
OPENCUA: Open Foundations for
Computer-Use Agents

Xinyuan Wang*x Bowen Wang*x Dunjie Lu*x Junlin Yang*x Tianbao Xie*x Junli Wang*x

Jiaqi DengxXiaole GuoxYiheng XuxChen Henry WucZhennan ShenxZhuokai LixRyan LixXiaochuan Lix

Junda ChenxBoyuan ZhengxPeihang LixFangyu LeixRuisheng CaoxYeqiao FuxDongchan ShinxMartin Shinx

Jiarui Hux Yuyan Wangx Jixuan Chenx Yuxiao Yex Danyang Zhangx Yipu Wangm Heng Wangm

Diyi Yangs Victor Zhongw Y. Charlesm Zhilin Yangm Tao Yu†x

x XLANG Lab, The University of Hong Kong m Moonshot AI
s Stanford University w University of Waterloo c Carnegie Mellon University

Project Page: https://opencua.xlang.ai

Abstract
Vision-language models have demonstrated impressive capabilities as computer-use
agents (CUAs) capable of automating diverse computer tasks. As their commercial
potential grows, critical details of the most capable CUA systems remain closed.
As these agents will increasingly mediate digital interactions and execute conse-
quential decisions on our behalf, the research community needs access to open
CUA frameworks to study their capabilities, limitations, and risks. To bridge this
gap, we propose OPENCUA, a comprehensive open-source framework for scaling
CUA data and foundation models. Our framework consists of: (1) an annotation
infrastructure that seamlessly captures human computer-use demonstrations; (2)
AGENTNET, the first large-scale computer-use task dataset spanning 3 operating
systems and 200+ applications and websites; (3) a scalable pipeline that transforms
demonstrations into state–action pairs with reflective long Chain-of-Thought rea-
soning that sustain robust performance gains as data scales. Our end-to-end agent
models demonstrate strong performance across CUA benchmarks. In particular,
OPENCUA-72B achieves an average success rate of 45.0% on OSWorld-Verified,
establishing a new state-of-the-art (SOTA) among open-source models. Further
analysis confirms that our approach generalizes well across domains and benefits
significantly from increased test-time computation. We release our annotation tool,
datasets, code, and models to build open foundations for further CUA research:
https://opencua.xlang.ai

Figure 1: OSWorld-Verified Performance [44]: Left: OpenCUA recipe helps performance scaling
with data size and model size. Right: OpenCUA-72B outperforms current open-source models and is
comparable with Claude 4 Sonnet [2].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://opencua.xlang.ai
https://opencua.xlang.ai
https://os-world.github.io/

Trajectory Data

History Modeling

Train

Observation Situation

Reflection

low level

Instruction

Realistic

Environment

Evaluation

Inner Monologue Modeling

Computer Use Agent Modeling

Task Instruction
Agent

eval

AgNet 
BenchAgNet CUA

AgNet

Dataset

AgNet

Method

traj 1 video 1

Axtree HTML TimeStamp

video 2traj 2 traj n

Create a new Google Doc.

Save an arxiv paper

Reasoning

Reasoning

Reasoning

Reasoning

Acting

Act
+

Thought

Acting

Acting

Acting

1.

1.

2.

2.

3.

3.

OpenCUA

AgentN
et

Tool

Agnet
Tool

Trajectory

Traj

Action Reduction

Rule-based

method

Model-based

method

Reflector

AgentNet

M
ethod

AgentN
et

Data
&Bench

OpenCUA

M
odels

ScreenVideo

Video

Metadata

Act
+

Thought

History Obs

Step 1: click
Step 2: write
...

<action>

<target>

Generator
State-action

matching

rClick rClick key click

Figure 2: Overview of the OPENCUA framework. Top left: AGENTNET TOOL captures user interac-
tions across OSes with screen videos and action flows. Top right: Raw demos are processed into
state-action trajectories with reasoning and history. Bottom right: AGENTNET Dataset and Bench
provide diverse tasks and offline evaluation with gold-standard actions. Bottom left: OPENCUA
models are trained and able to execute in realistic environments.

1 Introduction

Computer-use agents (CUAs), powered by vision-language models (VLMs), aim to autonomously
complete computer tasks and have great potential in facilitating daily and professional workflows.
Despite their growing role in high-stakes decision-making, critical details including training data,
architectures, and development processes about how state-of-the-art CUA systems are built remain
closed and proprietary [1, 2, 4, 16, 29, 3]. As the lack of transparency limits technical advancements
and raises safety concerns [32, 40, 10], the research community needs truly open CUA frameworks
to study their capabilities, limitations, and risks.

However, current open-source attempts in CUA face significant challenges that impede progress.
Firstly, there is no open-source scalable infrastructure for collecting diverse large-scale computer-
use data - a complex requirement that involves the real-time capture of user interactions and state
information, followed by transformation into agent-executable trajectories. Secondly, existing open-
source graphical user interface (GUI) datasets remain limited in scope and scale due to the complexity
and high cost of data collection; they either focus on specific domains (grounding [9, 43, 17, 46],
mobile [31, 23], or web [13, 11]) or lack sufficient diversity for general computer-use applications.
Furthermore, many CUA works provide insufficient details about their modeling strategies and
training recipes, making replication difficult even with access to their collected data. These limitations
collectively hinder advances in general-purpose CUAs and restrict a meaningful exploration of their
scalability, generalizability, and potential learning approaches.

To address these challenges, we introduce OPENCUA, a fully open-source framework to scale the
CUA data and the foundation models (Figure 2). To address infrastructure challenges, we first
develop a user-friendly, cross-OS computer task annotation application AGENTNET TOOL that
can be installed on personal computers to seamlessly record natural human demonstrations and
corresponding computer states, without disrupting the user’s workflow (Figure 2 top left). We then
collect the AGENTNET dataset, including 22.6K open-domain computer task trajectories spanning
over 100 applications and 200 websites across Windows, macOS, and Ubuntu (Figure 2 top right).
This dataset authentically captures the complexity of human behaviors and environmental dynamics
from users’ personal computing environments. Furthermore, given that online CUA benchmarks
such as OSWorld [44] require substantial environment setup effort and runtime resources, we curated
AGENTNETBENCH based on our collected human demonstrations (Figure 2 bottom right). This
offline benchmark provides multiple gold-standard actions per step, efficiently approximating online
metrics to dramatically accelerate agent evaluation and development.

Critical to our OPENCUA framework is our (1) data processing pipeline and (2) novel modeling and
training recipe for constructing CUA training data from human demonstrations. We first introduce an

2

Table 1: Comparison between AGENTNET and Other GUI Datasets

Dataset Tasks Avg.
Step

Env.
Type

Personalized
Env.

Human
Traj.

Dom/
AxTree Video Inner

Monologue

AndroidControl[20] 15283 5.5 Mobile ✗ ✓ ✓ ✗ Short
AMEX[7] 2991 11.9 Mobile ✗ ✓ ✗ ✗ ✗
AitW[31] 2346 8.1 Mobile ✗ ✓ ✓ ✗ ✗
AitZ[54] 1987 6.0 Mobile ✗ ✓ ✗ ✗ Short
GUI Odyssey[23] 7735 15.3 Mobile ✗ ✓ ✗ ✗ ✗
OS-Genesis[34] 2451 6.4 Mobile&Web ✗ ✗ ✓ ✗ Short
WonderBread[39] 598 8.4 Web ✗ ✓ ✓ ✓ ✗
AgentTrek[48] 10398 12.1 Web ✗ ✗ ✓ ✓ Short
Mind2Web[11] 2350 7.3 Web ✗ ✓ ✓ ✗ ✗
GUIAct[8] 2482 6.7 Web ✗ ✓ ✓ ✗ ✗

AgentNet 22625 1 18.6 Desktop ✓ ✓ ✓ ✓ Long

action discretization pipeline that converts raw human demonstrations, which typically consist of
videos and high-frequency, redundant keyboard/mouse actions, into state-action pairs feasible for
vision language model training. Despite this, we observe that training on state-action pairs alone
yields limited performance gains even as the dataset size scales (see Figure 1 Left). Our first key
insight is that scaling agent capabilities requires augmenting these trajectories with reflective long
Chain-of-Thought (CoT) reasoning. We propose a reflective CoT synthesis method that explicitly
injects planning, memory, and reflection into the per-step reasoning process through natural language
“inner monologue” (Section 3.1). Different from previous work, our reasoning traces are notably more
detailed and contain refletion thoughts that help the agent detect and recover from errors. Moreover,
we identify key modeling details that improve agent performance (Section 3.2), such as multi-image
history. Finally, we show that carefully designing training data mixtures—including diverse reasoning
and general text—is beneficial for computer-use agent training (Section 3.3).

Built upon our methodology, we developed strong computer-use agent models through supervised fine-
tuning (SFT) (Figure 2 bottom left). Our results show that our approach enables robust performance
scaling with increased data size (Section 4.2). Our model, OPENCUA-72B, achieves a success rate of
45.0% (100 step) on OSWorld-Verified [44, 47], establishing a new state-of-the-art among the open-
source models, even outperforming the proprietary OpenAI CUA (GPT-4o based) [29] and Claude 4
Sonnet [2]. It also has strong GUI grounding ability: 37.3% (SOTA) on UI-Vision [25] and 60.8%
on ScreenSpot-Pro [19]. We did extensive experiments and analysis on various model structures and
data scales in Section 5. Because of the diversity and coverage of our training data, our models show
strong cross-domain generalization. Our agent models also show promising scalability with increased
test-time compute, such as increased number of steps and larger n in Pass@n evaluation. We also did
additional experiments, including grounding and robustness analysis. Finally, we also provide detailed
ablations to justify the important design choices in our method and training recipe (Section 5). We
open-source the complete suite of our OPENCUA framework, including the annotation tool, collected
datasets, code, benchmark and models, providing open foundations for further CUA research.

2 AGENTNET Collection

OPENCUA aims to scale desktop computer-use data across diverse computer environments and user
scenarios. We prioritize collecting demonstrations that follow natural user behavior, imposing the
least additional constraints on how users interact with computers to improve the scalability of data
collection. To this end, we developed AGENTNET TOOL and collected AGENTNET dataset, the first
large-scale desktop agent task dataset. The introduction of AGENTNET TOOL and the data annotation
strategies are demonstrated in the Appendix F.1

2.1 Task Definition

We model the agent’s decision-making process – iterative observation of the computer state followed
by action prediction – as a state-action transition trajectory: (I, ⟨s0, a0⟩, ⟨s1, a1⟩, . . . , ⟨sT , aT ⟩).
Given a task language instruction I and initial state s0, the agent sequentially predicts a action ai
until goal state st and performs the termination action aT : P (ai|I, s0, a0, . . . , si).

1A total of 41,428 trajectories were used to train OPENCUA-7B and OPENCUA-32B, and 27,804 trajectories
were used for training OPENCUA-QWEN2-7B and OPENCUA-A3B. Moonshot AI annotated the Ubuntu
subset and generously agreed to release 5K of the annotated trajectories to the public.

3

generate

reflect
<action>(target)

Action cmd

Step

N

Step
N+1

Long CoT

Observation
A description of the visible key
elements and other ...

Task InstructionTask Instruction Reflection

Env changed by action?

action

args + target

args

The action is effective?
If action is necessary?

History

Thought
A description of the visible key
elements and other ...

Action
A description of the visible key
elements and other ...Step n-1Step n-1Step n-2Step 1

Figure 4: Reflective long CoT synthesis pipeline: generator and reflector iteratively generate and
verify the reasoning components between the observation and ground-truth actions.

An important design choice in building computer-use agent is to convert compute state si into model
observation. In this work, we follow the recent trend of building pure vision-based computer agents
[30, 50, 43] and use the screenshot of the computer as the observation for the agent. We use human
computer-use actions, including keyboard and mouse movements, as the action space. To ensure the
action space is applicable across various operating systems, we select a subset of PyAutoGUI actions
and augment them with several necessary agent actions including the ‘success’ and ‘fail’ termination
actions. The complete action space and its parameters are listed in Table 9.

2.2 AGENTNET Statistics

Figure 3: Domain distribution
of tasks in AgentNet dataset

Our dataset consists of 22,625 human-annotated computer-use tasks,
including 12K from Windows, 5K from macOS and 5K from Ubuntu,
with screen resolutions ranging from 720p to 4K. Each trajectory
averages 18.6 steps, reflecting the complexity of the task. As shown
in Figure 3, the data spans over 140 applications and 190 websites,
often involving multi-app workflows, professional tools, and un-
common features. Compared to previous GUI datasets (Table 1),
AGENTNET is the first desktop trajectory-level dataset that is real-
istic, complex, diverse, and multimodal. The statistics are provided
in the Appendix F.2.

3 Training Computer-Use Agent Model

Our AGENTNET consist of task instructions I and state-action
⟨si, ai⟩ trajectories. However, we find that directly finetuning vision-language action (VLA) models
on our 27K trajectories leads to poor performance (4.4% success rate on OSWorld [44], shown in
Figure 1 Left "Base Recipe"). This section presents modeling and training recipe to enable scalable
training of computer-use agent models, including novel reasoning augmentation, context encoding,
and data mixtures techniques.

3.1 Synthesizing Reflective Long CoT Reasoning

Consistent with prior works [53, 50, 30], we find natural language reasoning crucial for generalizable
computer-use foundation models, helping CUAs internalize cognitive capabilities. We propose a
multi-stage CoT framework synthesizing structured reasoning per state-action pair ⟨si, ai⟩. Inspired
by Aguvis [50], our structured CoT includes three reasoning levels. The hierarchy begins with L3,
contextual observation capturing salient visual and textual elements. Next, L2 provides reflective rea-
soning analyzing state transitions, recalling previous steps, correcting errors, and planning subsequent
actions. Finally, the model predicts L1, a concise executable action grounded in prior perception
and thought. This L3→L2→L1 structure mirrors perceptual-to-agentic decision flow, equipping the
model with coherent, interpretable reasoning trajectories that enhance generalization and robustness.

Reflection augmentation for L2 reasoning Incorrect or redundant annotations in human demon-
strations are not all bad, as long as we can identify and use them to teach the identification and
correction of model errors. Therefore, we designed a reflector to identify errors and generate
reflection reasoning for each step. Our CoT synthesis framework extends the pipeline of Aguvis [50]
and ActRe [52] by equipping the “Thought” with more comprehensive agent components, especially
state-transit perception and reflection, and minimizing hallucination. As shown in Figure 4, our
CoT synthesis pipeline consists of three components: reflector, generator, and summarizer.

4

The reflector inspects each step for correctness and redundancy by comparing screenshots before
and after the action, examining the correctness of the action code itself and the generated CoT,
expecially whether the “Action” aligns with the screenshot and code. When the step is incorrect
or redundant, the reflector will elaborate reason and this step will be ignored during training. If
the step is correct, the reflector will explain the differences the actions brings to the before and
after state. The generator conditions on the full agent context—previous reflections, action history,
task goal, screenshots, and action code—to generate structured CoT. To help the model ground
coordinate-related actions more accurately, we incorporate visual cues: a red marker on the mouse ac-
tion coordinate and a zoomed-in image patch (inspired by V* [41]). Finally, the summarizer refines
vague user-written goals into more precise and aligned task objectives, and scores each trajectory for
alignment, efficiency, and difficulty. Our method produces rich and meaningful CoTs that significantly
improve model reasoning and planning. We use claude-3-7-sonnet-20250219 as the base model
for synthesizing the three components. The reflection helps agent model identify former errors and
adjust future plan to make the task back to the right track. An example of error identification and
correction in evaluation can be seen in Section G. Ablations in Section 5 demonstrate that this module
is a important driver of performance gains.

