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ABSTRACT

Pretrained vision-language models (VLMs) like CLIP are shown to be highly sus-
ceptible to adversarial perturbations. Adversarial finetuning (AFT) approaches
have been proposed to improve the zero-shot adversarial robustness of CLIP on
various downstream tasks, based on finetuning the vision encoder on adversar-
ial images generated from a proxy classification dataset, such as TinyImageNet.
However, we demonstrate that existing AFT approaches have largely overlooked
the important role of the training recipe, particularly the training data and ob-
jective. To this end, we propose Adversarially Finetune Like You Pretrain (Ad-
vFLYP), which practically retains the training recipe of CLIP’s pretraining dur-
ing AFT. We finetune CLIP based on adversarial images generated from web-
scale image-text data with a contrastive loss. Experiments validate the superiority
of AdvFLYP on various downstream datasets. For example, AdvFLYP outper-
forms existing AFT approaches finetuned on TinyImageNet (ImageNet) by 19.1%
(3.1%), averaged on 14 downstream datasets. Further analyses show that suffi-
ciently large training data amounts and batch sizes are crucial for the contrastive
learning of AdvFLYP. Our code and model checkpoints will be released.

1 INTRODUCTION

Pre-trained vision-language models (VLMs) have been trained to align images with their descriptive
texts over significant amounts of image-text pairs, with CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021) being notable representatives. These models have exhibited remarkable abilities to
perform image classification in a zero-shot manner (Pratt et al., 2023; Saha et al., 2024; Sammani
& Deligiannis, 2024). However, recent studies have revealed the alarming vulnerabilities of CLIP
to adversarial attacks (Mao et al., 2023; Li et al., 2024; Schlarmann et al., 2024): An imperceptible
maliciously manipulated noise added to a test image suffices to substantially reduce the model’s
recognition accuracy.

To enhance CLIP’s robustness to adversarial attacks, recent studies introduce adversarial images
generated from a proxy dataset such as TinyImageNet (Le & Yang, 2015) or ImageNet (Deng et al.,
2009) into the training set, and finetune the vision encoder (Mao et al., 2023; Wang et al., 2024;
Yu et al., 2024; Schlarmann et al., 2024) based on adversarial training (AT) (Madry et al., 2018;
Zhang et al., 2019). This practice proves effective in improving the model’s adversarial robustness
on diverse downstream datasets without further training, which is termed zero-shot robustness (Mao
et al., 2023). However, these methods incur a significant degradation in the model’s generaliza-
tion on clean data of downstream tasks. We hypothesize that such degradation is largely due to the
misaligned training recipe between CLIP’s pretraining and the finetuning process of existing AFT
methods. Intuitively, there is a fundamental difference between adversarially finetuning CLIP and
robustly training a model from scratch. CLIP has been pre-trained over web-scale image-text pairs
and learned real-world knowledge, and updating its model weights on a specific domain can already
lead to noticeable generalization loss (Radford et al., 2021), which further complicates the analysis
of this loss in adversarial finetuning. In this work, we investigate the generalization degradation in
the adversarial finetuning of CLIP, and identify two important factors: (1) the training data distribu-
tion that differs from CLIP’s pretraining data. This is evidenced by the following observations: (i)
Finetuning CLIP on the clean data of a proxy dataset lowers the accuracy on downstream datasets,
and (ii) Finetuning CLIP on adversarial images of a proxy dataset (Mao et al., 2023; Wang et al.,
2024; Yu et al., 2024) results in higher accuracy on the clean test set of the proxy dataset than the
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original CLIP, which indicates that the model has overfit to the distribution of the proxy dataset, even
finetuned with adversarial images; (2) the training objective for AFT. Minimizing the cross-entropy
loss between the generated adversarial images and their correct labels on a classification dataset ef-
fectively aligns multiple images from a class to the same textual class name, which causes the loss
of knowledge.

Built upon our analysis, we propose a simple yet effective paradigm termed Adversarially Finetune
Like You Pretrain (AdvFLYP). The main idea of AdvFLYP is to finetune CLIP with adversarial
images while maximally retaining the same training recipe as employed in the pretraining phase.
Specifically, to imitate the distribution of CLIP’s training data, we randomly sample a certain num-
ber of web-scale image-text pairs. During AFT, we employ the same contrastive loss for pretraining
CLIP. The difference is that we align adversarial images, rather than clean images, with their cor-
responding texts. To further alleviate the robustness-generalization trade-off, we propose to impose
logit- and feature-level regularization during finetuning, which we show to improve robustness trans-
fer and generalization on clean images, respectively. Through extensive experiments, we show that
when finetuned with the same amounts of training data, AdvFLYP outperforms existing AFT meth-
ods finetuned on TinyImageNet and ImageNet by an average relative improvement of 19.1% and
3.1%, respectively. To facilitate understanding of this paradigm, we vary the training conditions
(e.g., batch size, training data amount) and provide insights into contrastive learning of CLIP in the
context of adversarial finetuning. We summarize the contributions of this work as follows:

• We investigate the generalization degradation in existing AFT methods for CLIP, and iden-
tify two major sources, which are training data distribution and the training objective.

• We introduce Adversarially Finetune Like You Pretrain (AdvFLYP), a simple yet effective
paradigm to achieve zero-shot adversarial robustness, which resumes contrastive learning
of CLIP by aligning adversarial images with their texts.

