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ABSTRACT

In recent years, large language models (LLMs) that were pretrained at scale on
diverse data have proven to be a successful approach for solving different down-
stream tasks. However, new concerns about proper performance evaluation have
been raised, especially for test-data leakage caused by accidentally including them
during pretraining, or by indirectly exposing them through API calls for evaluation.
Motivated by these, in this paper, we propose a new evaluation workflow that
generates steerable synthetic language datasets and proxy tasks for benchmarking
the performance of pertrained LLMs on sentence classification tasks. This ap-
proach allows for better characterization of the joint analysis on the robustness and
accuracy of LLMs without risking sensitive information leakage. It also provides a
more controlled and private way to evaluate LLMs that avoids overfitting specific
test sets. Verified on various pretrained LLMs, the proposed approach demonstrates
promising high correlation with real downstream performance.

1 INTRODUCTION

In recent years, large language models (LLMs) have emerged, showcasing remarkable capabilities
across a wide range of natural language processing (NLP) applications (Peters et al., 2018; Devlin
et al., 2019} [Yang et al., 2019; Raffel et al., |2020; Rae et al., 2021} [Wei et al., 2022a} [Thoppilan
et al., 2022} |[Hoffmann et al.,|2022; |(Chowdhery et al., [2022)). To empower LLMs with more generic
abilities (zero-shot, reasoning, and generalization), notable progress has been made in proposing
prefix-tuning (L1 & Liang, [2021)), instruction-tuning (Wei et al., [2022a)), scratchpad prompting (Nye
et al., 2021} |[Lewkowycz et al.| 2022} Wei et al.| 2022c]), etc. As we continue to scale up LLMs to
critical sizes, they often exhibit emergent abilities (Wei et al.,[2022b)) that they are not directly trained
to have, including performing arithmetic, answering questions, summarizing passages, and more.

While new opportunities present themselves with foundation models, they also bring forth potential
risks and challenges (Bommasani et al., 2021; Blodgett & Madaio, 2021} [Wiggins & Tejani, 2022}
Thieme et al.| |2023; Biderman et al., 2023). For example, despite the unprecedented publicity of
LLMs and beliefs in their emergent abilities, some also argued the emergent abilities of LLMs are
a mirage (Schaeffer et al.,|2023)) and a change in metric choice can lead to a different conclusion.
Recently, researchers have also openly expressed concerns about the potential for language models
to be trained on test sets (Liang, [2023). Even worse, private or held-out unpublished test sets may
as well be vulnerable to data leakage through querying the LLMs via APIs for evaluation purposes.
Extraction attacks (Carlini et al.,|2019; 2021), membership inference attacks (Hisamoto et al., 2020;
Thomas et al., 2020; Mireshghallah et al.| [2022), and generative embedding inversion attack (Li
et al., [2023)), caused by unintended memorization (Carlini et al., 2019} Biderman et al., [2023)) further
deepened our concerns about privacy leakage during test time.

To address this caveat of “information leakage” during test time, in this paper, we aim at proposing
a new testbed for benchmarking LL.Ms with synthetic data. We design this testbed to serve as a
“minimum” model test for two basic skills infants must learn when acquiring language, identifying
(sentiments in) words and linguistic structures (Frost et al., 2020). To achieve these, we (1) create a
basic artificial language with some long-range dependency structure to mimic statistical learning of
language, (2) create class labels associated with different notions (sentiment or some other attributes),
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Figure 1: Overview of SynTextBench. SynTextBench generates a set of synthetic datasets from
any given lexicon with word-level labels. We test the given LLM on sentence-level tasks with these
datasets and obtain robustness-accuracy characterization under a range of steerable task difficulties.
For each LLM, we can plot the robustness-accuracy trade-off curve and make model comparisons.

and then (3) probe LLMs on that. Specifically, we leverage existing sentiment lexicons, such as
SentiWordNet 3.0 (Baccianella et al.,|2010), to generate working word lists based on the word (or
synset) level labels. We build positive, negative, and neutral word lists from SentiWordNet 3.0, and
constructing sentences following the nesting parentheses (Papadimitriou & Jurafskyl 2020), which
mimics the recursion structural hypothesis about the narrow language faculty in humans (Hauser et al.}
2002) and the dependency tree structure in natural language (Chiang & Leel 2022). By maneuvering
the mixing percentage of binary words (positive/negative words) and neutral words, we create a
configurable testbed for evaluating the performance of LLMs on different levels of difficulty and
complexity. Finally, we benchmark and quantify the ability of each LLM on sentence classification
tasks by comparing their performance on a set of our synthetic datasets with varying difficulty levels.

We dub our evaluation framework using synthetic data by SynTextBench and present the workflow in
Figure[I] where we focus on benchmarking LLM sentence embeddings in terms of their accuracy
and robustness. By accuracy, we are interested in analyzing the linear separability of sentence
representations rendered by different pretrained LLMs. We note that in learning sentence embeddings,
the go-to metrics are cosine distance or linear probing accuracy, both of which imply separability. By
robustness, we refer to the decision margin on these sentence embeddings with respect to the optimal
classification strategy. We derive both measures using only the constructed synthetic datasets, which
allow for privacy-preserving benchmarking of LLMs. SynTextBench is designed as an extendable
framework for the evaluation of language sentence representations that covers a range of controllable
task difficulties. We envision our framework to also be easily adaptable to other societal properties
such as value assessment and will facilitate independent and sustainable LLM auditing (Weidinger
et al.| 20215 |Ganguli et al.||2022; [Madiegal 2021; Mokander et al.| 2023} [Rastogi et al., [2023)).

Our main contributions are:

e We introduce SynTextBench, a novel theoretically-grounded framework to generate steerable
synthetic datasets towards a holistic evaluation of LLMs. The use of synthetic datasets alleviates the
risk of test-data leakage and offers new tools for LLM testing and auditing.

e SynTextBench provides a configurable lightweight testbed and a quantifiable metric for evaluating
the robustness and accuracy of LLMs on different levels of difficulty and complexity for sentence
classification tasks, with no restrictions on the model architecture.

e We conduct experiments with several state-of-the-art LLMs on our testbed and report their
performance and behavior. SynTextBench, as a real-data-free evaluation method, shows high correla-
tion with robustness-accuracy performance evaluated on real data. Further study demonstrates its
capability of making quick attribution comparisons such as analyzing fine-tuning effects for LLMs.

2 METHODOLOGY

2.1 WHY USING SYNTHETIC DATASETS FOR LLM EVALUATION?

To reduce the reliance on real-world data, we propose to build synthetic NLP tasks by generating
synthetic sentences as model inputs at test time. This way, we no longer need to exchange sensitive
private data or label-annotated data as test sets with LLM APIs. In making a steerable and transparent
evaluation framework for LLMs, we first detail the desiderata of proxy tasks and the evaluation metric.
e Task substance: Tasks should test a pretrained LLM’s ability to encode sentence representations
that preserve class separability when evaluated by a linear classifier.

e Task difficulty: Tasks’ difficulty should be configurable to allow for comprehensive analysis, i.e.,
one can generate tasks of various levels of difficulty.

e Task feasibility: Tasks should be feasible to solve, i.e., the sentences should be distinguishable to
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Figure 2: Overview of the sentence generation procedure. In block a, we generate word lists from
SentiWordNet 3.0. In block b, we generate each sentence token following nesting parenthesis and
mixing distribution D. In block c, we show a running example of sequentially generating ¢g, t7, ts.

a certain degree by an algorithm that works on the raw sentences input.

e Task independence: Tasks’ ground-truth should be independent of the LLM to be evaluated, in
order to avoid biased evaluation, e.g., the label in the task should not be given by an LLM.

e Task equity: Tasks should be able to be generated by anyone and affordable for anyone without
requiring any private data or favoring any party with more resources.

e Metric informativeness: The designed framework should give a quantifiable metric that has a
clear implication (e.g., the larger the better) and correlates well with the real performance.

With these in mind, it is straightforward to see why we should not opt for synthetic datasets generated
by any LLM: (1) task difficulty would not be configurable, (2) the evaluation might favor the LLM
that generates the synthetic sentences and/or the pseudo-labels (causing label leakage), and (3) any
auditor without access to proprietary LLMs or datasets cannot run independent evaluation.

In the following, we explain how we leverage sentiment lexicons, such as SentiWordNet 3.0, to create
building blocks for our framework. Then, we put together building blocks and generate synthetic
inputs to LLMs by observing a nesting structure. We adjust the mixing ratio of ingredients in the
recipe to simulate tasks of different difficulties. We depict this procedure in Figure[2] Finally, we will
introduce our evaluation workflow and how we arrive at a quantifiable metric.