3.2 Context Encoding and Test-Time Reasoning

For end-to-end agent models, history encoding plays a critical role in reasoning and planning.

Context encoding: (1) Textual history: We propose a structured inner monologue framework for
textual history representation. Specifically, we adopt a dialogue-style history format representing
the model’s responses and corresponding computer screenshots. Following Aguvis [50], we use
L1 CoT (Action) to represent previous steps because it is more token-efficient and allows longer
history windows without truncation. Moreover, our inner monologue includes memory components,
further compensating for the absence of richer CoT in earlier steps. See Section 5 for ablations
on history representation. (2) Visual history: Multi-image screenshot history is essential for agent
model performance because screenshots are lossless visual representation of history, providing more
grounded context than textual summaries. However, including more images also increases input
length and reduces training efficiency. By default, we use three screenshots as visual representation, as
our experiments show that this achieves a balance between performance and efficiency (see Figure 9).

Test-time reasoning format: While the model is trained with a mixture of CoT levels, we adopt the
L2 CoT format at inference time due to its richer reasoning content, which enhances the model’s
ability to reflect, plan, and reason. As shown in our ablation studies (Section 5), L2 CoT significantly
improves test-time performance scalability—Pass@n success rates on OSWorld increase markedly
over Pass@1. In contrast, models lacking this reasoning augmentation exhibit limited scalability,
highlighting the importance of strong reasoning signals at inference time.

3.3 Training Strategy

CoT data mixture: As we mentioned in the Section 3.1, our structured inner monologue contains
three levels of CoT: L1 (Action), L2 (Thought + Action), and L3 (Observation + Thought + Action),
each encoding complementary information for agent decision-making but has different conceptual
information. L1 CoT has direct connection to the actual action; while there is helpful screenshot
perception information in the L3 CoT, some irrelevant elements may also be described; L2 CoT
contains planning and prediction that directly affect the predicted action in L1. Therefore, we propose
to train the model with a mixture of all three levels of CoT to reinforce this different levels of
connection. Data example of L1, L2, and L3 can be seen in Appendix H. We verify this design choice
with ablations in Section 5. In our newest recipe of OPENCUA-72B, we also mix rollout trajectories
in real environment in Appendix C.

Mixture of grounding, planning, and general SFT data: A general-purpose computer-use agent
foundation model should be capable of both solving complex computer-use tasks and performing
general reasoning grounded in world knowledge. To achieve this, we train on a mixture of data types
that span both computer-use and general vision-language domains.

For grounding, we initialize the model using existing datasets such as ShowUI [21], UGround [14],
and 189K bounding-box samples parsed from collected AXTree structures. For planning and
reasoning, we include a diverse mix of Ubuntu and Windows/macOS demonstrations as well as

5

task-instruction-augmented samples (Section 3.1). To enhance generalization and reasoning ability,
we additionally incorporate general supervised fine-tuning (SFT) data from the Kimi Team [35].
The general text data covering domains such as instruction following, mathematical reasoning, and
long-context understanding. The general vision data includes domains such as OCR and vision QA
data. This mixture ensures both GUI grounding and high-level reasoning capabilities across domains.
Although these general data are not directly related to GUI environments, we find that mixing them
improves the model’s overall agentic performance. We present ablation results on this effect in
Section 5.

CUA training strategies: Different CUA training strategies are introduced in Appendix C.

4 Experiments

4.1 Experimental Setup

Models Our experiments are conducted on multiple open-sourced vision-language models: Kimi-VL-
A3B [35], Qwen2-VL-7B-Instruct [38], Qwen2.5-VL-7B-Instruct [5], Qwen2.5-VL-32B-Instruct [5]
and Qwen2.5-VL-72B-Instruct [5]2. Kimi-VL-A3B adopts a Mixture-of-Experts (MoE) architecture
with 16B total parameters and 3B active during training and inference. It demonstrates moderate
capability as a computer-use agent, including grounding and planning. Qwen2-VL and Qwen2.5-VL
are general-purpose vision-language models, with Qwen2.5-VL exhibiting enhanced digital agent
capabilities and expertise in high-resolution understanding. We conduct supervised fine-tuning (SFT)
on these models and obtain our OpenCUA model variants: OPENCUA-A3B, OPENCUA-QWEN2-
7B, OPENCUA-7B, OPENCUA-32B, and OPENCUA-72B.

Evaluation We evaluated our models on online evaluation benchmarks, offline agent evaluation
benchmark, and GUI grounding benchmarks.

1. Online agent evaluation: (1) OSWorld-Verified: OSWorld [44] originally curated 369
human-crafted tasks covering a wide range of applications, each accompanied by its own en-
vironment setup and evaluation script. The OSWorld team has now verified every task, fixing
those that were infeasible to test because of outdated dependencies, evaluation errors, or am-
biguous instructions, and has released the improved benchmark as OSWorld-Verified [47]3. Our
results are obtained through the public evaluation by the OSWorld Team on AWS infrastruc-
ture. The results are reported in Table 2. (2) WindowsAgentArena (WAA) [6] contains 154
Windows-centric tasks, spanning native Windows applications as well as several open-source
programs also featured in OSWorld. It can reflect the agent’s online performance on Windows
system.
Evaluation setting: The resolution of the systems is 1920 × 1080. 4 clock tasks in WAA are
dropped due to API and system image limitation. We adopt the L2 CoT format (Thought +
Action) for all models, following results of our ablation in Section 5. Temperature is set to 0 for
deterministic decoding during evaluation. The results in OSWorld-Verified are the average of 3
runs.

2. Offline agent evaluation: AGENTNETBENCH includes 100 representative held-out tasks cover-
ing diverse domains on Windows and macOS. The introduction and details of AGENTNETBENCH
are in Appendix B. We also validated its correlation with online benchmark results in Figure 8.

3. GUI grounding evaluation: We evaluate our model’s GUI grounding ability, the ability to map
natural language instructions to specific actions within graphical user interfaces on 5 benchmarks:
OSWorld-G [46], Screenspot-V2 [42], Screenspot-Pro [19], and UI-Vision [25]. OSWorld-G has
564 samples that systematically cover text matching, element recognition, layout understanding
and fine-grained manipulation, with annotations for the element types required to solve each task.
Screenspot-V2 includes screenshots from three platforms: mobile, desktop, and web. Screenspot-
Pro focuses on high-resolution desktop environments, especially in professional settings. UI-
Vision includes fine-to-course grained tasks to evaluate model’s performance on understanding
professional software, spatial reasoning, and complex actions in desktop environments.

2To align with the training infrastructure of the Kimi Team, we adopt the same chat template and tokenizer
as Kimi-VL-A3B. M-RoPE in Qwen models is not implemented; we use 1D RoPE [33] instead.

3OSWorld-Verified Leaderboard: https://os-world.github.io/ OSWorld-Verified blog: https://
xlang.ai/blog/osworld-verified

6

https://os-world.github.io/
https://xlang.ai/blog/osworld-verified
https://xlang.ai/blog/osworld-verified

4.2 Main Results

Table 2: OSWorld-Verified results. OPENCUA-72B achieves the best performance among all
open-source models with an average success rate of 45.0%, outperforming prior baselines by large
margins. It also closes the gap to proprietary agents. This demonstrates the scalability and strength of
our OpenCUA training pipeline. The details of each run and the Pass@3 evaluation results are shown
in Appendix Table 7)

Model 15 Steps 50 Steps 100 Steps

Proprietary

OpenAI CUA [29] 26.0 31.3 31.4
Seed1.5-VL [16] 27.9 - 34.1
Claude 4 Sonnet [2] 31.2 43.9 41.5
Claude Sonnet 4.5 [3] - - 61,4

Open-Source

Qwen2.5-VL-32B-Instruct [5] 3.0 - 3.9
Qwen2.5-VL-72B-Instruct [5] 4.4 - 5.0
Kimi-VL-A3B [35] 9.7 - 10.3
UI-TARS-72B-DPO [30] 24.0 25.8 27.1
Qwen3-VL [5] - - 38.1
OpenCUA-7B (Ours) 24.3+1.9

−1.3 28.1+0.7
−0.4 26.6+0.6

−0.5

OpenCUA-32B (Ours) 29.7+0.8
−1.5 34.1+1.0

−0.6 34.8+0.9
−1.0

OpenCUA-72B (Ours) 39.0 44.9 45.0+1.1
−1.2

Online agent evaluation. Table 2 lists success rates of end-to-end agents for 15-, 50- and 100-step
budgets on OSWorld-Verified. The details of each run, Pass@3 evaluation success rate, and the
results of OPENCUA-A3B and OPENCUA-7B are demonstrated in Appendix Table 7. Besides
quantitative metrics, we also provide a qualitative case study in Appendix G, which shows that our
agent can recognize and correct earlier mistakes during long-horizon execution, ultimately enabling
more reliable task completion.

1. Proprietary models still lead, but the gap is closing. Claude Sonnet 4.5 achieves 61.4 % at 100
steps, followed by Claude 4 Sonnet at 43.9 %. Our OPENCUA-72B reaches 45.0 % in 100 steps,
establishing a new state-of-the-art among open-source systems, closing the gap from open-source
models to Claude models.

2. OpenCUA method applies to models with different architectures and sizes. We apply our
method on 5 model architectures, including Kimi-VL-A3B [35], Qwen2-VL-7B [38], Qwen2.5-
VL-7B [5], Qwen2.5-VL-32B [5] and Qwen2.5-VL-72B [5], covering MoE and dense structures
and activation parameter number from 3B to 72B. As the results in Appendix 7, all the models’
performance improves by a large margin upon the base models. In confirming that our data
pipeline and training recipe scale effectively with model capacity. Furthermore, their performance
scales with the model size - OPENCUA-72B consistently outperforms OPENCUA-7B under
every step budget.

3. Effect of step limit. Most agents profit from a larger step budget from 15 to 50 steps, yet the gain
from 50 to 100 steps is often smaller than that from 15 to 50 steps.

• Claude 4 Sonnet: +12.7 % from 15 → 50 steps, then − 2.4 % from 50 → 100.
• OPENCUA-32B: +4.4 % (29.7 → 34.1) from 15 → 50 steps, and +0.7 % (34.1 → 34.8)

from 50 → 100 steps.
• Base models including Qwen2.5-VL and Kimi-VL: marginal gains (<1%), reflecting limited

step scale capability of base models.
Even top-tier agents (e.g., Claude 4 Sonnet) still struggle to benefit significantly on larger step
budgets for truly long-horizon tasks. The modest gain when moving from a 50-step to a 100-step
limit stems from two main factors: (i) most tasks need more than 15 but fewer than 50 GUI actions,
so the extra head-room often goes unused; (ii) current models are still not good at recognising their
own mistakes, recovering from errors, and deciding when to stop—hallucinations and repetitive
loops frequently waste the additional steps. We did a detailed error study in Apendix D.4.

7

https://xlang.ai/blog/osworld-verified

Table 3: Computer-use agent performance on AGENTNETBENCH. Coord actions: click, rightClick,
doubleClick, moveTo, dragTo, scroll; Content actions: write, press, hotkey; Function action: terminate.

Model Coord. SR Content SR Func. SR Avg. SR

Qwen2.5-VL-7B [5] 50.7 40.8 3.1 48.0
Aguvis-7B [50] 56.7 43.3 0.0 52.4
Qwen2.5-VL-32B [5] 66.6 47.2 41.5 64.8
Qwen2.5-VL-72B [5] 67.2 52.6 50.5 67.0
OpenAI CUA [29] 71.7 57.3 80.0 73.1
OpenCUA-7B (Ours) 79.0 62.0 44.3 75.2
OpenCUA-32B (Ours) 81.9 66.1 55.7 79.1

4. OpenCUA models achieve markedly higher Pass@n scores. As reported in Ap-
pendix 7, the Pass@3 success rate of OPENCUA-32B on OSWORLD-Verified jumps from
34.2%(Pass@1) to 45.6%. The performance of OPENCUA-72B increases from 45.0%(Pass@1)
to 53.2%(Pass@3).This large margin suggests ample headroom for future post-training, rerank-
ing or multi-agent methods. Additional analyses of test-time upper bounds and robustness are
provided in Section 5.

These observations validate the effectiveness of our pipeline and highlight the remaining headroom
for open-source agents to close the gap with larger proprietary models.

Offline benchmark evaluation. AGENTNETBENCH is constructed from representative tasks in the
OPENCUA dataset. It is a held-out testset including 100 task trajectories on Windows and macOS.
To account for domain similarity, we group models into Zero-shot models—those not trained on
AGENTNET (Qwen2.5-VL-7B/32B/72B, Aguvis-7B, and OpenAI CUA (GPT-4o))—and Fine-tuned
models, namely our OPENCUA-7B and OPENCUA-32B. As summarized in Table 3:

1. Scaling with model size. In the zero-shot group, performance scales with model size; the
specialist Aguvis-7B surpasses the general-purpose Qwen2.5-VL-7B.

2. OpenAI CUA generalize well on unseen tasks. OpenAI CUA outperforms all open-source
zero-shot models and approaches fine-tuned agents, particularly excelling in terminate-state
detection and content-based actions.

3. Offline benchmark has correlation with the ranking on online benchmark. The overall
ordering generally matches the online leaderboard in Table 2: OPENCUA-32B > OpenAI CUA
> Qwen2.5-VL models. OPENCUA-32B and OPENCUA-7B are relatively higher due to the
alignment of the domain and action space.

4. Coordinate-action performance reflects model grounding performance. OPENCUA-32B
exceeds OPENCUA-7B on coordinate-based actions, aligned the grounding results in Table 5.

Performance scaling with data scaling. We explore the effect of data scale on Qwen2-VL from
three perspectives: cross-domain data, in-domain data, and out-of-domain data. We first investigate
cross-domain data in Figure 1. Specifically, we compare three training settings: (1) 7K Ubuntu data,
(2) 7K Ubuntu + 14K Win&Mac data, and (3) 10K Ubuntu + 17K Win&Mac data. On OSWorld,
performance improves significantly from 9.8% to 18.5%, despite the added Win&Mac data coming
from a different platform. This indicates that even out-of-domain data can substantially enhance
generalization and reasoning ability, rather than causing negative transfer. To further study the impact
of in-domain and out-of-domain data scale, we randomly sampled 3K, 7K, 10K trajectories from
Ubuntu data and 3K, 7K 14K from Win&Mac.

As shown in Figure 5, performance scales consistently across all benchmarks with both in-domain
and out-of-domain data. When increasing the Ubuntu data from 3K to 10K, the average performance
improves by 72%. Scaling the Win/Mac data from 3K to 14K yields a 125% improvement on average.
These results demonstrate a strong positive correlation between data quantity and agent performance,
highlighting the importance of large-scale, diverse CUA data for model generalization.

Performance on grounding benchmarks. The evaluation results on grounding benchmarks are
demonstrated in the Appendix D.2.

8

3K 7K 10K 14K
0

5

10

15

5.4

8.8
9.7

3
4.6

8.1

Su
cc

es
s

R
at

e
(%

)

OSWorld

3K 7K 10K 14K
0

5

10

15

3.7
4.7

8.5

4.7
5.7

13.5

WindowsAgentArena

Ubuntu
Win&Mac

3K 7K 10K 14K

50

60

70

48.5
50.9

53.5
55.37

59.23

69.76

AgentNetBench

Figure 5: Scaling curves on three benchmarks as data volume from various OS domains increases.

