

000 001 002 003 004 005 ADVFLYP: ADVERSARIALLY FINETUNE LIKE YOU 006 PRETRAIN FOR ZERO-SHOT ROBUSTNESS OF CLIP 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

ABSTRACT

Pretrained vision-language models (VLMs) like CLIP are shown to be highly susceptible to adversarial perturbations. Adversarial finetuning (AFT) approaches have been proposed to improve the zero-shot adversarial robustness of CLIP on various downstream tasks, based on finetuning the vision encoder on adversarial images generated from a proxy classification dataset, such as TinyImageNet. However, we demonstrate that existing AFT approaches have largely overlooked the important role of the training recipe, particularly the training data and objective. To this end, we propose *Adversarially Finetune Like You Pretrain* (AdvFLYP), which practically retains the training recipe of CLIP’s pretraining during AFT. We finetune CLIP based on adversarial images generated from web-scale image-text data with a contrastive loss. Experiments validate the superiority of AdvFLYP on various downstream datasets. For example, AdvFLYP outperforms existing AFT approaches finetuned on TinyImageNet (ImageNet) by 19.1% (3.1%), averaged on 14 downstream datasets. Further analyses show that sufficiently large training data amounts and batch sizes are crucial for the contrastive learning of AdvFLYP. Our code and model checkpoints will be released.

1 INTRODUCTION

Pre-trained vision-language models (VLMs) have been trained to align images with their descriptive texts over significant amounts of image-text pairs, with CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) being notable representatives. These models have exhibited remarkable abilities to perform image classification in a zero-shot manner (Pratt et al., 2023; Saha et al., 2024; Sammani & Deligiannis, 2024). However, recent studies have revealed the alarming vulnerabilities of CLIP to adversarial attacks (Mao et al., 2023; Li et al., 2024; Schlarmann et al., 2024): An imperceptible maliciously manipulated noise added to a test image suffices to substantially reduce the model’s recognition accuracy.

To enhance CLIP’s robustness to adversarial attacks, recent studies introduce adversarial images generated from a proxy dataset such as TinyImageNet (Le & Yang, 2015) or ImageNet (Deng et al., 2009) into the training set, and finetune the vision encoder (Mao et al., 2023; Wang et al., 2024; Yu et al., 2024; Schlarmann et al., 2024) based on adversarial training (AT) (Madry et al., 2018; Zhang et al., 2019). This practice proves effective in improving the model’s adversarial robustness on diverse downstream datasets without further training, which is termed *zero-shot robustness* (Mao et al., 2023). However, these methods incur a significant degradation in the model’s generalization on clean data of downstream tasks. We hypothesize that such degradation is largely due to the misaligned training recipe between CLIP’s pretraining and the finetuning process of existing AFT methods. Intuitively, there is a fundamental difference between adversarially finetuning CLIP and robustly training a model from scratch. CLIP has been pre-trained over web-scale image-text pairs and learned real-world knowledge, and updating its model weights on a specific domain can already lead to noticeable generalization loss (Radford et al., 2021), which further complicates the analysis of this loss in adversarial finetuning. In this work, we investigate the generalization degradation in the adversarial finetuning of CLIP, and identify two important factors: (1) the training data distribution that differs from CLIP’s pretraining data. This is evidenced by the following observations: (i) Finetuning CLIP on the clean data of a proxy dataset lowers the accuracy on downstream datasets, and (ii) Finetuning CLIP on adversarial images of a proxy dataset (Mao et al., 2023; Wang et al., 2024; Yu et al., 2024) results in higher accuracy on the clean test set of the proxy dataset than the

054 original CLIP, which indicates that the model has overfit to the distribution of the proxy dataset, even
 055 finetuned with adversarial images; **(2)** the training objective for AFT. Minimizing the cross-entropy
 056 loss between the generated adversarial images and their correct labels on a classification dataset ef-
 057 fectively aligns multiple images from a class to the same textual class name, which causes the loss
 058 of knowledge.

059 Built upon our analysis, we propose a simple yet effective paradigm termed *Adversarially Finetune*
 060 *Like You Pretrain* (AdvFLYP). The main idea of AdvFLYP is to finetune CLIP with adversarial
 061 images while maximally retaining the same training recipe as employed in the pretraining phase.
 062 Specifically, to imitate the distribution of CLIP’s training data, we randomly sample a certain num-
 063 ber of web-scale image-text pairs. During AFT, we employ the same contrastive loss for pretraining
 064 CLIP. The difference is that we align adversarial images, rather than clean images, with their cor-
 065 responding texts. To further alleviate the robustness-generalization trade-off, we propose to impose
 066 logit- and feature-level regularization during finetuning, which we show to improve robustness trans-
 067 fer and generalization on clean images, respectively. Through extensive experiments, we show that
 068 when finetuned with the same amounts of training data, AdvFLYP outperforms existing AFT meth-
 069 ods finetuned on TinyImageNet and ImageNet by an average relative improvement of 19.1% and
 070 3.1%, respectively. To facilitate understanding of this paradigm, we vary the training conditions
 071 (*e.g.*, batch size, training data amount) and provide insights into contrastive learning of CLIP in the
 072 context of adversarial finetuning. We summarize the contributions of this work as follows:
 073

- 074 • We investigate the generalization degradation in existing AFT methods for CLIP, and iden-
 075 tify two major sources, which are training data distribution and the training objective.
- 076 • We introduce *Adversarially Finetune Like You Pretrain* (AdvFLYP), a simple yet effective
 077 paradigm to achieve zero-shot adversarial robustness, which resumes contrastive learning of
 078 CLIP by aligning adversarial images with their texts.
- 079 • Extensive experiments on 14 downstream datasets show that AdvFLYP outperforms main-
 080 stream AFT methods. We also vary the training setting of AdvFLYP and show that suffi-
 081 ciently large training data amounts and batch size for AdvFLYP are crucial for robustness
 082 and accuracy.