2.2 CONSTRUCTING SYNTHETIC DATASETS AND TASKS

Word List. Building a synthetic task requires us to define the synthetic inputs to be used. Here,
we utilize sentiment lexicons with word-level labeling. SentiWordNet labels the synsets of WORD-
NET (Miller, |1995) according to the notions of “positivity”, “negativity”, and “neutrality”. Each
of the entries in SentiWordNet has PosScore and NegScore denoting the positivity and negativity
score, and ObjScore is calculated by 1 - (PosScore + NegScore), denoting the neutrality score. When
categorizing these words, we remove the sense number associated with the words and group words
into individual word list based on the following criteria: for a word w,

e if PosScore > NegScore, we categorize w into the positive word list;

e if PosScore < NegScore, we categorize w into the negative word list;

e if PosScore = NegScore = 0, we categorize w into the neutral word list.

We give running examples in the Appendix Table 3] for better understanding. In practice, we perform
the procedure on SentiWordNet 3.0 and gather a positive word list with 23147 words, a negative
word list with 26440 words, and a neutral word list with 154993 words. The same procedures can be
applied to any sentiment lexicons with word-level labeling, which will result in different word lists.
To this end, we created the word lists from SentiWordNet 3.0 as depicted in Figure 2{a).

Sentence structure. A recent literature (Papadimitriou & Jurafsky}, [2020) explored the power of
music and Java code in training models that transfer to NLP tasks. It further stated that, not only
music and Jave code, non-linguistic artificial parentheses languages can also train language models
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that yield substantial gains compared to random data when testing on natural language (Chiang &
Leel 2020; R1 & Tsuruoka, |2022; |Papadimitriou & Jurafskyl 2023). Motivated by this, we follow
one of the abstract structures, nesting parenthesis, when generating the synthetic sentences in our
proxy tasks. The inclusion of the parenthesis is to guarantee we test for the linguistic structures,
whose importance is repeatedly advocated in literature from both machine learning and cognitive
science (Frost et al., 2020 Wilson et al., |2020; |Manning et al., |2020). Specifically, nesting parenthesis
involves paired tokens and a recursive structure. For example, by referring to Figure[2(b), one sees
that ¢; and ¢4 are paired words, while ¢5 and ¢3 are another paired words. In our example, the words
are hierarchically nested, meaning the token to be paired with ¢2, which is ¢3 in our case, should
appear before the pairing token with ¢;. In other words, it observes a “last in first out” data structure,
and the arcs in Figure[2(b) do not cross.

Sentence generation and difficulty level. With the created word list from above, we will now
explain how to do sentence generation following the structure introduced. Let us revisit the case in
Figure[2b). Assume we want to generate a positive sentence (label y = 1), and we already generated
the first five tokens ¢; : ¢5 in the sentence with colors denoting the picked word. Now, to decide the
next token, we sample tg from a mixing distribution D, where

D =p. - ‘<eo0s>" + pn(1 — pe) - last_unpaired_word + (1 — p,,)(1 — pe) - Dnew- )

To interpret distribution D, we realize that there are essentially 3 possible outcomes for the incoming
te token: (1) it can be the end of sentence indicator ‘<eos>’, (2) it can be the popped token
from the stack that stores the unpaired words, i.e., the last unpaired word, (3) it can be a new
word. If it is to pick a new word, this word will be sampled from the distribution of new words
Diew, which directly depends on the label y of the sentence to be generated and the desired task
difficulty. For a positive sentence (y = 1), Dyeyjy—1 is described by the probability density function
(PDF) p - fxeu(z) + (1 — p) - fros(z), where p specifies the percentage of neutral words in a
synthetic sentence, fngy gives the PDF of neutral words, and fpog gives the PDF of positive words.
Similarly, if we are to generate a negative sentence (y = —1), we have Dyey)y——_1 described by
p- fneu(x) + (1 —p) - fngc(z), where fygc gives the PDF of negative words.

In Figure2|c), we show a running example of the sentence generation process, where we flip a coin
with 3 outcomes each time to decide on a new token. When the realization is “new words” (like in g
and t7), this word will also be pushed to the stack “Unpaired_words” that stores unpaired words. When
we are deciding tg, we draw “unpaired words” and hence tg is determined by Unpaired_words.pop().
In essence, with the generated sentence, its label is determined by construction, which guarantees
the task independence since the label is not given by an LLM. It also allows configurable task
difficulty by adjusting the percentage p of neutral words in a synthetic sentence. That is, it is easier
to predict the sentiment of sentences consisting of 90% positive words and 10% neutral words
than that of sentences constructed all by neutral words. On the whole, by fixing a mixing ratio p,
together with the fixed p. and p,, given in the above, one synthetic dataset will be constructed as
well as a resulting proxy sentiment classification task. By varying the mixing ratio p, a set of tasks
with diverse difficulties can be created. In the Appendix Figure[5] we prove the task feasibility by
demonstrating the separability of generated synthetic datasets by SentiWordNet sentiment analysis
algorithm (Denecke, [2008). With an increasing mixing ratio p, while the task becomes harder, we
show there at least exists an algorithm that can separate the data to a certain degree, showcasing a
lower bound on the optimal classification strategy. By our workflow of constructing synthetic datasets
and tasks, we also guarantee task equity since the generation process requires no access to any LLM
or private data, and can be readily replicated by anyone with limited resources. Furthermore, we
note that the construction of synthetic datasets and tasks described herein is also extendable to other
lexicons and tasks by swapping the lexicon used for extracting word lists.

Lastly, we note that during the construction of synthetic sentences, the probability p. associated with
the special token ‘<eos>’ is determined by its frequency in the English Wikipedia corpus. For the
remaining mass 1 — p., p, portion is assigned to new words, with its value picked following |Pa-
padimitriou & Jurafsky|(2020), which is p,, = 0.5. Additionally, when there are no unpaired words
in the stack (e.g., when drawing the starting token of the sentence, or when all the unpaired words
are popped), we assign its probability p,, (1 — pe) to new words. We show the length profile of our
synthetic data in Figure {]in Appendix.

Discussions. The inclusion of parenthesis in our sentence structure guarantees we test for the
linguistic structures but at the same time makes non-grammatical test sets. While grammar might be
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Algorithm 1 Benchmarking LLMs using synthetic datasets (SynTextBench)

Input: Sentiment lexicons .S, a range of difficulty levels P, an LLM g, threshold accuracy ar.
Output: SynTextBench score that quantifies the robustness-accuracy performance.

1: Construct positive/negative/neutral word lists from sentiment lexicon S.

2: for pin P do ) )

3: Generate a synthetic binary classification task and obtain training set (z¢"%*", 3'"%'") and test
set (xtest ytest)

) . . . .

4: Calculate transformation 77 and 71 from z{""" = {g(z) | (z,y) € (a'"*",y""*"),y = 1}
and ZT{“” — {g(l’) | (x,y) c (xtrazn7ytrazn)? Y= 71} '

5. Transform training set and test set ;""" = Ty(z{%™), 22,79 = T_;(2'"#") and
ZAlteSt = T1 (Ziest)’ Z;ltCSt = T_l(ZTft). ]

6: Derive the Bayes optimal classifier f according to sign(i” (2 — £17£2)) based on 2 """
and 221" ie. p; = mean(z, "),

7: Read out the accuracy a of f on 73

f1o = mean(z" ")

and z2,"°*", and calculate the average scale mar-
|(2_M1;H2)TI]| .
——=2-———— for correctly-classified sentence

gin § := avg(]|A.|2) according to ||A |2 =

[H
embeddings.
8: Denote the accuracy and average margin pair on the task by (ap, d,).
9: end for

10: Define a goodness function s(a) = ﬁ Z{pep‘%hl} dp, for a € R0, 1].
11: SynTextBench score = falT s(a)da.

crucial in some NLP tasks that requires more advanced reasoning. For sentiment analysis, we believe
it should not have a strong dependency on grammar (we exclude the scenario of negation which can
be detected by a rule-based method). For example, the reviews “love love fantastic”, “love fantastic
love” and their word permutations should all be predicted as positive, regardless of their grammar.
We support this intuition by additional experiment where we noticed that 86% of the labels given by
Huggingface sentiment analysis pipeline on product reviews classification (Hu & Liul 2004) remain
the same after removing 284 stop words (listed in the Appendix[A.2) from the sentences and hence
making them non-grammatical. We leave more details and sentence examples to Appendix [A.4]

2.3 ROBUSTNESS-ACCURACY EVALUATION

Given an LLM g, let x, y be the input sentence and its label, z be the sentence embeddings z =
g(xz) € R™, we are interested in evaluating the accuracy of the sentence embedding classifiers f, and
the average distance A from sentence embeddings to the linear classifiers (i.e., decision margins).
Weletz; be {z:2=g(z),y=1}and z_1 be {2z : z = g(z),y = —1}.