5 Analysis

Model performance upperbound analysis by scaling test-time compute We further explore our
model’s performance upperbound by doing Pass@n evaluation on OSWorld. We set the temperature
to 0.1 and evaluate OPENCUA-QWEN2-7B for 16 times on the budget of 15, 30 and 50 steps and
calculated the pass@1,4,8,16 success rate. In Table 6, we find: (1) There is a significant performance
gap of our model between Pass@1 and Pass@16. On 15 step, the success rate increases from 16.9
to 34.6 (+104%), while on 50 step, the increacement is even large from 18.4 to 39.2 (+113%). (2)
With larger n, the performance gains from increasing the step budget become more significant. (3)
Online benchmarks have a large variance. To study model robustness, we did Pass@n evaluation
when temperature is 0 in Figure D.5 and find higher temperature leads to higher Pass@n performance
but lower Pass@1 performance.

We then investigated in the results and find variance comes from these factors:

1. The agent chooses different solutions in different runs. For example, in the task “Re-open the last
closed browser tab,” the agent sometimes uses Ctrl + Shift + T (only one step) and other times
navigates through the history menu (needs many steps). Agents may fail on harder solutions.

2. Minor omissions or extras. In Chrome or VSCode settings, forgetting to click “Save” (or
performing an additional stray click) converts a correct solution into failure.

3. Environment dynamics: Occasional CAPTCHA dialogs, machine variability, and network latency
can change the interaction sequence and lead to inconsistent outcomes.

16.90% 17.30% 18.40%

34.62%
36.44%

39.20%

15 30 50
10

20

30

40
Pass@16
Pass@8
Pass@4
Pass@1

O
SW

or
ld

 S
R

 (%
)

!"#$%

Figure 6: OSWorld Pass@N perfor-
mance curves of OPENCUA-QWEN2-
7B, temperature=0.1

Cross-platform training improves generalization, even
with domain differences. As shown in Figure 5, there
is a consistent performance gap between models trained
on different domains. Models trained on Ubuntu data
perform better on OSWorld, while those trained on Win-
dows/macOS data perform better on WindowsAgentArena
and AGENTNETBENCH. This domain gap reflects the
underlying differences in GUI layouts, system styles, and
application behavior across platforms. OSWorld primarily
focuses on applications and websites aligned with Ubuntu
environments, whereas WindowsAgentArena contains sev-
eral OSWorld Windows-specific applications. Interest-
ingly, the performance gap between training on Win&Mac
data versus Ubuntu data is narrower on WAA than on OS-
World, suggesting that application-level knowledge can partially transfer across operating systems,
even if interface styles differ.

Other analysis and ablation studies. More analysis on model robustness, error analysis and the
ablation studies of reasoning format, history image number, CoT mixture, general data, and reflective
long CoT are elaborated in the Appendix D.3

9

6 Related Work

CUA benchmarks and datasets Autonomous computer-use agents are now judged primarily
through execution-level benchmarks that embed the agent inside genuine software environments
rather than synthetic simulators. On the desktop side, suites such as [45, 6, 55] orchestrate multi-step
workflows that span office productivity, source-code editing, file management, and operating-system
configuration across Linux, Windows, and macOS. For the web domain, campaigns including [56,
18, 11, 51, 12] deploy agents on self-hosted or live sites with dynamic content, long navigation
chains, and non-trivial information-retrieval subtasks. To support training at the necessary scale,
several high-volume data pipelines have appeared: tutorial-to-trajectory conversion for browser
tasks [48, 22], cross-device grounding and action logs [17, 9, 15], plus our own collection of 27
K desktop demonstrations that pair screenshots, low-level mouse/keyboard events, and reflective
chain-of-thought annotations.

CUA frameworks and models Approaches to building computer-use agents can be grouped
into three broad categories. First, text-based language models operate on structured GUI meta-
data—such as DOM trees or accessibility labels—and issue symbolic commands; representative
work ranges from early page-centric agents [24] to more recent language-only planners that still
eschew raw pixels [49]. Second, vision-centric agents integrate screen imagery. Some focus on
grounding—learning to associate natural-language references with bounding boxes or coordinate
clicks [15, 42]—while others pursue end-to-end policies that translate full screenshots directly into
action sequences [50, 30, 29, 1]. Third, modular agent frameworks wrap large language models
with additional components—specialised vision encoders, hierarchical or search-based planners,
episodic memory, and tool APIs—to tackle long-horizon tasks requiring perception, reasoning, and
control [57].

7 Conclusion

We presented OPENCUA, a comprehensive open-source framework addressing critical gaps in
computer-use agent development. By offering annotation infrastructure, data processing pipelines,
diverse datasets, effective training recipes, and efficient evaluation benchmarks, we establish essential
foundations for CUA research. Our models demonstrate strong performance across benchmarks
while exhibiting clear data scaling laws and cross-domain generalization capabilities. By releasing
all components—tools, datasets, code, and models—we aim to accelerate transparent CUA research,
enabling the community to systematically investigate these agents’ capabilities, limitations, and risks
as they increasingly mediate our digital interactions and execute consequential decisions on our
behalf.

8 Aknowledgement

The authors of this paper were supported by the ECS (27212023) and Areas of Excellence Scheme
(AoE/E-601/24-N) from RGC of Hong Kong. We thank Yu Su, Caiming Xiong, and the anonymous
reviewers for their insightful discussions and valuable feedback. We are grateful to Moonshot AI
for providing training infrastructure and annotated data. We also sincerely appreciate Jin Zhang,
Hao Yang, Zhengtao Wang, and Yanxu Chen from the Kimi Team for their strong infrastructure
support and helpful guidance. The development of our tool is based on the open-source projects-
DuckTrack [36] and OpenAdapt [27]. We are very grateful to their commitment to the open source
community. Finally, we extend our deepest thanks to all annotators for their tremendous effort and
contributions to this project.

10

References
[1] Anthropic. Claude computer use. https://www.anthropic.com/news/

3-5-models-and-computer-use, 2024. Accessed: 2025-05-03.

[2] Anthropic. Introducing claude 4, 5 2025. URL https://www.anthropic.com/news/
claude-4. Accessed: 2025-07-28.

[3] Anthropic. Introducing claude sonnet 4.5. Technical report, Anthropic, Sep 2025. URL
https://www.anthropic.com/news/claude-sonnet-4-5. Online; accessed 2025-10-04.

[4] Anthropic. Claude’s extended thinking. https://www.anthropic.com/research/
visible-extended-thinking, 2025. Accessed: 2025-05-03.

[5] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng
Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li,
Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao
Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl
technical report. CoRR, abs/2502.13923, 2025.

[6] Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li,
Yadong Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui.
Windows agent arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.
org/abs/2409.08264.

[7] Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and
Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. arXiv
preprint arXiv:2407.17490, 2024.

[8] Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun
Liu, Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to
versatile gui agents. arXiv preprint arXiv:2406.11317, 2024.

[9] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

[10] Edoardo Debenedetti, Jie Zhang, Mislav Balunović, Luca Beurer-Kellner, Marc Fischer, and
Florian Tramèr. Agentdojo: A dynamic environment to evaluate prompt injection attacks and
defenses for llm agents, 2024. URL https://arxiv.org/abs/2406.13352.

[11] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems, 36:28091–28114, 2023.

[12] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vázquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: How capable are
web agents at solving common knowledge work tasks? In Forty-first International Conference
on Machine Learning, 2024. URL https://openreview.net/forum?id=BRfqYrikdo.

[13] Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui
agents. arXiv preprint arXiv:2410.05243, 2024.

[14] Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
CoRR, abs/2410.05243, 2024. URL https://doi.org/10.48550/arXiv.2410.05243.

[15] Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. In The Thirteenth International Conference on Learning Representations, 2025.

[16] Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan,
Jian Wang, Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. arXiv preprint
arXiv:2505.07062, 2025.

11

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-sonnet-4-5
https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/research/visible-extended-thinking
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2406.13352
https://openreview.net/forum?id=BRfqYrikdo
https://doi.org/10.48550/arXiv.2410.05243

[17] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem
AlShikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal
generalist autonomous agents for desktop and web. In European Conference on Computer
Vision, pages 161–178. Springer, 2024.

[18] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Gra-
ham Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, 2024.

[19] Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang,
and Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer
use. arXiv preprint arXiv:2504.07981, 2025.

[20] Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents, 2024. URL
https://arxiv.org/abs/2406.03679.

[21] Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian
Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
visual agent. arXiv preprint arXiv:2411.17465, 2024.

[22] Dunjie Lu, Yiheng Xu, Junli Wang, Haoyuan Wu, Xinyuan Wang, Zekun Wang, Junlin Yang,
Hongjin Su, Jixuan Chen, Junda Chen, Yuchen Mao, Jingren Zhou, Junyang Lin, Binyuan Hui,
and Tao Yu. Videoagenttrek: Computer use pretraining from unlabeled videos, 2025.

[23] Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app
gui navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

[24] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim,
Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt:
Browser-assisted question-answering with human feedback. ArXiv preprint, 2021. URL
https://arxiv.org/abs/2112.09332.

[25] Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A Rodriguez, Montek Kalsi, Rabiul
Awal, Nicolas Chapados, M Tamer Özsu, Aishwarya Agrawal, David Vazquez, et al. Ui-
vision: A desktop-centric gui benchmark for visual perception and interaction. arXiv preprint
arXiv:2503.15661, 2025.

[26] OBS Project. Obs studio. URL https://github.com/obsproject/obs-studio. Accessed
2025-08-04.

[27] OpenAdaptAI. Openadapt: Ai-first process automation with large multimodal models (lmms).
URL https://github.com/OpenAdaptAI/OpenAdapt. Accessed 2025-08-04.

[28] OpenAI. Introducing openai o3 and o4-mini. Technical report, OpenAI, Apr 2025. URL
https://openai.com/index/introducing-o3-and-o4-mini/. Online; accessed 2025-
09-25.

[29] OpenAI. Operator, 2025. URL https://openai.com/research/operator.

[30] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua
Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated
gui interaction with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

[31] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

12

https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2112.09332
https://github.com/obsproject/obs-studio
https://github.com/OpenAdaptAI/OpenAdapt
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/research/operator
https://arxiv.org/abs/2501.12326

[32] Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J. Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with an
lm-emulated sandbox. ArXiv, abs/2309.15817, 2023. URL https://api.semanticscholar.
org/CorpusID:262944419.

[33] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 2024.

[34] Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu
Wu, Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent
trajectory construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

[35] Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,
Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. arXiv preprint
arXiv:2504.07491, 2025.

[36] TheDuckAI. Ducktrack. URL https://github.com/TheDuckAI/DuckTrack. Accessed
2025-08-04.

[37] Bowen Wang, Xinyuan Wang, Jiaqi Deng, Tianbao Xie, Ryan Li, Yanzhe Zhang, Gavin
Li, Toh Jing Hua, Ion Stoica, Wei-Lin Chiang, Diyi Yang, Yu Su, Yi Zhang, Zhiguo Wang,
Victor Zhong, and Tao Yu. Computer agent arena: Compare and test computer use agents on
crowdsourced real-world tasks, 2025.

[38] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-
language model’s perception of the world at any resolution. ArXiv preprint, 2024. URL
https://arxiv.org/abs/2409.12191.

[39] Michael Wornow, Avanika Narayan, Ben Viggiano, Ishan S. Khare, Tathagat Verma, Tibor
Thompson, Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla,
Rongfei Lu, Justin Shen, Divya Nagaraj, Joshua Martinez, Vardhan Agrawal, Althea Hudson,
Nigam H. Shah, and Christopher Re. Wonderbread: A benchmark for evaluating multimodal
foundation models on business process management tasks, 2024. URL https://arxiv.org/
abs/2406.13264.

[40] Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan.
Dissecting adversarial robustness of multimodal lm agents. In International Conference on
Learning Representations, 2024. URL https://api.semanticscholar.org/CorpusID:
270562791.

[41] Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal
llms, 2023. URL https://arxiv.org/abs/2312.14135.

[42] Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: A foundation action model
for generalist GUI agents. CoRR, abs/2410.23218, 2024. doi: 10.48550/ARXIV.2410.23218.
URL https://doi.org/10.48550/arXiv.2410.23218.

[43] Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model
for generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218.

[44] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024.

[45] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments. ArXiv preprint, 2024.
URL https://arxiv.org/abs/2404.07972.

13

https://api.semanticscholar.org/CorpusID:262944419
https://api.semanticscholar.org/CorpusID:262944419
https://github.com/TheDuckAI/DuckTrack
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2406.13264
https://arxiv.org/abs/2406.13264
https://api.semanticscholar.org/CorpusID:270562791
https://api.semanticscholar.org/CorpusID:270562791
https://arxiv.org/abs/2312.14135
https://doi.org/10.48550/arXiv.2410.23218
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2404.07972

[46] Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing
Hu, Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Scaling computer-use grounding via user interface decomposition and
synthesis, 2025. URL https://arxiv.org/abs/2505.13227.

[47] Tianbao Xie, Mengqi Yuan, Danyang Zhang, Xinzhuang Xiong, Zhennan Shen, Zilong Zhou,
Xinyuan Wang, Yanxu Chen, Jiaqi Deng, Junda Chen, Bowen Wang, Haoyuan Wu, Jixuan Chen,
Junli Wang, Dunjie Lu, Hao Hu, and Tao Yu. Introducing osworld-verified. xlang.ai, July 2025.
URL https://xlang.ai/blog/osworld-verified.

[48] Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv
preprint arXiv:2412.09605, 2024.

[49] Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou,
Yitao Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming
Xiong, and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In
International Conference on Learning Representations, 2024.

[50] Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction.
arXiv preprint arXiv:2412.04454, 2024.

[51] Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun,
and Yu Su. An illusion of progress? assessing the current state of web agents, 2025. URL
https://arxiv.org/abs/2504.01382.

[52] Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. React meets actre:
When language agents enjoy training data autonomy. arXiv preprint arXiv:2403.14589, 2024.

[53] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[54] Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. ArXiv preprint, 2024.
URL https://arxiv.org/abs/2403.02713.

[55] Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan.
Agentstudio: A toolkit for building general virtual agents, 2025. URL https://arxiv.org/
abs/2403.17918.

[56] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In International Conference on Learning
Representations, 2024.

[57] Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu,
Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang,
Xiangru Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An
open-source framework for autonomous language agents, 2023. URL https://arxiv.org/
abs/2309.07870.