083 2 RELATED WORK

085 **Adversarial robustness of neural networks.** Deep neural networks (Krizhevsky et al., 2012) are
 086 vulnerable to adversarial attacks (Carlini & Wagner, 2017; Szegedy et al., 2014): an imperceptible
 087 pixel-level perturbation added to the test image can mislead a well-trained model to make a wrong
 088 prediction. Adversarial attacks (Carlini & Wagner, 2017; Croce & Hein, 2020) and defences (Madry
 089 et al., 2018) have been extensively studied. Among defence methods, adversarial training (AT)
 090 (Madry et al., 2018; Zhang et al., 2019; Rice et al., 2020) has been established as the *de-facto*
 091 standard to train an adversarially robust model. More recent research finetunes a standardly trained
 092 model on adversarial samples to enhance its adversarial robustness, instead of training a robust
 093 model from scratch (Suzuki et al., 2023).

094 **Adversarial robustness of vision-language models (VLMs)** has also attracted significant research
 095 attention (Zhao et al., 2023). In this paper, we focus on *zero-shot adversarial robustness* of CLIP
 096 (Radford et al., 2021). Existing methods are largely based on AT, introducing adversarial images
 097 into the training set and adapt the CLIP models. There are two types of categories in this regard:
 098 *adversarial finetuning* (AFT) (Mao et al., 2023; Wang et al., 2024; Yu et al., 2024; Schlarbmann et al.,
 099 2024), which finetunes the vision encoder of CLIP; and *adversarial prompt tuning* (Li et al., 2024;
 100 Zhang et al., 2024), which learns tunable prompt at the text encoder side to align with adversarial
 101 images. More recently, test-time methods for defending CLIP have started to garnered interests
 102 (Wang et al., 2025; Sheng et al., 2025; Tong et al., 2025; Zhang et al., 2025; Xing et al., 2025),
 103 which achieves inference-time robustness without the need for training. We focus on *adversarial*
 104 *finetuning* methods in this work, which is still the most effective approach. Mao et al. (2023) first
 105 propose to generate adversarial images on ImageNet (Deng et al., 2009) by maximizing the cross-
 106 entropy loss *w.r.t.* the ground-truth label, which are then leveraged for finetuning vision encoder f_θ
 107 by minimizing the cross-entropy loss of these adversarial images *w.r.t.* the labels. Subsequent work
 introduces regularization based on this loss. Wang et al. (2024) impose logit-level regularization
 terms guided by frozen CLIP models to improve robustness on downstream datasets. Yu et al. (2024)

introduce regularization formulated by aligning text-guided attention of the model with the original CLIP. More recently, Dong et al. (2025) focus on improving the adversarial candidates in adversarial finetuning by forming consecutive vertices and sampling simplices. Aside from supervised AFT, recent work proposes unsupervised AFT (Schlarmann et al., 2024). Gong et al. (2025) employ unsupervised AFT as a novel tool to improve interpretability of visual models. These methods employ a proxy dataset and a training objective that differ from CLIP’s pretraining. We propose a novel AFT paradigm, AdvFLYP, which challenges the common practice of current AFT methods.

3 METHOD

In this section, we first introduce preliminaries regarding CLIP (Radford et al., 2021) and existing finetuning-based methods to achieve *zero-shot adversarial robustness*, and elaborate on our paradigm, termed *Adversarially Finetune Like You Pretrain* (AdvFLYP).

3.1 PRELIMINARIES

CLIP (Radford et al., 2021) is a dual-encoder architecture with a vision encoder $f_\theta(\cdot) \in \mathbb{R}^d$ and a text encoder $g_\phi(\cdot) \in \mathbb{R}^d$, which map an image x and a text t into the same d -dimensional latent space, respectively. In the pretraining phase of CLIP, the vision and text encoders are trained over 400 million web-scale image-text pairs via a contrastive loss (Oord et al., 2018), which maximizes the cosine similarity of an image embedding with its corresponding text embedding. In a single batch $\{(x_i, t_i)\}_{i=1}^N$, the contrastive loss is formulated as follows:

$$\mathcal{L}_{CLIP}(\{(x_i, t_i)\}_{i=1}^N) = -\frac{1}{2N} \sum_{i=1}^N \left[\log \frac{\exp(s_{ii}/\tau)}{\sum_{j=1}^N \exp(s_{ij}/\tau)} + \log \frac{\exp(s_{ii}/\tau)}{\sum_{j=1}^N \exp(s_{ji}/\tau)} \right] \quad (1)$$

where τ is the temperature, and $s_{ij} = \frac{f_\theta(x_i)^\top g_\phi(t_j)}{\|f_\theta(x_i)\| \|g_\phi(t_j)\|}$ is the cosine similarity between x_i and t_j . After the pretraining phase, given an image x_{test} and a set of pre-trained textual categories $\{c_1, \dots, c_K\}$ at inference time, CLIP is able to perform zero-shot classification by classifying it as the category with the highest similarity $\hat{y} = \arg \max_k \frac{f_\theta(x_{test})^\top g_\phi(T[c_k])}{\|f_\theta(x_{test})\| \|g_\phi(T[c_k])\|}$, where $T[\cdot]$ is a textual template, which is usually ‘*a photo of a [CLS]*’.

Adversarial attacks. A pixel-level perturbation $\delta \in \mathbb{R}^{C \times H \times W}$ bounded by a L_∞ -radius ball, when maliciously designed to maximize the loss of a given image x w.r.t. its label c_{GT} , can cause CLIP to misclassify the sample:

$$\delta_{adv} = \arg \max_{\delta} \mathcal{L}(f_\theta(x + \delta), c_{GT}), \quad s.t. \|\delta\|_\infty \leq \epsilon \quad (2)$$

where \mathcal{L} is cross-entropy loss, and ϵ is the attack budget controlling the attack strength.

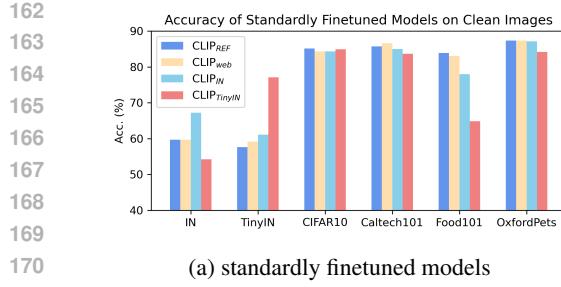
Adversarial finetuning of CLIP typically finetunes the pre-trained vision encoder f_θ by generating adversarial images on the fly and aligning them with their correct labels on a proxy dataset. To this end, Mao et al. (2023) propose TeCoA, which is a conventional cross-entropy loss of adversarial images w.r.t. ground-truth labels:

$$\theta' = \arg \min_{\theta} \mathcal{L}(f_\theta(x + \delta_{adv}), c_{GT}) \quad (3)$$

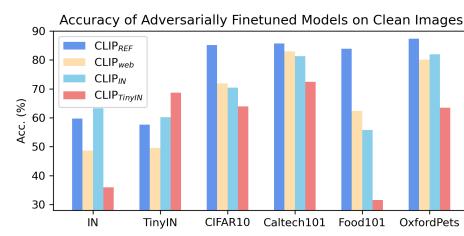
Subsequent finetuning-based methods (Wang et al., 2024; Yu et al., 2024) introduce regularization terms to improve robustness on downstream datasets and generalization on top of this loss. Specifically, Wang et al. (2024) employ a frozen original CLIP model to guide the finetuning process, while Yu et al. (2024) propose text-guided attention and regularize the finetuning and encourage the model to attend to informative areas in adversarial images.