Preparing sentence embeddings. Recall that Bert-flow (Li et al.l|[2020) and Bert-whitening (Su
et al., 2021) transformed the sentence embeddings into an isotropic Gaussian distribution to rem-
edy the anisotropic behavior in the sentence embedding vector space. We thereby also perform
whitening on sentence representations before we draw the decision rule on the embeddings. Trans-
forming a set of sentence embeddings of a class into an isotropic Gaussian involves two steps:
(1) model the mean b, and covariance X, of original embeddings z,, (2) apply a transforma-
tion to the embeddings F7S~1/2z,, where FSFT = ¥, is the singular value decomposition of
Yy. Nevertheless, since 3, can be ill-conditioned, directly applying S —1/2 on embeddings 2y
might amplify noisy signals due to numerical instability. Thus, we propose to reduce the dimen-
sion according to energy-preservation (Leskovec et al.,|2020) (also called variance-based methods

k
by |Falini| (2022)). We select to keep K dimensions according to arg min, %nil 2@ > 0.99, where
s; = diag(9S)]i] is the i-th largest singular value of S. Till now, we see that the sentence embed-

dings are transformed to an R vector space via FT1 w97 ,1/ 12: w2y We perform these operations
for both classes (y = 1 and y = —1) separately. Since we want the transformed embeddings to
observe the original relative distance between two classes, we further scale the distance between two
whitened Gaussians by dinter-class/ @intra-class, Where the numerator diyer-class = ||b1 — b—1]| calculates
the inter-class distance (the distance between two class centers by and b_1), and the denominator
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1 y ] . .
inusa-class = s (i 12 = bl + 3252 11224 - b_1||) calculates the intra-class distance (the
average distance from class data to class mean) with m; and ms being the number of positive
sentences and negative sentences, respectively. We let T}, denote the overall transformation operations

and obtain transformed embeddings 77 = T1(z1) and 221 = T—1(2_1).

Decision margins induced by robust Bayes optimal classifiers. Recall that robust Bayes optimal
classifiers explicitly give the optimal classification strategy for class-conditional Gaussian distribution
in the presence of data perturbations (Bhagoji et al.,2019; Dan et al., 2020). Here, we see that (2, y)
are modeled as P, ,, 1.t 2ly =1 ~N(u1,Ix), 2|y = =1 ~ N(p2, Ik ), and y € C = {+1, —1}.
While finding the robust Bayes optimal classifier generally involves solving the optimization problem
arg min,, <. (1 — 2)TY =1 (u — 2) (cf. Appendix , we can prove that, when the covariance is
an identity matrix, the class priors P(y = 1) = 7, P(y = —1) = 1 — 7, the perturbation radius ¢, then
the optimal classifier is given as simply f : sign(w? (2 — £27£2) — ¢/2), where ¢ = log{(1—7)/7},
w = fi(1—¢/||fi]|2), and i = #5#2 Furthermore, when the classes are balanced (i.e., 7 = 1/2), the
robust Bayes optimal classifier overlaps with the Bayes optimal classifier. That is, the (robust) Bayes
optimal classifier is plainly sign (i’ (2 — %)) which is independent of e. We then use this given
classifier to calculate the accuracy on the synthetic datasets. In fact, we prove in Appendix [A.7]that,
as long as i lies completely within a degenerate subspace of the eigenspace of the covariance matrix
(i.e., with eigenpairs {( A\, vi), k € [n]}, for Vi,j €{k: A\ # 0, a7 vx # 0}, Ai = \; = ), the
e-robust Bayes optimal classifiers overlap for all €. In the case of an identity covariance matrix, the
degenerated subspace of the eigenspace expands the whole R, hence /i lies in the space naturally.

Now that we have specified the optimal robust classification rule on the transformed sentence
embeddings, we write out the decision margin induced by the classifiers using an informal but
more intuitive statement: For any sample z, the Bayes optimal classifier f of class-balanced class-

_ H1F+HONT ~
conditional Gaussian distribution P,,, ., 1, , yields a decision margin of || Ay = W, and

if we scale the margin by the distance between two Gaussian centers, we obtain a scaled margin of
_ 5 B1tpo T ~

1Az = (=t

To this end, we have prepared sentence embeddings and specified the way of calculating decision

margins induced by a robust Bayes optimal classifier. In the following, we will state the complete
algorithm for characterizing robustness-accuracy performance of LLMs using synthetic datasets.

. We give the formal results for the generic class prior in Appendix

2.4 SYNTEXTBENCH SCORE AND ALGORITHM

With Section 2.2] and Section [2.3] we
now can simulate synthetic tasks of a 14
configured level of difficulty and evalu-

BERTpase

! ) - BERTiarge
ate their accuracy and margin. In our —— ROBERTapase
benchmarking process, we essentially — DiffCSEB

. . . 104 — DiffCSE-R
build on this foundation to generate a se- L
quence of tasks with different difficulty 08+ TS targe
levels and inspect how the magnitude of c — 513
decision margins changes with the clas- 061 GPT
sifier accuracy. In terms of robustness-
accuracy characterization, it is desirable 0.4 4

for an LLM to consistently yield high
classification accuracy, while maintain- ‘
ing a big decision margin (that is, less \\
sensitive to perturbations in the embed- 0% 70 75 80 85 %0 a5 100
ding space). The pseudocode of the a

proposed framework, SynTextBench, is Figure 3: The goodness function s(a) of nine pretrained
given in Algorithm language models. The SynTextBench score is calculated

. by the area under the curve.
In practice, we let P =

{0,0.05,...,0.9,0.95}, and subsequently generate 20 synthetic datasets with p = 0 being
the easiest and p = 0.95 being the hardest (cf. Section[2.2). Then, we perform analysis on the
sentence embeddings of various synthetic datasets, and threshold the accuracy at ar based on
utility. The threshold serves as a penalty for poor sentence embeddings that lead to an undesirable
accuracy under this threshold, matching our task substance of testing LLM’s ability to preserve

0.2+
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linear separability. By referring to Figure [T} Line [I] in Algorithm [I] determines the word lists
from a given lexicon. From Line[2]to Line [9] the for-loop generates one synthetic dataset at one
time, on which we compute an (accuracy, average margin) pair (a,, d,) and draw one point on the
margin-accuracy 2D plot as in Figure[I] We apply Algorithm [I] on various models and obtain a
margin-accuracy curve for each model. Since we not only care about the curvature of the curve but
also how the (accuracy, average margin) pairs span on the curve, we define a goodness function
s(a) = ﬁ > {pep,a,>a} Op 0N R[0,1] in Lineto account for the span. By our definition, s(a)
will be a monotonically decreasing function (e.g., Figure 3) and calculate the expected margin
conditioned on the accuracy level. The final SynTextBench score is defined by the integration over

the desirable range of threshold accuracy in Line i.e. SynTextBench score = falT s(a)da. We use
SynTextBench as a quantifiable score to inform the accuracy-robustness aspect of a pretrained LLM.
In the later section, we will demonstrate the metric informativeness by measuring the correlation
between SynTextBench scores and the average real-world sentence classification task performance.

3 EXPERIMENTS

3.1 SETUPS

LMs. In the following, we list a few pretrained LLMs predominantly considered by the sentence
embedding literature |Gao et al.| (2021); Su et al.| (2021); /Chuang et al.| (2022). We will showcase the
use of SynTextBench on these models before moving to larger models such as LLaMA and OPT.

e BERTy,s and BERT), (Bidirectional Encoder Representations from Transformers (Devlin et al.,
2019)) are encoder-only transformers pretrained with masked language model and next sentence
prediction pre-training objectives.

o ROBERTay,s (Robustly Optimized BERT Pretraining Approach (Liu et al.} 2019)) is a modifica-
tion of BERT that trained with dynamic masking, large mini-batches, a larger byte-level byte pair
encoding, and removed the next sentence prediction objective.

o DiffCSE-B and DiffCSE-R (Difference-based Contrastive Learning for Sentence Embed-
dings (Chuang et al) 2022)) are BERT},e and RoBERTay,s. models that further trained with
difference-based contrastive learning.

o  T5pase and TSy (Text-to-Text Transfer Transformer (Raffel et al., 2020)) are encoder-decoder
transformers that cast all NLP tasks into a text-to-text problem.

e ST5 (Scalable sentence encoders from pre-trained text-to-text models (Ni et al.,2022)) is initial-
ized by TS5y and trained by two-stage contrastive learning.

o (GPT) DialogRPT (Dialog Ranking Pretrained Transformers (Gao et al.| [2020)) is a decoder-only
model trained on vast human feedback data.

For models that have an encoder component (encoder-only or encoder-decoder), we use the average
output from the first and the last layer as sentence embeddings. For the decoder-only model, we use
the embedding of the last token as sentence embeddings.

