 ±0.02 71.95 ±0.04 68.23 ±0.03
Crossformer-Key-Query 66.92 ±0.02 64.23 ±0.01 72.03 ±0.03 68.27 ±0.02

We adapt the proposed Crossformer structure to MCAN and compare it with the original model
structure. We conduct experiments on the VQA-v2 dataset (Goyal et al., 2017) and follow the
hyperparameters and other settings from Yu et al. (2019). In addition, to test the robustness of
Crossformer, we perturb the input by incorporating the Gaussian noise (mean 0, variance 1) to image
features (Larochelle et al., 2007; Fan et al., 2020). We use four-layer encoder-decoder based MCAN
as the baseline model. The accuracy is reported for both the original data and noisy data. As in Fan
et al. (2020), we use the hypothesis testing based Patch Accuracy vs Patch Uncertainty (PAvPU) (Fan
et al., 2020; Mukhoti & Gal, 2018) as a measure of the uncertainty estimation where the p-value
threshold is set to be 0.05 and the number of attention weight samples is 20. Please see detailed
experimental settings in Appendix A.

Results. In Table 4, we report the accuracy and uncertainty of different Transformer structures on
both original and noisy data. For accuracy, it shows that Crossformer consistently outperforms the
based model on both original and noisy data. For uncertainty, we observe that Crossformer has on par
uncertainty estimations on both original and noisy data. These results show that Crossformer is more
robust to the noise which demonstrate the better layer interaction with this hard-guided structure.

3.3 GRAPH NODE CLASSIFICATION

To demonstrate the general applicability of Crossformer, we also experiment the method with graph
attention networks (GAT) (Veličković et al., 2017). The graph structure is incorporated into the
attention masks in which nodes are able to attend to their neighborhoods’ features. Relying on the
self-attention layers, GAT processes node-features for graph node classification.

Experimental Setup. We conduct experiments on three benchmark graphs including - Cora, Cite-
seer, and Pubmed (Sen et al., 2008) following the setting in GAT (Veličković et al., 2017). All
experiments are conducted in the transductive setting, where all nodes from training and test are
on the same graph (Yang et al., 2016). The details of three datasets and experimental settings are
deferred to Appendix A.

Results. In Table 5, we report the mean classification accuracies on the test nodes over 5 random
runs and the standard deviations of Crossformer. We experiment with Crossformer-Key-Query and
Crossformer-FFN. Table 5 shows that hard guidance consistently improves upon the corresponding
baseline models across all three datasets, which further confirms the efficient structure of this cross-
layer structure with less computational memory. In addition, the key-query guided structure performs
better than the FFN guided structure, which agrees with previous observations.
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Table 5: Classification accuracy for graphs.
Attention Cora Citeseer PubMed

GAT 83.00 72.50 77.26
Crossformer-FFN 83.42 ±0.2 73.11 ±0.2 77.72 ±0.3
Crossformer-Key-Query 83.81 ±0.3 73.40 ±0.2 77.95 ±0.2

3.4 ABLATION STUDY

We conduct ablation study with Crossformer to exam the role of the alternated cross-layer hard
guidance by sharing specific components across all adjacent layers. We find that the experimental
results are not sensitive to the choice of the hard guidance and the order of hard guidance. Any
guidance structures would give similar results and outperform the baseline model in all settings. In
all experiments considered in the paper, which cover various tasks and model sizes, we have simply
fixed it as key-query and w2-w1. Please see detailed results in Table 6 in the Appendix.

4 CONCLUSION AND DISCUSSION

We propose Crossformer that introduces alternated cross-layer guidance into Transformer, providing a
novel type of cross-layer structural regularization that not only reduces the number of parameters but
also improves the model performance. The proposed cross-layer guidance, which can be injected into
standard Transformer blocks, including the multi-attention head, fusion, and feed-forward network
blocks, requires surprisingly few modifications to the standard model and hence enables us to easily
convert existing Transformer-based models to Crossformer-based ones. Our experiments on a variety
of neural machine translation tasks show that Crossformer achieves strong performance in accuracy
with less computational memory. Further, on visual question answering, graph node classification,
and very deep models, Crossformer demonstrates its general applicability and stability, showing its
great potential to become a standard alternative to many existing Transformer models.