3.2 LIMITATIONS OF EXISTING METHODS

Despite their effectiveness in boosting zero-shot adversarial robustness, these methods incur a significant generalization decline on clean data (Mao et al., 2023). To look into this degradation, we perform introductory experiments by leveraging two proxy datasets, ImageNet (Deng et al., 2009)



(a) standardly finetuned models



(b) adversarially finetuned models

Figure 1: Behaviour of finetuned models. The subscripts in the legends indicate the dataset used for finetuning. CLIP_{web} represents CLIP finetuned on a toy dataset of 100k web-scale image-text pairs. CLIP_{REF} denotes the original pre-trained CLIP without any weight updates.

and TinyImageNet (Le & Yang, 2015), to finetune f_θ of CLIP with either clean images (a.k.a. standard finetuning) or adversarial images (a.k.a. adversarial finetuning). We also collect a toy web-scale dataset of 100k image-text pairs to imitate CLIP’s pre-training data distribution, denoted as *web*. We test these models on the clean images of 6 selected datasets, which include two proxy datasets involved, two general object recognition datasets CIFAR10 (Krizhevsky et al., 2009) and Caltech101 (Fei-Fei et al., 2006), and two fine-grained datasets Food101 (Bossard et al., 2014) and OxfordPets (Parkhi et al., 2012). We report the results in Fig.1 and make the following observations: (1) The model still suffers a noticeable loss in generalization ability even when it is finetuned with clean images on a proxy dataset. (2) Adversarial finetuning of CLIP on a proxy dataset leads to higher accuracy on clean images from this dataset than the original CLIP. Both observations indicate that apart from the inherent robustness-generalization trade-off, the finetuned CLIP overfits to the data distribution of the dataset it has been finetuned on, therefore compromising generalization further.

Furthermore, when finetuning f_θ on a classification dataset via a cross-entropy loss, it equivalently aligns a large number of semantically-rich images from the same category with a single textual prompt. Intuitively, this forces the model to adapt to the classification task instead of retaining its capability of matching images and texts.

3.3 ADVFLYP

To address the limitations discussed above, we propose a simple yet effective adversarial finetuning paradigm, which we term *Adversarially Finetune Like You Pretrain* (AdvFLYP)¹, to achieve *zero-shot adversarial robustness*. The idea is intuitive, and can be viewed as resuming the training of CLIP with adversarial images while maximally maintaining the training recipe.

Data preparation. Since the pre-training data of CLIP is not publicly available, to imitate the distribution of CLIP’s pre-training data, we collect 1M webscale image-text pairs. To this end, we randomly sample one million entries with reachable URLs from LAION-400M (Schuhmann et al., 2021), we utilize these noisy web-scale data without further data cleansing.

Algorithm 1 PyTorch-style pseudocode for AdvFLYP

```

# target vision encoder f_theta
# frozen original vision encoder F_theta0
# frozen text encoder g_phi
# collected data: web image-text pairs D
for (X, T) in D: # one batch
    # generate adversarial perturbations
    delta=PGD(f, g, (X, T), 1_clip)
    # obtain embeddings
    X=f(X+delta), X_c=f(X), X_ori=F(X+delta), T=g(T)
    # compute probability logit
    P=X@T.t(), P_c=X_c@T.t(), P_ori=X_ori@T.t()
    # logit-level regularization
    l_logit=P*(P/P_c).log() + P*(P/P_ori).log()
    # feature-level regularization
    l_feat=(X-X_c).norm(-1)+(X-X_ori).norm(-1)
    # update theta w.r.t. final loss
    L=(l_clip(f, g, (X_B+delta, T_B))+l_logit+l_feat)
    L.backward()
    optimizer.step()
return theta

```

2021). Following the original work of CLIP (Radford et al., 2021), we utilize these noisy web-scale data without further data cleansing.

¹This paradigm is named after a work on robust finetuning of CLIP, *Finetune Like You Pretrain* (FLYP) (Goyal et al., 2023), which finds that CLIP fintuned with the same contrastive objective as in pretraining compares favourably to CLIP typically finetuned with a cross-entropy loss.

216 **Adversarial finetuning.** As in general adversarial training (AT) frameworks (Madry et al., 2018),
 217 this process involves a min-max optimization. Instead of employing a cross-entropy loss on adver-
 218 sarial images from a classification dataset (Mao et al., 2023; Wang et al., 2024; Yu et al., 2024),
 219 we propose to employ the same contrastive loss as in CLIP’s pretraining (Eq. 1) in our adversarial
 220 finetuning paradigm. Specifically, given a batch of image-text data $\{(x_i, t_i)\}_{i=1}^N$, in the inner maxi-
 221 mization process, we optimize a L_∞ -bounded perturbation δ_i for each sample x_i in this batch, such
 222 that this contrastive loss (Eq. 1) is maximized:

$$223 \quad \delta = \arg \max_{\{\delta_1, \dots, \delta_N\}} \mathcal{L}_{CLIP} (\{(x_i + \delta_i, t_i)\}_{i=1}^N), \quad s.t. \|\delta\|_\infty \leq \epsilon \quad (4)$$