Baselines. We followed the open-source implementation of the literature (Whitney et al., 2020) and
fed the pretrained LLMs with synthetic texts generated according to Section [2.2] and reported the
validation accuracy (Val loss), minimum description length (MDL), surplus description length (SDL),
and e-sample complexity (eSC) as baselines (Blier & Ollivier, 2018} [Voita & Titov, [2020; [Whitney
et al}2020). Since these methods take one dataset as inputs, we choose a relatively easy synthetic
proxy task generated by p = 0.2 as the input dataset.

Objectives. Through the experiments, our main aim is to verify the feasibility of making performance
assessments of possible downstream tasks by real-data-free evaluation methods. To achieve this, we
will compare the Pearson correlation coefficients of assessments given by different real-data-free
evaluation methods with the performance on real-world tasks. Since SynTextBench is intended to
inform the robustness-accuracy performance, we will report both the accuracy and robustness on
real-world tasks for studying correlation. We use PWWS attack (Ren et al.,[2019) through TextAttack,
a Python framework for adversarial attacks in NLP, to generate attacks. Essentially, the attacker
will perturb the inputs gradually by changing more and more words until the perturbation leads to
a wrong classification result. Therefore, we report the average percentage of perturbed words in a
successful attack as an indicator of the level of model robustness. As more attentions have been
drawn to in-context learning (ICL) setups lately, we will also give an example where we extend
SynTextBench to ICL and perform ICL on our synthetic tasks using LLMs. Finally, we will also
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Table 1: Correlation between real-data-free eval- Table 2: Aggregated correlation with real-data-free
uation metric and real-data accuracy at different evaluation metrics and the aggregated robustness-

synthetic dataset sizes. accuracy performance, and its breakdown.
n 4096 8192 16384 32768 Correlation. w/  Rob.-Acc.  Rob.-STS  Rob.-Transfer
Val loss 0.29+0.50 0.65+0.00 0.61+0.01 0.2740.02 Val loss -0.06+0.15  0.08+0.13 -0.13+0.24
MDL 0.57+0.11  0.52+0.04 0.51+0.03 0.484+0.03 MDL 0.644+0.06  0.55+0.08 0.624+0.03
SDL, e=1 0.57+0.11  0.5140.04 0.43£0.02 031001 SDL, e=1 0.6040.02 0.51+0.04  0.58:+0.028
eSC, e=1 - - -0.04+0.000 eSC, e=1 - - -
SynTextBench  0.94%£0.01 0.97£0.01 0.96£0.00  0.93:0.00 SynTextBench  0.76£0.04 0.76£0.03  0.69:£0.05

demonstrate how SynTextBench can be used to do attribute comparisons. We defer experimental
details to the appendix due to the page limit.

3.2 PERFORMANCE EVALUATION AND DISCUSSION

We evaluate models listed in Section by SynTextBench framework as well as on real-world
tasks. Specifically, we simulated 20 synthetic datasets as described in Section[2.4]and obtained one
goodness function s(a) for each LLM. We plot these functions together in Fig from which the
final SynTextBench score can be determined by definition. We refer readers to Appendix Table [6]
for the exact numbers due to the page limit. To gauge the performance of these pretrained LLMs
on downstream real-world tasks, we evaluate the given models on SentEval (the Evaluation Toolkit
for Universal Sentence Representations (Conneau & Kiela, [2018))) and show the detailed numbers
in Appendix Table[/|and Figure[/| SentEval tasks include seven semantic textual similarity tasks
(denoted by “STS tasks”), where results are given by the Spearman’s correlation with output range
[—1, 1], and seven transfer learning tasks (denoted by “Transfer task™), where results are given by the
standard accuracy with range [0, 1]. We scale the former to the same range as the latter, [0, 1], and
take an average as the final accuracy indicator.

Correlation with real-world tasks. To demonstrate the informativeness of SynTextBench score, we
list the Pearson correlation coefficients between real-data-free evaluation methods and the accuracy
of SentEval tasks in Table[I] Five real-data-free metrics are considered that includes Val loss, MDL,
SDL, eSC, and the proposed SynTextBench. Since the smaller the baseline metrics are, the better, we
add a negative sign in front of them when calculating the Pearson correlation coefficient. As we have
the flexibility of generating synthetic datasets with various sizes (number of sentences), we compare
four configurations n = {4096, 8192, 16384, 32768}. From Table we observe that SynTextBench
consistently gives scores highly correlated with real-world task accuracy, with correlation coefficients
that are above 0.9. For the four baselines, the highest correlation ever achieved is when n = 8192
and evaluated by Val loss, 0.65. It is noteworthy that SynTextBench is also a stabler metric as
substantiated by the smaller standard deviation.

Ablation on the nesting structure. To showcase the effect of the nesting structure, we see that no
nesting structure is a special case of our proposed framework when p,, = 0 (cf. Equation|[I). In
Table[l] we have SynTextBench(p,, = 0.5) = 0.97. In comparison, we run the analysis for p,, = 0
and obtain SynTextBench(p,, = 0) = 0.92. In conclusion, SynTextBench, with both parameters,
outperform the baselines by large margins. Between the two, SynTextBench with the imposed
structure further improves the correlation.

Robustness implications. To understand how real-data-free evaluation methods correlate with real-
world task robustness-accuracy performance, we further analyze the correlation with the robustness
indicator, the average percentage of perturbed words, on Transfer tasks when n = 8192. We focus on
these tasks as they are classification tasks where adversarial attacks are well-defined. To combine
robustness correlation with accuracy correlation, we add up two ranking vectors by robustness and
accuracy measures, and calculate its Pearson correlation with the ranking by one of the real-data-free
evaluation metrics (Val loss, MDL, SDL, eSC, SynTextBench). This way, we effectively obtain
the aggregated Spearman correlation coefficient between real-data-free evaluation metrics and joint
robustness-accuracy performance. We refer readers to Appendix [A.9|for more experimental details.
We list the results in Table 2| From the “Rob.-Acc.” column, we see SynTextBench has an overall
higher correlation with robustness-accuracy performance compared to other baselines. To be more
precise, SynTextBench shows a coefficient of 0.76, whereas MDL and SDL are 0.64 and 0.60. Recall
that accuracy results were aggregated from STS tasks and Transfer tasks. In Table |2} we also show
how each component contributes to the correlation. In the “Rob.-STS” and “Rob.-Transfer” columns,
we use only STS or Transfer task results as the accuracy measure when ranking the models, and the
remaining steps follow. From the two columns, we see that SynTextBench still shows a stronger
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correlation compared to baselines, while having a slightly better correlation with Robustness-STS
accuracy performance than Robustness-Transfer accuracy performance.

Case study on model comparisons using SynTextBench. Besides having high correlation with
real-world task performance, we show how SynTextBench can be used to make model comparisons.
In Table 3| we list the SynTextBench scores of pretrained TS and ST5 under different dataset sizes n,
together with the accuracy and robustness on SentEval tasks. From the table, it can be seen that the
SynTextBench score of STS is significantly higher than that of TS5 across all n, indicating contrastive
fine-tuning is beneficial for improving sentence embeddings. This conclusion is in sync with the
observations from real-world tasks, where we see ST5 yields both higher accuracy and robustness.

Table 3: Performance evaluation of T5 and ST5 by real-data-free metric (SynTextBench) and real-
data-dependent metrics (accuracy and robustness on SentEval).

SynTextBench real-world
n 4096 8192 16384 32768 | accuracy robustness
T5 | 0.111£0.002 0.1304+0.001  0.145+0.000 0.158+0.001 82.78 12.21
ST5 | 0.2144+0.000 0.223+0.001  0.22740.001  0.230+0.000 90.17 13.23

3.3 EXTENDED STUDY ON LARGE LANGUAGE MODELS AND IN-CONTEXT LEARNING

We emphasize that SynTextBench focused on analyzing the sentence embeddings of language
models, for which larger decoder models generally do not have better performance than smaller
encoder models (Ethayarajh, 2019). Therefore, we followed Gao et al.[(2021) and mostly conducted
sentence embedding experiments with models therein. To demonstrate the general applicability of
the framework to various LLM types, we include in this experiment more large decoder language
models such as LLaMA and OPT models (Touvron et al., 2023a3b; Zhang et al., 2022). In Appendix
Table[8] we calculated the Pearson correlation coefficients between different evaluation methods and
the accuracy of SentEval tasks in the right-most column. One sees that, similar to the observations
with encoder models, SynTextBench also gives scores highly correlated with real-world task accuracy
on decoder models, with the correlation coefficient of 0.871.

Besides probing tasks, we also evaluate the few-shot in-
context learning (ICL) performance on SentEval transfer
tasks and SynTextBench synthetic task. We do not include
STS tasks since they are typically measured by cosine
distance, whose ICL prompts are less obvious to us. We

Table 4: Correlation between real-data-
free evaluation metric and real-data ac-
curacy under ICL settings.