• Extensive experiments on 14 downstream datasets show that AdvFLYP outperforms main-
stream AFT methods. We also vary the training setting of AdvFLYP and show that suffi-
ciently large training data amounts and batch size for AdvFLYP are crucial for robustness
and accuracy.

2 RELATED WORK

Adversarial robustness of neural networks. Deep neural networks (Krizhevsky et al., 2012) are
vulnerable to adversarial attacks (Carlini & Wagner, 2017; Szegedy et al., 2014): an imperceptible
pixel-level perturbation added to the test image can mislead a well-trained model to make a wrong
prediction. Adversarial attacks (Carlini & Wagner, 2017; Croce & Hein, 2020) and defences (Madry
et al., 2018) have been extensively studied. Among defence methods, adversarial training (AT)
(Madry et al., 2018; Zhang et al., 2019; Rice et al., 2020) has been established as the de-facto
standard to train an adversarially robust model. More recent research finetunes a standardly trained
model on adversarial samples to enhance its adversarial robustness, instead of training a robust
model from scratch (Suzuki et al., 2023).

Adversarial robustness of vision-language models (VLMs) has also attracted significant research
attention (Zhao et al., 2023). In this paper, we focus on zero-shot adversarial robustness of CLIP
(Radford et al., 2021). Existing methods are largely based on AT, introducing adversarial images
into the training set and adapt the CLIP models. There are two types of categories in this regard:
adversarial finetuning (AFT) (Mao et al., 2023; Wang et al., 2024; Yu et al., 2024; Schlarmann et al.,
2024), which finetunes the vision encoder of CLIP; and adversarial prompt tuning (Li et al., 2024;
Zhang et al., 2024), which learns tunable prompt at the text encoder side to align with adversarial
images. More recently, test-time methods for defending CLIP have started to garnered interests
(Wang et al., 2025; Sheng et al., 2025; Tong et al., 2025; Zhang et al., 2025; Xing et al., 2025),
which achieves inference-time robustness without the need for training. We focus on adversarial
finetuning methods in this work, which is still the most effective approach. Mao et al. (2023) first
propose to generate adversarial images on ImageNet (Deng et al., 2009) by maximizing the cross-
entropy loss w.r.t. the ground-truth label, which are then leveraged for finetuning vision encoder fθ
by minimizing the cross-entropy loss of these adversarial images w.r.t. the labels. Subsequent work
introduces regularization based on this loss. Wang et al. (2024) impose logit-level regularization
terms guided by frozen CLIP models to improve robustness on downstream datasets. Yu et al. (2024)
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introduce regularization formulated by aligning text-guided attention of the model with the original
CLIP. More recently, Dong et al. (2025) focus on improving the adversarial candidates in adversarial
finetuning by forming consecutive vertices and sampling simplices. Aside from supervised AFT,
recent work proposes unsupervised AFT (Schlarmann et al., 2024). Gong et al. (2025) employ
unsupervised AFT as a novel tool to improve interpretability of visual models. These methods
employ a proxy dataset and a training objective that differ from CLIP’s pretraining. We propose a
novel AFT paradigm, AdvFLYP, which challenges the common practice of current AFT methods.

3 METHOD

In this section, we first introduce preliminaries regarding CLIP (Radford et al., 2021) and exist-
ing finetuning-based methods to achieve zero-shot adversarial robustness, and elaborate on our
paradigm, termed Adversarially Finetune Like You Pretrain (AdvFLYP).

3.1 PRELIMINARIES

CLIP (Radford et al., 2021) is a dual-encoder architecture with a vision encoder fθ(·) ∈ Rd and
a text encoder gϕ(·) ∈ Rd, which map an image x and a text t into the same d-dimensional latent
space, respectively. In the pretraining phase of CLIP, the vision and text encoders are trained over
400 million web-scale image-text pairs via a contrastive loss (Oord et al., 2018), which maximizes
the cosine similarity of an image embedding with its corresponding text embedding. In a single
batch {(xi, ti)}Ni=1, the contrastive loss is formulated as follows:

LCLIP

(
{(xi, ti)}Ni=1

)
= − 1

2N

N∑
i=1

[
log

exp(sii/τ)∑N
j=1 exp(sij/τ)

+ log
exp(sii/τ)∑N
j=1 exp(sji/τ)

]
(1)

where τ is the temperature, and sij =
fθ(xi)

⊺gϕ(tj)
∥fθ(xi)∥∥gϕ(tj)∥ is the cosine similarity between xi and

tj . After the pretraining phase, given an image xtest and a set of pre-trained textual categories
{c1, . . . cK} at inference time, CLIP is able to perform zero-shot classification by classifying it as
the category with the highest similarity ŷ = argmaxk

fθ(xtest)
⊺gϕ(T [ck])

∥fθ(xtest)∥·∥gϕ(T [ck]∥ , where T [·] is a textual
template, which is usually ‘a photo of a [CLS]’.

Adversarial attacks. A pixel-level perturbation δ ∈ RC×H×W bounded by a L∞-radius ball, when
maliciously designed to maximize the loss of a given image x w.r.t. its label cGT , can cause CLIP
to misclassify the sample:

δadv = argmax
δ

L (fθ(x+ δ), cGT ) , s.t. ∥δ∥∞ ≤ ϵ (2)

where L is cross-entropy loss, and ϵ is the attack budget controlling the attack strength.