226 Note that $\delta \in \mathbb{R}^{N \times C \times H \times W}$ is optimized at the same time, instead of being optimized individu-
 227 ally, by employing PGD algorithm (Carlini & Wagner, 2017). This is in stark contrast to existing
 228 adversarial finetuning methods (Mao et al., 2023), where a perturbation is optimized independently
 229 for each image to maximize its cross-entropy loss against a pre-defined set of categories (Eq. 2). In
 230 the experiment section, we will investigate the impact of the contrastive learning setting, *e.g.*, batch
 231 size, in the context of adversarial finetuning. In the outer minimization loop, we finetune the model
 232 weights θ of the vision encoder to minimize the contrastive loss of this batch of adversarial samples.
 233 To further alleviate generalization loss, we also incorporate regularization guided by the frozen origi-
 234 nal CLIP F_{θ_0} during finetuning. Specifically, we obtain the normalized embeddings of adversarial
 235 images, $X_\theta^{adv} = \left[\frac{f_\theta(x_i + \delta_i)}{\|f_\theta(x_i + \delta_i)\|} \right]_{i=1}^N \in \mathbb{R}^{N \times d}$ and $X_{\theta_0}^{adv} = \left[\frac{f_{\theta_0}(x_i + \delta_i)}{\|f_{\theta_0}(x_i + \delta_i)\|} \right]_{i=1}^N \in \mathbb{R}^{N \times d}$, which are
 236 output by the target model f_θ and the original model F_θ , respectively. We also feed the clean images
 237 to the target model and obtain their embeddings $X_\theta^{clean} = \left[\frac{f_\theta(x_i)}{\|f_\theta(x_i)\|} \right]_{i=1}^N \in \mathbb{R}^{N \times d}$, We compute the
 238 probability logits of X_θ^{adv} , $X_{\theta_0}^{adv}$ and X_θ^{clean} *w.r.t.* the text features $T_\phi = \left[\frac{g_\phi(t_i)}{\|g_\phi(t_i)\|} \right]_{i=1}^N \in \mathbb{R}^{N \times d}$:

$$241 \quad P_\theta^{adv} = \text{softmax}(X_\theta^{adv} T^\top) \in \mathbb{R}^{N \times N} \quad (5)$$

$$243 \quad P_{\theta_0}^{adv} = \text{softmax}(X_{\theta_0}^{adv} T^\top) \in \mathbb{R}^{N \times N} \quad (6)$$

$$245 \quad P_\theta^{clean} = \text{softmax}(X_\theta^{clean} T^\top) \in \mathbb{R}^{N \times N} \quad (7)$$

247 The logit-level regularization is formulated following Wang et al. (2024):

$$249 \quad \mathcal{L}_{logit} = \frac{1}{N} [\text{KL}(P_\theta^{adv} \| P_{\theta_0}^{adv}) + \text{KL}(P_\theta^{adv} \| P_\theta^{clean})] \quad (8)$$

251 where $\text{KL}(\cdot \| \cdot)$ denotes KL divergence. In this work, we additionally introduce feature-level regu-
 252 larization, which we find to benefit generalization on clean images:

$$254 \quad \mathcal{L}_{feat} = \frac{1}{N} [\|X_\theta^{adv} - X_{\theta_0}^{adv}\|_F + \|X_\theta^{adv} - X_\theta^{clean}\|_F] \quad (9)$$

256 where $\|\cdot\|_F$ denotes Frobenius norm. To sum up, in the outer minimization loop, the weights of the
 257 vision encoder f_θ are updated as follows:

$$259 \quad \theta' = \arg \min_{\theta} \{\mathcal{L}_{CLIP} (\{(x_i + \delta_i, t_i)\}_{i=1}^N) + \mathcal{L}_{logit} + \mathcal{L}_{feat}\} \quad (10)$$

261 We summarize the paradigm of AdvFLYP in Alg. 1.

264 4 EXPERIMENTS

266 We conduct extensive experiments to evaluate the adversarial robustness of our proposed paradigm.
 267 We implement state-of-the-art finetuning-based methods with available code on two common proxy
 268 datasets, TinyImageNet and ImageNet, and compare AdvFLYP with these baselines under various
 269 attack scenarios. We also implement AdvFLYP under multiple finetuning settings to understand the
 behaviour of this contrastive learning framework in an adversarial finetuning (AFT) context.

270
271

4.1 IMPLEMENTATION DETAILS

272
273
274
275
276
277
278
279
280
281
282
283

Following previous AFT-based methods, we finetune the pre-trained CLIP’s ViT-B/32 vision encoder. To prepare web-scale image text-pairs that closely follow CLIP’s pre-training data distribution, we collect 1M data pairs. Specifically, we randomly sample one million data points with reachable URLs from LAION-400M (Schuhmann et al., 2021) and denote it as `small-LAION`. Following the data preprocessing of CLIP, we crop and resize the raw images to the size of 224×224 . In the finetuning process, we set the batch size to 256, unless otherwise specified. To generate adversarial images, we employ the PGD algorithm (Carlini & Wagner, 2017) with 2 iterations to update the batch-wise perturbations $\delta \in \mathbb{R}^{N \times C \times H \times W}$ (Eq. 4). The attack strength and step size during finetuning are set to $\epsilon = 1/255$, $\alpha = 1/255$, respectively. We leverage an SGD optimizer and retain the initial learning rate from CLIP’s pre-training stage at $1e - 4$ (Radford et al., 2021), which is dynamically adjusted with cosine scheduling. We finetune the model for 20 epochs on a single NVIDIA RTX A6000 GPU device.

284
285

4.2 BASELINES AND DATASETS

286
287
288
289
290
291
292
293
294
295
296
297

We implement TeCoA (Mao et al., 2023), PMG-AFT (Wang et al., 2024) and TGA-ZSR (Yu et al., 2024) based on their released code and finetune f_θ on two proxy datasets, TinyImageNet (Le & Yang, 2015) and ImageNet (Deng et al., 2009), which include 100k and roughly 1.2M training images, respectively. The main training objective of these methods is the cross-entropy loss of adversarial images *w.r.t.* their true labels on a classification dataset. To ensure fair comparison, we use their original hyperparameters in our implementation while keeping other settings such as dataset pre-processing strictly identical. We further implement FARE (Schlarmann et al., 2024), which is an unsupervised adversarial finetuning method that alternately generates adversarial images by enlarging their the L_2 distance to the original embeddings in the latent space, and updates the encoder weights to minimize their distance. When comparing to baselines finetuned on TinyImageNet, we randomly sample a subset of 100k training image-text pairs from `small-LAION` to maintain the same training data amount, which we denote as `tiny-LAION`.