Name Pearson correlation
also excluded TREC as we have not found proper prompts Val Toss 0.17
that could lead to reasonable accuracy. The instructions we MDL 0.20
give include two demonstrations with one demonstration SDL,e =1 0.15
for each class. For example, in CR (customer review), we eSCe=1 -
SynTextBench-ICL 0.81

use the instruction: “Answer the sentiment of the following
review, either Positive or Negative. \n\nQ: We tried it out
christmas night and it worked great .\nA: Positive\n\nQ: very bad quality .\nA: Negative\n\n”. We
give the accuracy in Appendix Table[9]and the Pearson correlation between the average ICL accuracy
and different metrics in Table[d In the bottom row of Table[d] we calculate the correlation between
the ICL accuracy on SynTextBench synthetic task (denoted by SynTextBench-ICL) and the average
ICL accuracy on SentEval tasks. We can see that SynTextBench-ICL still shows strong correlation
(above 0.8) with ICL accuracy on SentEval tasks, whereas the best baseline only correlates with ICL
accuracy with correlation coefficient < 0.2.

4 CONCLUSION

In this paper, we have proposed SynTextBench, a novel framework for evaluating the accuracy and
robustness of LLM sentence embeddings. SynTextBench is a configurable real-date-free lightweight
testbed that generates steerable synthetic language datasets and proxy tasks, avoiding the risk of
test-data leakage. SynTextBench is the pioneering effort in developing synthetic benchmarking
methodologies for NLP, with a primary focus on sentence classification tasks and does not cover other
NLP tasks such as question answering, machine translation, or summarization. By concentrating on
this specific aspect, we have provided a solid foundation upon which future research can build. We
believe that our work is a major step towards ensuring independent and sustainable auditing of LLMs.
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A APPENDIX

A.1 RELATED WORK AND BACKGROUND

Sentence representations. To obtain performant LLMs, learning universal sentence representations
that capture rich information for various downstream NLP tasks without task-specific finetuning is
an active research field and has also been studied extensively in the past years (Kiros et al., 2015}
Conneau et al.,|2017;|Gao et al.,|2019; L1 et al.| 2020; |Su et al., 2021} |Giorgi et al., [2021} |Gao et al.,
2021; |(Chuang et al}2022). While learning to extract ideal sentence embeddings, (Gao et al., 2019
Li et al.} 2020; Ethayarajh, |[2019) have pinpointed the anisotropic behavior in the sentence embedding
vector space as a reason behind sentence embeddings’ poor capture of semantic information. To
remedy the situation, Bert-flow (Li et al., [2020) and Bert-whitening (Su et al.,|2021) transformed
the sentence embedding distribution into an isotropic Gaussian distribution through normalizing
flow and whitening post-processing. Through contrastive learning, SImCSE (Gao et al.,[2021)) and
DiffCSE (Chuang et al.| [2022) also achieved new state-of-the-art sentence embedding performance
by promoting uniformity and alignment (Wang & Isolal 2020).

Evaluations of pretrained models. In evaluating the performance of LLMs, the current de facto
evaluation paradigm is to utilize widely-used NLP benchmarks such as the General Language
Understanding Evaluation (GLUE (Wang et al., 2018)/SuperGLUE (Wang et al., 2019)) benchmark,
the Stanford Question Answering Dataset (SQuAD v1.1 (Rajpurkar et al., 2016)/v2.0 (Rajpurkar
et al., [2018)), the Situations With Adversarial Generations (SWAG (Zellers et al., 2018))) dataset, the
ReAding Comprehension from Examinations (RACE (Lai et al.,[2017)) dataset, the Evaluation Toolkit
for Universal Sentence Representations (SentEval (Conneau & Kiela, [2018))), BIG-Bench (Srivastava
et al., 2022), etc. In many cases, these NLP benchmarks are supersets of datasets, e.g., GLUE is a
collection of 9 datasets for evaluating natural language understanding systems, and SentEval is a
collection of 7 Semantic Textual Similarity (STS) tasks and 7 transfer datasets that have partial overlap
with GLUE. The heavy reliance on real-world tasks can be exemplified by broad literature. For
example, Bert (Devlin et al.,|2019) was evaluated on GLUE, SQuAD v1.1/2.0, SWAG; Roberta (Liu
et al., [2019) was evaluated on GLUE, SQuAD v1.1/2.0, RACE; and T5 (Raffel et al., 2020) was
evaluated on GLUE/SuperGLUE, SQuAD, CNN/Daily Mail abstractive summarization and WMT
translation. HELM (Liang et al.| 2022)) proposes a holistic evaluation framework for language models
that measures 7 metrics on 42 scenarios. However, when confronting the challenge of test-data
leakage, to the best of our knowledge, there is no real-data-free evaluation method for NLP pretrained
representations. In a recent literature (Ko et al.,[2022), authors reported the validation loss (Val loss),
minimum description length (MDL) (Blier & Ollivier, 2018} Voita & Titov, [2020), surplus description
length (SDL) and e-sample complexity (eSC) (Whitney et al., [2020) on class-conditional Gaussian
distribution data as an effort to build task-agnostic evaluation baselines for pretrained representations
in computer vision. Our proposed framework differs from this line of work in that we focus on the
domain of natural language processing and we do not assume the data inputs are sampled from an
idealized distribution. Instead, we create synthetic sentences and proxy tasks based on a lexical
resource for LLM evaluation.

Sentiment lexicons. SentiWordNet 3.0 (Baccianella et al.,[2010) is a lexical resource that provides
sentiment information for each word in WordNet (Miller, [1995)), a widely-used lexical database of
English words and their relationships. SentiWordNet 3.0 is an improved version of SentiWordNet
1.0 (Esuli & Sebastiani, 2006), 1.1 (Esuli & Sebastiani, [2007)), 2.0 (Esuli, [2008)). SentiWordNet
automatically assigns synsets of WordNet according to notions of “positivity”, “negativity”, and
“neutrality”. The sentiment scores of a synset are assigned on a scale from 0.0 to 1.0 and sum to 1,
reflecting a fine-grained opinion-related word-level labeling. SentiWordNet has been used in a variety
of natural language processing tasks, such as sentiment analysis (Deneckel [2008; |(Ohana & Tierneyl,
2009; |[Khan et al.| 2016)), opinion mining (Husnain et al., 2021} [Dadhich & Thankachan, [2021)),
representation learning (Ke et al.,[2020), and curriculum learning (Rao et al.} [2020). Besides Senti-
WrodNet, other sentiment lexicons include Affective Norms for English Words (ANEW) (Bradley &
Lang)), Warriner lexicon (Warriner et al., 2013)), a new ANEW (Nielsen, |[2011)), and ANEW+ (Shaikh
et al., 2016)). In this paper, we will demonstrate the use of sentiment lexicon with word-level labels in
constructing synthetic datasets using SentiWordNet 3.0; however, the framework proposed in this
paper can take any lexicon with word-level labels. We also envision our framework to benefit from a
richer vocabulary and extend to other value lexicons like moral lexicons (Rezapour et al.,|[2019).
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Robust Bayes optimal classifier. Despite the difficulty of characterizing the optimal classifier with
the minimum loss for generic data, for data drawn from class-conditional Gaussian distribution, the
explicit optimal strategy is given by Fisher’s linear discriminant rule (Johnson et al., 2002} Petridis &
Perantonis| 2004). Likewise, the optimal classification strategy can also be given for such data in the
presence of input perturbations (Bhagoji et al.} 2019} [Dan et al.,[2020). Let N (p, ) denote Gaussian
distribution with mean p and variance 3. Generally, for binary classification problems with data pair
(x,y) generated from a probability distribution P, ;: x|y =1 ~ N'(u, X), zly = =1 ~ N (—p, X),
the classifier that minimizes the adversarial loss (Awasthi et al., 2021) max, .|z —z<e 1(f(2') # ),
the robust Bayes optimal classifier (Bhagoji et al., 2019; Dan et al., 2020), is given by sign(w{ z),
where wo = X! (1 — 25 () and 2y, is the solution of the convex problem

argmin(p — 2)" X7 (1 - 2) ©)
Iz]l2<e

In the following sections, we will exploit robust Bayes optimal classifier in giving the explicit optimal
classifier on whitened sentence embeddings and develop our theoretical groundings on top of it.