Adversarial finetuning of CLIP typically finetunes the pre-trained vision encoder fθ by generating
adversarial images on the fly and aligning them with their correct labels on a proxy dataset. To this
end, Mao et al. (2023) propose TeCoA, which is a conventional cross-entropy loss of adversarial
images w.r.t. ground-truth labels:

θ′ = argmin
θ

L (fθ(x+ δadv), cGT ) (3)

Subsequent finetuning-based methods (Wang et al., 2024; Yu et al., 2024) introduce regularization
terms to improve robustness on downstream datasets and generalization on top of this loss. Specifi-
cally, Wang et al. (2024) employ a frozen original CLIP model to guide the finetuning process, while
Yu et al. (2024) propose text-guided attention and regularize the finetuning and encourage the model
to attend to informative areas in adversarial images.

3.2 LIMITATIONS OF EXISTING METHODS

Despite their effectiveness in boosting zero-shot adversarial robustness, these methods incur a sig-
nificant generalization decline on clean data (Mao et al., 2023). To look into this degradation, we
perform introductory experiments by leveraging two proxy datasets, ImageNet (Deng et al., 2009)
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(a) standardly finetuned models (b) adversarially finetuned models

Figure 1: Behaviour of finetuned models. The subscripts in the legends indicate the dataset used for
finetuning. CLIPweb represents CLIP finetuned on a toy dataset of 100k web-scale image-text pairs.
CLIPREF denotes the original pre-trained CLIP without any weight updates.

and TinyImageNet (Le & Yang, 2015), to finetune fθ of CLIP with either clean images (a.k.a. stan-
dard finetuning) or adversarial images (a.k.a. adversarial finetuning). We also collect a toy web-scale
dataset of 100k image-text pairs to imitate CLIP’s pre-training data distribution, denoted as web. We
test these models on the clean images of 6 selected datasets, which include two proxy datasets in-
volved, two general object recognition datasets CIFAR10 (Krizhevsky et al., 2009) and Caltech101
(Fei-Fei et al., 2006), and two fine-grained datasets Food101 (Bossard et al., 2014) and OxfordPets
(Parkhi et al., 2012). We report the results in Fig.1 and make the following observations: (1) The
model still suffers a noticeable loss in generalization ability even when it is finetuned with clean
images on a proxy dataset. (2) Adversarial finetuning of CLIP on a proxy dataset leads to higher
accuracy on clean images from this dataset than the original CLIP. Both observations indicate that
apart from the inherent robustness-generalization trade-off, the finetuned CLIP overfits to the data
distribution of the dataset it has been finetuned on, therefore compromising generalization further.

Furthermore, when finetuning fθ on a classification dataset via a cross-entropy loss, it equivalently
aligns a large number of semantically-rich images from the same category with a single textual
prompt. Intuitively, this forces the model to adapt to the classification task instead of retaining its
capability of matching images and texts.

3.3 ADVFLYP

Algorithm 1 PyTorch-style pseudocode for AdvFLYP
# target vision encoder f_theta
# frozen orignal vision encoder F_theta0
# frozen text encoder g_phi
# collected data: web image-text pairs D
for (X, T) in D: # one batch

# generate adversarial perturbations
delta=PGD(f, g, (X, T), l_clip)
# obtain embeddings
X=f(X+delta),X_c=f(X),X_ori=F(X+delta),T=g(T)
# compute probability logit
P=X@T.t(), P_c=X_c@T.t(), P_ori=X_ori@T.t()
# logit-level regularization
l_logit=P*(P/P_c).log()+P*(P/P_ori).log()
# feature-level regularization
l_feat=(X-X_c).norm(-1)+(X-X_ori).norm(-1)
# update theta w.r.t. final loss
L=(l_clip(f,g,(X_B+delta,T_B))+l_logit+l_feat)
L.backward()
optimizer.step()

return theta

To address the limitations discussed
above, we propose a simple yet effec-
tive adversarial finetuning paradigm,
which we term Adversarially Fine-
tune Like You Pretrain (AdvFLYP)
1, to achieve zero-shot adversarial
robustness. The idea is intuitive,
and can be viewed as resuming the
training of CLIP with adversarial im-
ages while maximally maintaining
the training recipe.

Data preparation. Since the pre-
training data of CLIP is not publicly
available, to imitate the distribution
of CLIP’s pre-training data, we col-
lect 1M webscale image-text pairs.
To this end, we randomly sample one
million entries with reachable URLs
from LAION-400M (Schuhmann et al., 2021). Following the original work of CLIP (Radford et al.,
2021), we utilize these noisy web-scale data without further data cleansing.

1This paradigm is named after a work on robust finetuning of CLIP, Finetune Like You Pretrain (FLYP)
(Goyal et al., 2023), which finds that CLIP fintuned with the same contrastive objective as in pretraining com-
pares favourably to CLIP typically finetuned with a cross-entropy loss.
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Adversarial finetuning. As in general adversarial training (AT) frameworks (Madry et al., 2018),
this process involves a min-max optimization. Instead of employing a cross-entropy loss on adver-
sarial images from a classification dataset (Mao et al., 2023; Wang et al., 2024; Yu et al., 2024),
we propose to employ the same contrastive loss as in CLIP’s pretraining (Eq. 1) in our adversarial
finetuning paradigm. Specifically, given a batch of image-text data {(xi, ti)}Ni=1, in the inner maxi-
mization process, we optimize a L∞-bounded perturbation δi for each sample xi in this batch, such
that this contrastive loss (Eq. 1) is maximized:

δ = arg max
{δ1,...,δN}

LCLIP

(
{(xi + δi, ti)}Ni=1

)
, s.t. ∥δ∥∞ ≤ ϵ (4)