298
299
300
301
302
303
304
305

After the finetuning process, we evaluate the *zero-shot adversarial robustness* of all baselines on 14 downstream datasets spanning diverse domains, which include general object recognition datasets CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), STL10 (Coates et al., 2011), Caltech101 (Fei-Fei et al., 2006) and Caltech256 (Griffin et al., 2007); fine-grained recognition datasets OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), StanfordCars (Krause et al., 2013); scene recognition datasets SUN397 (Xiao et al., 2010) and Country211 (Radford et al., 2021); domain-specific datasets FGVCAircraft (Maji et al., 2013), EuroSAT (Helber et al., 2019), DTD (Cimpoi et al., 2014).

306
307

4.3 RESULTS AND DISCUSSION

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

AdvFLYP v.s. AFT methods finetuned on TinyIN. Although recent work (Wang et al., 2024; Yu et al., 2024) employs TinyImageNet as a common proxy dataset due to its small size, we argue that it is not an ideal dataset for AFT. In our preliminary experiments (Fig. 1a in Sec. 3.2), we find that when performing standard finetuning on TinyImageNet, it already causes a significant accuracy degradation on downstream tasks. As can be seen in Table 1, in AFT, this degradation is further worsened by introducing adversarial images, with TeCoA and PMG-AFT losing over 20 average points on downstream datasets compared to the original CLIP. This degradation is largely attributed to the fact that TinyImageNet, with very limited semantics in low-resolution (64×64) training images, drastically differs from the distribution of CLIP’s pre-training data, which are noisy web-scale image-text pairs. All AFT baselines exhibit substantially higher accuracy of clean images on TinyImageNet, which indicates that they heavily overfit to the data distribution of TinyImageNet, even when finetuned with adversarial images. Despite weaker zero-shot adversarial robustness compared to supervised AFT methods, FARE retains the best clean accuracy among other baselines, showing that unsupervised AFT better preserves CLIP’s zero-shot capabilities than supervised counterparts. AdvFLYP, finetuned with a contrastive loss on the same amount of images collected from the web, achieves the same level of clean accuracy with unsupervised AFT, while showing higher adversarial robustness than supervised AFT methods under PGD-10 (Carlini & Wagner, 2017) and AutoAttack (Croce & Hein, 2020) at attack strength $\epsilon = 1/255$. When evaluated under PGD-10 at $\epsilon = 4/255$,

()		TinyIN		Aircraft										avg.			
				CLIP	CLIP	CLIP	CLIP	CLIP	CLIP	CLIP	CLIP	CLIP	CLIP				
PGD-10 ($\epsilon = 1/255$)	CLIP	0.21	0.64	0.18	11.38	14.82	8.38	1.09	1.04	0.67	0.03	1.15	0.03	0.00	3.09	3.04	
	FARE	18.36	17.85	9.77	56.30	51.26	37.10	29.22	15.14	10.67	6.84	13.63	0.78	1.08	9.64	14.63	19.56
	TeCoA	45.34	31.29	17.88	69.06	55.63	43.14	38.35	22.28	14.30	8.89	19.94	1.84	2.25	11.55	17.50	25.28
	PMG-AFT	46.13	40.68	22.53	73.09	61.12	45.92	41.18	23.50	18.57	11.65	22.58	2.10	2.19	12.60	15.00	28.05
	TGA-ZSR	50.23	38.49	21.46	71.91	59.38	48.81	42.63	27.32	17.78	12.00	22.39	1.92	3.93	11.63	18.99	28.47
	AdvFLYP	23.57	39.06	18.00	71.65	67.80	56.49	53.37	31.16	29.89	19.20	29.46	3.18	5.76	15.50	22.29	33.06
PGD-10 ($\epsilon = 4/255$)	CLIP	0.00	0.00	0.00	0.01	0.59	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.06
	FARE	0.22	0.01	0.04	1.00	4.77	1.96	0.27	0.00	0.04	0.01	0.07	0.01	0.00	0.00	0.64	0.63
	TeCoA	3.31	0.38	1.39	10.81	14.44	8.01	0.76	1.69	0.54	0.10	1.19	0.04	0.03	9.86	4.20	3.82
	PMG-AFT	4.44	1.21	1.72	15.06	19.47	10.63	1.72	2.50	1.03	0.12	1.89	0.12	0.03	9.62	4.31	4.96
	TGA-ZSR	2.31	0.09	0.34	6.34	11.19	5.70	0.27	0.62	0.16	0.03	0.62	0.02	0.03	0.02	2.23	1.98
	AdvFLYP	0.57	0.30	0.74	9.25	17.85	10.14	0.71	1.37	0.45	0.11	1.21	0.02	0.00	2.45	3.72	3.45
AutoAttack ($\epsilon = 1/255$)	CLIP	0.05	0.00	0.01	0.00	0.44	0.10	0.00	0.03	0.00	0.11	0.01	0.01	0.18	0.06	0.21	0.08
	FARE	16.44	15.29	8.27	54.38	48.83	34.88	26.68	13.30	9.59	5.36	11.23	0.48	0.72	7.74	11.70	17.75
	TeCoA	42.89	29.71	16.49	68.30	54.48	41.75	37.12	20.78	12.63	7.70	18.07	1.43	1.53	11.29	16.54	24.13
	PMG-AFT	43.19	38.42	20.20	72.25	55.93	44.18	38.73	21.29	16.27	9.45	20.12	1.73	1.68	11.92	13.78	26.40
	TGA-ZSR	29.76	17.22	10.84	56.29	47.36	36.95	28.37	16.96	10.69	5.63	11.82	0.68	1.47	8.97	12.39	18.97
	AdvFLYP	21.03	35.26	15.90	70.99	66.97	55.12	51.54	29.13	28.17	16.67	27.26	2.48	4.20	13.38	20.16	31.23
clean	CLIP	57.64	85.09	57.13	96.41	85.70	81.74	87.33	65.46	83.88	52.07	58.51	15.22	20.16	42.53	40.48	62.26
	FARE	67.82	79.09	49.63	92.05	84.14	75.04	80.35	49.31	59.09	43.48	53.38	10.10	11.94	28.35	33.99	53.56
	TeCoA	68.65	63.95	35.27	87.20	72.44	61.77	63.45	37.63	51.57	22.30	38.08	5.14	5.79	14.62	25.85	40.36
	PMG-AFT	66.80	70.60	40.29	88.60	75.48	62.26	65.88	37.03	36.63	25.40	37.96	4.64	5.46	18.51	21.92	42.19
	TGA-ZSR	76.14	81.99	53.80	90.80	79.70	72.54	74.22	46.76	49.75	34.67	48.20	7.76	11.31	22.86	30.37	50.29
	AdvFLYP	49.14	71.52	37.12	89.99	83.39	76.33	81.52	53.29	64.50	45.28	54.46	9.81	16.17	27.33	35.21	53.28
AVG	CLIP	14.48	21.43	14.33	26.95	25.39	22.59	22.11	16.63	21.14	13.05	14.92	3.82	5.09	10.65	10.97	16.36
	FARE	25.71	28.06	16.93	50.93	47.25	37.25	34.13	19.44	19.85	13.92	19.58	2.84	3.44	11.43	15.24	22.88
	TeCoA	40.05	31.33	17.76	58.84	49.25	38.67	34.92	20.59	14.76	9.75	19.32	2.11	2.40	11.83	16.02	23.40
	PMG-AFT	40.14	37.74	21.19	62.25	53.90	40.47	36.88	21.08	18.12	11.65	20.64	2.15	2.34	13.16	13.75	25.40
	TGA-ZSR	39.61	34.45	21.61	56.33	49.25	41.00	36.37	22.91	19.59	13.08	20.76	2.59	4.19	10.87	16.00	24.93
	AdvFLYP	23.58	36.64	17.94	60.47	59.00	49.52	46.78	28.74	30.75	20.32	28.10	3.87	6.53	14.66	20.34	30.26