A.2 LIST OF STOP WORDS

‘must’, ‘meanwhile’, ‘among’, ‘same’, ‘you’, ‘formerly’, ‘already’, ‘take’, ‘he’, ‘thereupon’, ‘done’,
y y y
‘anyhow’, ‘almost’, ‘ca’, ‘regarding’, ‘will’, ‘mostly’, ‘say’, ‘again’, ‘forty’, ‘seemed’, ‘still’, ‘they’,
“re’, ‘seem’, ‘latter’, ‘why’, ‘hers’, ‘thereby’, ‘themselves’, ‘your’, ‘nine’, ‘become’, ‘may’, ‘be-
yond’, ‘it’, ‘back’, ‘our’, ‘himself’, “m’, ‘via’, ‘we’, ‘seems’, ‘throughout’, ‘yourself’, ‘bottom’,
‘only’, ‘whereby’, ‘move’, ‘else’, ‘front’, ‘within’, ‘after’, ‘every’, ‘quite’, ‘hereby’, ‘now’, ‘since’,
‘became’, ‘herself’, ‘behind’, ‘any’, ‘those’, ‘used’, ‘indeed’, “’ve’, ‘first’, ‘moreover’, ‘ourselves’,
‘she’, ‘should’, ‘her’, ‘various’, ‘few’, ‘hundred’, ‘whoever’, ‘give’, ‘latterly’, ‘between’, ‘in’, ‘most’,
‘make’, ‘sixty’, ‘therefore’, ”’s”, ’hence’, ‘amount’, ‘otherwise’, “m’, ’re’, “’s’, ‘are’, ‘could’, ‘along’,
‘ours’, ‘of’, ‘that’, ‘everywhere’, ‘during’, ‘his’, ‘then’, ‘fifty’, ‘namely’, ‘when’, ‘around’, ‘all’,
‘keep’, ‘these’, II’, ‘third’, ‘being’, ‘thus’, ‘more’, “s’, ‘is’, ‘where’, ‘further’, ‘them’, ‘towards’,
‘next’, ‘and’, ‘a’, ‘does’, ‘here’, ‘ten’, ‘whom’, ‘except’, ‘myself’, ‘somehow’, ‘ever’, ‘enough’,
‘there’, ‘mine’, ‘other’, ‘so’, ‘hereupon’, ‘who’, ‘eight’, ‘one’, ‘hereafter’, ‘amongst’, ‘seeming’, ‘its’,
‘each’, ‘sometime’, ‘this’, ‘me’, “II’, ‘until’, ‘him’, ‘because’, ‘many’, ‘anyway’, ‘part’, ‘from’, ‘have’,
‘over’, ‘to’, ’re”, ’becomes’, ‘too’, ‘as’, ‘name’, ‘whence’, ‘whole’, ‘herein’, ‘everything’, ‘against’,
‘call’, ‘upon’, ‘both’, ‘i’, ‘whenever’, ‘across’, ‘anywhere’, ‘six’, ‘us’, ‘thereafter’, ‘also’, ‘former’,
‘whither’, ‘whose’, ‘such’, ‘really’, ‘was’, ©’d’, ‘someone’, “ve’, ‘eleven’, ‘wherein’, ‘yours’, ‘by’,
‘their’, ‘beside’, ‘or’, ‘re’, ‘has’, ‘off’, ‘which’, ‘put’, ‘whether’, ‘per’, ‘four’, ‘whereafter’, ‘often’,
‘doing’, ‘had’, ‘out’, ‘some’, ‘fifteen’, ‘others’, ‘once’, ‘somewhere’, ‘either’, ‘besides’, ‘though’,
‘been’, ‘do’, ‘very’, ‘thru’, ‘go’, ‘please’, ‘sometimes’, ”’11”, *perhaps’, ‘whereupon’, ‘whatever’,
‘about’, ‘for’, ‘itself’, ‘thence’, ‘at’, ‘how’, ‘made’, ‘three’, ‘might’, ‘another’, ‘did’, ‘alone’, ‘else-
where’, ‘toward’, ‘were’, ‘would’, ‘due’, ‘what’, ‘an’, ‘wherever’, ‘be’, ‘can’, ‘something’, ‘side’,
”°d”, *with’, ”’m”, ’am’, ‘therein’, ‘into’, ‘through’, ’ve”, ’everyone’, ‘on’, ‘my’, ‘even’, ‘own’,
y Ly

‘see’, ‘several’, ‘two’, ‘afterwards’, ‘show’, “d’, ‘beforehand’, ‘nowhere’, ‘becoming’, ‘last’, ‘onto’,
‘the’, ‘yourselves’, ‘five’, ‘anyone’, ‘together’, ‘before’, ‘always’, ‘get’, ‘using’}

A.3 SENTIWORDNET 3.0 SYNSETS

We drop columns POS, ID, GLOSS in the examples for easier illustration. By performing the
procedure on synsets in Table [5] we obtain a positive word list {able, living, accurate, concrete,
active}, a negative word list {unfaithful, unable}, a neutral word list {acroscopic, straight}.

Table 5: Examples of synsets in SentiWordNet 3.0.

SynsetTerms PosScore NegScore SynsetTerms PosScore  NegScore
able#1 0.125 0 unable#1 0 0.75
acroscopic#l 0 0 | unquestioning#2 0.5 0.5
living#3 0.5 0.125 concrete#1 0.625 0.25
accurate#1 0.5 0 straight#5 0 0
unfaithful#4 0 0.5 active#5 0.5 0.125
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A.4 SYNTHETIC SENTENCE EXAMPLES AND DISCUSSIONS
POSITIVE

* “perfectibility lotus-eater shine shine health_care health_care pleasant-tasting”

“convincingly gruesomely gruesomely convincingly deserve feeder exhaust exhaust
debonaire stuffily stuffily anne_sexton wholeness wholeness rarefy conformable preten-
sion pretension”

“smarmily smarmily fairness covetously infuse soothing subtly subtly soothing”

“precious grace the_right_way the_right_way absoluteness absoluteness”

“personal_relation pleasurable sleekness cryptographically cryptographically correct delin-
eate sink_in authenticated”

“perfectibility lotus-eater shine shine health_care health_care pleasant-tasting”
NEGATIVE

* “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”

* “counterrevolutionary apprehensive thunderclap unskilled unskilled thunderclap apprehen-
sive cheat shanny shanny cheat counterrevolutionary smooth smooth decayed decayed
imagine imagine loser unpicturesque unnaturalized unnaturalized unrelieved unrelieved
unhewn”

* “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”

‘jostling weka offend engorged fouled fouled engorged intermittence space impaction im-
paction space intermittence dishonesty disgustingly”

“blindly blindly”

* “second_class criminal_possession lousiness nonextensile linanthus_dianthiflorus nonarbi-
trary regular foolishness stabbing”

Discussions on non-grammatical sentences. As we mentioned earlier in the paper, the inclusion
of the parenthesis is to guarantee we test for the linguistic structures, whose importance is repeat-
edly advocated in literatures from both machine learning and cognitive science. Therefore, when
building synthetic test for the linguistic structures, we also follow the parenthesis and thus have
non-grammatical test sets.

We would like to motivate their use based on the following example of sentiment analysis in food
reviews. Upon seeing the review “love love fantastic!” in a food review, a reasonable language model
should recognize the entailed positive sentiment, even though the sentence is non-grammatical. In
our framework, to test the other basic skill for language acquisition in a systematic and scalable
manner, we put words associated with binary labels (positive and negative) in the synthetic sentence
and test sentence embeddings of LLMs in identifying the words for sentence classification. Related
to our setups herein, [Krishna et al.| (2021) also studies a range of summarization tasks from nonsense
documents, in which a task is also designed to classify whether there are keywords indicating
positive or negative sentiments (Krishna et al.[(2021)), Figure 1). Additional evidence of the usage
of non-grammatical sentences can be found in Bhatia et al.| (2023), where authors also exploit
non-grammartical synthetic sentence (Bhatia et al.[|(2023)), Appendix A) for constructing Gaussian
logistic regression problems in improving reasoning ability in LMs, which manifests the value of
non-grammatical language in learning/testing basic skills. Our high correlation with real-world tasks
further suggests that better understanding of the synthetic sentences indeed implies better performance
on real tasks. By construction, our framework is not limited to sentiment analysis as one can readily
change the base lexicon to test how LLMs identify words describing other notions. For example, if
we use the moral foundation lexicon, one can test how each LLM identifies words that describe care,
fairness, loyalty, authority, and sanctity.
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A.5 HISTOGRAMS OF SYNTHETIC DATASETS VERSUS ENGLISH WIKIPEDIA CORPUS
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Figure 4: The histograms of sentence lengths in the English Wikipedia corpus (stop words removed)
and the constructed synthetic corpus (positive/negative sentences).

A.6 TASK FEASIBILITY
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Figure 5: The reference accuracy given by SentiWordNet sentiment analysis. With an increasing
mixing ratio p, the task becomes harder and the reference accuracy also shows a decreasing trend.
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A.7 ROBUST BAYES OPTIMAL CLASSIFIER AND PROOFS

To motivate our findings, we first plot the Bayes optimal robust classifiers together with the Bayes
optimal classifier in three 2D cases in Figure[6] From the plot, we see that as long as the direction of
1 is in parallel to one of the two eigenvectors, the robust Bayes optimal classifiers would overlap
with the Bayes optimal classifier.