Note that δ ∈ RN×C×H×W is optimized at the same time, instead of being optimized individu-
ally, by employing PGD algorithm (Carlini & Wagner, 2017). This is in stark contrast to existing
adversarial finetuning methods (Mao et al., 2023), where a perturbation is optimized independently
for each image to maximize its cross-entropy loss against a pre-defined set of categories (Eq. 2). In
the experiment section, we will investigate the impact of the contrastive learning setting, e.g., batch
size, in the context of adversarial finetuning. In the outer minimization loop, we finetune the model
weights θ of the vision encoder to minimize the contrastive loss of this batch of adversarial samples.
To further alleviate generalization loss, we also incorporate regularization guided by the frozen orig-
inal CLIP Fθ0 during funetuning. Specifically, we obtain the normalized embeddings of adversarial

images, Xadv
θ =

[
fθ(xi+δi)

∥fθ(xi+δi)∥

]N
i=1

∈ RN×d and Xadv
θ0

=
[

fθ0 (xi+δi)

∥fθ0 (xi+δi)∥

]N
i=1

∈ RN×d, which are
output by the target model fθ and the original model Fθ, respectively. We also feed the clean images

to the target model and obtain their embeddings Xclean
θ =

[
fθ(xi)

∥fθ(xi)∥

]N
i=1

∈ RN×d, We compute the

probability logits of Xadv
θ , Xadv

θ0
and Xclean

θ w.r.t. the text features Tϕ =
[

gϕ(ti)
∥gϕ(ti)∥

]N
i=1

∈ RN×d:

P adv
θ = softmax(Xadv

θ T ⊺) ∈ RN×N (5)

P adv
θ0 = softmax(Xadv

θ0 T ⊺) ∈ RN×N (6)

P clean
θ = softmax(Xclean

θ T ⊺) ∈ RN×N (7)

The logit-level regularization is formulated following Wang et al. (2024):

Llogit =
1

N

[
KL(P adv

θ ∥P adv
θ0 ) + KL(P adv

θ ∥P clean
θ )

]
(8)

where KL(·∥·) denotes KL divergence. In this work, we additionally introduce feature-level regu-
larization, which we find to benefit generalization on clean images:

Lfeat =
1

N

[
∥Xadv

θ −Xadv
θ0 ∥F + ∥Xadv

θ −Xclean
θ ∥F

]
(9)

where ∥ · ∥F denotes Frobenius norm. To sum up, in the outer minimization loop, the weights of the
vision encoder fθ are updated as follows:

θ′ = argmin
θ

{LCLIP

(
{(xi + δi, ti)}Ni=1

)
+ Llogit + Lfeat} (10)

We summarize the paradigm of AdvFLYP in Alg. 1.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the adversarial robustness of our proposed paradigm.
We implement state-of-the-art finetuning-based methods with available code on two common proxy
datasets, TinyImageNet and ImageNet, and compare AdvFLYP with these baselines under various
attack scenarios. We also implement AdvFLYP under multiple finetuning settings to understand the
behaviour of this contrastive learning framework in an adversarial finetuning (AFT) context.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 IMPLEMENTATION DETAILS

Following previous AFT-based methods, we finetune the pre-trained CLIP’s ViT-B/32 vision en-
coder. To prepare web-scale image text-pairs that closely follow CLIP’s pre-training data distri-
bution, we collect 1M data pairs. Specifically, we randomly sample one million data points with
reachable URLs from LAION-400M (Schuhmann et al., 2021) and denote it as small-LAION.
Following the data preprocessing of CLIP, we crop and resize the raw images to the size of 224×224.
In the finetuning process, we set the batch size to 256, unless otherwise specified. To generate adver-
sarial images, we employ the PGD algorithm (Carlini & Wagner, 2017) with 2 iterations to update
the batch-wise perturbations δ ∈ RN×C×H×W (Eq. 4). The attack strength and step size during
finetuning are set to ϵ = 1/255, α = 1/255, respectively. We leverage an SGD optimizer and
retain the initial learning rate from CLIP’s pre-training stage at 1e− 4 (Radford et al., 2021), which
is dynamically adjusted with cosine scheduling. We finetune the model for 20 epochs on a single
NVIDIA RTX A6000 GPU device.

4.2 BASELINES AND DATASETS

We implement TeCoA (Mao et al., 2023), PMG-AFT (Wang et al., 2024) and TGA-ZSR (Yu et al.,
2024) based on their released code and finetune fθ on two proxy datasets, TinyImageNet (Le &
Yang, 2015) and ImageNet (Deng et al., 2009), which include 100k and roughly 1.2M training
images, respectively. The main training objective of these methods is the cross-entropy loss of ad-
versarial images w.r.t. their true labels on a classification dataset. To ensure fair comparison, we use
their original hyperparameters in our implementation while keeping other settings such as dataset
pre-processing strictly identical. We further implement FARE (Schlarmann et al., 2024), which is
an unsupervised adversarial finetuning method that alternately generates adversarial images by en-
larging their the L2 distance to the original embeddings in the latent space, and updates the encoder
weights to minimize their distance. When comparing to baselines finetuned on TinyImageNet, we
randomly sample a subset of 100k training image-text pairs from small-LAION to maintain the
same training data amount, which we denote as tiny-LAION.