14

https://arxiv.org/abs/2505.13227
https://xlang.ai/blog/osworld-verified
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2403.17918
https://arxiv.org/abs/2403.17918
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions: (1)
the development of AGENTNET TOOL, a cross-system annotation software for capturing
human demonstrations with computer system states; (2) a data processing and augmentation
pipeline that converts raw demonstrations into high-quality agent trajectories; (3) the creation
of AGENTNET, a diverse dataset of 27K computer-use tasks; (4) a training recipe for effective
computer-use agent (CUA) learning; and (5) the development of AGENTNETBENCH, a
comprehensive offline benchmark for CUA evaluation.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Appendix A, we outline two key constraints: AGENTNET ’s scalability is
bound by manual annotation efforts, and its generality is curtailed by our ethical mandate
for explicit user consent.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

15

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper primarily focuses on empirical contributions, including the develop-
ment of datasets, training methodologies, and benchmarks for computer-use agents. It does
not consist any theoretical results, theorems, or proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed experiment settings required to reproduce our results are com-
prehensively described in Section 4.1. This includes all necessary information about model
configurations, data composition, training detail, and evaluation settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

16

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open-source all of our models and datasets, along with detailed
instructions and scripts to reproduce all experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup and methodology are detailed in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The main evaluation of OpenCUA models on OSWorld-Verified contains the
results of 3 runs including the average and variance. While the paper does not include error
bars or confidence intervals for the other experimental results, this omission is primarily
due to the significant computational cost of training large vision-language models and
conducting online evaluations for computer-use agents. We rely on the consistent perfor-
mance observed across different models (AgentNet-A3B, AgentNet-7B) and benchmarks
(OSWorld, WindowsAgentArena) to validate our conclusions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed computational resource usage is provided in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper strictly follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

18

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 7, we discuss the broader impacts of the paper. OPENCUA
introduces efficient data collection tools, a curated training recipe, and open-sourced datasets
and models, providing a foundational platform for future research and development in the
field of computer-use agents (CUA).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have discussed the privacy concerns related to human annotation data in
Section F.1.2.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

19

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We appropriately cite the sources of all models and datasets utilized in the
paper. Qwen2-VL-7B and OSWorld are released under the Apache 2.0 license, while
Kimi-VL-A3B and WindowsAgentArena are distributed under the MIT license. The Aguvis
dataset is derived from publicly available existing work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All models and datasets introduced in the paper will be open-sourced, accom-
panied by comprehensive documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: During the crowdsourcing process of data annotation, we provided annotators
with comprehensive documentation of AGENTNET TOOL, and we will open-source this full
documentation, including the detailed instructions given to the annotators. We informed all
participants of the wage, and paid them at least the minimum wage in the country of the
data collector.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper describes potential privacy risks to participants, and these risks
were disclosed to the participants as part of the study process. For each user, we presented
and obtained agreement on a consent form detailing data access, collection, release, and
potential risks. We considers this type of purely digital study exempt from IRB review and
therefore did not require formal IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We explicitly describe the use of LLMs as a critical component of
our data augmentation pipeline, as detailed in Section 3.1. Specifically, we employ
claude-3-7-sonnet-20250219 as the foundational model for generating CoT synthesis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Table of Contents in Appendix

A Limitations 23

B AGENTNETBENCH 23

C CUA Training Strategies 25

D Experiment Setup, Extra Experiments and Analysis 25

D.1 Experiment Setup and Training settings . 25

D.2 GUI grounding evaluation. 26

D.3 Ablation Studies . 26

D.4 Error Study . 27

D.5 Extra analysis . 29

E OSWorld-Verified Results Detail 30

F Dataset Statistics, Annotation Details, and AgentNetTool Details 31

F.1 AGENTNET TOOL . 31

F.1.1 Tool Features . 32

F.1.2 Privacy Protection . 32

F.2 AGENTNET Statistics and Analysis . 33

F.2.1 Diversity . 33

F.2.2 Complexity . 34

F.2.3 Action distribution . 34

F.3 Annotation Details: Annotation Strategy, Annotator Source and Cost 35

G OSWorld Case Example 37

H AgentNet Training Data Example 41

H.1 L1 Data Example . 41

H.2 L2 Data Example . 43

H.3 L3 Data Example . 47

22

A Limitations

The scalability and quality of AGENTNET dataset is inherently limited by human annotation efforts.
Although AGENTNET TOOL streamlines the data collection process, expanding the dataset beyond its
current size would require additional human resources. Also, annotators may not have the expertise
to complete computer tasks in the most effective approach (i.e. using shortcuts, even write coding
scripes). Exploring alternative data sources or semi-automated annotation methods could help address
this limitation. Additionally, though OPENCUA strives to collect authentic computer-use data from
personal devices, our ethical requirement for explicit informed consent regarding data practices
inevitably introduces selection bias. While our dataset maintains high diversity and authenticity,
it necessarily excludes data from users who, upon understanding the potential risks, opt not to
participate. This is a limitation we accept to uphold responsible data collection.

B AGENTNETBENCH

AgentNet Benchmark

Evaluation Pipeline Diversed Actions Multiple Options

Write

Click

Scroll

rClick

Drag
keys

Click

Click
ClickClick

Step1: Find song “Only God Was Above Us”

Instruction History
Option 1:

Scroll down the Popular Song list

 to find and open the target song

Click on the “Four Season Hotel”
on the result of searching

To achieve the target,

 i should

<action>(target)
eval

Click on the “Four Season Hotel”
position on the map

Click on the song “Only God Was

Above Us” to open the target song

Option 2:

Label:

Step 2: Open the “Four Season Hotel Sydney”

Option 1:

Option 2:

step1
step2

Thought:

Action:

step n-1

Figure 7: Illustration of the AgentNet Benchmark evaluation pipeline

There are several online benchmarks [44, 6] that evaluate agent performance in desktop environments.
However, these online benchmarks typically require substantial computational resources for environ-
ment setup, making evaluations expensive, slow, and difficult to reproduce consistently through time
due to their reliance on dynamic environments. Meanwhile, they only provide sparse, high-variance
signals (i.e., trajectory-level accuracy). Another line of works, such as ComputerAgentArena [37],
evaluate agent’s performance of open-ended tasks on live environments through human preference.
To address the limitations of online evaluation benchmarks, we introduce an offline CUA evaluation
benchmark, AGENTNETBENCH, comprising 100 representative tasks selected from the AGENTNET
dataset. Tasks were strategically chosen from the center of sub-domain clusters (as detailed in Sec-
tion F.2.1), ensuring diversity and representativeness across applications and websites on Windows
and macOS platforms. Each task was manually reviewed to refine goals and remove redundant
actions. Notably, we manually provide multiple valid action options at each step because of the
inherent multiplicity of valid actions in computer-use tasks.

Benchmark statistics and evaluation dimensions The AGENTNETBENCH maintains a balanced
domain distribution consisting of 38 Work tasks, 29 Daily tasks, 24 Professional tasks, and 9 System &
Web Setup tasks. The tasks are split between two operating systems, with 61 tasks from Windows and
39 tasks from macOS. Screen resolutions are categorized into three levels (high, medium, and low) as
detailed in Table 4 (note that, for practical purposes, all images in the benchmark are resized from
their original resolutions). The distribution of actions within these tasks and additional benchmark
statistics are also presented comprehensively in Table 4.

Multiple action choices for enhanced accuracy Previous offline benchmarks [31, 20] typically
define a single ground-truth action at each step. This practice can negatively impact accuracy by
disregarding alternative valid choices that an agent may reasonably make in real-world interactions.
In contrast, in AGENTNETBENCH, we annotate multiple plausible action choices for each step to
better reflect real-world decision-making variability.

Step success rate calculation and action matching criteria To calculate the Step Success Rate
(Step SR), we evaluate the correctness of agent actions at each individual step using precise matching

23

Table 4: Comprehensive Statistics of AgentNetBench
Domain Distribution Operating System Distribution

Work 38 Windows 61
Daily 29 macOS (Darwin) 39
Professional 24
System & Web Setup 9

Resolution Distribution Overall Statistics

High 20 Total Tasks 100
Medium 33 Avg. Steps/Task 17.63
Low 47 Total Actions 2143

Action Distribution

click 850 (67.0%) doubleClick 19 (1.5%)
rightClick 17 (1.3%) press 28 (2.2%)
dragTo 27 (2.1%) write 137 (10.8%)
moveTo 45 (3.5%) hotkey 30 (2.3%)
scroll 18 (1.4%) terminate 100 (7.6%)

criteria tailored to different action types. For coordinate-based actions (e.g., click, doubleClick,
moveTo, dragTo, rightClick, and hscroll), we define bounding boxes around each action’s
target location; the agent earns the step success point if its predicted coordinates fall within these
bounding boxes. For content- or keyboard-based actions, such as write, we measure correctness by
computing the edit distance between the predicted and ground-truth text; actions like hotkey and
press require perfect matches of the specified key combinations. For the scroll action, correctness
depends on two key criteria: the agent’s output coordinates must be within the designated bounding
box, and the scrolling direction must exactly match the ground truth. Finally, the correctness of
the terminate action depends on the agent appropriately terminating at precisely the correct step
– neither prematurely nor delayed. Considering the distribution of actions (see Table 4), these fine-
grained evaluation rules ensure accurate and fair evaluation of agent capabilities in diverse interaction
scenarios.

0.4 0.5 0.6 0.7

4

6

8

Offline Step SR

O
nl

in
e

Ta
sk

SR

Fit: 16.813x1.913

Data Points

Figure 8: Offline vs. Online evaluation.

AGENTNETBENCH strongly correlates with online
benchmark performance The offline benchmark pri-
marily assesses an agent’s decision-making capability by
evaluating its first-choice accuracy at each task step. While
agents can leverage self-reflection to recover from errors
made in earlier steps, offline and online SRs should cor-
relate under a low step budget. Figure 8 and Table 3
indeed demonstrate a clear positive correlation, specifi-
cally following a power-law relation between the online
task success rate (under a 15 step budget) and the offline
step success rate. Therefore, metrics obtained from our of-
fline benchmark provide a reliable indicator of an agent’s
foundational proficiency and its adaptability to realistic,
resource-constrained online tasks.

24

C CUA Training Strategies

Depending on computing budget, dataset availability, and the target model—e.g., building a spe-
cialized computer-use agent or a general-purpose VLM with agentic capabilities—different training
strategies may be adopted. Following Aguvis [50], which proposes a two-stage curriculum training
(Stage 1 for grounding and Stage 2 for planning and reasoning), we further explore three strategies:

1. Stage 2 only: When training resources are limited and the focus is on computer-use agent data, we
aim to adapt a general open-source VLM into a specialized CUA. To preserve general instruction-
following ability, we use a training mix of 70% CUA data (with a planning-to-grounding ratio of
4:1) and 30% general SFT data. We fine-tune Qwen2-VL with 30B tokens and Kimi-VL-A3B
with 20B tokens. Both models exhibit strong improvements on CUA tasks (see Table 7).

2. Stage 1 + Stage 2: With more resources and diverse data, a staged approach yields better
performance. In Stage 1, we enhance grounding and understanding using grounding trajectories,
tutorial-style demonstrations, state-transition caption data, general vision language tasks, and
general text SFT data. We trained Qwen2.5-VL-32B on this mixture for 40B tokens. In Stage 2,
we shift focus to CUA planning, using 45% planning, 20% grounding, and the rest general data.
This results in OPENCUA-32B, which achieves substantial gains in both grounding and planning
benchmarks (Table 2, Table 5). Using the same strategy, we trained Qwen2.5-VL-72B but with
more data to build our OPENCUA-72B. In addition to more annotated trajectories, we also used
8k trajectories rolled out in an Ubuntu environment using o3 [28]+Jedi [46]. We designed the
CoT to emphasize the most effective information—especially reflection—and placed this data in
Stage 2 to transform the model’s CoT into a more efficient, information-dense format. In this
way, the model first learns rich behaviors (reflection, planning, . . .) in Stage 1 and then leverages
them more effectively in Stage 2.

3. Joint training: To build a general-purpose VLM with strong CUA abilities, we adopt joint
training across domains with balanced data mixing. Given the complexity of multi-image
trajectory data, we train these samples for 3 epochs to ensure sufficient learning. Based on
Qwen2.5-VL-7B, we train a model on 200B tokens budget, maintaining a data ratio of 20%
planning, 20% grounding, and 60% general. The resulting model, OPENCUA-7B, achieves
state-of-the-art performance among 7B-scale open-source CUAs, achieving 27.3% success rate
on OSWorld Online Evaluation Platform.

D Experiment Setup, Extra Experiments and Analysis

D.1 Experiment Setup and Training settings

All models are trained on the Kimi Team’s infrastructure with the Megatron framework and Deep-
Speed (ZeRO-3). We employ three training strategies:

1. Stage-2 only. OPENCUA-QWEN2-7B and OPENCUA-A3B share a configuration of sequence
length 32,768, learning-rate 2 × 10−5, weight-decay 0.1, and global batch size 384 (512 in
ablations) on 96 × A100GPUs. They are trained on 18k Win&macOS + 10k Ubuntu trajectories.
OPENCUA-QWEN2-7B runs for 3,400 steps (about 45 h) after a 400-step grounding warm-up;
OPENCUA-A3B runs for 2,000 steps (about 10 h).

2. Stage-1 + Stage-2. OPENCUA-32B is first pretrained on 35B tokens of general text, vision,
and grounding data (batch 3,584, LR 3× 10−5, 224 × A100). We take the step-1200 checkpoint.
Stage-2 then continues for 60B tokens on trajectory + general + grounding data (batch 512, LR
2.5× 10−5, 128 × A100) using 18k Win&macOS + 20k Ubuntu trajectories. The final model
corresponds to step 4,700. For OPENCUA-72B, we trained Qwen2.5-VL-72B using more data.
Stage 1 contains 250B token data (batch size 600, LR 2.5× 10−5 decay to 1.5× 10−5, 480 ×
A100). Stage 2 contains 16B token (batch size, LR 1.5× 10−5 decay to 2× 10−6, 480 × A100).

3. Joint training. OPENCUA-7B is trained end-to-end on the full data mixture for 200B tokens
(18k Win&macOS + 20k Ubuntu trajectories) with batch 512, peak LR 2.5 × 10−5 (min LR
3 × 10−6), decay tokens 200B, on 128 × A100 for eight days. The best checkpoint is at step
14,600.

25

Table 5: GUI grounding results.
Model OSWorld-G Screenspot-Pro Screenspot-V2 UI-Vision

Qwen2.5-VL-7B 31.4 27.6 88.8 0.85
Qwen2.5-VL-32B 46.5 39.4 87.0 –
UI-TARS-72B 57.1 38.1 90.3 25.5
OpenCUA-A3B (Ours) 48.6 28.5 91.4 –
OpenCUA-Qwen2-7B (Ours) 45.7 23.7 88.5 –
OpenCUA-7B (Ours) 55.3 50.0 92.3 29.7
OpenCUA-32B (Ours) 59.6 55.3 93.4 33.3
OpenCUA-72B (Ours) 59.2 60.8 92.9 37.3

D.2 GUI grounding evaluation.

Table 5 and Table 2 reveal several key findings:

1. OPENCUA-72B and OPENCUA-32B rank the first. OPENCUA-72B and OPENCUA-
32B are the best-performing agentic model on all mainstream GUI-grounding benchmarks.
OPENCUA-72B achieves 60.8% on ScreenSpot-Pro and 37.3% (SOTA) on UI-Vision. Their
advantage stems from (i) the substantially larger grounding corpus used in Stage-1 training and
(ii) its larger 32B parameter scale.

2. Joint-training boosts OPENCUA-7B. OPENCUA-7B also scores competitively because
large-scale grounding data are injected during joint training.

3. Pixel-budget advantage of Qwen2.5-VL. Qwen2.5-VL based models uses a higher max-pixels
limit (12,845,056 vs. 829,440 for Qwen2-VL and Kimi-VL-A3B), yielding stronger results
on high-resolution ScreenSpot-Pro. OPENCUA-32B achieves 55.3% on Screenspot-Pro, and
OPENCUA-7B achieves 50.0%.

4. Grounding alone is not enough. Although Qwen2.5-VL-32B matches or even surpasses
OPENCUA-QWEN2-7B and OPENCUA-A3B on OSWorld-G and ScreenSpot-V2, OpenCUA
models achieve far higher success rates on the full OSWorld benchmark (OPENCUA-A3B 19.9%
and OPENCUA-QWEN2-7B 23.0% shown in Appendix 7). This shows that solid grounding is
necessary yet insufficient for realistic agentic tasks in the environment; high-level planning and
reflective reasoning ultimately drive reliable task completion.

5. Domain correlation. Because OSWorld-G [46] is collected in an Ubuntu environment, its
scores correlate more closely with the online OSWorld evaluation than with ScreenSpot-Pro and
Screenspot-V2.

D.3 Ablation Studies

L2 reasoning format achieves the best inference performance. Note that we trained the models
with mixed reasoning format (L1, L2, L3, see Section 3.1). In this part, we explore which type of
thinking format is the best at inference. We test OPENCUA-QWEN2-7B and OPENCUA-A3B on
OSWorld in 15 steps. As in Table 6, using the L2 format, the performance is higher than L1 and L3.
This result is actually different from the conclusion from previous work [50, 30] that L1 outperforms
L2. We think this is because our L2 CoT has higher quality (e.g., planning and reflection), which can
help the model make better decisions. On the other hand, L3 underperforms L2. By case study, we
find that when model describes the information in the screenshot, there tend to be many elements
irrelevant to the task or the next action, which may mislead the model. In summary, our results
show that the right choice of high-quality, non-redundant reasoning can leverage VLM’s language
reasoning capability to improve the agent performance.