2D Gaussian =02 2D Gaussian 2D Gaussian

mp-
L S
L

mp-2
L S
L

mp-
L S
L

comp-1 comp-1 comp-1

(a) No alignment () || v © |l v2

Figure 6: Three 2D examples of the Bayes optimal classifier and robust Bayes optimal classifiers with
different magnitudes of expected perturbation . Figure[6(a)|- no alignment between the mean vector
p and the eigenvectors. Figure [6(b)|and Figure[6(c)|- 1 is parallel to the eigenvector corresponding to
either of the two eigenvalues.

To generalize the result, we prove the following theorem that specifies a sufficient condition for all
e-robust Bayes optimal classifiers to overlap with each other (including € = 0, i.e. Bayes optimal
classifier). Intuitively, if the e-robust Bayes optimal classifiers overlap with the Bayes optimal
classifiers, then there is no robustness-accuracy trade-off.

Result A.1. The e-robust Bayes optimal classifiers overlap for all e if the vector difference u between
the centers of the two gaussians lies completely within a degenerate subspace of the eigenspace of
the covariance matrix, i.e. with eigenpairs {(\, vx), k € [n]}, for Vi,j €{k: Ay # 0, uTvy # 0},
Ai=Aj= A

Proof. Letvy,...,v,and Ay, ..., A, be the orthonormal eigenbasis and the corresponding eigenval-
ues of the covariance matrix Y, then we have X! = Z? 1 )\ V;V; Followmg Dan et al.|(2020), we

see that the e-robust classifier is given as sign w® 'z, where w® = X! (1 — 2§ (1)) and

26(1) = argminllu — 2|3
Izl <e

Let =Y., a;v; and we re-parameterize z = » ., b;v;. Then,
n
€ _ € € __ e\n _ 5
z5(p) = Zbﬂ’ia where b = (b5)1"_; = arg min
T b2<52 — )\Z
i=1 i=1"14 =1
By using the Lagrange multiplier . with first-order optimality condition, we see that V' ¢

b — a; a; — bS a;
S b =0 = Tt = gbf = b= ——
/\i + i /\i Veb; i 1"’)\1’}/6

3

and > | (b%)* < €2. In order for all the robust classifiers to overlap we need w®/[Jw¢|| to the
independent of e. That is,

ai— ¢

Zz 17 bevz _ Zz 1 Ofui Zzesbg

1 VZ ‘“2“) LT VS S0

where the .S in the last equation denotes the set of indices for which a; # 0. For V ¢ with a; = 0,
from equation 3] we clearly have b5 = 0.

21



Under review as a conference paper at ICLR 2024

The condition p lies completely within a degenerate subspace of the eigenspace of X is equivalent to
saying A; = A; = Afor Vi,j € S. In this case, we see that for Vi € .S,

n 1 2
; =2 )2_<1+)\%) iesa?’

€S
) 1+1\7€ < e\/ﬁ, bs < \/ﬁai So, we get b = m. - a; where m. =
min (1, 72;5‘1?
we 1€S biv Zies MeQ;V; Z
||w5|| /S be Mey/Dics @2 T3V 2ies(ai)?
which is independent of e. O

Result A.2. Consider the robust Bayes optimal classiﬁelﬂ fe, for P, ., 1, with class prior P(y =
1) =7,P(y = —1) =1 — 7, it is in the following form

Je(w) = sign { (x -4 ‘2“”) (L — ¢/ |ill2) - q/2} :

where ji = #5#2 and ¢ = In{(1 — 7)/7}. For any sample z, f. gives the lower bound on the
decision margin §

p1 + po T
(452202 ) 1 = ¢ile) = g2 =0

& 7= ¢/lila) = /2~ (2= 2 ) il

(2 — 522 T (1 — €/||all2) — q/2]
(1 = €/llll2)ll2 ’

which then yields the worst-case bound

16]l2 >

(2 — 52) T — ¢/ [17ll2) — ¢/2|
11— e/llll2)1l2

Since the bound ||A||2 is subject to the positions of two Gaussians, we scale the bound by the
distance from Gaussian centers to the classifier. We note that, since the class are imbalanced, the

ST~ 1 ~ _
distances from the two Gaussian centers to the classifier f. are different, i.e. I ”*:2((11 fe/ /”\fﬁ'\fﬁ)”;” 2|

[All2 = min [|6]]; =

and L2 H‘;((ll Ee/ /||||IZLHH22))—:_\Z/ 2l , respectively. We hereby take their average as the scaling factor and obtain

(& — 152 A1 — ¢/ ||fill2) — ¢/2) 2||/2(1 — €/l ll2)l2
(1 = e¢/llall2)]2 [T (L —€/llill2) — q/2] + " (1 — €/[|all2) +¢/2
_ 2|(x — 152) TA(L — ¢/ [lfill2) — a/2]
|a" (1 = €/llfill=) — /2] + A" (1 — €/l ill2) + /2]

1A]l2 =

'Dobriban, E., Hassani, H., Hong, D. and Robey, A., 2020. Provable tradeoffs in adversarially robust
classification. arXiv preprint arXiv:2006.05161.
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A.8 COMPLETE RESULTS

Table 6: Pearson correlation comparison between real-data-free evaluation methods and the average
accuracy on the real-world tasks included in Tablem Since the smaller the Val loss, MDL, SDL and
€SC, the better, we add a negative sign in front of them when calculating the Pearson correlation

coefficient.
n Name BERThase. DiffCSE-B BERT e TSbase TSjarge RoBERTay,5¢ DiffCSE-R GPT ST5 Pearson
Reallife acc. 83.50 86.81 83.68 82.78 82.36 83.83 88.19 78.01 90.17 1.0
4096  Valloss 1.0e-06+1e-07 1.4e-06+3e-07 7.6e-07+5e-08 8.5e-08+1e-08 5.4e-08+9e-09 4.0e-0613e-07 1.1e-06+8e-08 3.1e-03+8e-04  3.7e-03+5e-03 | 0.285+0.498
MDL 5002+318 47554129 54224357 7318+£119 67244228 5396181 47734296 5604366 44334360 | 0.571+0.109
SDL, e=1 30904318 28434129 35104357 5406119 48124228 3484+181 28614296 36874366 25144368 | 0.570+0.110
£SC, e=1 3686+0 36860 3686+0 3686+0 36860 36860 36860 3686+0 3686+0 -
SynTextBench 0.137+0.001 0.148+0.001 0.13520.000 0.111£0.002 0.103£0.002 0.119£0.001 0.193£0.001 0.090+0.003 0.214£0.000 | 0.939+0.008
8192 Valloss 3.3e-06+3e-07  6.3e-04+9e-04  6.6e-041+9e-04 3.3e-07+9e-08 5.9e-04+8e-04 1.3e-05+1e-06 4.1e-06+2e-07 3.1e-02+1e-03  1.2e-03+5e-05 | 0.649+0.004
MDL 8802499 8687+260 10107£156 146641464 144874426 9801+489 8902+175 100014291 7310£175 | 0.519£0.043
SDL, e=1 5262499 51444262 6564+155 111244464 109444426 6261+489 5362+175 6343287 3766175 | 0.509+0.043
£SC, e=1 737240 737240 737240 737240 737240 737240 737240 737240 737240 -
SynTextBench 0.152+0.001 0.156+0.001 0.148+0.002 0.130+0.001 0.122+0.000 0.129+0.002 0.196+0.001 0.085+0.003 0.223+0.001 | 0.968+0.006
16384 Val loss 2.3e-03+2e-03  9.5e-04+7e-04 7.2e-04+1e-03  6.6e-04+£9e-04 1.2¢-03+9¢-05 8.2e-04+1e-03  2.2e-03+2e-03  2.1e-01+3e-02  2.3e-02+9¢-04 | 0.605+0.007
MDL 15840+436 152534455 18039+778 260044879 256064767 16629+117 154654349 16794+440 11895489 | 0.506+0.032
SDL, e=1 9266+429 8689+458 11477+786 194434887 19040+767 10066118 8891+365 8525+383 5153493 | 0.425+0.021
£SC, e=1 14745+0 1474540 14745+0 1474540 14745+0 1474540 147450 1474540 1474540 -
Syn’ 0.161+0.000 0.16440.001 0.16140.001 0.14540.000 0.14140.001 0.13740.000 0.198+0.001 0.087+0.001 0.22740.001 | 0.958+0.002
32768  Val loss 6.4e-03+£8e-04  4.2e-03+2e-03  4.1e-03+3e-04 3.1e-02+1e-02  3.0e-03+£7e-04 1.4e-02+2e-03  I.1e-02+1e-02 4.7e-01+£2e-02  2.9e-01+1e-02 | 0.267+0.018
MDL 276674294 257934898 295774253 4395541616 3969241520 27151433 275461646 289304471 21999488 | 0.481+0.029
SDL, e=1 154174282 135814927 173674252 3128241860 2750141518 14775450 152144489 9442+195 6076+106 | 0.311+0.008
£SC, e=1 29491+0 294910 29491+0 294910 29491+0 29491+0 294910 1213940 1213940 | -0.044+0.000
SynTextBench 0.170+0.001 0.169+0.000 0.17340.001 0.158+0.001 0.156+0.000 0.140+0.001 0.20240.000 0.092+0.001 0.23040.000 | 0.934+0.002
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Figure 7: The accuracy and robustness (average percentage of perturbed words) performance of
pretrained models on SentEval tasks.