After the finetuning process, we evaluate the zero-shot adversarial robustness of all baselines on 14
downstream datasets spanning diverse domains, which include general object recognition datasets
CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), STL10 (Coates et al.,
2011), Caltech101 (Fei-Fei et al., 2006) and Caltech256 (Griffin et al., 2007); fine-grained recogni-
tion datasets OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), StanfordCars (Krause et al., 2013); scene recognition datasets SUN397 (Xiao
et al., 2010) and Country211 (Radford et al., 2021); domain-specific datasets FGVCAircraft (Maji
et al., 2013), EuroSAT (Helber et al., 2019), DTD (Cimpoi et al., 2014).

4.3 RESULTS AND DISCUSSION

AdvFLYP v.s. AFT methods finetuned on TinyIN. Although recent work (Wang et al., 2024;
Yu et al., 2024) employs TinyImageNet as a common proxy dataset due to its small size, we argue
that it is not an ideal dataset for AFT. In our preliminary experiments (Fig. 1a in Sec. 3.2), we find
that when performing standard finetuning on TinyImageNet, it already causes a significant accuracy
degradation on downstream tasks. As can be seen in Table 1, in AFT, this degradation is further
worsened by introducing adversarial images, with TeCoA and PMG-AFT losing over 20 average
points on downstream datasets compared to the original CLIP. This degradation is largely attributed
to the fact that TinyImageNet, with very limited semantics in low-resolution (64× 64) training im-
ages, drastically differs from the distribution of CLIP’s pre-training data, which are noisy web-scale
image-text pairs. All AFT baselines exhibit substantially higher accuracy of clean images on Tiny-
ImageNet, which indicates that they heavily overfit to the data distribution of TinyImageNet, even
when finetuned with adversarial images. Despite weaker zero-shot adversarial robustness compared
to supervised AFT methods, FARE retains the best clean accuracy among other baselines, showing
that unsupervised AFT better preserves CLIP’s zero-shot capabilities than supervised counterparts.
AdvFLYP, finetuned with a contrastive loss on the same amount of images collected from the web,
achieves the same level of clean accuracy with unsupervised AFT, while showing higher adversarial
robustness than supervised AFT methods under PGD-10 (Carlini & Wagner, 2017) and AutoAttack
(Croce & Hein, 2020) at attack strength ϵ = 1/255. When evaluated under PGD-10 at ϵ = 4/255,
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PGD-10
(ϵ = 1/255)

CLIP 0.21 0.64 0.18 11.38 14.82 8.38 1.09 1.04 0.67 0.03 1.15 0.03 0.00 0.01 3.09 3.04
FARE 18.36 17.85 9.77 56.30 51.26 37.10 29.22 15.14 10.67 6.84 13.63 0.78 1.08 9.64 14.63 19.56
TeCoA 45.34 31.29 17.88 69.06 55.63 43.14 38.35 22.28 14.30 8.89 19.94 1.84 2.25 11.55 17.50 25.28

PMG-AFT 46.13 40.68 22.53 73.09 61.12 45.92 41.18 23.50 18.57 11.65 22.58 2.10 2.19 12.60 15.00 28.05
TGA-ZSR 50.23 38.49 21.46 71.91 59.38 48.81 42.63 27.32 17.78 12.00 22.39 1.92 3.93 11.63 18.99 28.47
AdvFLYP 23.57 39.06 18.00 71.65 67.80 56.49 53.37 31.16 29.89 19.20 29.46 3.18 5.76 15.50 22.29 33.06

PGD-10
(ϵ = 4/255)

CLIP 0.00 0.00 0.00 0.01 0.59 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.06
FARE 0.22 0.01 0.04 1.00 4.77 1.96 0.27 0.00 0.04 0.01 0.07 0.01 0.00 0.00 0.64 0.63
TeCoA 3.31 0.38 1.39 10.81 14.44 8.01 0.76 1.69 0.54 0.10 1.19 0.04 0.03 9.86 4.20 3.82

PMG-AFT 4.44 1.21 1.72 15.06 19.47 10.63 1.72 2.50 1.03 0.12 1.89 0.12 0.03 9.62 4.31 4.96
TGA-ZSR 2.31 0.09 0.34 6.34 11.19 5.70 0.27 0.62 0.16 0.03 0.62 0.02 0.03 0.02 2.23 1.98
AdvFLYP 0.57 0.30 0.74 9.25 17.85 10.14 0.71 1.37 0.45 0.11 1.21 0.02 0.00 2.45 3.72 3.45

AutoAttack
(ϵ = 1/255)

CLIP 0.05 0.00 0.01 0.00 0.44 0.10 0.00 0.03 0.00 0.11 0.01 0.01 0.18 0.06 0.21 0.08
FARE 16.44 15.29 8.27 54.38 48.83 34.88 26.68 13.30 9.59 5.36 11.23 0.48 0.72 7.74 11.70 17.75
TeCoA 42.89 29.71 16.49 68.30 54.48 41.75 37.12 20.78 12.63 7.70 18.07 1.43 1.53 11.29 16.54 24.13

PMG-AFT 43.19 38.42 20.20 72.25 59.53 44.18 38.73 21.29 16.27 9.45 20.12 1.73 1.68 11.92 13.78 26.40
TGA-ZSR 29.76 17.22 10.84 56.29 47.36 36.95 28.37 16.96 10.69 5.63 11.82 0.68 1.47 8.97 12.39 18.97
AdvFLYP 21.03 35.26 15.90 70.99 66.97 55.12 51.54 29.13 28.17 16.67 27.26 2.48 4.20 13.38 20.16 31.23

clean

CLIP 57.64 85.09 57.13 96.41 85.70 81.74 87.33 65.46 83.88 52.07 58.51 15.22 20.16 42.53 40.48 62.26
FARE 67.82 79.09 49.63 92.05 84.14 75.04 80.35 49.31 59.09 43.48 53.38 10.10 11.94 28.35 33.99 53.56
TeCoA 68.65 63.95 35.27 87.20 72.44 61.77 63.45 37.63 31.57 22.30 38.08 5.14 5.79 14.62 25.85 40.36