In addition to the proposed Crossformer, several methods have been introduced to improve and
understand the parameter efficiency in Transformer. The first line of research is focused on simpler
attention mechanism (Kovaleva et al., 2019; Chelba et al., 2020; Katharopoulos et al., 2020; Liu et al.,
2021). The second line of research is focused on improving efficiency by sharing parameters across
layers in deep neural networks (Lan et al., 2019; Lee et al., 2020). Lan et al. (2019) demonstrate
that cross-layer parameter sharing in Transformer leads to a lighter and faster-to-train model without
sacrificing the performance on various language understanding benchmarks. Lee et al. (2020)
show the input token distributions may each exhibit different dynamics, yet together share certain
regularities because they all come from the same data. The third line of research is focused on
understanding the capabilities and function of different Transformer components (Tenney et al.,
2019a; Liu et al., 2019; Tenney et al., 2019b; Phang et al., 2021). We consider cross-layer hard
guidance as a parameter efficient method to leverage the existing efficient Transformer architecture to
build the entire Crossformer network.

In addition to the proposed Crossformer, there is a rich set of recent works on improving the
Transformer architecture, including: (1) learning a better representation — for example, using
convolutions to improve the expressiveness (Wu et al., 2019), incorporating gated units (Dauphin et al.,
2017), or utilizing multi-branch feature extractors (So et al., 2019); (2) interpreting the multi-head
attention — for example, synthetic attention matrices (Tay et al., 2021) improving performances and
more Transformer heads leading to redundant representations (Michel et al., 2019); and (3) improving
efficiency — for example, using compression (Sun et al., 2020), pruning (Voita et al., 2019), and
distillation (Sanh et al., 2019). The proposed Crossformer leverages the existing Transformer designs
and components and, to the best of our knowledge, is the first to propose cross-layer soft/hard
guidance as a structural regularization. This general and efficient framework gives us the flexibility to
better utilize the information of different layers and facilitate their interaction. It would be interesting
to investigate whether Crossformer can be synergized with other structural modifications proposed
for Transformer, which we leave as promising research topic for future study.
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REPRODUCIBILITY STATEMENT

While we show improvements brought by our work on a variety of tasks from a broad range
of domains, our framework is general enough that it could be used to improve potentially any
Transformer based models. Training a state-of-the-art Transformer model now requires substantial
computational resources which demands considerable energy, along with the associated financial and
environmental costs. Our proposed Crossformer aims to reduce the computational memory making it
accessible for researchers with limited computations and further ensuring the reproducibility. The
detailed descriptions of the datasets and experimental settings are included in the main paper as well
as the Appendix. We will release the code after the anonymity period.
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A EXPERIMENTAL DETAILS

A.1 NEURAL MACHINE TRANSLATION

A.1.1 MODEL SPECIFICATIONS

Following the Neural Machine Translation (NMT) setting from Vaswani et al. (2017), the basic
configurations of the Transformer architecture are the base settings. Both of them consist of a 6-layer
encoder and 6-layer decoder. The size of the hidden nodes and embeddings is set to 512. The number
of heads is 8 for the base. For all settings, the dimensionality of the inner-layer of the position-wise
FFN is four times of the dimensionality of the hidden states.

A.1.2 EXPERIMENTAL SETTINGS

We use the Adam (Kingma & Ba, 2014) optimizer and follow the optimizer setting and learning
rate schedule in (Vaswani et al., 2017). We employ label smoothing value of 0.1 (Szegedy et al.,
2016) in all experiments. For a fair comparison, we trained baseline Transformer models using the
same training set-up. We use BLEU (Papineni et al., 2002) as the evaluation measure for machine
translation. During inference, we use beam search with beam size 4 and length penalty 0.6 for
WMT14, and beam size 5 and length penalty 1.0 for IWSLT’14, following Vaswani et al. (2017).
For the soft guidance in the IWSLT’14, we fix the guidance-weight hyperparameter α in Equation
2 as 0.01. For the WMT’14 En-De dataset, all the data are tokenized and segmented into subword
symbols using jointly BPE with 32K merge operations. For the WMT’14 En-Fr dataset, the 40K
vocabulary is based on a joint source and target BPE factorization.