Table 1: Recognition accuracy under different attack scenarios ($\epsilon = 1/255, 4/255$ and clean images) on downstream datasets of CLIP finetuned with AdvFLYP on tiny-LAION, compared with existing methods finetuned on TinyImageNet. We highlight the **best** and second best results.

Table 2: Recognition accuracy under different attack scenarios ($\epsilon = 1/255, 4/255$ and clean images) on downstream datasets of CLIP finetuned with AdvFLYP on small-LAION of 1M training images, compared with existing methods finetuned on ImageNet of roughly 1.2M training images.

TeCoA and PMG-AFT achieve higher robustness. However, this is at the cost of extreme clean accuracy decline (40.36 and 42.19, respectively, versus 53.28 for AdvFLYP). Another interesting finding is that AFT baselines finetuned on TinyImageNet leads the model to generalize better on downstream datasets of similar distribution, such as CIFAR10, CIFAR100 and STL10, which are also low-resolution general object classification datasets, under all evaluation settings.

378 **AdvFLYP v.s. AFT methods finetuned on ImageNet.** As can be seen from Table 2, AFT meth-
 379 ods finetuned on ImageNet incur lesser loss of generalization on clean images, compared to when
 380 finetuned on TinyImageNet. This is due to the larger dataset size and better image quality of Im-
 381 ageNet, which effectively alleviates overfitting. Nonetheless, all baselines finetuned on ImageNet still
 382 exhibit signs of overfitting, with higher test accuracy on ImageNet, especially TGA-ZSR. Addi-
 383 tionally, employing ImageNet as a proxy dataset for AFT benefits certain datasets that share more similar
 384 classes than others. For example, AFT baselines finetuned on ImageNet, which include a consider-
 385 able amount of animal classes, transfer better to OxfordPets (Parkhi et al., 2012) and ImageNet-like
 386 general classification datasets. Among AFT baselines, the unsupervised method FARE achieves the
 387 best clean accuracy. However, FARE exhibits noticeably lower robustness levels, compared to su-
 388 pervised AFT. TGA-ZSR is shown to largely overfit to both the data distribution of ImageNet and
 389 the attack type during AFT. Our AdvFLYP performs consistently better than supervised methods in
 390 terms of generalization on clean images and different adversarial attack scenarios.
 391

392 For each downstream dataset, we average the accuracy of a model under all scenarios including
 393 PGD-10 ($\epsilon = 1/255$), PGD-10 ($\epsilon = 4/255$), AutoAttack ($\epsilon = 1/255$) and clean images, for a
 394 comprehensive evaluation. When finetuned on a tiny portion of web-scale image-text data (tiny-
 395 LAION), our AdvFLYP achieves best overall results on 11 out of 14 downstream datasets, with
 396 an improvement of 4.86 points (19.1%). Additionally, AdvFLYP finetuned on small-LAION
 397 performs best on 12 out of 14 datasets, with an improvement of 1.01 points (3.1%). Results show that
 398 our AdvFLYP paradigm steadily enhances zero-shot adversarial robustness of CLIP across datasets
 399 of various domains, without overfitting to the distribution of any dataset, proving the importance of
 400 following the pre-training data and training objective of CLIP in AFT.
 401

402 4.4 ANALYSIS ON ADVFLYP

403 This work proposes an AFT paradigm that practically resumes the pretraining process of CLIP, ex-
 404 cept that the training data are swapped for adversarial images. However, the behaviour of contrastive
 405 learning in a context of adversarial finetuning is understudied. This section explores other training
 406 settings of the AdvFLYP paradigm to provide insights into its working.

407 **Ablation studies.** On tiny-
 408 LAION, we ablate the default Ad-
 409 vFLYP to reveal contributions of
 410 each term of the formulated loss
 411 (Eq. 10) to its effectiveness. From
 412 Table 3, it can be seen that the con-
 413 trastive loss \mathcal{L}_{CLIP} as employed in
 414 CLIP’s pretraining significantly im-
 415 proves its *zero-shot adversarial ro-
 416 bustness* from the original CLIP’s
 417 3.04 to 33.06, which plays a ma-
 418 jor role in AdvFLYP. Adding logit-
 419 level regularization \mathcal{L}_{logit} further im-
 420 proves transferability of robustness on downstream data, which is in line with the findings of PMG-
 421 AFT (Wang et al., 2024). In this work, we find that feature-level regularization \mathcal{L}_{feat} is highly
 422 effectively in retaining generalization on downstream clean images. We introduce logit- and feature-
 423 level regularization into our AdvFLIP to reach a sweet spot between robustness and clean accuracy
 424 without further tuning their respective weights.