PMG-AFT 66.80 70.66 40.29 88.60 75.48 62.26 65.88 37.03 36.63 25.40 37.96 4.64 5.46 18.51 21.92 42.19
TGA-ZSR 76.14 81.99 53.80 90.80 79.07 72.54 74.22 46.76 49.75 34.67 48.20 7.76 11.31 22.86 30.37 50.29
AdvFLYP 49.14 71.52 37.12 89.99 83.39 76.33 81.52 53.29 64.50 45.28 54.46 9.81 16.17 27.33 35.21 53.28

AV G

CLIP 14.48 21.43 14.33 26.95 25.39 22.59 22.11 16.63 21.14 13.05 14.92 3.82 5.09 10.65 10.97 16.36
FARE 25.71 28.06 16.93 50.93 47.25 37.25 34.13 19.44 19.85 13.92 19.58 2.84 3.44 11.43 15.24 22.88
TeCoA 40.05 31.33 17.76 58.84 49.25 38.67 34.92 20.59 14.76 9.75 19.32 2.11 2.40 11.83 16.02 23.40

PMG-AFT 40.14 37.74 21.19 62.25 53.90 40.75 36.88 21.08 18.12 11.65 20.64 2.15 2.34 13.16 13.75 25.40
TGA-ZSR 39.61 34.45 21.61 56.33 49.25 41.00 36.37 22.91 19.59 13.08 20.76 2.59 4.19 10.87 16.00 24.93
AdvFLYP 23.58 36.64 17.94 60.47 59.00 49.52 46.78 28.74 30.75 20.32 28.10 3.87 6.53 14.66 20.34 30.26

Table 1: Recognition accuracy under different attack scenarios (ϵ = 1/255, 4/255 and clean im-
ages) on downstream datasets of CLIP finetuned with AdvFLYP on tiny-LAION, compared with
existing methods finetuned on TinyImageNet. We highlight the best and second best results.
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PGD-10
(ϵ = 1/255)

CLIP 0.21 0.64 0.18 11.38 14.82 8.38 1.09 1.04 0.67 0.03 1.15 0.03 0.00 0.01 3.09 3.04
FARE 22.36 24.79 11.50 63.80 59.46 49.21 45.71 22.20 19.80 8.97 19.31 1.07 2.76 5.96 19.73 25.30
TeCoA 40.83 37.31 19.64 75.49 69.21 59.47 61.35 31.13 27.87 13.29 31.17 3.22 5.55 15.13 22.34 33.73

PMG-AFT 39.43 42.19 21.78 77.34 72.00 61.06 64.21 33.94 33.11 18.17 32.21 3.25 6.03 14.87 23.46 35.97
TGA-ZSR 56.52 37.80 19.15 79.33 75.53 64.76 73.32 34.07 37.32 19.05 37.28 3.49 8.67 14.05 26.17 37.86
AdvFLYP 29.58 49.36 24.31 76.59 71.40 60.90 58.79 37.03 36.54 23.95 33.87 3.88 7.02 12.53 24.84 37.22

PGD-10
(ϵ = 4/255)

CLIP 0.00 0.00 0.00 0.01 0.59 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.06
FARE 0.28 0.02 0.00 1.39 6.57 2.92 1.55 0.00 0.03 0.00 0.10 0.00 0.00 0.00 0.85 0.96
TeCoA 3.54 0.70 0.76 9.31 20.41 12.42 3.22 2.02 0.63 0.09 2.06 0.11 0.00 5.60 4.68 4.43

PMG-AFT 3.32 0.52 0.97 10.01 20.04 12.32 2.89 1.76 0.80 0.08 1.95 0.07 0.03 6.52 4.84 4.48
TGA-ZSR 0.20 0.01 0.00 2.03 6.70 3.35 2.02 0.02 0.11 0.01 0.26 0.01 0.00 0.00 0.48 1.07
AdvFLYP 2.05 1.42 1.99 15.81 23.13 14.22 2.10 2.07 0.94 0.26 2.30 0.07 0.00 0.06 5.75 5.01

AutoAttack
(ϵ = 1/255)

CLIP 0.05 0.00 0.01 0.00 0.44 0.10 0.00 0.03 0.00 0.11 0.01 0.01 0.18 0.06 0.21 0.08
FARE 21.46 23.07 10.59 62.94 58.59 48.29 44.89 21.03 19.02 7.90 17.73 0.86 2.01 5.36 18.14 24.32
TeCoA 38.58 35.39 17.92 74.95 68.54 58.23 60.13 29.06 25.37 11.69 28.77 2.66 4.47 12.98 20.75 32.21