A.2 VISUAL QUESTION ANSWERING

A.2.1 MODEL SPECIFICATIONS

We use the state-of-art VQA models, MCAN Yu et al. (2019) which consists of MCA layers. Two
types of attention in the MCA layer are self-attention (SA) over questions and image features and
guided-attention (GA) between question and image features. Mult-head structure is included in each
MCA layer with the residual and layer normalization components. By stacking multiple MCA layers,
MCAN gradually extracts the image and question features through the encoder-decoder structure.
Four co-attention layers’ MCAN is used in our experiment.

A.2.2 EXPERIMENTAL SETTINGS

We conduct experiments on the VQA-v2 dataset Goyal et al. (2017), consisting of human-annotated
question-answer pairs for images from the MS-COCO dataset Lin et al. (2014). The whole dataset is
split into three parts. For training, there are 40k images and 444k QA pairs. For validation, there are
40k images and 214k QA pairs. For testing, there are 80k images and 448k QA pairs. The evaluation
is conducted on the validation set as the true labels for the test set are not publicly available (Deng
et al., 2018). For the noisy dataset, we perturb the input by adding Gaussian noise (mean 0, variance
1) to the image features Larochelle et al. (2007). We use the same model hyperparameters and training
settings in Yu et al. (2019) as follows: the dimensionality of input image features, input question
features, and fused multi-modal features are set to be 2048, 512, and 1024, respectively. The latent
dimensionality in the multi-head attention is 512, the number of heads is set to 8, and the latent
dimensionality for each head is 64. The size of the answer vocabulary is set to N = 3129 using the
strategy in Teney et al. (2018). To train the MCAN model, we use the Adam optimizer (Kingma &
Ba, 2014) with β1 = 0.9 and β2 = 0.98. The base learning rate is set to min(2.5te−5, 1e−4), where
t is the current epoch number starting from 1. After 10 epochs, the learning rate is decayed by 1/5
every 2 epochs. All the models are trained up to 13 epochs with the same batch size of 64.

A.3 GRAPH NEURAL NETWORKS

A.3.1 MODEL SPECIFICATIONS

Following the setting in Veličković et al. (2017), we use the two-layer GAT model. Glorot initialization
Glorot & Bengio (2010) is utilized. The initial learning rate is 0.01 for Pubmed and 0.005 for all
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other datasets. The model is trained with the cross-entropy loss using the Adam SGD optimizer
Kingma & Ba (2014).

A.3.2 EXPERIMENTAL SETTINGS

We follow the architecture and hyperparameters settings in (Veličković et al., 2017). The number
of attention heads is 8 in the first layer followed by an exponential linear unit (ELU) Clevert et al.
(2015) nonlinearity and is 1 in the second layer for classification. Dropout Srivastava et al. (2014) is
set as p = 0.6. On Cora and Citeseer, we apply L2 regularization with λ = 0.0005 during training.
Pubmed required slight changes to the architecture. The second layer has 8 attention heads and the
weight λ of L2 regularization is 0.001. We adopt the early stopping strategy on both the cross-entropy
loss and accuracy on the validation nodes Sen et al. (2008). The patience is 100 epochs.

A.4 ABLATION STUDY

Table 6: Ablation study of Crossformer alternatively hard guidance on IWSLT’14 De-En.

CROSSFORMER BLOCKS GUIDANCE TYPE BLEU

SELF ATTENTION

QUERY QUERY 34.05
KEY KEY 34.07
QUERY KEY 34.18
KEY QUERY 34.30

FFN w1 w2 33.82
w2 w1 34.13
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