Using a moderate number of visual history images and concise textual history yields the best
trade-off between performance and efficiency. We ablate history representation from both visual
and textual perspectives. For vision, we vary the number of history screenshots (1, 3, 5) and fine-
tune Qwen2-VL-7B on 7K trajectories. As the OSWorld results shown in Figure 9, using multiple
screenshots substantially improves performance over single-image inputs, as GUI agents rely entirely

26

Table 6: Ablation results on OSWorld for different
Chain-of-Thought (CoT) settings.

Ablation CoT Variant SR (%)

CoT Mixture L2 13.1
Mixture-CoT 18.5

Reflective Long CoT Short-CoT 11.5
Advanced-CoT 15.3

Test-time Reasoning Format
L1 16.9
L2 18.5
L3 17.6

15 50
16

18

20

22

18.5

20.1

17.5

19.1

Max Steps Allowed

O
SW

or
ld

SR
(%

)

Agent data + text Agent data w/o text

Figure 10: General text data ablation.

on vision for observing state changes. However, increasing from 3 to 5 images yields marginal gains
while incurring 3K more context tokens and delayed convergence, suggesting diminishing returns.

On the textual side, we compare L1 and L2 history under the same 3-image setting. In Figure 9, L2
history offers no benefit and may introduce hallucinations that distract attention, while also reducing
training efficiency. Hence, we adopt L1 CoT + 3 images as the default setting.

1 Img 3 Img 5 Img

4

6

8

10

6.5

9.6
9.9

7.5

Screenshots

O
SW

or
ld

SR
(%

)

L2 (Thought)
L1 (Action)

Figure 9: Effect of history representa-
tion: L1 (Action) benefits from more
screenshots, while L2 (Thought) at 3 im-
ages lags behind.

Training with a mixture of CoT formats outperforms
using only L2 reasoning. Since our best performance is
from L2 CoT inference, and L3 and L1 is lower than L2,
we did an ablation of only training the L2 data instead of
the mixture of L1, L2, and L3. We use the same recipe as
our OPENCUA-QWEN2-7B, but only replace the mixture
CoT data with L2 data. As the OSWorld result in Table 6,
the model trained on L2 data using the same steps as
OPENCUA-QWEN2-7B, but the performance drops to
13.1, which is aligned with the conclusion of Aguvis [50].

General-domain text data provides a positive effect to
agent performance. As we mentioned in Section 3.3,
we used 35% general text data in our main experiment, so
we also use the same agent data without the text data to
fine-tune Qwen2-VL-7B with grounding warm-up stage
for 2400 steps (approximately the same amount of agent
data tokens) to ablate its influence. According to Figure 10,
the general text data slightly improves model’s agentic
performance. Therefore, adding text data from totally
different general domains doesn’t impair the agent model’s performance, on the contrary, helps
improve the performance. We think the reason is that the general text data may help agent model’s
generalization and instruction understanding.

Reflective long CoT significantly boosts performance by improving error correction. To
understand the effect of reflective long CoT (Secion 3.1), we do an ablation study on Qwen2-VL-7B
with 14K Win&Mac and 3K Ubuntu trajectories. Without reflective long CoT, the CoT reduces to
that used by Aguvis [50]. In Figure 11, we see that reflective long CoT improves the performance
from 11.5 to 15.3. Since the reflective reasoning focuses on error correction, we conjecture that the
improvement comes from improved self-correction capability.

D.4 Error Study

After inspecting our online evaluation results, we group the failures into the following categories:

1. Insufficient task knowledge Foundation models may lack domain-specific GUI knowledge or the
procedural know-how to finish a task. Each application has its own UI conventions and operation
logic, and some tasks require specialized skills (e.g., spreadsheet formulas).

27

I can see that we've made progress in setting up the table for the Features slide. The number of columns is
correctly set to 2, which aligns with our goal. However, the number of rows is currently set to 1, but we
need 5 rows according to our goal.

Looking at the previous actions, we've already:
1. Navigated to slide 3 (the Features slide)
2. Activated the content area for editing
3. Opened the Insert menu and selected "Table..."
4. Set the number of columns to 2
5. Set the number of rows to 1 (though we need to change this to 5)

The current state shows that we're in the Insert Table dialog with the number of rows field active and showing
"1". Since we need 5 rows instead of 1, we need to change this value. There are a few ways to do this:
1. We could click the increase button multiple times to increment from 1 to 5
2. We could delete the current value and type "5" directly
3. We could select the current value and replace it with "5"

Looking at the current situation, it seems we need to select the current value "1" in the rows field. This makes
sense because selecting the text would allow us to replace it with a new value in the next step. The mouse
movement and drag operation would highlight the "1" in the rows field, making it ready for replacement.

After selecting the "1", the next logical step would be to type "5" to replace it, and then click the OK
button to create the table with our desired dimensions (5 rows and 2 columns).

Step 8: Click on the "Number of rows:" input
field to ensure it's selected for editing. Step 9 Long CoT

Task: In the "Features" slide, insert a table with 5 rows and 2 columns.

Step 9: Click and drag across the "1" in the
Number of rows field to select it for replacement.

Step 10: Type "5" to replace the selected
"1" in the Number of rows field.

Reflection

Memory

Plan & Reasoning

Prediction

✅ Correctly
resolved former
mistake

❌Error:
Model
mistakenly click
the wrong place
changing the
rows from 2 to
1, instead of 5

Figure 11: Reflective Long CoT Example: Before predicting the actual action, the model first reason
according to the history and current action with reflection, memory, plan&reasoning and prediction
in the CoT. The model identifies the former mistake and correct it in the later steps.

• Example 1: “I have a lookup table for the officers of each branch. Please fill the second
table using VLOOKUP.” The agent does not know the VLOOKUP function and therefore fails.

• Example 2: “Fill all the blank cells with the value in the cell above.” The agent does not
know the bulk-fill feature and instead edits cells one by one.

2. High-precision grounding errors Tasks that demand pixel-accurate actions frequently fail.

• Example: “Change the 2 in ‘H2O’ to a subscript.” The agent must precisely drag-select only
the “2,” but often selects extra characters. Such fine-grained, letter-level grounding data are
also hard to synthesize.

3. Action repetition When an incorrect action has no observable effect, the agent may keep predicting
the same incorrect step. Occasionally it recovers, but often it loops indefinitely.

18.50% 19.00% 20.10%

32.96%
35.57%

38.60%

15 30 50
10

20

30

40
Pass@16
Pass@8
Pass@4
Pass@1

Steps

O
SW

or
ld

 S
R

 (%
)

Figure 12: OSWorld Pass@N performance
curves of OPENCUA-QWEN2-7B, tempera-
ture=0

4. Termination misjudgment Sometimes the agent
fails to notice that the task is already complete and
continues acting, causing failure due to excessive
extra actions. In other cases, it incorrectly assumes
success and terminates prematurely.

5. Long-horizon task failures OSWorld includes
tasks requiring >30–50 gold actions. Maintaining
coherent context over so many steps remains chal-
lenging. For example: “Organize my desktop by
placing academic papers in ‘Paper_reading’, coding
projects in ‘Projects’, and everything else in ‘Miscel-
laneous’. For files without clear names, determine
the category by content.”

6. Insufficient error perception and recovery Al-
though the agent can detect some mistakes and reflect,
the agent is still not good at perceive error as human
does. For example, high-precision edits still pose
problems. It may insert text one character off yet
judge the action correct, and it often lacks a reliable
strategy to undo and retry after mistakes.

28

D.5 Extra analysis

Agent model is not robust: small variance in the environment affects the task result. As
illustrated in Figure 12, OPENCUA-QWEN2-7B ’s OSWorld performance (Pass@N) under tempera-
ture=0 exhibits significant outcome divergence despite nearly identical initial states—with only minor
variations (e.g., system date). The curves for Pass@16 (38.60% SR at 50 steps) and Pass@1 (20.10%
SR) demonstrate a >18% absolute gap, highlighting how minimal initial perturbations propagate into
starkly different trajectories. This underscores the model’s sensitivity to initial conditions even in
deterministic (temp=0) settings, suggesting that seemingly trivial factors (e.g., temporal context) may
critically influence multi-step reasoning.

29

E OSWorld-Verified Results Detail

Table 7: Evaluation results of OPENCUA MODELS on OSWorld-Verified. OPENCUA-32B and
OPENCUA-7B have been run for 3 turns. Pass@3 success rate is also calculated.

Model Setting #Step Succ. Rate Succ. Len Fail Len Calc Impr Writer Chrome VLC TB OS GIMP VSCode Multi Total Succ.

OPENCUA-72B-PREVIEW

Turn 1 15 39.03% 7.95 12.96 13 19 13 25 4 7 12 21 14 13 141
Turn 1 50 44.89% 12.86 27.55 15 21 14 27 7 8 11 20 17 21 161

Turn 1 100 46.08% 16.30 39.26 17 25 13 26 7 9 14 20 16 19 166
Turn 2 100 43.85% 17.70 41.25 18 20 13 23 5 8 14 19 16 22 158
Turn 3 100 45.05% 17.38 42.25 15 23 13 23 7 9 16 19 16 21 162

Avg. 100 44.99% 17.13 40.92 16.67 22.67 13.00 24.00 6.33 8.67 14.67 19.33 16.00 20.67 162.00
Pass@3 100 53.02% 19.01 39.02 20 29 15 27 8 9 19 20 17 28 192

OPENCUA-32B

Turn 1 15 28.29% 7.34 12.79 7 14 8 17 4 6 10 15 10 10 101
Turn 2 15 30.56% 7.34 12.85 5 15 8 21 5 8 13 14 12 9 110
Turn 3 15 30.28% 7.31 12.67 7 14 11 18 4 6 13 14 14 8 109

Avg. 15 29.71% 7.33 12.77 6.33 14.33 9.00 18.67 4.33 6.67 12.00 14.33 12.00 9.00 106.67
Pass@3 15 37.34% 7.83 12.85 9 19 11 25 6 8 13 18 14 12 135

OPENCUA-32B

Turn 1 50 33.89% 10.40 23.79 6 18 9 20 4 9 11 19 10 16 122
Turn 2 50 33.43% 10.53 24.62 7 16 10 19 5 8 12 18 13 12 120
Turn 3 50 35.28% 11.29 24.42 6 20 9 21 4 7 14 17 15 14 127

Avg. 50 34.20% 10.74 24.28 6.33 18.00 9.33 20.00 4.33 8.00 12.33 18.00 12.67 14.00 123.00
Pass@3 50 45.58% 122.33 24.34 11 22 12 29 6 9 15 23 17 21 165

OPENCUA-32B

Turn 1 100 33.89% 12.86 32.52 11 15 8 16 6 7 12 18 12 17 122
Turn 2 100 35.00% 10.86 29.90 8 18 8 19 5 6 11 18 16 17 126
Turn 3 100 35.75% 11.13 29.47 7 20 9 20 6 8 15 16 15 12 128

Avg. 100 34.88% 11.62 30.63 8.67 17.67 8.33 18.33 5.67 7.00 12.67 17.33 14.33 15.33 125.33
Pass@3 100 45.10% 13.02 33.27 12 23 10 27 7 8 15 20 19 22 163

OPENCUA-7B

Turn 1 15 26.18% 7.70 12.73 5 17 6 17 5 8 7 13 10 6 94
Turn 2 15 23.89% 6.97 12.77 4 14 7 13 3 6 10 12 10 7 86
Turn 3 15 23.06% 6.94 12.92 4 12 5 15 4 6 8 10 10 9 83

Avg. 15 24.38% 7.20 12.81 4.33 14.33 6.00 15.00 4.00 6.67 8.33 11.67 10.00 7.33 87.67
Pass@3 15 30.74% 7.77 12.82 6 19 7 20 5 8 11 13 11 11 111

OPENCUA-7B

Turn 1 50 28.81% 10.06 24.14 7 13 8 18 4 7 11 13 10 13 104
Turn 2 50 27.73% 8.93 24.77 5 17 8 18 5 6 10 10 11 9 99
Turn 3 50 27.93% 8.12 24.34 7 16 7 17 5 6 9 11 11 11 100

Avg. 50 28.16% 9.04 24.42 6.33 15.33 7.67 17.67 4.67 6.33 10.00 11.33 10.67 11.00 101.00
Pass@3 50 35.75% 9.91 24.69 9 20 8 22 5 7 13 15 12 18 129

OPENCUA-7B

Turn 1 100 27.30% 9.79 28.71 4 16 6 18 5 6 10 14 10 9 98
Turn 2 100 26.04% 9.68 27.55 5 13 6 18 5 6 10 11 10 10 94
Turn 3 100 26.67% 9.61 27.20 6 16 7 14 5 6 10 12 11 9 96

Avg. 100 26.67% 9.69 27.82 5.00 15.00 6.33 16.67 5.00 6.00 10.00 12.33 10.33 9.33 96.00
Pass@3 100 36.48% 11.73 30.07 7 22 10 23 5 7 13 17 12 16 132

OPENCUA-A3B
Turn 1 15 16.90% 7.66 12.36 1 9 5 12 4 3 4 10 8 5 61
Turn 1 50 19.94% 9.10 21.13 1 11 8 10 2 1 9 14 10 6 72
Turn 1 100 17.73% 10.77 26.60 3 12 4 12 2 3 3 14 9 2 64

OPENCUA-QWEN2-7B
Turn 1 15 19.94% 7.25 12.74 4 11 8 9 5 6 4 10 12 3 72
Turn 1 50 20.61% 8.54 21.28 3 12 10 15 5 7 2 6 10 4 74
Turn 1 100 23.06% 9.73 26.19 5 14 10 12 4 5 6 10 11 6 83

30

F Dataset Statistics, Annotation Details, and AgentNetTool Details

F.1 AGENTNET TOOL

Figure 13: AGENTNET TOOL annotation and verifica-
tion.

Efficient and accurate annotation is essen-
tial for collecting high-quality computer-
use agent data, yet no existing tools sup-
port natural, cross-platform task recording
by non-technical users. To address this, we
developed a user-friendly annotation tool
that streamlines the collection and verifica-
tion of computer-use demonstrations (Fig-
ure 13), runs on annotators’ personal com-
puters and records demonstrations in the
background, capturing: (1) screen videos,
(2) mouse and keyboard signals, and (3)
accessibility trees (Axtree). These data are
then processed into state-action trajectories (see details below in Section F.1), allowing annotators
to review, edit, and submit demonstrations along with task instructions describing the overall goal.
Former works require the annotators to demonstrate “gold” trajectories with all-correct steps, but
this actually limits model’s capability to detect and recover from errors. We believe that annotation
error is not all bad, as long as we can identify and utilize them (see Section 3.1), so we relax the
requirement of all correct actions. Our implementation leverages several established tools: mouse
and keyboard input tracking is based on DuckTrack [36] and OpenAdapt [27]; screen recording
utilizes OBS Studio [26]; and accessibility tree (Axtree) parsing follows the OSWorld framework [44].
Additional implementation details can be found in Appendix F.1.1.

Annotation pipeline We designed our data collection with two key goals: diversity and complexity.
Annotators were provided a curated list of around 200 applications and websites spanning various
domains and were encouraged to demonstrate complex workflows involving professional features or
multi-app interactions. Tasks were required to have more than 15 steps; those with <5 steps were
rejected. To ensure wide coverage and real-world authenticity, we recruited annotators from both
crowd-sourcing platforms and annotation companies. All annotators signed consent forms, and we
use a multi-layer privacy protection mechanism to safeguard user data (Appendix F.1.2). To study
model generalization, we split data into Windows/macOS and Ubuntu, ensuring no overlap with
OSWorld tasks to prevent data leakage. All tasks were manually verified and labeled as rejected,
ok, good, or excellent based on goal clarity, diversity, and complexity. Other annotation details are
provided in Appendix F.3.