425 **Amount of training data.** Results in Table 1 and Table 2 show that a larger size of webscale data
 426 for AFT benefits both robustness and accuracy. We investigate the impact of training data amount
 427 on AdvFLYP in Fig. 2 (*left*). Interestingly, when the training data amount is scarce, both robustness
 428 and accuracy are data-limited and therefore, are not in conflict. Increasing the amount of collected
 429 web-scale data for AdvFLYP improves both robustness and accuracy considerably. When there are
 430 sufficient image-text pairs, the improvement plateaus and does not noticeably benefit from more
 431 training data.

432 **Batch size.** Different from existing AFT methods, which finetune f_θ through a cross-entropy *w.r.t.*
 433 the true labels of images, AdvFLYP employs the same contrastive loss in AFT as in the pretraining

(%)	Rob. Acc.	Clean Acc.	Avg.
\mathcal{L}_{CLIP}	30.41	53.02	41.72
$\mathcal{L}_{CLIP} + \mathcal{L}_{logit}$	33.44	52.64	<u>43.04</u>
$\mathcal{L}_{CLIP} + \mathcal{L}_{feat}$	30.74	55.11	42.93
AdvFLYP	<u>33.06</u>	<u>53.28</u>	43.17

434 Table 3: Ablation of training objective in AdvFLYP. The re-
 435 ported robust accuracy is tested under PGD-10 ($\epsilon = 1/255$).
 436 We report average accuracy over 14 downstream datasets.

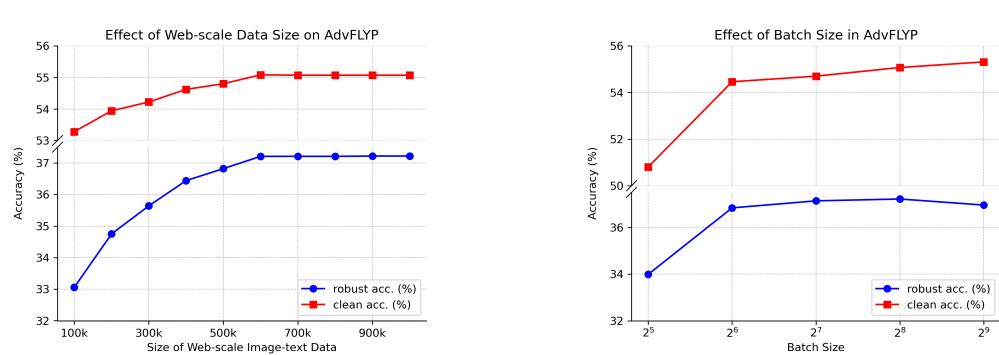


Figure 2: Adversarial robustness (PGD-10, $\epsilon = 1/255$) and clean accuracy of AdvFLYP paradigm under various training settings, averaged on 14 downstream datasets.

phase. As suggested in (Radford et al., 2021), a larger batch size is beneficial for contrastive learning, because it provides more negative samples in a single batch. In this experiment, we vary the batch size from 32 (2^5) to 512 (2^9) for AdvFLYP and report its performance in Fig. 2 (right). We adjust the number of epochs for each batch size to ensure a similar number of updates to model weights. We show that increasing the batch size for AdvFLYP improves clean accuracy significantly, which is in line with the findings of CLIP (Radford et al., 2021). In comparison, enlarging the batch size boosts the robustness at first. However, when the batch size increases to 512, robustness slightly declines, with additional gains of clean accuracy. This shows that both robustness and accuracy benefit from a sufficiently large batch size in contrastive learning in an AFT context. Further enlarging the batch size would trade robustness off for accuracy. We experiment with the maximum batch size of 512 due to hardware constraints.

Unfreeze other components. Existing AFT methods invariably finetune the vision encoder f_θ of CLIP, while keeping the text encoder g_ϕ frozen. Intuitively, resuming the pretraining recipe for AFT would result in whole finetuning of CLIP. In this experiment, we unfreeze more modules of CLIP to investigate the impact on AdvFLYP, and report the results in Table 4. It can be seen that unfreezing more modules of CLIP in AdvFLYP does not lead to better robustness, indicating that f_θ is still the major component in adversarially robust CLIP. Unfreezing g_ϕ and more modules such as layer-wise normalization leads to slightly better clean accuracy. We also find that employing only the image-to-text loss, *i.e.*, the first term of \mathcal{L}_{CLIP} (Eq. 1), leads to best clean accuracy. Utilizing the full contrastive loss \mathcal{L}_{CLIP} and finetuning only f_θ achieves the best overall performance for AdvFLYP.

5 CONCLUSION

In this work, we propose a simple yet paradigm for adversarial finetuning, *Adversarially Finetune Like You Pretrain* (AdvFLYP), which practically resumes the training of CLIP with adversarial images, while retaining the training recipe as much as possible. This paradigm addresses the limitations of existing AFT methods, which invariably finetune the CLIP model on adversarial images on a proxy classification dataset through a cross-entropy loss, compromising the generalization of CLIP. Our AdvFLYP paradigm employs web-scale image-text data that follows the distribution of CLIP’s pretraining data, and finetunes the same contrastive loss as employed during CLIP’s pretraining. We additionally find that logit- and feature-level regularization benefits robustness and clean accuracy, respectively. AdvFLYP outperforms existing AFT methods commonly finetuned on TinyImageNet and ImageNet by 19.1% and 3.1%, respectively, while alleviating overfitting to any proxy dataset distribution. We analyse the behaviour of AdvFLYP and show that a sufficient large training data size and training-time batch size are crucial to both downstream robustness and accuracy, throwing light on the behaviour of contrastive learning in an adversarial finetuning context of CLIP.

486 REFERENCES
487

488 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
489 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,
490 2014.

491 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017
492 ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

493

494 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
495 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and
496 pattern recognition*, pp. 3606–3613, 2014.

497 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
498 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-
499 gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

500 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
501 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
502 2216. PMLR, 2020.

503

504 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
505 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
506 pp. 248–255. Ieee, 2009.

507 Junhao Dong, Piotr Koniusz, Yifei Zhang, Hao Zhu, Weiming Liu, Xinghua Qu, and Yew-Soon Ong.
508 Improving zero-shot adversarial robustness in vision-language models by closed-form alignment
509 of adversarial path simplices. In *Forty-second International Conference on Machine Learning*,
510 2025. URL <https://openreview.net/forum?id=WR0ahlhOoy>.