PMG-AFT 36.90 39.57 19.67 76.76 71.29 59.60 62.44 31.09 30.38 14.59 29.56 2.65 4.83 13.01 21.81 34.09
TGA-ZSR 0.06 0.04 0.02 0.08 0.35 0.11 0.08 0.05 0.02 0.00 0.01 0.03 0.12 0.08 0.16 0.08
AdvFLYP 27.72 46.55 21.90 75.98 70.67 59.73 57.56 34.79 34.59 21.38 31.61 3.13 5.28 11.16 23.19 35.54

clean

CLIP 57.64 85.09 57.13 96.41 85.70 81.74 87.33 65.46 83.88 52.07 58.51 15.22 20.16 42.53 40.48 62.26
FARE 61.80 79.25 53.22 94.46 86.25 81.63 87.33 62.48 74.59 49.45 59.57 11.80 19.89 26.77 39.47 59.01
TeCoA 63.28 70.40 39.82 91.45 81.31 76.72 81.98 51.65 55.78 34.08 53.29 8.11 13.35 26.72 33.83 51.32

PMG-AFT 61.82 75.26 43.88 92.81 84.65 78.39 83.92 55.34 64.70 42.08 55.33 9.25 14.85 24.67 34.57 54.27
TGA-ZSR 68.23 77.23 41.82 91.59 77.88 77.56 81.22 52.85 66.33 37.72 53.09 9.85 12.36 32.84 35.53 53.42
AdvFLYP 51.63 75.39 44.02 91.34 84.26 77.53 83.10 56.33 68.00 47.43 56.20 10.37 17.97 23.13 36.01 55.08

AV G

CLIP 14.48 21.43 14.33 26.95 25.39 22.59 22.11 16.63 21.14 13.05 14.92 3.82 5.09 10.65 10.97 16.36
FARE 26.48 31.78 18.83 55.65 45.80 45.51 44.87 26.43 28.36 16.58 24.18 3.43 6.17 9.52 19.55 27.40
TeCoA 36.56 35.95 19.54 62.80 59.87 51.71 51.67 28.46 27.41 14.79 28.82 3.52 5.84 15.11 20.40 30.42

PMG-AFT 35.37 39.39 21.58 64.23 61.99 52.84 53.36 30.53 32.25 18.73 29.76 3.80 6.44 14.77 21.17 32.20
TGA-ZSR 31.25 28.77 15.25 43.26 40.11 36.45 39.16 21.75 25.95 14.20 22.66 3.34 5.29 11.74 15.59 23.11
AdvFLYP 27.74 43.18 23.05 64.93 62.36 53.09 50.39 32.55 35.02 23.26 31.00 4.36 7.57 11.72 22.45 33.21

Table 2: Recognition accuracy under different attack scenarios (ϵ = 1/255, 4/255 and clean images)
on downstream datasets of CLIP finetuned with AdvFLYP on small-LAION of 1M training im-
ages, compared with existing methods finetuned on ImageNet of roughly 1.2M training images.

TeCoA and PMG-AFT achieve higher robustness. However, this is at the cost of extreme clean
accuracy decline (40.36 and 42.19, respectively, versus 53.28 for AdvFLYP). Another interesting
finding is that AFT baselines finetuned on TinyImageNet leads the model to generalize better on
downstream datasets of similar distribution, such as CIFAR10, CIFAR100 and STL10, which are
also low-resolution general object classification datasets, under all evaluation settings.
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AdvFLYP v.s. AFT methods finetuned on ImageNet. As can be seen from Table 2, AFT meth-
ods finetuned on ImageNet incur lesser loss of generalization on clean images, compared to when
finetuned on TinyImageNet. This is due to the larger dataset size and better image quality of Ima-
geNet, which effectively alleviates overfitting. Nonetheless, all baselines finetuned on ImageNet still
exhibit signs of overfitting, with higher test accuracy on ImageNet, especially TGA-ZSR. Addition-
ally, employing ImageNet as a proxy dataset for AFT benefits certain datasets that share more similar
classes than others. For example, AFT baselines finetuned on ImageNet, which include a consider-
able amount of animal classes, transfer better to OxfordPets (Parkhi et al., 2012) and ImageNet-like
general classification datasets. Among AFT baselines, the unsupervised method FARE achieves the
best clean accuracy. However, FARE exhibits noticeably lower robustness levels, compared to su-
pervised AFT. TGA-ZSR is shown to largely overfit to both the data distribution of ImageNet and
the attack type during AFT. Our AdvFLYP performs consistently better than supervised methods in
terms of generalization on clean images and different adversarial attack scenarios.

For each downstream dataset, we average the accuracy of a model under all scenarios including
PGD-10 (ϵ = 1/255), PGD-10 (ϵ = 4/255), AutoAttack (ϵ = 1/255) and clean images, for a
comprehensive evaluation. When finetuned on a tiny portion of web-scale image-text data (tiny-
LAION), our AdvFLYP achieves best overall results on 11 out of 14 downstream datasets, with
an improvement of 4.86 points (19.1%). Additionally, AdvFLYP finetuned on small-LAION
performs best on 12 out of 14 datasets, with an improvement of 1.01 points (3.1%). Results show that
our AdvFLYP paradigm steadily enhances zero-shot adversarial robustness of CLIP across datasets
of various domains, without overfitting to the distribution of any dataset, proving the importance of
following the pre-training data and training objective of CLIP in AFT.

4.4 ANALYSIS ON ADVFLYP

This work proposes an AFT paradigm that practically resumes the pretraining process of CLIP, ex-
cept that the training data are swapped for adversarial images. However, the behaviour of contrastive
learning in a context of adversarial finetuning is understudied. This section explores other training
settings of the AdvFLYP paradigm to provide insights into its working.

(%) Rob. Acc. Clean Acc. Avg.