Constructing compact state-action trajectories Raw demonstrations consist of high-frequency
screen recordings and fine-grained interaction signals (mouse movements, clicks, scrolls, key presses).
A typical task can produce thousands of low-level actions that are too dense and inefficient for
training. To address this challenge, we developed techniques including action reduction and state-
action matching to construct compact state-action pairs ⟨si, ai⟩. (1) Action reduction: We developed
a rule-based method to compress and reduce these dense action signals into a smaller set of meaningful
actions while preserving essential action information. We first compress atomic signals into higher-
level operations. Mouse move events are treated as preconditions for clicks or drags, and only
their start and end positions are retained. Scrolls are merged into single-directional actions with
accumulated wheel counts. Consecutive key presses are merged into text input strings, while modifier
combinations (e.g., CTRL+C) are abstracted into hotkey actions. We also combine common multistep
gestures such as drags or double-clicks. This process yields a streamlined action sequence aligned
with the pyautogui action space, as shown in Table 9. (2) State-action matching: To pair each
action ai with a representative state si, we extract keyframes from the screen recording that capture
the system state immediately before the action occurs. However, naively aligning keyframes to
action timestamps of mouse clicks risks leaking future information; e.g., the mouse may already
be positioned over a button, making the prediction trivial. To address this challenge, for mouse
clicks, we backtrack to the beginning of the mouse’s pre-movement phase and search backward to
find the last visually distinct frame.After the final action, we append a terminal frame along with a
corresponding termination action.

31

F.1.1 Tool Features

1. Action Reduction: We use tools like pynput to capture users’ atomic actions. These atomic actions
are then reduced to semantically meaningful actions, such as ‘click’, ‘key_press’, ‘key_release’,
‘type’, ‘drag’, ‘move’, and ‘scroll’. This reduction enables models to more effectively learn from
human demonstrations and allows annotators and verifiers to understand trajectories more easily.

2. A11y Tree and HTML Processing: To obtain textual representations of observations, we
implement efficient fetching and processing mechanisms for accessibility (a11y) trees and HTML.
For the a11y tree, we apply pruning rules to select only essential element attributes, ensuring the
fetching process for each tree takes minimal time. For HTML, we develop a browser plugin that
automatically captures the HTML structure of websites.

3. Element Localization: To help users verify the correctness of their actions, we extract text
associated with click locations. Using the a11y tree or HTML, we fetch the bounding box most likely
clicked and extract textual information from it. If the extracted text is insufficient, we leverage GPT
to predict the semantic information of the clicked element.

4. Trajectory Visualization: We design a user-friendly interface to ensure a seamless annotation
experience. For each action, we display its description, a corresponding video clip, and the a11y tree.
Additionally, we provide the full video of the entire trajectory for better context.

5. Verification and Administration Systems: To ensure the quality of the collected data, we develop
verification and administration systems that streamline the process of validating annotations and
maintaining dataset integrity.

F.1.2 Privacy Protection

We implemented a multi-layer privacy protection framework in our data collection process. First,
annotators must agree to a consent form that clearly states the scope of data collection, including
screen recordings, actions, and system information. The form explicitly prohibits recording private
or sensitive information. The tool is designed with privacy-first principles: no data is transmitted to
servers without manual upload by annotators, and annotators can review all collected data (including
videos, actions, and accessibility tree structures) before submission. We further ensure privacy
through a two-stage verification process: manual review by internal team members during task
verification, and automated examination of the task trajectory using GPT-4o during post-processing.
Tasks containing private information are rejected immediately.

1. GPT-Based Privacy Analysis

Data Ingestion: The system loads task descriptions and step-by-step user actions (Observations,
Thoughts, Action Descriptions, etc.) from JSON. These records provide details of users’ intent, the
interface elements users interacted with, and any textual or visual cues relevant to the task.

GPT Inference: The script calls OpenAI’s API with a carefully structured prompt, requesting GPT
to produce a privacy classification in one of four levels: None, Low, Medium, or High. By passing
the user’s detailed action steps and observations to GPT, the system gathers a structured output that
includes an explicit privacy_sensitivity label.

GPT accelerates the classification process, effectively scanning large volumes of user trajectories with
consistent logic. It can identify and label potentially sensitive fields or behaviors with minimal human
oversight. However, GPT’s inherent reliance on keywords sometimes causes it to mark a scenario as
High, even if the user simply viewed (but did not fill) a password field. Such errors underscore the
necessity of post-processing or additional contextual checks to distinguish between potential versus
actual private data entry.

2. Human Verification Human reviewers examine the same recordings or textual records to
determine whether genuinely confidential information was entered. For example: If only an email
address is mentioned, human reviewers might label it as Low or None. If a direct password or banking
details appear, human reviewers assign High.

32

Figure 14: Clustering and t-SNE visualization of all task domains.

In “false alarm” cases (for example, a password field is displayed but left blank), humans typically
label them as None. This nuanced reasoning often yields higher precision but comes at the cost of
increased labor and time. Furthermore, variability in human judgments may occur if guidelines are
not strictly enforced.

F.2 AGENTNET Statistics and Analysis

F.2.1 Diversity

Task Domains We categorize the collected tasks into 4 main domains and 11 subdomains based
on their topics, involved applications and actions in the tasks (Figure 3). Table 8 lists representative
applications for each domain. To label each task trajectory, we leveraged GPT-4o to complete the
classification by representing each task using the task instruction and L1-level CoT. We manually
examined 200 tasks randomly and the classification accuracy is over 96%. We then embedded
the task trajectories using OpenAI’s text-embedding-3-small model and visualize them t-SNE
visualization in Figure 14. Interestingly, the layout mirrors typical computer-usage patterns: for
instance, Office Tools cluster near Business & Data-Analytics, while E-commerce & Travel sit close
to Social-Media & Connect on the opposite side of the map. Finally, we chose 100 representative
tasks around the cluster centroids to form our offline benchmark, AGENTNETBENCH.

Domain App/Web
E-commerce & Travel Amazon.com, Booking.com
News, Entertainment & Lifestyle Spotify, Netflix
Social Media & Communication WhatsApp, Instagram
Office Tools Microsoft Office, Google Docs
Task Management & Collaboration Zoom, Gmail, Slack
Creative Design & Multimedia Photoshop
Development & Engineering VSCode, PyCharm, Git
Knowledge Discovery & Research Google Scholar, ResearchGate
Data Analysis, Business & Cloud Tableau, Power BI, AWS
Web Tools & Internet Utilities Chrome Extensions
Operating Systems & Utilities Finder, Activity Monitor

Table 8: Example App/Web by Doman

33

Applications and Websites Applications and websites are tracked using the AgentNet Tool. Specifi-
cally, application names are captured by recording the process name when a user opens an application,
while website URLs are recorded through our browser plugin. Discrepancies in process names across
different operating systems and different versions are resolved using GPT, achieving an accuracy
of up to 83% with this combined method. Based on these results, we analyzed the distribution of
the dataset across applications and websites. Web browsers account for a significant portion of the
dataset, as nearly half of the data involves web applications. The results indicate that the dataset
encompasses over 140 applications and 190 mainstream websites.

F.2.2 Complexity

Our collected tasks average 18.6 steps per task. We evaluate task complexity across five dimensions:
multi-application/website usage, professional knowledge requirement, uncommon feature usage,
repetitive simple subtasks, and logically coherent long sequences. Based on GPT-4o analysis, 30.6%
tasks require multiple applications/websites, 12.9% involve professional knowledge, and 12.9% use
uncommon features in Figure 16. Then we asked GPT to rate the complexity of tasks on a 1-10
scale, where 1 represents basic operations like file opening, and 10 indicates complex tasks requiring
multiple steps, domain knowledge, or sophisticated reasoning. The complexity distribution is shown
in Figure 15. It can be seen that most of the tasks have a medium or high level of complexity.

1 2 3 4 5 6 7 8
0

2,000

4,000

6,000

2 126

2,643

6,599

4,890

2,116

1,358

224

C
ou

nt

Figure 15: Complexity Score

F.2.3 Action distribution

Human Action Action Description Agent Action

Click Click at a specific position click(x, y, button)
Middle Click Middle click at a specific position middleClick(x, y)
Double Click Double click at a specific position doubleClick(x, y, button)
Triple Click Triple click at a specific position tripleClick(x, y, button)
Mouse Move Move mouse to a specific position moveTo(x, y)
Drag Drag mouse from one position to another dragTo(x, y)
Scroll Scroll vertically or horizontally scroll(dx, dy) / hscroll(dx, dy)

Type Type a string of text write(text)
Press Press a specific key press(key)
Hotkey Perform a combination of keys hotkey(key1, key2)

Wait Wait for a few seconds wait()
Terminate End the task with success or failure terminate(‘success’ or ‘failure’)

Table 9: Overview of Human Actions and Corresponding Agent Action Functions

Table 10 summarizes the action frequencies across 3 systems. We counted the action distribution
of 41,428 computer-use tasks, including Ubuntu 23,797 tasks, Windows 12,431, and macOS 5,200.
Click is the dominant action—more than 60% on three systems. Hardware and usage patterns drive
the secondary behaviors: macOS trackpads lead to heavier vertical/horizontal scrolling and more
hotkey use; Windows mouse workflows show higher proportions of right-click and middle-click; and
Ubuntu’s keyboard-centric, terminal-oriented culture results in the greatest shares of text input.

34

Table 10: Action–type distribution (%) per operating system.
System click doubleClick dragTo hotkey hscroll middleClick moveTo
Windows 60.03 1.99 4.35 1.52 0.00 0.01 8.95
macOS 57.22 2.20 3.48 2.48 0.46 0.00 9.02
Ubuntu 63.62 3.19 2.30 2.21 0.00 0.00 4.53

System press rightClick scroll terminate tripleClick write
Windows 5.27 1.10 4.51 4.42 0.00 7.85
macOS 6.39 1.01 5.52 4.40 0.08 7.73
Ubuntu 3.78 2.40 2.06 5.89 0.22 9.81

Figure 16: Distributions of data characteristics: presence of multi-application websites, inclusion of
professional knowledge, presence of uncommon features, source operating systems and alignment
levels.

F.3 Annotation Details: Annotation Strategy, Annotator Source and Cost

Annotation Strategy We first surveyed the most popular websites and applications across a wide
range of domains—entertainment, office tools, and more. We selected the 200 + most widely used
ones. Tasks were not pre-assigned, because annotators’ familiarity varies (especially with professional
tools). We set a limit number for the apps and allowed annotators to choose. Annotators could also
brainstorm new tasks with provided relevant YouTube tutorials so they could explore and create
additional tasks.

Annotator Source We recruited annotators from four sources: internal students, external univer-
sity students, annotation companies, and crowd-sourcing platform - Prolific. Table 11 shows the
distribution of annotators and tasks. While annotators from Prolific and Company1 were native
English speakers, others were native Chinese speakers. All annotators were required to document task
goals in English and try to use English system settings, applications and websites to ensure broader
applicability. (The numbers in the table are annotated tasks before verification)

Annotation and CoT synthesis cost Annotating 22K tasks takes 6 months. All annotators are
part-time. The total annotation cost was about USD 20,000. Annotation speed is roughly ten tasks

35

Annotator Source Accepted Uploads Annotator Count
Internal Students 4943 38
External Students 5168 135
Prolific 1218 294
Company1 2235 72
Company2 3556 51
Company3 1975 14
Company4 5000 30

Total 24095 634
Table 11: Annotation Source Statistics (before verification)

per hour. The cost of synthesizing CoT costs USD 0.6 per task on average. The total cost of building
this dataset is about USD 32,000.

36

G OSWorld Case Example

The trajectory outlines the process of installing a manually developed Chrome extension located
in the Desktop directory into the Google Chrome browser for testing or usage purposes. Notably,
the step labeled in red highlights the agent’s capacity for reflection and error correction—it initially
diverges into an incorrect path, subsequently recognizes the mistake, and successfully reorients itself
to proceed with the correct course of action.

Step 1

Thought: I need to install a Chrome extension that’s located in the Desktop directory. Looking
at the current state, I’m on the Google homepage in Chrome. To install an extension, I need to
access the Chrome Web Store or use the extensions menu.
I can see that there’s a "Web Store" shortcut on the Google homepage which could be useful.
However, I also notice the Chrome menu button (three vertical dots) in the top-right corner of
the browser. This menu would give me access to more Chrome settings and features, including
extensions.
Since I need to install a local extension file, the most direct approach would be to: 1. Click on
the Chrome menu (three dots) 2. Navigate to "More tools" > "Extensions" or directly to "Chrome
Web Store" 3. Upload the extension file from the Desktop.
The Chrome menu button in the top-right corner is the logical next action because it provides
access to all Chrome settings and features, including extensions management. Clicking this button
will open a dropdown menu with various options, including those related to extensions.
I anticipate that after clicking the menu button, I’ll see options that will allow me to navigate to
the extensions page or Chrome Web Store, where I can then upload the extension file from the
Desktop.
Action: Click on the three-dot menu button in the top-right corner of the Chrome browser window
to open the Chrome menu.

Code: pyautogui.click(x=0.988, y=0.081)

Step 2

Thought: After clicking on the three-dot menu in the previous step, the Chrome menu has
successfully opened, displaying various options. This is exactly what I expected to happen, so
we’re making good progress toward our goal of installing a Chrome extension from the Desktop.
Looking at the current state, I can see that the Chrome menu is now open with all its options. To
install a Chrome extension, I need to access the Extensions page or use the Web Store. Based on
the goal of installing an extension from the Desktop directory, I should look for the Extensions
option in this menu.
I can see that there is an "Extensions" option in the menu, which is exactly what I need. Clicking
on this option will take me to Chrome’s Extensions page, where I can then load an unpacked
extension from the Desktop directory.
The logical next action would be to click on the "Extensions" option in the Chrome menu. This
will navigate to the Extensions management page where I can then find an option to load an
unpacked extension. From there, I’ll be able to browse to the Desktop directory and select the
extension file for installation.
By clicking on the Extensions option, I expect to be taken to the Extensions management page
where I’ll see a list of currently installed extensions and options to manage them, including an
option to "Load unpacked" which I’ll need to use to install the extension from the Desktop.
Action: Click on the "Extensions" option in the Chrome menu to access the extensions manage-
ment page.

Code: pyautogui.click(x=0.867, y=0.406)

Step 3

Thought: After clicking on the "Extensions" option in the Chrome menu, I can see that the
menu has expanded to show more options related to extensions. This is the expected result of the
previous action.
Looking at the current state, I can see that there are two main options related to extensions: 1.
"Manage Extensions" - This would take me to the page where I can manage currently installed
extensions 2. "Visit Chrome Web Store" - This would take me to the Chrome Web Store where I
can download extensions from the official store
Since our goal is to install a Chrome extension that is located on the Desktop directory, I need
to access the extensions management page first. From there, I would be able to access the "Load
unpacked" button which allows installing extensions from local files rather than from the Chrome
Web Store.
The logical next action would be to click on "Manage Extensions" since this is the option that will
take me to the extensions management page where I can install the extension from the Desktop.
This is the most direct path to achieving our goal of installing a locally developed extension.
By clicking on "Manage Extensions," I expect to be taken to a page that shows all currently
installed extensions and provides options to add new extensions, including the "Load unpacked"
option that I’ll need to use to install the extension from the Desktop directory.
Action: Click on the "Manage Extensions" option in the Chrome menu to access the extensions
management page.