511

512 Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object categories. *IEEE trans-
513 actions on pattern analysis and machine intelligence*, 28(4):594–611, 2006.

514 Shizhan Gong, Haoyu LEI, Qi Dou, and Farzan Farnia. Boosting the visual interpretability of CLIP
515 via adversarial fine-tuning. In *The Thirteenth International Conference on Learning Representa-
516 tions*, 2025. URL <https://openreview.net/forum?id=khuIvzxPRp>.

517

518 Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune like
519 you pretrain: Improved finetuning of zero-shot vision models. In *Proceedings of the IEEE/CVF
520 Conference on Computer Vision and Pattern Recognition*, pp. 19338–19347, 2023.

521

522 Gregory Griffin, Alex Holub, Pietro Perona, et al. Caltech-256 object category dataset. Technical
523 report, Technical Report 7694, California Institute of Technology Pasadena, 2007.

524

525 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
526 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
527 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

528

529 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
530 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
531 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
532 PMLR, 2021.

533

534 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
535 categorization. In *Proceedings of the IEEE international conference on computer vision work-
536 shops*, pp. 554–561, 2013.

537

538 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
539 2009.

540 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
541 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

542

543 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. 2015.

540 Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost
 541 adversarial robustness for pre-trained vision-language models. In *Proceedings of the IEEE/CVF*
 542 *Conference on Computer Vision and Pattern Recognition*, pp. 24408–24419, 2024.

543

544 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 545 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 546 *Learning Representations*, 2018.

547 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 548 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

549

550 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-
 551 shot adversarial robustness for large-scale models. In *The Eleventh International Conference*
 552 *on Learning Representations*, 2023. URL <https://openreview.net/forum?id=P4bXCawRi5J>.

553

554 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 555 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 556 722–729. IEEE, 2008.

557

558 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 559 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

560

561 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 562 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

563

564 Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
 565 ating customized prompts for zero-shot image classification. In *Proceedings of the IEEE/CVF*
 566 *international conference on computer vision*, pp. 15691–15701, 2023.

567

568 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 569 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 570 models from natural language supervision. In *International conference on machine learning*, pp.
 571 8748–8763. PMLR, 2021.

572

573 Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
 574 *International conference on machine learning*, pp. 8093–8104. PMLR, 2020.

575

576 Oindrila Saha, Grant Van Horn, and Subhransu Maji. Improved zero-shot classification by adapting
 577 vlms with text descriptions. In *Proceedings of the IEEE/CVF conference on computer vision and*
 578 *pattern recognition*, pp. 17542–17552, 2024.

579

580 Fawaz Sammani and Nikos Deligiannis. Interpreting and analysing clip’s zero-shot image classifi-
 581 cation via mutual knowledge. *Advances in Neural Information Processing Systems*, 37:39597–
 582 39631, 2024.

583

584 Christian Schlaremann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
 585 supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
 586 In *International Conference on Machine Learning*, pp. 43685–43704. PMLR, 2024.

587

588 Christoph Schuhmann, Robert Kaczmarczyk, Aran Komatsuzaki, Aarush Katta, Richard Vencu,
 589 Romain Beaumont, Jenia Jitsev, Theo Coombes, and Clayton Mullis. Laion-400m: Open dataset
 590 of clip-filtered 400 million image-text pairs. In *NeurIPS Workshop Datacentric AI*, number FZJ-
 591 2022-00923. Jülich Supercomputing Center, 2021.

592

593 Lijun Sheng, Jian Liang, Zilei Wang, and Ran He. R-tpt: Improving adversarial robustness of vision-
 594 language models through test-time prompt tuning. In *Proceedings of the Computer Vision and*
 595 *Pattern Recognition Conference*, pp. 29958–29967, 2025.

596

597 Satoshi Suzuki, Shin’ya Yamaguchi, Shoichiro Takeda, Sekitoshi Kanai, Naoki Makishima, Atsushi
 598 Ando, and Ryo Masumura. Adversarial finetuning with latent representation constraint to mitigate
 599 accuracy-robustness tradeoff. In *2023 IEEE/CVF International Conference on Computer Vision*
 600 (*ICCV*), pp. 4367–4378. IEEE Computer Society, 2023.

594 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In *International Conference on*
 595 *Learning Representations*, 2014.

596

597 Baoshun Tong, Hanjiang Lai, Yan Pan, and Jian Yin. On the zero-shot adversarial robustness of
 598 vision-language models: A truly zero-shot and training-free approach. In *Proceedings of the*
 599 *Computer Vision and Pattern Recognition Conference*, pp. 19921–19930, 2025.

600

601 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
 602 zero-shot adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer vision*
 603 *and pattern recognition*, pp. 24502–24511, 2024.

604

605 Xin Wang, Kai Chen, Jiaming Zhang, Jingjing Chen, and Xingjun Ma. Tapt: Test-time adversarial
 606 prompt tuning for robust inference in vision-language models. In *Proceedings of the Computer*
 607 *Vision and Pattern Recognition Conference*, pp. 19910–19920, 2025.

608

609 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 610 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 611 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

612

613 Songlong Xing, Zhengyu Zhao, and Nicu Sebe. Clip is strong enough to fight back: Test-time
 614 counterattacks towards zero-shot adversarial robustness of clip. In *Proceedings of the Computer*
 615 *Vision and Pattern Recognition Conference*, pp. 15172–15182, 2025.

616

617 Lu Yu, Haiyang Zhang, and Changsheng Xu. Text-guided attention is all you need for zero-shot
 618 robustness in vision-language models. *Advances in Neural Information Processing Systems*, 37:
 619 96424–96448, 2024.

620

621 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 622 Theoretically principled trade-off between robustness and accuracy. In *International conference*
 623 *on machine learning*, pp. 7472–7482. PMLR, 2019.

624

625 Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang.
 626 Adversarial prompt tuning for vision-language models. In *European conference on computer*
 627 *vision*, pp. 56–72. Springer, 2024.

628

629 Mingkun Zhang, Keping Bi, Wei Chen, Jiafeng Guo, and Xueqi Cheng. CLIPure: Purification in
 630 latent space via CLIP for adversarially robust zero-shot classification. In *The Thirteenth Interna-*
 631 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=TQ2ZOy6miT)
 632 [forum?id=TQ2ZOy6miT](https://openreview.net/forum?id=TQ2ZOy6miT).

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647