Table 7: The detailed SentEval task performance. For STS tasks, we report Spearman’s correlation
(%), and for Transfer task, we report the standard accuracy (%).

STS tasks Transfer tasks
Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R | MR CR  SUBJ] MPQA SST TREC MRPC | avg.
SynTextBench corr. | 0.878  0.864 0.869 0.840 0.936  0.897 0.952 [0.688 0.792 0419 0.648 0517 0340 0.626

BERT e 5444  58.03 58.86 6794 6842 53.88 62.06 8298 89.56 9543 89.92 8545 89.8 74.03 | 83.50
DiffCSE-B 68.88 7621 7388 79.76 7884 7551 67.70 822 8811 9544 91.03 8446 88 7571 | 86.81
BERT e 5333  56.86 5623 63.43 66.69  54.43 58.06 8596 89.59 9643 9096 89.13 91.8 73.16 | 83.68
T5base 58.18 63.78 64.14  71.83 68.94  60.17 58.77 80.54 88.34 93.04 89.73 8127 858 67.36 | 82.78
TSlarge 5834 6259 6350 7136  67.88  59.67 58.02 | 7931 86.86 93.53 9043 80.72 828  68.75 | 82.36
RoBERTayp,s 5728 5521 59.76  69.22  64.64  58.55 61.63 84.08 8691 95.63 89.52 8825 91.6 74.49 | 83.83
DiffCSE-R 69.77 7870  76.08 81.75 80.86  81.17 7034 | 8475 9099 952  89.75 87.92 894 7728 | 88.19
GPT 44.16 2399 3473  40.78 55.11 41.05 43.65 81.08 88.53 92.81 87.87 86.6 93 70.49 | 78.01
ST5 74.32 82.83 81.50  86.14 8595 86.04 79.76 85.88 91.81 944 91.09 90.88 958 7426 | 90.17
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Table 8: The SynTextBench-Score and other baselines of decoder models.

n Name LLaMA-7B  LLaMA-13B  LLaMA-30B LLaMA-2-7B  LLaMA-2-13B OPT-13B OPT-30B | Pearson
Reallife acc. 64.55 63.78 64.53 76.13 78.51 79.72 79.44 1.0
8192 Val loss 0.036141 0.149492 0.075583 0.000002 0.0 0.010351  0.00362 | -0.803
MDL 8114.26 7434.78 6920.22 10331.5 9331.91 7874.07  7589.82 0.466
SDL, e = 4435.77 3321.93 3090.58 6791.49 5791.91 4294.41 4035.95 0.548
eSC,e =1 7372 7372 7372 7372 7372 7372 7372 -
SynTextBench 0.062 0.027 0.048 0.097 0.075 0.089 0.093 0.871

Table 9: In-context learning accuracy of decoder models.

Transfer tasks
Models CR MR MPQA SUBJ SST2 MRPC | avg.
LLaMA-7B 8535 9049 7434 4897 8847 53.86 | 73.58
LLaMA-13B | 91.07 62.78 70.07 50.02 69.74 66.20 | 68.31
LLaMA-30B | 91.97 92.60 83.77 50.01 95.83 66.26 | 80.07
LLaMA-2-7B | 90.83 5325 47.06 81.60 71.00 66.49 | 68.37
LLaMA-2-13B | 91.84 9192 80.26 52.73 9555 66.49 | 79.80
OPT-13B 90.01 69.66 6992 4985 7699 66.49 | 70.49
OPT-30B 90.78 82.04 63.56 50.00 87.10 66.61 | 73.35

A.9 EXPERIMENTAL DETAILS

When we calculate the correlation between real-data-free evaluation methods and real-world task
robustness-accuracy performance, we need to aggregate two metrics - accuracy and robustness. For
this purpose, we can obtain a ranking of the models according to the accuracy measure, R, and a
ranking of the models according to the robustness measure, Ry. We aggregate two rankings by the
simple and commonly-used mean aggregatiorﬂ which yields the overall ranking of models based on
accuracy-robustness performance, R..s. On the other hand, we can obtain another ranking of models
based on one of the real-data-free evaluation methods (e.g. Val loss, MDL, SDL, €SC, SynTextBench),
R. Lastly, we calculate the Pearson correlation coefficient between R and Rt.

Moreover, when we calculate the robustness measures, we only perform attacks on Transfer tasks
as they are classification tasks where adversarial attacks are well-defined. Since we use the average
percentage of perturbed words by PWWS attacks (Ren et al.,[2019) as the robustness indicator, we
also excluded MPQA and TREC due to their short sentence lengths (MPQA and TREC average
sentence lengths are 3.03 and 6.48, respectively). PWWS attacks focus on the text adversarial example
generation that could guarantee little semantic shifting and therefore rarely cause ground truth label
change (also lexical and grammatical correctness). To meet the semantic constraint, PWWS replaces
words in the input texts with synonyms and replace named entities (NEs) with similar NEs to generate
adversarial samples. Synonyms for each word can be found in WordNet, a large lexical database for
the English language. NE refers to an entity that has a specific meaning in the sample text, such as a
person’s name, a location, an organization, or a proper noun. Replacement of an NE with a similar
NE imposes a slight change in semantics but invokes no lexical or grammatical changes.

We list the robustness results in the following table:

Table 10: The robustness (average percentage of perturbed words) of pretrained representations on
Transfer tasks.

Models MR CR SUBJ SST MRPC | avg.
BERThase 1448 1399 202 1507 545 13.838
DiffCSE-B | 1446 147 18.64 15.19 639 | 13.876
BERT ;g 143 1422 19.87 1546 526 | 13.822
T5pase 1271 12.82 168 13.66 505 | 12.208
TSiarge 13.67 1428 1693 1382 5.17 | 12774
RoBERTay, | 164 1835 20.74 1726  7.12 | 15974
DiffCSE-R | 1572 16.07 1853 16.82 5.68 | 14.564
GPT 12,53  13.11 1575 1352 5.17 | 12.016
STS 13.6  13.08 1836 14.22 6.9 13.232

2Wald, R., Khoshgoftaar, T.M. and Dittman, D., 2012, December. Mean aggregation versus robust rank
aggregation for ensemble gene selection. In 2012 11th international conference on machine learning and
applications (Vol. 1, pp. 63-69). IEEE.
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We also list the ranking of models from different metrics in the following table.

Table 11: Ranking of models from different metrics at n = 8192.

Name BERThye DiffCSE-B. BERTjayge  TSphase  TSiage ROBERTap,e DiffCSE-R  GPT  ST5
Overall accuracy 6 3 5 7 8 4 2 9 1
STS accuracy 7 3 8 4 5 6 2 9 1
Transfer accuracy 5 6 2 8 9 4 3 7 1
Robustness 4 3 5 8 7 1 2 9 6
Val loss 8 4 3 9 5 6 7 1 2
MDL 7 8 3 1 2 5 6 4 9
SDL, e=1 7 8 3 1 2 5 6 4 9
eSC, e=1 5 5 5 5 5 5 5 5 5
SynTextBench 4 3 5 6 8 7 2 9 1

For example, to calculate SynTextBench correlation with robustness-and-accuracy performance,
we calculate the Pearson correlation between (row “Overall accuracy” + row “Robustness™) / 2
and “SynTextBench”. To calculate SynTextBench correlation with robustness-and-STS accuracy
performance, we calculate the Pearson correlation between (row “STS accuracy” + row ‘“Robustness’)
/ 2 and “SynTextBench”. To calculate SynTextBench correlation with robustness-and-Transfer
accuracy performance, we calculate the Pearson correlation between (row “Transfer accuracy” +
row “Robustness”) / 2 and “SynTextBench”. We note that in all our results prior to Table [11} we
always infer the correlation in individual runs before we take an average over all trials. Different from
that, the rankings from Val loss, MDL, SDL, eSC, and SynTextBench in Table@], are inferred from
the average metric results over 3 trails for an easier illustration. Therefore, the ranking correlation
suggested by the table might have some deviation from what is shown in Table[2]
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