Code: pyautogui.click(x=0.755, y=0.403)

37

Step 4

Thought: After clicking on "Manage Extensions" in the previous step, I can see that I’ve
successfully navigated to the Chrome extensions management page. This is exactly where I need
to be to continue with the installation of the new Chrome extension.
Looking at the current state, I can see that I’m on the chrome://extensions page which shows
the list of currently installed extensions. However, I don’t see any extensions listed yet, which
suggests either there are no extensions installed or the page needs to be refreshed to show them.
To install a new extension manually from a local file on the Desktop, I need to: 1. Access the
Chrome Web Store or a similar interface where I can upload or load an extension from a file 2.
Navigate to the extension file location (Desktop) 3. Install the extension
I notice there are a few options available to me: - I could click on "My extensions" to see if there
are any installed extensions - I could click on "Keyboard shortcuts" to configure shortcuts - I could
click on the "Chrome Web Store" link to browse the store - I could click on the "Chrome" link in
"Discover more extensions and themes on the Chrome Web Store"
Since my goal is to install a locally developed extension, I need to find an option that would allow
me to load an extension from a file. The "Chrome Web Store" link seems to be the most logical
next step, as it would likely provide access to extension management functions including loading
local extensions.
Clicking on the "Chrome" link in the text "Discover more extensions and themes on the Chrome
Web Store" would take me to the Chrome Web Store, where I might find options to access developer
tools or load extensions from local files. This seems like the most logical next action to progress
toward my goal of installing the extension from the Desktop directory.
Action: Click on the "Chrome" link in the text "Discover more extensions and themes on the
Chrome Web Store"

Code: pyautogui.click(x=0.138, y=0.284)

Step 5

Thought: After clicking on the "Chrome" link in the Extensions management page, I’ve been
taken to the Chrome Web Store. This is a good start, but I notice that I’m currently in the
Extensions category of the Chrome Web Store, which is for browsing and downloading extensions
from the store, not for installing local extensions.
To install a Chrome extension from a local file (located in the Desktop directory as mentioned in
the goal), I need to access the Chrome Web Store’s developer page or use a different approach.
Looking at the current state, I need to navigate to a different section that allows for installing
unpacked extensions.
I can see that there’s a "Sign In" button in the top-right corner of the page. Signing in to Chrome
is often necessary for extension development and installation. Additionally, there might be a way
to access developer options or a special section for installing unpacked extensions after signing in.
Given the goal of installing a locally developed Chrome extension from the Desktop directory,
the next logical step would be to sign in to Chrome. This would likely give me access to more
advanced options for extension installation, including the ability to load an unpacked extension
from a local directory.
After signing in, I expect to either find a direct option to load an unpacked extension or need
to upload the extension file from the Desktop. Signing in is a necessary step in the process of
manually installing a Chrome extension from a local directory.
Action: Click on the "Sign In" button in the top-right corner of the Chrome Web Store page.

Code: pyautogui.click(x=0.954, y=0.131)

Step 6

Thought: After clicking the "Sign In" button in the Chrome Web Store, I’ve been redirected to a
Google sign-in page. This makes sense as many Chrome extensions require a signed-in profile to
be installed properly. The sign-in page is asking for Google account credentials to proceed.
Looking at my progress toward the goal of installing a Chrome extension manually from the
Desktop directory, I need to: 1. Access the Chrome Web Store (completed) 2. Sign in to Chrome
(in progress) 3. Navigate to the extension file on the Desktop 4. Install the extension manually
I’m currently at step 2, where I need to sign in to a Google account to proceed. However, I notice
that I might not need to complete the entire sign-in process. Since the goal is to install a locally
downloaded extension, I might be able to go back and find an option to load an extension from a
local file without fully signing in.
Looking at the browser interface, I see the back button in the top-left corner of the browser.
Clicking this back button would allow me to return to the Chrome Web Store page where I might
find alternative options for installing an extension from a local file, such as a "Load unpacked"
button that’s typically available when you’re in the extensions management page.
The logical next action would be to click the back button to return to the Chrome Web Store. This
would allow me to potentially find a more direct way to install the extension from the Desktop
without completing the sign-in process. After clicking back, I expect to return to the Chrome Web
Store page where I can look for options related to loading local extensions.
Action: Click the back button in the top-left corner of the Chrome browser window to return to
the previous page.

Code: pyautogui.click(x=0.048, y=0.086)

Step 7

Thought: After clicking the back button, I’ve successfully returned to the Chrome Web Store
page from the Google sign-in page. This was the right move since signing in wasn’t necessary to
install a local extension.
Now I need to find a way to install the extension from the Desktop directory. Looking at the
current state of the Chrome Web Store page, I need to find an option that would allow me to load
an extension from a local file. This functionality is typically available through an "More" menu or
similar option on the Chrome Web Store page.
I can see that there’s a three-dot menu button in the top-right corner of the Chrome browser window.
This is likely where I’ll find additional options for managing extensions, including the ability to
load an extension from a local file. Clicking this button should reveal a dropdown menu with
various options, potentially including "More Extensions" or "Load unpacked extension" which
would allow me to navigate to the Desktop directory and select the extension file.
The logical next action is to click on this three-dot menu button in the top-right corner of the
browser. This should open a menu with additional options related to extensions, which will help
me progress toward manually installing the extension from the Desktop directory.
Action: Click on the three-dot menu button in the top-right corner of the Chrome browser window
to access additional browser options.
Code:pyautogui.click(x=0.988, y=0.083)

38

Step 8

Thought: After clicking the three-dot menu in the top-right corner of the Chrome browser, a
dropdown menu has appeared with various browser options. This is exactly what I was expecting to
see, as this menu provides access to Chrome’s core functionality including extensions management.
Looking at my progress toward the goal of installing a Chrome extension manually from the
Desktop directory, I’ve successfully: 1. Opened the Chrome menu 2. Accessed the Extensions
option 3. Navigated to the Chrome Web Store 4. Attempted to sign in (but determined it wasn’t
necessary) 5. Opened the Chrome menu again to access more options
Now I need to find the best way to install the extension from the Desktop. Since I already know
the extension file is on the Desktop, I should look for an option that would allow me to load an
unpacked extension or access the Desktop files.
Looking at the dropdown menu, I can see an "Extensions" option with a submenu indicator (>).
This is exactly what I need to click next because: 1. It will take me to the Extensions management
page or provide extension-related options 2. From there, I should be able to find an option to load
an unpacked extension 3. This is the standard way in Chrome to manage extensions, including
loading them from local files
Clicking on the "Extensions" menu item will likely show me additional options such as "Load
unpacked" which would allow me to navigate to the Desktop and select the extension folder. This
is the most direct path to manually installing the extension from the Desktop as required.
Action: Click on the "Extensions" option in the Chrome menu to access extension management
functions.

Code: pyautogui.click(x=0.863, y=0.406)

Step 9

Thought: After clicking on the "Extensions" option in the Chrome menu, a submenu has appeared
with two options: "Manage Extensions" and "Visit Chrome Web Store". This is exactly what I
need to continue with the installation process.
Looking at my progress toward installing the Chrome extension: 1. I opened the Chrome menu
and accessed Extensions 2. I went to the Chrome Web Store’s Extensions page 3. I attempted to
sign in but decided to go back 4. I opened the Chrome menu again and clicked on Extensions 5.
Now I’m seeing a submenu with extension-related options
To install a local extension from the Desktop directory, I need to access the extension management
interface. The "Manage Extensions" option is exactly what I need, as it will allow me to access
the extension installation functionality. This is where I’ll be able to load an unpacked extension
from a local directory.The "Manage Extensions" option is the first item in the submenu that has
appeared. Clicking on this option will take me to the extensions management page where I can
find the option to add an unpacked extension. From there, I’ll be able to navigate to the Desktop
directory and select the extension file to complete the installation.The logical next action is to click
on "Manage Extensions" in the submenu. This will take me to the extensions management page
where I can proceed with installing the extension from the Desktop directory.
Action: Click on the "Manage Extensions" option in the Chrome menu submenu.

Code: pyautogui.click(x=0.738, y=0.401)

Step 10

Thought: After clicking on "Manage Extensions" in the Chrome menu, I’ve been taken to the
Chrome extensions management page. This is exactly where I need to be to continue with the
installation of the new Chrome extension.
Looking at my progress toward the goal of installing a Chrome extension manually from the
Desktop directory: 1. I’ve successfully accessed the Chrome browser 2. I’ve navigated to the
extensions management page 3. I now need to find a way to load the extension from the Desktop
The extensions page shows several options, including "My extensions" and "Keyboard shortcuts,"
but I don’t see a direct option to upload or add an extension from a file. However, I notice the
"Developer mode" toggle in the top-right corner of the page. This is exactly what I need, as
Developer mode typically provides additional options for developers, including the ability to
load unpacked extensions.To install a manual extension, I need to enable Developer mode first.
Once Developer mode is enabled, I should get additional options that will allow me to load an
unpacked extension from a local directory like the Desktop.The logical next action is to click on
the "Developer mode" toggle switch in the top-right corner of the page. This will enable developer
options and should reveal additional controls that will allow me to load the extension from the
Desktop directory. After clicking this toggle, I expect to see new buttons appear that will let me
access the file system and select the extension file.
Action: Click on the "Developer mode" toggle switch in the top-right corner of the page to enable
developer options.

Code: pyautogui.click(x=0.988, y=0.131)

Step 11

Thought: After clicking on the "Developer mode" toggle switch, it has successfully been enabled
as shown by the blue toggle in the top-right corner of the page. This has revealed additional
functionality that wasn’t visible before, including the "Load unpacked" button which is exactly
what we need to install our extension manually.Now that Developer mode is enabled, I can see the
"Load unpacked" button which allows us to install extensions from local files rather than from the
Chrome Web Store. This is perfect for our goal since we need to install an extension that’s located
in the Desktop directory.Looking at the available options, I can see: 1. "Load unpacked" button -
This is what we need to install our local extension 2. "Pack extension" button - Used for creating a
packaged version of an extension 3. "Update" button - For updating existing extensions 4. The
sidebar navigation showing "My extensions" and "Keyboard shortcuts"To install the extension
from the Desktop directory, the logical next action is to click on the "Load unpacked" button.
This will open a file browser dialog that will allow us to navigate to the Desktop and select the
extension folder. Once we select the folder, Chrome will install the extension from the unpacked
files.Clicking the "Load unpacked" button is the most appropriate action because: 1. It directly
addresses our goal of installing a locally developed extension 2. It’s the standard way to install
extensions from local files in Chrome 3. The Developer mode is already enabled, which is a
prerequisite for using this feature
After clicking this button, I expect a file browser dialog to appear, allowing us to navigate to the
Desktop and select the extension folder.
Action: Click on the "Load unpacked" button to open a file browser dialog for selecting the
extension folder from the Desktop.
Code: pyautogui.click(x=0.072, y=0.179)

39

Step 12

Thought: After clicking the "Load unpacked" button, a file browser dialog has opened as expected.
This dialog allows me to navigate to the location where the extension is stored, which according to
our goal should be in the Desktop directory.
Looking at the current state, I can see that the file browser dialog is showing the contents of what
appears to be the home directory, with folders like tmp, Downloads, and user visible. However,
our goal is to install a Chrome extension that’s located in the Desktop directory. Therefore, I need
to navigate to the Desktop folder.
I notice that the Desktop folder is conveniently listed in the left navigation panel of the file browser.
Since we need to access the Desktop to find the extension files, clicking on the Desktop folder in
the left navigation panel is the logical next step. This will change the view to show the contents of
the Desktop directory, where we should be able to find the extension files.
Once I click on Desktop, I expect the main panel to update and show all files and folders located on
the Desktop. From there, I’ll need to locate the specific extension folder and select it to complete
the installation process.
The logical next action is to click on the "Desktop" option in the left navigation panel of the file
browser dialog to navigate to the Desktop directory where our extension is located. Action: Click
on the "Desktop" option in the left navigation panel of the file browser dialog.

Code: pyautogui.click(x=0.333, y=0.470)

Step 13

Thought: After clicking on the "Desktop" option in the left navigation panel, the file browser
dialog has now displayed the contents of the Desktop directory. This is exactly what we needed to
proceed with installing the Chrome extension.
Looking at the current state, I can see that the Desktop directory contains two items: a folder
named "helloExtension" and another folder named "_MACOSX". Since we’re looking to install
a Chrome extension, the "helloExtension" folder is most likely the extension we need to install.
Chrome extensions typically follow a specific folder structure with an "manifest.json" file at the
root, and "helloExtension" appears to be a properly named extension folder. Now that I’ve located
what appears to be the extension folder, the next logical step would be to select this folder to
proceed with the installation. According to the goal, we need to install a Chrome extension located
in the Desktop directory, and we’ve now found what seems to be that extension.
I have several options at this point: 1. Click on the "helloExtension" folder to select it 2. Click the
"Select" button (which would likely select the currently highlighted item) 3. Navigate into the
folder to confirm its contents
Since the "helloExtension" folder is the most likely candidate for the extension we need to install,
and it’s already visible in the file browser, clicking on this folder to select it is the most logical
next action. This will highlight the folder and prepare it for selection, after which I can click the
"Select" button to complete the installation process.
I expect that after clicking on the "helloExtension" folder, it will become highlighted, indicating
it’s selected. Then I can proceed to click the "Select" button to load this unpacked extension into
Chrome.
Action: Click on the "helloExtension" folder in the file browser dialog to select it for installation.

Code: pyautogui.click(x=0.454, y=0.456)

Step 14

Thought: After clicking on the "helloExtension" folder in the file browser dialog, I can see that
the folder is now selected. This is exactly what we needed to do to identify the extension we
want to install. The file browser dialog shows we’re in the Desktop directory, and we can see the
"helloExtension" folder that contains our newly developed Chrome extension.
Now that we’ve selected the "helloExtension" folder, the next logical step is to confirm this
selection by clicking the "Select" button in the file browser dialog. This button is prominently
displayed in orange in the top-right corner of the dialog. Clicking this button will finalize our
selection and proceed with the installation process.
The installation workflow so far has been: 1. We enabled Developer mode in Chrome 2. We
clicked "Load unpacked" to open the file browser 3. We navigated to the Desktop directory 4. We
selected the "helloExtension" folder
The final step to complete the installation is to click the "Select" button, which will tell Chrome
to load the unpacked extension from the selected folder. After clicking this button, Chrome
should install the extension and possibly show a confirmation message or automatically add the
extension to the browser.I expect that after clicking the "Select" button, the file browser dialog
will close, and we’ll return to the Extensions page in Chrome where we might see the newly
installed extension appear in the list of installed extensions, or possibly see a notification about the
successful installation.
Action: Click the "Select" button in the top-right corner of the file browser dialog to confirm the
selection of the helloExtension folder and complete the installation process.

Code: pyautogui.click(x=0.718, y=0.358)

Step 15

Thought: After clicking the "Select" button in the file browser dialog, the extension installation
process has completed successfully. The dialog has closed and we’ve been returned to the
Extensions management page where we can now see that the "Hello Extensions" extension has
been installed. The extension appears with its icon, version number (1.0), and description ("Base
Level Extension").Looking at our progress toward the goal of installing the Chrome extension: 1.
We enabled Developer mode in the Extensions page ✓2. We clicked the "Load unpacked" button
which opened the file browser dialog ✓3. We navigated to the Desktop directory ✓4. We selected
the "helloExtension" folder ✓5. We clicked the "Select" button to confirm the installation ✓6.
The extension has now been successfully installed ✓The task has been completed successfully!
The extension is now installed and appears in the Extensions management page. I can see that it’s
enabled (the toggle switch is turned on). If we wanted to configure any specific settings for this
extension, we could click on the "Details" button which would likely show more options for the
extension.Since our goal was to install the extension manually from the Desktop directory, and
that has been accomplished, there’s no further action needed for the basic installation task. The
extension is now available for use in Chrome.
Action: Terminate the process with success status as the extension installation is complete.
Code: computer.terminate(status=’success’)

40

H AgentNet Training Data Example

H.1 L1 Data Example

L1 data includes CoT-L1(Action) in its inner monologue. The assistant’s final output will be included
in the loss calculation (green color content).