LCLIP 30.41 53.02 41.72
LCLIP + Llogit 33.44 52.64 43.04
LCLIP + Lfeat 30.74 55.11 42.93

AdvFLYP 33.06 53.28 43.17

Table 3: Ablation of training objective in AdvFLYP. The re-
ported robust accuracy is tested under PGD-10 (ϵ = 1/255).
We report average accuracy over 14 downstream datasets.

Ablation studies. On tiny-
LAION, we ablate the default Ad-
vFLYP to reveal contributions of
each term of the formulated loss
(Eq. 10) to its effectiveness. From
Table 3, it can be seen that the con-
trastive loss LCLIP as employed in
CLIP’s pretraining significantly im-
proves its zero-shot adversarial ro-
bustness from the original CLIP’s
3.04 to 33.06, which plays a ma-
jor role in AdvFLYP. Adding logit-
level regularization Llogit further im-
proves transferability of robustness on downstream data, which is in line with the findings of PMG-
AFT (Wang et al., 2024). In this work, we find that feature-level regularization Lfeat is highly
effectively in retaining generalization on downstream clean images. We introduce logit- and feature-
level regularization into our AdvFLIP to reach a sweet spot between robustness and clean accuracy
without further tuning their respective weights.

Amount of training data. Results in Table 1 and Table 2 show that a larger size of webscale data
for AFT benefits both robustness and accuracy. We investigate the impact of training data amount
on AdvFLYP in Fig. 2 (left). Interestingly, when the training data amount is scarce, both robustness
and accuracy are data-limited and therefore, are not in conflict. Increasing the amount of collected
web-scale data for AdvFLYP improves both robustness and accuracy considerably. When there are
sufficient image-text pairs, the improvement plateaus and does not noticeably benefit from more
training data.

Batch size. Different from existing AFT methods, which finetune fθ through a cross-entropy w.r.t.
the true labels of images, AdvFLYP employs the same contrastive loss in AFT as in the pretraining

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Adversarial robustness (PGD-10, ϵ = 1/255) and clean accuracy of AdvFLYP paradigm
under various training settings, averaged on 14 downstream datasets.

phase. As suggested in (Radford et al., 2021), a larger batch size is beneficial for contrastive learning,
because it provides more negative samples in a single batch. In this experiment, we vary the batch
size from 32 (25) to 512 (29) for AdvFLYP and report its performance in Fig. 2 (right). We adjust the
number of epochs for each batch size to ensure a similar number of updates to model weights. We
show that increasing the batch size for AdvFLYP improves clean accuracy significantly, which is in
line with the findings of CLIP (Radford et al., 2021). In comparison, enlarging the batch size boosts
the robustness at first. However, when the batch size increases to 512, robustness slightly declines,
with additional gains of clean accuracy. This shows that both robustness and accuracy benefit from
a sufficiently large batch size in contrastive learning in an AFT context. Further enlarging the batch
size would trade robustness off for accuracy. We experiment with the maximum batch size of 512
due to hardware constraints.

(%) Rob. Acc. Clean Acc. Avg.

fθ, gϕ 36.04 55.04 45.54
fθ, gϕ, others 35.78 54.95 45.36

fθ (LCLIP → LI2T ) 36.29 55.30 45.80
fθ (LCLIP → LT2I ) 36.32 54.36 45.34

fθ 36.82 54.80 45.81

Table 4: Impact of trainable CLIP modules on AdvFLYP
finetuned on 500k web data.

Unfreeze other components. Exist-
ing AFT methods invariably finetune
the vision encoder fθ of CLIP, while
keeping the text encoder gϕ frozen.
Intuitively, resuming the pretraining
recipe for AFT would result in whole
finetuning of CLIP. In this experi-
ment, we unfreeze more modules of
CLIP to investigate the impact on Ad-
vFLYP, and report the results in Ta-
ble 4. It can be seen that unfreezing
more modules of CLIP in AdvFLYP does not lead to better robustness, indicating that fθ is still the
major component in adversarially robust CLIP. Unfreezing gϕ and more modules such as layer-wise
normalization leads to slightly better clean accuracy. We also find that employing only the image-
to-text loss, i.e., the first term of LCLIP (Eq. 1), leads to best clean accuracy. Utilizing the full
contrastive loss LCLIP and finetuning only fθ achieves the best overall performance for AdvFLYP.

5 CONCLUSION

In this work, we propose a simple yet paradigm for adversarial finetuning, Adversarially Finetune
Like You Pretrain (AdvFLYP), which practically resumes the training of CLIP with adversarial im-
ages, while retaining the training recipe as much as possible. This paradigm addresses the limita-
tions of existing AFT methods, which invariably finetune the CLIP model on adversarial images on a
proxy classification dataset through a cross-entropy loss, compromising the generalization of CLIP.
Our AdvFLYP paradigm employs web-scale image-text data that follows the distribution of CLIP’s
pretraining data, and finetunes the same contrastive loss as employed during CLIP’s pretraining. We
additionally find that logit- and feature-level regularization benefits robustness and clean accuracy,
respectively. AdvFLYP outperforms existing AFT methods commonly finetuned on TinyImageNet
and ImageNet by 19.1% and 3.1%, respectively, while alleviating overfitting to any proxy dataset
distribution. We analyse the behaviour of AdvFLYP and show that a sufficient large training data
size and training-time batch size are crucial to both downstream robustness and accuracy, throwing
light on the behaviour of contrastive learning in an adversarial finetuning context of CLIP.
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