L1 Data Example

1 [
2 {
3 "role": "system",
4 "content": "You are a GUI agent. You are given a task

and a screenshot of the screen. You need to perform a
series of pyautogui actions to complete the task.For
each step , provide your response in this format:

Action: Provide clear , concise , and actionable
instructions: - If the action involves interacting
with a specific target: - Describe target
explicitly without using coordinates - Specify
element names when possible (use original language if
non -English) - Describe features (shape , color ,

position) if name unavailable - For window control
buttons , identify correctly (minimize , maximize ,

close) - if the action involves keyboard actions
like ’press ’, ’write ’, ’hotkey ’: - Consolidate
repetitive keypresses with count - Specify
expected text outcome for typing actionsFinally ,
output the action as PyAutoGUI code or the following
functions:- {"name": "computer.triple_click", "
description": "Triple click on the screen", "
parameters": {"type": "object", "properties": {"x": {
"type": "number", "description": "The x coordinate of
the triple click"}, "y": {"type": "number", "

description": "The y coordinate of the triple click"
}}, "required": ["x", "y"]}}- {"name": "computer.
terminate", "description": "Terminate the current
task and report its completion status", "parameters":
{"type": "object", "properties": {"status": {"type":
"string", "enum": ["success", "failure"], "

description": "The status of the task"}}, "required":
["status"]}}"

5 },
6 {
7 "role": "assistant",
8 "content": "# Step 1:
9 ## Action:Click on the "Destination Columns -A..."

document thumbnail to open the document.
10

11 # Step 2:
12 ## Action:Select the word "Travelers" at the beginning

of the second paragraph by clicking at the start of
the word and dragging to the end of it."

13 },
14 {
15 "role": "user",
16 "image":

41

1 ,
2 },
3 {
4 "role": "assistant",
5 "content": "# Step 3:
6 ## Action:Press Ctrl+C to copy the selected word "

Travelers""
7 },
8 {
9 "role": "user",

10 "image":

1 ,
2 },
3 {
4 "role": "assistant",
5 "content": "# Step 4:
6 ## Action:Click on the Google search tab near the top of

the browser window."
7 },
8 {
9 "role": "user",

10 "image":

42

1 ,
2 },
3 {
4 "role": "user",
5 "content": "# Task Instruction:
6 Could you open the document ’Destination Columns -A’,

find the first word of the second paragraph , look up
what that word means on Wikipedia , and then add that
Wikipedia description as a footnote to that word in
the document?

7 Please generate the next move according to the
screenshot , task instruction and previous steps (if
provided)."

8 },
9 {

10 "role": "assistant",
11 "content": "# Step 5:
12 ## Action:Click on the Google search box where "gpt" is

currently displayed to prepare to enter a new search
query.

13

14 ## Code:’’’python\npyautogui.click(x=0.157 , y=0.1229) ’’’
"}

15 }
16]

H.2 L2 Data Example

L2 data includes CoT-L2(Thought, Action) in its inner monologue. The assistant’s final output will
be included in the loss calculation.

L2 Data Example

1

2 [
3 {
4 "role": "system",
5 "content": "You are a GUI agent. You are given a task

and a screenshot of the screen. You need to perform a
series of pyautogui actions to complete the task.For
each step , provide your response in this format:

Thought: - Step by Step Progress Assessment: -
Analyze completed task parts and their contribution
to the overall goal - Reflect on potential errors ,
unexpected results , or obstacles - If previous

43

action was incorrect , predict a logical recovery step
- Next Action Analysis: - List possible next

actions based on current state - Evaluate options
considering current state and previous actions -
Propose most logical next action - Anticipate
consequences of the proposed action - For Text Input
Actions: - Note current cursor position -

Consolidate repetitive actions (specify count for
multiple keypresses) - Describe expected final
text outcome - Use first -person perspective in
reasoningAction: Provide clear , concise , and
actionable instructions: - If the action involves
interacting with a specific target: - Describe
target explicitly without using coordinates -
Specify element names when possible (use original
language if non -English) - Describe features (
shape , color , position) if name unavailable - For
window control buttons , identify correctly (minimize ,
maximize , close) - if the action involves keyboard

actions like ’press ’, ’write ’, ’hotkey ’: -
Consolidate repetitive keypresses with count -
Specify expected text outcome for typing
actionsFinally , output the action as PyAutoGUI code
or the following functions:- {"name": "computer.
triple_click", "description": "Triple click on the
screen", "parameters": {"type": "object", "properties
": {"x": {"type": "number", "description": "The x
coordinate of the triple click"}, "y": {"type": "
number", "description": "The y coordinate of the
triple click"}}, "required": ["x", "y"]}}- {"name": "
computer.terminate", "description": "Terminate the
current task and report its completion status", "
parameters": {"type": "object", "properties": {"
status": {"type": "string", "enum": ["success", "
failure"], "description": "The status of the task"}},
"required": ["status"]}}"

6 },
7 {
8 "role": "assistant",
9 "content": "# Step 1:

10 ## Action:Click on the "Destination Columns -A..."
document thumbnail to open the document.

11

12 # Step 2:
13 ## Action:Select the word "Travelers" at the beginning

of the second paragraph by clicking at the start of
the word and dragging to the end of it."

14 },
15 {
16 "role": "user",
17 "image":

44

1 ,
2 },
3 {
4 "role": "assistant",
5 "content": "# Step 3:
6 ## Action:Press Ctrl+C to copy the selected word "

Travelers""
7 },
8 {
9 "role": "user",

10 "image":

1 ,
2 },
3 {
4 "role": "assistant",
5 "content": "# Step 4:
6 ## Action:Click on the Google search tab near the top of

the browser window."
7 },
8 {
9 "role": "user",

10 "image":

45

1 ,
2 },
3 {
4 "role": "user",
5 "content": "# Task Instruction:
6 Could you open the document ’Destination Columns -A’,

find the first word of the second paragraph , look up
what that word means on Wikipedia , and then add that
Wikipedia description as a footnote to that word in
the document?

7 Please generate the next move according to the
screenshot , task instruction and previous steps (if
provided)."

8 },
9 {

10 "role": "assistant",
11 "content": "# Step 5:
12 ## Thought:After clicking on the Google search tab , I

can now see that the browser has successfully
switched to a Google search page. This is a step
forward in my task , as I need to search for the word
"Travelers" on Wikipedia to complete the footnote
insertion.Currently , I see that the search box
contains "gpt" rather than the word "Travelers" that
I copied from the document. To proceed with my task ,
I need to:1. Clear the current search term "gpt" from
the search box2. Enter "Travelers Wikipedia" or

navigate directly to Wikipedia and search there3.
Find relevant information about "Travelers" on
Wikipedia4. Return to the Google Docs document and
insert this information as a footnoteMy progress on
the overall task so far:1. I’ve opened the "
Destination Columns -A" document v2. I’ve identified
and selected the first word of the second paragraph (
"Travelers") v3. I’ve copied this word to the
clipboard v4. I’ve switched to a browser tab for
searching v5. Now I need to clear the current search
and look up "Travelers" on Wikipedia6. Then I need to
insert the Wikipedia description as a

footnoteLooking at the current state , I need to click
directly on the search box where "gpt" is currently

displayed. By clicking on the search box , I’ll be
able to select all the text , delete it , and replace
it with "Travelers Wikipedia" to search for
information about Travelers on Wikipedia. This is the
most efficient next action as it allows me to

directly modify the search query without any
additional steps.After clicking on the search box , I

46

expect the text cursor to be positioned within the
box , allowing me to edit the current search term. I
can then clear "gpt" and type "Travelers Wikipedia"
to continue with my search. This will help me find
the Wikipedia page for "Travelers" so I can obtain
the description needed for the footnote.

13

14 ## Action:Click on the Google search box where "gpt" is
currently displayed to prepare to enter a new search
query.

15

16 ## Code:’’’python\npyautogui.click(x=0.157 , y=0.1229) ’’’
"}

17 }
18]

H.3 L3 Data Example

L3 data includes CoT-L3(Observation, Thought, Action) in its inner monologue. The assistant’s final
output will be included in the loss calculation.

L3 Data Example

1 [
2 {
3 "role": "system",
4 "content": "You are a GUI agent. You are given a task

and a screenshot of the screen. You need to perform a
series of pyautogui actions to complete the task.For
each step , provide your response in this format:

Observation: - Describe the current computer state
based on the full screenshot in detail. -
Application Context: - The active application -
The active window or page - Overall layout and

visible interface - Key Elements: - Menu items
and toolbars - Buttons and controls - Text
fields and content - Dialog boxes or popups -
Error messages or notifications - Loading states

- Other key elements - Describe any content ,
elements , options , information or clues that are
possibly relevant to achieving the task goal ,
including their name , content , or shape (if possible)
.Thought: - Step by Step Progress Assessment: -
Analyze completed task parts and their contribution
to the overall goal - Reflect on potential errors ,
unexpected results , or obstacles - If previous

action was incorrect , predict a logical recovery step
- Next Action Analysis: - List possible next

actions based on current state - Evaluate options
considering current state and previous actions -
Propose most logical next action - Anticipate
consequences of the proposed action - For Text Input
Actions: - Note current cursor position -

Consolidate repetitive actions (specify count for
multiple keypresses) - Describe expected final
text outcome - Use first -person perspective in
reasoningAction: Provide clear , concise , and
actionable instructions: - If the action involves
interacting with a specific target: - Describe
target explicitly without using coordinates -

47

Specify element names when possible (use original
language if non -English) - Describe features (
shape , color , position) if name unavailable - For
window control buttons , identify correctly (minimize ,
maximize , close) - if the action involves keyboard

actions like ’press ’, ’write ’, ’hotkey ’: -
Consolidate repetitive keypresses with count -
Specify expected text outcome for typing
actionsFinally , output the action as PyAutoGUI code
or the following functions:- {"name": "computer.
triple_click", "description": "Triple click on the
screen", "parameters": {"type": "object", "properties
": {"x": {"type": "number", "description": "The x
coordinate of the triple click"}, "y": {"type": "
number", "description": "The y coordinate of the
triple click"}}, "required": ["x", "y"]}}- {"name": "
computer.terminate", "description": "Terminate the
current task and report its completion status", "
parameters": {"type": "object", "properties": {"
status": {"type": "string", "enum": ["success", "
failure"], "description": "The status of the task"}},
"required": ["status"]}}"

5 },
6 {
7 "role": "assistant",
8 "content": "# Step 1:
9 ## Action:Click on the "Destination Columns -A..."

document thumbnail to open the document.
10

11 # Step 2:
12 ## Action:Select the word "Travelers" at the beginning

of the second paragraph by clicking at the start of
the word and dragging to the end of it."

13 },
14 {
15 "role": "user",
16 "image":

1 ,
2 },
3 {
4 "role": "assistant",
5 "content": "# Step 3:
6 ## Action:Press Ctrl+C to copy the selected word "

Travelers""
7 },
8 {

48

9 "role": "user",
10 "image":

1 ,
2 },
3 {
4 "role": "assistant",
5 "content": "# Step 4:
6 ## Action:Click on the Google search tab near the top of

the browser window."
7 },
8 {
9 "role": "user",

10 "image":

1 ,
2 },
3 {
4 "role": "user",
5 "content": "# Task Instruction:
6 Could you open the document ’Destination Columns -A’,

find the first word of the second paragraph , look up
what that word means on Wikipedia , and then add that
Wikipedia description as a footnote to that word in
the document?

7 Please generate the next move according to the
screenshot , task instruction and previous steps (if
provided)."

8 },
9 {

10 "role": "assistant",

49

11 "content": "# Step 5:
12 ## Observation:I’m looking at a Google search page where

"gpt" has been entered in the search box. The
interface shows Google search results for "gpt" with
various tabs available at the top (All , Images ,
Videos , Shopping , News , More). The search results
show information about GPT and related technologies.
Multiple search results are visible , including:-
Information about GPT -4- ChatGPT (from https ://
chatgpt.com)- Multiple websites with GPT -related
content The browser has multiple tabs open at the top
, including a tab for "Destination Columns -A"
document , which appears to be a Google Docs document
that was previously being worked on. There’s also a
search bar at the top with the query "gpt" entered.
Below the search results are some related questions
in a FAQ section , such as "What does the GPT stand
for?" and "Is ChatGPT free?" among others.The Google
search interface includes various filters and options
to refine the search , including some buttons like "

Gpt -4 " (GPT -4 relevance) and several other filter
options.

13

14 ## Thought:After clicking on the Google search tab , I
can now see that the browser has successfully
switched to a Google search page. This is a step
forward in my task , as I need to search for the word
"Travelers" on Wikipedia to complete the footnote
insertion.Currently , I see that the search box
contains "gpt" rather than the word "Travelers" that
I copied from the document. To proceed with my task ,
I need to:1. Clear the current search term "gpt" from
the search box2. Enter "Travelers Wikipedia" or

navigate directly to Wikipedia and search there3.
Find relevant information about "Travelers" on
Wikipedia4. Return to the Google Docs document and
insert this information as a footnoteMy progress on
the overall task so far:1. I’ve opened the "
Destination Columns -A" document v2. I’ve identified
and selected the first word of the second paragraph (
"Travelers") v3. I’ve copied this word to the
clipboard v4. I’ve switched to a browser tab for
searching v5. Now I need to clear the current search
and look up "Travelers" on Wikipedia6. Then I need to
insert the Wikipedia description as a

footnoteLooking at the current state , I need to click
directly on the search box where "gpt" is currently

displayed. By clicking on the search box , I’ll be
able to select all the text , delete it , and replace
it with "Travelers Wikipedia" to search for
information about Travelers on Wikipedia. This is the
most efficient next action as it allows me to

directly modify the search query without any
additional steps.After clicking on the search box , I
expect the text cursor to be positioned within the
box , allowing me to edit the current search term. I
can then clear "gpt" and type "Travelers Wikipedia"
to continue with my search. This will help me find
the Wikipedia page for "Travelers" so I can obtain
the description needed for the footnote.

15

50

16 ## Action:Click on the Google search box where "gpt" is
currently displayed to prepare to enter a new search
query.

17

18 ## Code:’’’python\npyautogui.click(x=0.157 , y=0.1229) ’’’
"}

19 }
20]

51

	Introduction
	AgentNet Collection
	Task Definition
	AgentNet Statistics

	Training Computer-Use Agent Model
	Synthesizing Reflective Long CoT Reasoning
	Context Encoding and Test-Time Reasoning
	Training Strategy

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Related Work
	Conclusion
	Aknowledgement
	Limitations
	AgentNetBench
	CUA Training Strategies
	Experiment Setup, Extra Experiments and Analysis
	Experiment Setup and Training settings
	GUI grounding evaluation.
	Ablation Studies
	Error Study
	Extra analysis

	OSWorld-Verified Results Detail
	Dataset Statistics, Annotation Details, and AgentNetTool Details
	AgentNet Tool
	Tool Features
	Privacy Protection

	AgentNet Statistics and Analysis
	Diversity
	Complexity
	Action distribution

	Annotation Details: Annotation Strategy, Annotator Source and Cost

	OSWorld Case Example
	AgentNet Training Data Example
	L1 Data Example
	L2 Data Example
	L3 Data Example

